UNIVERSIDAD AUTONOMA DE NUEVO LEON FACULTAD DE INGENIERIA MECANICA Y ELECTRICA DIVISION DE ESTUDIOS SUPERIORES

ANALISIS DE SISTEMAS DESBALANCEADOS PARA EL DISEÑO Y OPERACION DE REDES ELECTRICAS

TESIS

QUE PARA OBTENER EL GRADO DE MAESTRO EN CIENCIAS EN INGENIERIA ELECTRICA ESPECIALIDAD POTENCIA

PRESENTA

JUAN MARCOS GARCIA MARTINEZ

MONTERREY, N. L.

DICIEMBRE DE 1989

JMGM

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA DIVISIÓN DE ESTUDIOS SUPERIORES

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN TESIS DIRECCIÓN GENERAL DE BIBLIOTECAS

QUE PARA OBTENER EL GRADO DE

MAESTRO EN CIENCIAS EN INGENIERÍA ELÉCTRICA ESPECIALIDAD POTENCIA

PRESENTA

JUAN MARCOS GARCÍA MARTÍNEZ

MONTERREY, N.L. DICIEMBRE DE 1989

TH 25853 .NZ F11 1'8; G37

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

FONDO TESIS

63077

AGRADECIMIENTOS

Al Dr. Florencio Aboytes, por la valiosa y acertada dirección de esta tesis.

A todos mis compañeros maestros y alumnos del Programa Doctoral en Ingeniería Eléctrica, por su amistad y por sus consejos en el desarrollo de este trabajo. En forma especial a L. D. Aréchiga, J. J. Guerrero y M. A. Moreno.

Al Consejo Nacional de Ciencia y Tecnología por el apoyo económico para la realización de estos estudios.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

ÚNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

A MIS PADRES PEDRO Y NATALIA CON CARIÑO Y RESPETO

INDICE

•

Resumen	1
1 INTRODUCCION	3
2 Modelacion matricial del sistema de potencia en componentes (adc)	8
2 0 PLANTEAMIENTO DEL PROPLEMA	0
2.0 ILANTEATIENTO DEL FROBLETA 2.1 MODELADO DE LOS ELEMENTOS DEL SISTEMA DE POTENCIA	0 0
2 2 OBTENCIÓN DE LA MATRIZ DE ADMITANCIAS NODAL EN	•
COMPONENTES (abc)	17
2.3 MODELADO DE LINEAS DE TRANSMISION ACOPLADAS	20
	20
3 ESTUDIOS DE EALLAS EN SISTEMAS DE POTENCIA	
DESBAL ANCEADOS	23
2 C DEFINICIÓN DEL PROPIEKA	22
3.0 DEFINICION DEL PROBLEMA	23
3.1 ALGORITMU GENERALIZADU PARA EL ESIGDIO DE FALLAS	24
2.2 ALCORITMO DARA REALIZAD ESTIDIOS DE FALLAS	28
3.3 ALGORITEO FARA REALIZAR ESTODIOS DE FALLAS	30 (
3.4.1 Caso de prueba No. 1	31 31
3.4 ta Sistema balanceado y simplificado	32
3.4.1b Sistema balanceado completo	35
3.4.1c Falla de línea a tierra en las diferentes	55
fases, comparación de resultados	38
3.4.2 Caso de prueba No. 2	41
3.4.2a Caso especial, corriente de falla igual a cero	41
3.4.3 Caso de prueba No. 3	43
3.4.3a Sistema desbalanceado, falla serie	44
3.4.3b Caso especial, problema numérico	48

ų

.

4	Estudios de flujo de potencia en sistemas desbalanceados	51
	4.0 PLANTEAMIENTO DEL PROBLEMA	51
	4.1 ESTUDIO TRIFASICO DE FLUJO MEDIANTE EL METODO	
	NEWTON-RAPHSON	52
	4.1.1 Algoritmo de solución	53
	4.1.2 Ecuaciones de restricción	54
	4.1.3 Cálculo de los elementos del Jacobiano	໌59
	4.1.4 Control de voltaje de secuencia positiva	69
	4.1.5 Límites de potencia reactiva generada	71
VT	4.2 DIAGRAMA DE FLUJO DEL ALGORITMO	73
	4.3 ANALISIS DE SISTEMAS DE PRUEBA	77
5	4.3.1 Caso de prueba No. 1	77
S S	4.3.1a Sistema simplificado balanceado	78
	4.3.1b Sistema completo balanceado	83
E	4.3.1c Sistema con red eléctrica desbalanceada	88
	4.3.1d Sistema con carga desbalanceada	93
	4.3.1e Sistema desbalanceado	98
	4.3.2 Caso de prueba No. 2	102
	4.4 FACTORES QUE AFECTAN LA CONVERGENCIA	106
UNIVE	4.5 CALCULO DE VOLTAJES DE NEUTROS ERSIDAD AUTONOMA DE NUEVO LI	EON
5	TOPICOS SELECTOS	111 (
DI	RECCION GENERAL DE BIBLIOTECAS 5.0 INTRODUCCION	111
	5.1 CONTROL DEL VOLTAJE DE NODOS REMOTOS	111
	5.2 CONTROL DEL INTERCAMBIO DE POTENCIA ENTRE AREAS	114
	5.3 FORMULACIONES DESACOPLADAS	117
6	Conclusiones y recomendaciones	120
	6.1 CONCLUSIONES	120
	6.1.1 Modelación del SEP en componentes de fase	120
	6.1.2 Estudios de fallas trifásicos	121
	. 6.1.3 Estudio de flujo trifásico	122
	6.2 RECOMENDACIONES PARA ESTUDIOS FUTUROS	124
	6.3 APORTACIONES DE ESTA TESIS	125

3

ii

REFERENCIAS		126
APENDICE A	Método de Newton-Raphson	128
APENDICE B	Datos del sistema de ANDERSON	130
APENDICE C	Datos del sistema de ARRILLAGA	139

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

RESUMEN

El estudio detallado de un sistema eléctrico de potencia (SEP) real hace necesario la modelación del sistema en componentes de fase (abc). Esto permite obtener el comportamiento de las variables físicas del problema y facilita la simulación de condiciones de operación especiales.

En general todos los sistemas de potencia reales tienen un cierto grado de desbalance. Sin embargo, generalmente son analizados como si fueran balanceados. En este trabajo se presentan métodos para analizar sistemas eléctricos de potencia desbalanceados, mediante técnicas que utilizan componentes de fase.

Inicialmente se describen los estudios tradicionales en los sistemas

eléctricos de potencia, así como sus límitaciones y ventajas. Se considera la importancia de realizar los estudios del SEP en componentes (abc) así como las ventajas que ofrecen. Se realza la ventaja de utilizar técnicas de programación eficientes para el almacenamiento y manejo de los modelos matemáticos del sistema de potencia.

Se presenta el modelado del SEP mediante las ecuaciones en componentes (abc). Se incluyen los modelos de cada uno de los elementos que constituyen el sistema de potencia y se forma la matriz de admitancias nodal (Y^{abc}) del sistema trifásico.

Se detallan las reglas a seguir para formar la matriz Y^{abc} y se desarrolla un algoritmo para la inclusión de líneas de transmisión acopladas.

1

Se detalla un algoritmo generalizado para el estudio de fallas en SEP, se presentan cuatro alternativas para realizar estudios de fallas, las cuales combinan la utilización de las matrices de admitancias o impedancias nodal de la falla y el equivalente del SEP.

Se incluyen casos de prueba en SEP's balanceados y desbalanceados. En cada ejemplo numérico se incluyen en detalle los datos de los elementos del sistema de potencia, de manera que puedan ser utilizados en otros estudios o en la comprobación de los resultados presentados. En forma especial se realiza el análisis de los resultados obtenidos bajo condiciones de operación desbalanceadas.

En la segunda parte del trabajo se desarrolla la formulación de un estudio de flujos de potencia trifásico en coordenadas (abc). Se describe la solución del problema utilizando el método de Newton-Raphson. Se manejan las ecuaciones complejas en componentes rectangulares.

Inicialmente se obtienen las ecuaciones que se deben satisfacer en cada tipo de nodo y que representan las condiciones de la red, de los elementos y del estado del sistema eléctrico de potencia. Una vez que se han establecido las ecuaciones de restricción se analiza el ajuste de dichas ecuaciones utilizando el método de Newton-Raphson, para ello se incluye el desarrollo detallado de los elementos de la matriz Jacobiana.

Se describen dos esquemas de control del voltaje en los nodos de generación: control de voltaje de una fase y control de voltaje de secuencia positiva. Se analizan también las ecuaciones de restricción para establecer límites de generación de potencia reactiva.

Para validar el algoritmo desarrollado se presentan resultados de simulaciones en sistemas de prueba. En los ejemplos númericos se analizan los factores que afectan la convergencia y se muestra el procedimiento para el cálculo de los voltajes de neutros de elementos conectados en estrella.

Se presentan también algoritmos para la implementación de restricciones adicionales en los estudios de flujos, como son; el control de voltaje en nodos de carga y el control del intercambio de potencia entre areas. Además, se analizan las formulaciones desacopladas en los estudios de flujos de potencia trifásicos.

Finalmente se presentan las conclusiones del trabajo, así como recomendaciones para el desarrollo de estudios futuros.

1 INTRODUCCION

En el análisis convencional de sistemas eléctricos de potencia se considera que todos los elementos que lo forman son balanceados, por lo tanto al utilizar la transformación de componentes simétricas las redes de secuencia quedan desacopladas. Además, como los voltajes internos de los generadores también son balanceados, sólo el voltaje de secuencia positiva es distinto de cero y sólo es necesario analizar la red de esta secuencia.

En la práctica sólo algunos elementos del SEP son balanceados, tal es el caso de los generadores y transformadores, sin embargo, otros elementos por lo general son desbalanceados. A continuación se mencionan algunos elementos

y condiciones del sistema que generan estados desbalanceados.

EKSIDAD AUTUNUMA I

- Cargas desbalanceadas.
- Líneas de transmisión largas sin transposiciones.
- Transformadores trifásicos compuestos por unidades monofásicas distintas y/o con cambiadores de tap independientes para cada fase.
- Apertura/recierre monopolar.

En la solución de un problema con el análisis convencional se realizan algunas aproximaciones para convertir el sistema en balanceado, en consecuencia, la solución que se obtiene es aproximada. Por lo tanto, si se quiere obtener la solución real es necesario modelar al sistema como realmente es: desbalanceado.

3

ONON

0

En el análisis de los sistemas de potencia desbalanceados las transformaciones matemáticas no ofrecen ninguna ventaja. Esto se debe a que si bién es posible obtener una matriz de transformación que diagonalice la matriz de admitancias de un elemento, generalmente la misma matriz no diagonalizará la matriz de admitancias de otros elementos. Por este motivo el análisis de los SEP's desbalanceados se realiza directamente en componentes (abc).

El analizar los sistemas eléctricos de potencia en componentes (abc) ofrece numerosas ventajas, algunas de las cuales se mencionan a continuación:

La modelación es más completa y general.

Es posible modelar con mucha facilidad elementos o conexiones de elementos especiales, así como condiciones o estados poco comúnes, v.g., transformadores en conexión delta abierta, abrir una o dos fases de una línea de transmisión o de cualquier elemento del sistema etc..

Se tienen modeladas las variables reales del sistema y no variables transformadas, permitiendo la visualización física de los resultados.

Se puede incluir en el modelado cualquier punto del sistema, v.g., neutros de generadores, transformadores y cargas.

• Es posible realizar el análisis de cualquier tipo de falla por muy complicada que ésta sea, por ejemplo que se abra una fase de un generador o de un transformador.

 Se pueden implementar diferentes esquemas para controlar la magnitud del voltaje en terminales de generadores.

Por otro lado, el modelo matemático en componentes de fase es tres veces más grande que el modelo de secuencia positiva. Esto representa una desventaja para el uso de la formulación trifásica, ya que se requieren mayores recursos computacionales (memoria y tiempo de cálculo) en la solución. Sin embargo, actualmente estos problemas no son tan significativos, como en el pasado, debido a los desarrollos en el campo de la computación y al uso de técnicas computacionales eficientes.

Una alternativa para representar matemáticamente las redes eléctricas es utilizar sus ecuaciones nodales. La formación de las ecuaciones nodales del

4

sistema trifásico^{[1],[3]} es muy similar a la de la red de secuencia positiva, solamente que a diferencia del primer caso, donde tanto parámetros como variables del sistema son escalares, en el segundo caso se requiere utilizar matrices y vectores.

Al igual que en las ecuaciones nodales de secuencia positiva, la matriz de admitancias nodal del sistema trifásico es dispersa, sólo que en este caso se tienen bloques de matrices de orden 3x3, lo cual requiere, para un mejor uso de los recursos computacionales, la utilización de técnicas eficientes^[13] para el almacenamiento y manejo de dicha matriz v.g. almacenamiento de matrices en forma empaquetada^[13], factorización ordenada de matrices^[13,14,15], etc..

Los estudios de fallas permiten obtener las corrientes que circulan por los elementos del sistema de potencia al ocurrir un disturbio y su aplicación principal se encuentra en el ajuste y selección de los elementos de protección.

Los primeros estudios de fallas se realizaron utilizando computadoras analógicas llamadas analizadores de redes, los cuales tenían la desventaja de requerir cambios de conexiones para cada tipo de SEP y condición de falla. Para el análisis de fallas utilizando las computadoras digitales se desarrollaron diferentes algoritmos, siendo los más ventajosos los que utilizaban la formulación nodal y las técnicas de equivalentes Thévenin y Norton.

En el trabajo se presenta un algoritmo para evaluar el efecto de cualquier tipo de falla en sistemas de potencia desbalanceados. El análisis se realiza de tal forma que se obtenga, en forma eficiente, el estado del sistema bajo distintas condiciones de falla. Se utilizan las formulaciones nodales para modelar tanto al sistema de potencia como a la red de falla. Se consideran cuatro alternativas para realizar los estudios de fallas, las cuales combinan el uso de las matrices de admitancia e impedancia nodal del sistema de potencia y de la red de falla.

La función principal de los estudios de flujos de potencia es obtener las variables de estado del sistema (voltajes nodales), a partir de las cuales se pueden calcular flujos de potencia y generación de reactivos para condiciones específicas de operación. Entre las aplicaciones importantes de 0

los estudios de flujos se tienen:

- Obtención del estado del sístema para la toma de decisiones en tiempo real, tal como: conexión o desconexión de elementos del sistema, selección de voltajes.
- Simulación para diseño o planificación del crecimiento del SEP.
- Obtención de valores de flujos de potencia y corrientes para el ajuste de elementos de protección.
- Algunos estudios requieren resolver como subproblema un estudio de flujos de potencia, tal es el caso de las condiciones iniciales para un estudio de estabilidad.

En los últimos años, se han desarrollado diferentes formulaciones para realizar estudios de flujos utilizando la red de secuencia positiva, los cuales pueden generalizarse en un sistema trifásico. Algunas de las formulaciones más conocidas son:

Método de Gauss Seidel^[9].- Es uno de los primeros métodos desarrollados y además uno de los más sencillos. Los recursos computacionales para su aplicación son reducidos, sin embargo requiere de un gran número de iteraciones para llegar a la solución. Generalmente el número de iteraciones crece conforme aumenta el número de nodos.

UNIVERSIDAD AUTONOMA DE NUEVO LEON

- Método de Newton-Raphson^[10]. Es un algoritmo que requiere pocas iteraciones para llegar a la solución, pero requiere más recursos computacionales (memoría) que el método de Gauss Seidel. En este método el número de iteraciones no depende del número de nodos del sistema, por lo general se requieren de 3 a 5 iteraciones para llegar a la solución. Se ha demostrado que este método es uno de los más confiables y generalmente llega a la solución si ésta existe.
- Método Desacoplado^[11]. Se han desarrollado simplificaciones del método de Newton-Raphson en coordenadas polares considerando nulas algunas submatrices que toman valores muy pequeños, estos algoritmos se conocen como "desacoplados"^[12]. Estos métodos presentan la ventaja de requerir menor memoria de computadora y realizar menos operaciones por cada iteración, comparados con el método de Newton, sin embargo requieren

mayor número de iteraciones. La versión más simplificada de los métodos desacoplados se denomina "desacoplado rápido" y consiste en mantener constantes las matrices del Jacobiano y adicionalmente simplificarlas.

Aún cuando los algoritmos para estudios de flujos se pueden generalizar para sistemas trifásicos, existen algunas diferencias en el planteamiento del problema, tales como:

 El funcionamiento interno balanceado de los generadores se cumple inherentemente en el sistema de secuencia positiva. Esto es debido a que se considera que todo el sistema es balanceado, sin embargo en la formulación trifásica no es así y debemos incluír ecuaciones que definan el funcionamiento interno balanceado de los generadores.

En la formulación de los estudios de flujos de secuencia positiva sólo es posible el control de la magnitud del voltaje de esta secuencia, en la formulación trifásica es posible implementar un esquema de control que es función de los voltajes de fase en terminales del generador. Entre las funciones particulares se tienen: control de la magnitud del voltaje de una de las fases, control de la magnitud del voltaje de secuencia positiva, control de la magnitud del voltaje de salida de un rectificador trifásico alimentado por los voltajes en terminales del generador, etc.

DIRECCIÓN GENERAL DE BIBLIOTECAS

2 MODELACION MATRICIAL DEL SISTEMA DE POTENCIA EN COMPONENTES (ABC)

2.0 PLANTEAMIENTO DEL PROBLEMA

En este capítulo se muestra la formación de la matriz de admitancias nodal (Y^{abc}) en componentes (abc), para ello inicialmente se presenta el modelado matricial de los elementos del SEP. El desarrollo se realiza sobre un sistema elemental que contiene los elementos básicos del sistema de potencia, de tal forma que es posible generalizar este desarrollo para la formación de Y^{abc} de cualquier sistema de potencia.

2.1 MODELADO DE LOS ELEMENTOS DEL SISTEMA DE POTENCIA UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

Se presenta el modelado para elementos muy particulares y con conexiones muy específicas (generador de rotor cilíndrico, transformador y carga en estrella), sin embargo siempre es posible llegar a las mismas ecuaciones que se presentan, sin importar el tipo y la conexión de los elementos.

El análisis se desarrollará sobre el sistema elemental de la Fig. 2.1

Fig 2.1 Sistema de potencia elemental.

GENERADOR.

$$\begin{bmatrix} V_{1}^{a} \\ 1 \\ V_{1}^{b} \\ 1 \\ V_{1}^{c} \end{bmatrix} = \begin{bmatrix} E_{g}^{a} \\ E_{g}^{b} \\ E_{g}^{c} \\ E_{g}^{c} \end{bmatrix} + \begin{bmatrix} Za + Zg & Zab + Zg & Zac + Zg \\ Zba + Zg & Zb + Zg & Zbc + Zg \\ Zca + Zg & Zcb + Zg & Zc + Zg \end{bmatrix} \cdot \begin{bmatrix} i_{g}^{a} \\ j_{g}^{b} \\ i_{g}^{c} \\ i_{g}^{c} \end{bmatrix}$$

con una nomenclatura más compacta se tiene:

$$V_{1}^{abc} = E_{g}^{abc} + Z_{g}^{abc} \cdot i_{g}^{abc}$$
(2.1)

Premultiplicando la ecuación (2.1) por la inversa de Z_g^{abc} $\begin{pmatrix} Y_g^{abc} \\ g \end{pmatrix}$ se obtiene:

$$i_{q}^{abc} = Y_{g}^{abc} \cdot Y_{1}^{abc} - I_{g}^{abc}$$
(2.2)

donde:
$$I_{g}^{abc} = Y_{g}^{abc} \cdot E_{g}^{abc}$$
 (2.3)

es el vector de corrientes internas del generador.

Fig. 2.3 Modelo del transformador Y-Y

Un transformador monofásico (Fig. 2.4*i*) puede representarse como una admitancia entre dos transformadores ideales, (Fig. 2.4*ii*). La admitancia corresponde a los devanados del transformador y los transformadores ideales permiten incluir el cambio de tap del primario y/o secundario, o bién el cambio de base en voltaje.

Fig. 2.4 Circuito equivalente del transformador monofásico

Fig. 2.5 Circuito equivalente sin transformadores ideales

Considerando que el transformador trifásico está formado por un banco de transformadores monofásicos y substituyendo éstos por sus circuitos equivalentes, (Fig. 2.5), se llega al circuito equivalente del transformador trifásico, (Fig. 2.6).

Fig. 2.6. Circuito equivalente del transformador trifásico

FONOM

En éste punto existen dos alternativas: incluir o no las ecuaciones de los neutros en la matriz de admitancias. Las ecuaciones que modelan al transformador, si se incluyen las de los nodos N y n, se obtienen directamente del circuito de la Fig. 2.6.

$$i_{t1}^{abc} = Y_{t1}^{abcN} \cdot V_{1}^{abcN} + Y_{t12}^{abcn} \cdot V_{2}^{abcn}$$
(2.4a)
$$i_{t2}^{abc} = Y_{t21}^{abcN} \cdot V_{1}^{abcN} + Y_{t22}^{abcn} \cdot V_{2}^{abcn}$$
(2.4b)

Si no se desea incluír las ecuaciones de los nodos N y n, se procede a su eliminación, para lo cual se colocan las ecuaciones de los nodos N y n hasta el final:

Substituyendo (2.6) en (2.5a) y factorizando, se llega a (2.8).

$$\left(Y_{a} - Y_{an} \cdot Y_{n}^{-1} \cdot Y_{na}\right) \cdot V_{a}^{abc} = i_{a}^{abc}$$

$$(2.7)$$

$$\begin{bmatrix} Y_{t}^{abc} \\ \cdot \end{bmatrix} \cdot \begin{bmatrix} y_{abc} \\ \cdot \end{bmatrix} = \begin{bmatrix} i^{abc} \\ \cdot \end{bmatrix}$$
(2.8)

donde, $Y_{t}^{abc} = Y_{a} - Y_{an} \cdot Y_{n}^{-1} \cdot Y_{na}$

En (2.8) Y_t^{abc} es la matriz de admitancia nodal del circuito equivalente visto desde las fases (abc) de los nodos de envío y recepción.

Separando las ecuaciones de los nodos 1 y 2 en (2.8) se obtiene:

Y_{t1}^{abc}	Y ^{abc} t12		V ^{abc}		i ^{abc} t1
Y ^{abc}	Y ^{abc}	•	Vabc	8	i ^{abc}

$$i_{t1}^{abc} = Y_{t1}^{abc} \cdot V_{1}^{abc} + Y_{t12}^{abc} \cdot V_{2}^{abc}$$
(2.9a)

$$i_{t2}^{abc} = Y_{t21}^{abc} \cdot V_{1}^{abc} + Y_{t2}^{abc} \cdot V_{2}^{abc}$$
(2.9b)

Las ecuaciones (2.9) modelan al transformador sin incluir los neutros.

LINEAS DE TRANSMISION.

A pesar de que los efectos capacitivos e inductivos de una línea de transmisión (L.T.) están distribuidos, es posible obtener un circuito equivalente (Fig. 2.7) con parámetros concentrados.

Fig. 2.7 Circuito equivalente π de la línea de transmisión

Para el equivalente inductivo se tiene:

$$i_{32}^{abc} = -i_{23}^{abc}$$
 (2.11b)

En la Fig. 2.9 se muestra en forma aislada el equivalente capacitivo de la línea de transmisión para el nodo 2.

NOM

La ecuación (2.12) calcula las corrientes capacitivas en función de voltajes nodales. 2C 2 Yabc ,Ь b 1₂₀ 2 20 Vc i° 20 2 $i_{abc}^{abc} = Y^{abc} \cdot V^{abc}$ (2.12)2 20 20 FON

Del circuito equivalente π de la L.T., (Fig. 2.7). se obtiene (2.13).

$i^{abc}_{\ell_{23}} =$	i ^{abc} + 23	⊢i ^{abc} 2C	(2.13a)
$i_{\ell_{32}}^{abc} =$	i ^{abc} + 32 +	⊦i ^{abc} 3C	(2.13b)

Sustituyendo (2.11) y (2.12) en (2.13) se llega a las ecuaciones nodales de la línea de transmisión.

$$i_{\ell 23}^{abc} = \left(Y_{\ell}^{abc} + Y_{2C}^{abc}\right) \cdot V_{2}^{abc} - Y_{\ell}^{abc} \cdot V_{3}^{abc}$$
(2.14a)

$$i_{\ell_{32}}^{abc} = -Y_{\ell}^{abc} \cdot V_{2}^{abc} + (Y_{\ell}^{abc} + Y_{3c}^{abc}) \cdot V_{3}^{abc}$$
(2.14b)

CARGA.

En la Fig. 2.10 se muestra la carga que se analiza.

2.2 OBTENCION DE LA MATRIZ NODAL DE ADMITANCIAS EN COMPONENTES (abc)

A continuación se presenta el desarrollo para formar las ecuaciones nodales del sistema de la Fig. 2.1.

Suma de corrientes en el nodo 1

$$\underbrace{\underset{s}{\overset{0}{f}}}_{g} = i \underbrace{\underset{t}{\overset{abc}{f}}}_{g} + i \underbrace{\underset{t}{\overset{abc}{t}}}_{t1}$$
 (2.17)

substituyendo (2.2) y (2.9a) en (2.17) se obtiene la ecuación (2.18)

$$I_{q}^{abc} = \left(\begin{array}{c} Y_{g}^{abc} + Y_{t1}^{abc} \end{array}\right) \cdot V_{1}^{abc} + Y_{t12}^{abc} \cdot V_{2}^{abc}$$
(2.18)

Suma de corrientes en el nodo 2

Suma de corrientes en el nodo 3

abc

đ

TONOM

abc

132

$$0_{\sim} = i_{12}^{abc} + i_{\ell_{23}}^{abc}$$
(2.19)

substituyendo (2.9b) y (2.14a) en (2.19), resulta:

substituyendo (2.14b) y (2.15) en (2.21) se obtiene:

Agrupando (2.18), (2.20) y (2.22), se llega a las ecuaciones nodales del sistema.

$$Y^{abc} \qquad
 \end{bmatrix} \cdot \begin{bmatrix} v^{abc}_{1} \\ v^{abc}_{2} \\ v^{abc}_{3} \end{bmatrix} = \begin{bmatrix} I^{abc}_{2} \\ 0 \\ 0 \\ 0 \\ 0 \\ - \end{bmatrix}.$$
(2.23)

(2.21)

donde:

	Y ^{abc} +Y ^{abc} g t1	Y ^{abc} t12	0	
Y ^{abc} =	Y ^{abc} t21	$Y_{t2}^{abc} + Y_{\ell}^{abc} + Y_{2c}^{abc}$	-Y ^{abc}	(2.24)
	0	-Y ^{abc}	$Y^{abc}_{\ell} + Y^{abc}_{3C} + Y^{abc}_{d}$	

En la ecuación (2.24) se observa que la estructura de la matriz de un sistema trifásico es similar a la de un sistema monofásico, sólo que ahora los elementos que forman a Y^{abc} son submatrices de orden 3 (o más si se incluyen las ecuaciones de los neutros). Estos elementos matriciales sólo existen en la diagonal de Y^{abc} y fuera de la diagonal cuando los nodos están conectados.

Las reglas para la formación de Y^{abc} trifásica son similares a las del caso monofásico. Las submatrices de la diagonal de Y^{abc} son iguales a la suma de las submatrices correspondientes de los elementos conectados a ese nodo, y las submatrices fuera de la diagonal, en el caso de un transformador, son iguales a las submatrices correspondientes a las ecuaciones nodales del transformador, y en el caso de una línea de transmisión, al negativo de la submatriz correspondiente.

DIRECCION GENERAL DE BIBLIOTECAS

La inclusión en Y^{abc} de elementos en derivación, v.g., capacitores, se realiza en la misma forma que las cargas o sea a través de sus ecuaciones nodales, (Ec. 2.16). Los elementos serie, v.g., capacitores serie se incluyen de la misma forma que el efecto inductivo serie de las líneas de transmisión.

2.3 MODELADO DE LINEAS DE TRANSMISION ACOPLADAS

Se presenta un algoritmo para incluir en Y^{abc} la matriz de admitancias de los efectos serie y paralelo de líneas de transmisión acopladas. Se obtendrán las ecuaciones nodales de las líneas acopladas para que puedan ser incluidas directamente en la matriz Y^{abc}.

En la Fig. 2.11 se muestran dos L. T. acopladas sobre las cuales se desarrollara el algoritmo.

El desarrollo se realiza con los datos que generalmente se disponen para las líneas de transmisión, la matriz de impedancias de rama del efecto inductivo serie y la matriz de admitancias nodal del efecto capacitivo paralelo.

DIRECCION GENERAL DE BIBLIOTECAS

Las ecuaciones de rama del efecto serie de la L.T. se muestran en (2.25) y (2.26) en forma de impedancia y admitancia respectivamente.

$$\begin{bmatrix} \mathbf{A}_{\mathbf{g}}^{\mathrm{abc}} \\ \mathbf{p}_{\mathbf{q}} \\ \mathbf{A}_{\mathbf{s}}^{\mathrm{abc}} \\ \mathbf{r}_{\mathbf{s}} \end{bmatrix} = \begin{bmatrix} \mathbf{Z}_{\mathbf{r}}^{\mathrm{abc}} \\ \mathbf{Z}_{\mathbf{r}}^{\mathrm{abc}} \\ \mathbf{z}_{\mathbf{s}}^{\mathrm{abc}} \\ \mathbf{r}_{\mathbf{s}} \end{bmatrix}$$
(2.25)

i ^{abc} Pq j ^{abc} rs	=	Y ^{abc} Y ^{abc} pq pq-rs Y ^{abc} Y ^{abc} rs-pq rs	abc 19 abc 19 rs	(2.2	:6)
	7				

La relación entre las cantidades nodales y de rama se presentan en las ecuaciones (2.27) y (2.28) para corrientes y voltajes respectivamente.

$$\begin{bmatrix} I_{p}^{abc} \\ I_{q}^{abc} \\ I_{q}^{abc} \\ I_{r}^{abc} \\ I_{s}^{abc} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix} \cdot \begin{bmatrix} i_{pq}^{abc} \\ j_{qq}^{abc} \\ r_{s} \end{bmatrix}$$
(2.27a)

Premultiplicando (2.26) por Ci y sustituyendo (2.27) y (2.28), se obtiene el sistema de ecuaciones nodales de las líneas de transmisión acopladas (2.29).

I ^{abc} p I ^{abc} g		Y ^{abc} pq -Y ^{abc}	-Y ^{abc} pq Y ^{abc}	Y ^{abc} pq-rs -Y ^{abc} pg-rs	-Y ^{abc} pq-rs Y ^{abc} pg-rs	V ^{abc} p V ^{abc} g	
I ^{abc} r	=	Y ^{abc} rs-pq	-Y ^{abc} rs-pq	Y ^{abc} rs	-Y ^{abc} rs	V ^{abc} r	(2.29)
I ^{abc} s		-Y ^{abc} rs-pq	Y ^{abc} rs-pq	-Y ^{abc} rs	Y ^{abc} rs	V ^{abc} s	

De la ecuación (2.29) se obtienen las reglas para formar la matriz de admitancias nodal del efecto inductivo serie de líneas de transmisión acopladas, se observa que en la diagonal se tienen las submatrices de admitancia propias con signo positivo. Fuera de la diagonal se tienen las submatrices de admitancia que conectan con los nodos correspondientes, en el caso de ser nodos del mismo tipo (emisión-emisión o recepción-recepción), el signo es positivo, en el caso contrario es negativo.

Las ecuaciones nodales del efecto serie de las líneas de transmisión se incluyen directamente en la matriz Y^{abc} del SEP. De lo anterior se concluye que para la consideración del efecto serie de líneas acopladas se puede leer la matriz de admitancia de rama y utilizar un algoritmo que coloque las submatrices en Y^{abc} siguiendo las reglas para la formación de la matriz de líneas acopladas.

De las ecuaciones nodales (2.29) es posible formar un circuito con líneas de transmisión sencillas, por lo tanto también se puede obtener un circuito equivalente de las líneas de transmisión acopladas.

La información disponible del efecto capacitivo paralelo de las líneas de transmisión es generalmente la matriz de admitancias nodal (Ecs. 2.30 y 2.31). UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

[abc]	vabc	Vabc	Vape	Œ
[°] p I ^{abc} r	Y ^{abc} y ^{abc}	y ^{abc} r	GENERAL DE BIBLIOTECAS V ^{abc}	(2.30a)

$I_{pr}^{abc} = Y_{c}^{abc} \cdot V_{pr}^{abc}$	(2.30b
$I_{abc}^{abc} = Y_{abc}^{abc} \cdot V_{abc}^{abc}$	(2.31)

Las matrices de admitancia nodal del efecto paralelo se incluye directamente en la matriz Y^{abc} del SEP.

3 ESTUDIOS DE FALLAS EN SISTEMAS DE POTENCIA DESBALANCEADOS

3.0 DEFINICION DEL PROBLEMA

Una falla es la conexión no prevista de un elemento en el SEP. Pueden participar en la falla diversas fases de uno o varios nodos del sistema de potencia.

Los estudios de fallas se realizan principalmente para seleccionar las capacidades y tiempos de actuación de los elementos de protección. Debido a que generalmente interesa conocer el estado del sistema para distintas condiciones de falla. es necesario utilizar algoritmos que permitan realizar estudios en forma eficiente. El uso de técnicas apropiadas para el manejo de matrices es indispensable debido a que generalmente se trabaja con sistemas de ecuaciones grandes.

Los datos disponibles para los estudios de fallas son la matriz nodal de admitancias del sistema (Y^{abc}) y los voltajes o corrientes nodales de predisturbio. Se pretenden obtener los voltajes nodales del sistema fallado y las corrientes que circulan por los elementos del sistema de potencia.

23

3.1 ALGORITMO GENERALIZADO PARA EL ESTUDIO DE FALLAS

La forma más sencilla de obtener el estado de un sistema con falla es incluir la red de falla dentro de la matriz Y^{abc} y solucionar el sistema de ecuaciones nodales (2.23). Sin embargo esta alternativa no es eficiente debido a que la matriz Y^{abc} cambiaría para cada falla y no sería posible utilizar las técnicas de factorización de matrices, con las cuales se disminuye el número de operaciones en la solución de sistemas de ecuaciones lineales.

El algoritmo que se presenta verá la falla como un conjunto de corrientes nodales entrando por los puntos de falla, de esta forma la matriz Y^{abc} permanece invariante para las distintas redes de falla, permitiendo el uso de técnicas eficientes para el almacenamiento y procesamiento de matrices. El mecanismo de solución será calcular en primer lugar las corrientes de falla, para posteriormente evaluar su impacto en el sistema de potencia.

El método parte de que la matriz Y^{abc} del SEP se tiene factorizada y almacenada en la memoria de la computadora. Es decir está disponible para resolver el sistema de ecuaciones nodales Y^{abc}·V=I, para cualquier vector I con un mínimo de operaciones.

DIRECCION GENERAL DE BIBLIOTECAS

II e IIF son las fuentes de corriente del SEP if son las corrientes que fluyen de la falla al SEP

Fig. 3.1 Sistema de potencia en estado de falla

El primer paso consiste en obtener un circuito equivalente del SEP visto desde los puntos de falla. Se entiende por punto cualquiera de las fases de un nodo o el neutro de algún elemento. De la Fig. 3.1, utilizando la técnica de superposición, se obtiene la Ec. (3.1a).

$$\underline{V} = Z^{abc} \cdot \left(\underline{I} + \underline{I}f \right)$$
(3.1a)

Z^{abc} es la inversa de la matriz Y^{abc}.

 V_{eq} es el equivalente activo Thévenin, se forma con los voltajes nodales de predisturbio en los puntos de falla. Z_{eq} es el equivalente pasivo Thévenin.

Como Z^{abc} es simétrica $Z_{FI} = Z^{t}_{IF}$, sustituyendo en (3.3) se obtiene la ecuación (3.5).

$$\underbrace{V_{eq}}_{iF} = Z_{iF}^{t} \cdot \underbrace{I}_{iF} + Z_{F} \cdot \underbrace{I}_{iF}$$
(3.5)
$Y_{f} \cdot V_{F} = -i_{f}$

corriente de falla (3.7)

+ Yf·Zeg) ·Yf·Veg

En las ecuaciones (3.4) y (3.5) se aprecia que para obtener el equivalente Thévenin, sólo se necesita calcular las columnas de Z^{abc} correspondientes a los puntos de falla. La columna *i* de la matriz Z^{abc} se obtiene resolviendo el sistema de ecuaciones nodales $Y^{abc} \cdot V = I$, donde los elementos del vector I valen cero excepto el elemento de la fila *i* que es igual a 1.

Las ecuaciones del equivalente Thévenin (3.2) son las ecuaciones de falla vistas desde el SEP. Las ecuaciones de falla vistas desde la falla son:

Sustituyendo (3.2) en (3.6) se obtiene la ecuación para evaluar la

Desarrollando la ecuación (3.1) se obtiene (3.8)

 $V = V^{o} + \Delta V \tag{3.8}$

Donde: $V_{\alpha}^{o} = Z^{abc} \cdot I$ (3.9)

$$\Delta V_{\sim} = \begin{bmatrix} Z_{\rm IF} \\ Z_{\rm F} \end{bmatrix} \cdot \underset{\sim}{if}$$
(3.10)

 \underbrace{V}° es el vector de voltajes nodales de prefalla, estos valores ya se tienen, ya sea de los datos o se calculan utilizando las corrientes nodales, por lo que sólo es necesario calcular ΔY . En (3.10) se observa que para calcular ΔY sólo se requieren las columnas de los puntos de falla, las cuales ya se habian obtenido para el cálculo del equivalente Thévenin del SEP.

(3.6)

(3.7)

Una vez que se tienen los voltajes nodales de falla se calculan las corrientes que circulan por los elementos del SEP utilizando las ecuaciones presentadas en el capítulo 2.

Existen otras alterativas para calcular las corrientes de falla las cuales se presentan a continuación.

Las ecuaciones nodales de la falla en forma de impedancia se presentan en la ecuación (3.11)

$$V_{F} = -Z_{f} \cdot i_{f}$$
(3.11)
Sustituyendo (3.2) en (3.11) se obtiene la ecuación (3.12).
$$i_{f} = -(Z_{eq} + Z_{f})^{-1} \cdot V_{eq}$$
(3.12)

Hasta ahora se han obtenido ecuaciones para evaluar las corrientes de falla utilizando el equivalente Thévenin del SEP, a continuación se presentan las dos alternativas que utilizan el equivalente Norton.

Premultiplicando la ecuación (3.2) por Y_{eq} (Z_{eq}^{-1}) se obtiene el equivalente Norton del SEP visto desde los puntos de falla.

$$Yeq \cdot VF + Ieq = if$$
(3.13)

Donde:
$$I_{eq} = -Y_{eq} \cdot V_{eq}$$
 (3.14)

De las ecuaciones (3.6) y (3.13) se obtiene la ecuación (3.15)

$$i_{f} = Y_{f} \cdot (Y_{eq} + Y_{f})^{-1} \cdot l_{eq}$$
(3.15)

De las ecuaciones (3.11) y (3.13) se obtiene la ecuación (3.16)

$$\underbrace{if}_{\sim} = \left(U + Y_{eq} \cdot Z_f \right)^{-1} \cdot \underbrace{Ieq}_{\sim}$$
(3.16)

Las ecuaciones (3.7), (3.12), (3.15) y (3.16) ofrecen cuatro alternativas para el cálculo de la corriente de falla. La elección de la ecuación a utilizar depende de las características del sistema de potencia y de la falla. Las alternativas que incluyen a Zr no siempre son posibles de utilizar debido a que las matrices de admitancias de falla pueden ser singulares, sin embargo el uso de Zr permite modelar con exactitud conexiones de fallas sólidas v.g. falla trifásica sólida, donde el uso de Yr implica introducir valores de admitancia grandes que pueden ocasionar problemas computacionales. Las alternativas que utilizan Y_{eq} son necesarias, como se verá en el punto 3.2 cuando las corrientes de fallas son cero.

3.2 CASO ESPECIAL: CORRIENTES DE FALLA CERO.

Existen casos en los cuales las corrientes de falla son cero, v.g. una falla de fase a tierra en una zona del sistema que no tenga conexiones a tierra. En estos casos el método del punto 3.1 no puede evaluar ΔV , sin embargo debido a la conexión a tierra de la falla los voltajes nodales del SEP cambian.

Se presenta un algoritmo para obtener los voltajes de un sistema fallado aún en el caso de corrientes de falla igual a cero. El algoritmo utiliza para el cálculo de las corrientes de falla las alternativas que usan el equivalente Norton del sistema de potencia, el cual se obtiene de la siguiente manera:

Se acomodan las ecuaciones de los puntos de falla hasta el final del sistema de ecuaciones nodales del SEP

se realiza posteriormente una triangularización por columnas hasta antes de las ecuaciones de los puntos de falla

$Y_{eq} = \mathbb{M}_{F}^{m} RECCIÓN GENERAL DE BIBLIOTECAS (3.19)$

Sustituyendo (3.6) y (3.11) en (3.13) se obtienen las ecuaciones para calcular los voltajes de los puntos de falla.

$$V_F = -(Y_{eq} + Y_f)^{-1} \cdot I_{eq}$$
 (3.20)

$$V_F = - \left(U + Y_{eq} \cdot Z_f \right)^{-1} \cdot Z_f \cdot I_{eq}$$
(3.21)

Para obtener los voltajes de falla en todos los nodos del sistema de potencia se sustituyen los voltajes nodales de los puntos de falla en las ecuaciones triangularizadas (3.17), y se procede a realizar una sustitución regresiva. La desventaja de este método es que no se pueden utilizar eficientemente las técnicas de factorización para analizar fallas en diferentes puntos del SEP, debido a que el ordenamiento de las ecuaciones cambia dependiendo de los puntos de falla, sin embargo es necesario utilizarlo siempre que las corrientes de falla resulten cero.

3.3 ALGORITMO PARA REALIZAR ESTUDIOS DE FALLAS.

- Se forma la matriz Y^{abc} del SEP
- 2) Se factoriza la matriz Y^{abc}

1)

3)

- Si no se tienen, se calculan los voltajes nodales de prefalla utilizando la ecuación (2.23)
- Se obtiene el circuito equivalente Thévenin o Norton del SEP visto desde los puntos de falla, ecuaciones (3.2) y (3.13).

UNIVERSIDAD AUTONOMA DE NUEVO LEON

- 5) Se calculan las corrientes de falla utilizando las ecuaciones (3.7), (3.12), (3.15) 6 (3.16). NERAL DE BIBLIOTECAS
- 6) Si las corrientes de falla son diferente de cero se calculan los voltajes nodales utilizando (3.8) y (3.10). Si las corrientes de falla son cero, se obtiene el equivalente Norton del SEP por medio de la triangularización parcial por columnas (3.17) del sistema de ecuaciones nodales. Se calculan los voltajes nodales en los puntos de falla utilizando (3.20) ó (3.21). Se calculan los voltajes nodales en el resto del sistema realizando una sustitución regresiva en el sistema de ecuaciones triangularizado (3.17).
- 7) Finalmente se calculan las corrientes por los elementos del SEP utilizando las ecuaciones (2.9), (2.14), (2.16) y (2.29).

3.4 ANALISIS DE SISTEMAS DE PRUEBA

3.4.1 Caso de prueba No. 1.

El caso de prueba No. 1 es el sistema de 14 nodos del libro de ANDERSON^[2]. Para comparar los resultados obtenidos se realiza un estudio de fallas igual a uno de los presentados por ANDERSON^[2]. El estudio citado anteriormente incluye algunas simplificaciones comunmente usadas en los estudios de fallas. Para observar el efecto de estas simplificaciones se repitió dicho estudio sin considerar las simplificaciones. Finalmente se utiliza este sistema para observar el efecto de una falla de línea a tierra en las diferentes fases. 10 3 G G 2 G 12 11 8 5 7 6 Δ> Y < Λ 14 13 G G

Figura 3.2.- Sistema de prueba No. 1

3.4.1a Sistema balanceado y simplificado.

0

Con la finalidad de comparar los resultados obtenidos y poder validar el algoritmo desarrollado, se reproduce uno de los estudios de fallas realizados por ANDERSON^[2]. Dicho sistema se presenta en la Fig. 3.2, los datos se encuentran en el apendice B.

Se realiza el estudio de una falla sólida de línea a tierra en la fase a del nodo 1, se incluyen las siguientes simplificaciones.

No se consideran los capacitores de los nodos 9, 11, 12 y 13.

Se desprecia el efecto capacitivo de las líneas de transmisión.

No se considera al condensador síncrono en el nodo 4.

Se desprecia el efecto de las cargas, esto es, se utiliza un arranque plano de voltajes.

El estudio se realiza utilizando el algoritmo presentado en 3.1, la corriente de falla se calcula utilizando la ecuación (3.12). UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN $i_{f}^{a} = 39.9309 \stackrel{191.4568}{\longrightarrow}$ GENERAL DE BIBLIOTECAS (3.22)

NODO	V ^a	θ ^a	[V ^b]	θ ^b	V ^c	θ ^c	
1	. 0000	. 0000	1.4161	-142.4681	1.4202	142.2535	
2	1.0000	90.0000	. 8273	-36.7700	.8331	-142.7036	
3	. 9618	4431	1.0196 ·	-121.3371	1.0114	121.6198	
4	1.0000	90.0000	. 9969	-30.1909	. 9956	-149.9389	
5	. 9801	2715	1.0115	-120.7621	1.0061	120.9444	2

Tabla 3.1. - Voltajes nodales de falla.

6	1.0000	90.0000	. 9991 -30. 1017	.9980 -150.0044
7	, 4058	-1.9771	1.3007 -138.8377	1.3138 138.1852
8	1.0000	90.0000	.9454 -33.3648	. 9240 -148. 6982
9	. 4305	9264	1.2354 -135.2216	1.2296 135.4975
10	. 6722	-1.2510	1.1402 -129.6593	1.1222 130.4252
11	1.0000	90.0000	. 8859 -34. 9540	. 8774 -145. 8563
12	1.0000	90.0000	.9980 -30.1463	.9968 -149.9717
13	.6771	9754	1.1541 -131.4598	1.1558 131.3848
14 N	.8034	8774	1.0966 -127.3956	1.0884 127.7250
	THE PARTY AND A DECEMBER OF A			

Tabla 3.1.- (Continuación).

En la tabla 3.1 se presentan los voltajes nodales del sistema fallado, al compararlos con los presentados por ANDERSON^[2] se observa que son los mismos. Se observa como la falla afecta en mayor grado a los nodos eléctricamente más cercanos a la fase fallada.

Tabla 3.2.- Corrientes en transformadores.

UI	NIVER	SIDAL		NQ	A DE N	UEYA	LEÓN (
	2-1R	ECC _{.0851}	G. 0006	RAL 1778	-85.3622	DTE 2033	S _{119.2967}
	1-2	.2127	107. 8153	. 1462	-43.8824	. 1091	-111.6930
	4-3	.0851	0003	. 0858	-118,4101	. 0875	120.4142
	3-4	.0861	91.3223	. 0855	-30,2487	. 0838	-149.0664
	6- 5	. 1023	0001	. 1017	-121.3407	. 1000	119.6382
	5- 6	. 0993	88.8550	. 0999	-29.7899	. 1016	-150.7659
	8- 7	. 2377	.0000	. 203 4	-149.8015	. 1 196	121.1960
	7- 8	. 1314	60.8724	. 1778	-18.8573	. 2392	-166.1000

En la tabla 3.3 se presentan las corrientes en líneas de transmisión, se observa que las corrientes más grandes se establecen entre el punto de falla y los generadores más cercanos a él.

1	b_d	I ^a	θ ^a	I ^b	ө ^ь	$ \mathbf{I}^{\mathbf{c}} $	θ
加	1- 7	1.1780	103.3282	. 0689	-63. 9548	. 0689	-63.9544
	7- 1	1.1780	-76.6718	. 0689	116. 0452	. 0689	116.0456
	1-9	1.0810	105.2454	. 2147	91.0560	. 2147 .	91.0558
	9-1	1.0810	-74.7546	. 2147	-88.9440	. 2147	-88.9442
ļ	2-11 11- 2	. 0000 . 0000	.0000	.1182 .1182	118.7901 -61.2099	. 1182 . 1182	-61.2099 118.7901
19	3- 5 5- 3	.0412	116. 4 977 -63. 5023	.0152 .0152	109.9650 -70.0350	. 0152 . 0152	109.9685 -70.0315
4	4-12	. 0000	- 0000	. 0025	134.8433	. 0025	-45.1547
	12- 4	. 0000	- 0000	. 0025	-45.1567	. 0025	134.8453
SID	6-12 12- 6	. 0000 . 0000	. 0000	.0025 .0025	-45.1552 134.8448	. 0025 . 0025	134.8423 -45.1577
VER	7-13	. 5234	107.8703	. 2634	95.4948	. 2634	95.4948
	13- 7	. 5234	-72.1297	. 2634	-84.5052	. 2634	-84.5052
T	8-11 11- 8	, 0000 , 0000	. 0000	.1182 .1182	-61.2099 118.7901	.1182 .1182	118.7901 -61.2099
	9-10	1.0810	105.2454	.2147	91.0557	. 2147	91.0557
	10- 9	1.0810	-74.7546	.2147	-88.9443	. 2147	-88.9443
	13-14	. 5234	107.8703	. 2634	95.4947	. 2634	95. 4949
	14-13	, 5234	-72.1297	. 2634	-84.5053	. 2634	-84. 5051
UI	3-10	. 5405	-74. 7546	. 1074	-88.9443	. 1074 -	-88.9440
	3-10	. 5405	-74. 7546	. 1074	-88.9440	. 1074 -	-88.9443
	$^{10}_{10}$ D $^{3}_{3}$ R	EC(.5405)	105.2454 105.2454	RA:1074	91.0557 91.0560	DTE ¹⁰⁷⁴	S 91.0560 91.0557
	5-14	. 2715	-72.6058	. 1418	-84.5458	. 141 8	-84.5458
	5-14	. 2519	-71.6166	. 1217	-84.4579	. 1217	-84.4581
	14- 5	. 2715	107.3942	. 1418	95. 4542	. 1418	95. 4542
	14- 5	. 2519	108.3834	. 1217	95. 5421	. 1217	95. 5419

Tabla 3.3.- Corrientes en líneas de transmisión.

Los resultados obtenidos en este estudio concuerdan con los resultados de ANDERSON^[2], por lo cual el algoritmo desarrollado se valida, al menos para sistemas balanceados. Para sistemas desbalanceados la validación no puede realizarse por comparación con otros estudios, puesto que tradicionalmente se considera al sistema balanceado. Sin embargo, puede verificarse el algoritmo

por observación de los resultados obtenidos, v.g. suma de corrientes en un nodo igual a cero, en caso de falla sólida el voltaje del punto fallado debe ser cero, etc..

3.4.1b Sistema balanceado completo

= 40.4252^{198.0399}

iª

Se realiza el estudio de fallas del punto 3.4.1a pero sin realizar simplificación alguna, con el propósito de observar el efecto de las simplificaciones tradicionales mencionadas en el punto 3.4.1a.

Utilizando la ecuación (3.12) se obtiene la corriente de falla, la cual no difiere notablemente de la corriente de falla en el sistema simplificado (3.22).

(3.23)

Utilizando las ecuaciones (3.8) y (3.10) se calculan los voltajes nodales de falla del SEP, los valores de arranque para los voltajes nodales se tomaron de la tabla (4.9). ENERAL DE BIBLIOTECAS

NODO	V ^a	θ ^a	V ^b	θ ^ь	V ^c	θς
1	,0000	. 0000	1.4462	-135.9494	1.4504	148.8804
2	1.0075	95.2056	. 8346	-31.9416	. 8343	-137.6715
3	. 9696	9.4987	1.0330	-111.7935	1.0282	131.5489
4	. 9999	98.8158	. 9966	-21.3796	. 9955	-141.1034

Tabla 3.4.- Voltajes nodales de falla.

	5	. 9964	8.2921	1.0326 -112.4143	1.0285 129.5803
	6	. 9996	97.7180	. 9985 -22. 3885	.9975 -142.2818
	7	. 4195	-11.1565	1.4000 -137.5876	1.3428 140.3326
	8	. 9996	89.5891	. 9506 -34. 2613	.9188 -149.6372
	9	, 3513	0216	1.2527 -132.6423	1.2325 141.7647
	10	.6110	4.2500	1.1339 -125.3687	1.1163 137.5583
	11	. 9305	90.3371	.8203 -36.0186	.7961 -145.7431
	12	,9274	96.1900	.9252 -23.9795	.9240 -143.7698
E	13	.6184	-3. 9509	1.1919 -132.2717	1.1561 134.2181
21	14 ERE P VERI	AMM 7542	1.5379	1.1031 -125.4110	1.0845 132.4801

Tabla 3.4. - (Continuación).

Comparando los valores de las tablas 3.1 y 3.4 se observa que no existe diferencia muy grande en los estudios de fallas si se incluyen las simplificaciones mencionadas en el punto 3.4.1a.

UNIVERSID Tabla 3.5. - Corrientes en capacitores. EVO LEON

DIR p ^{-q}	ECCION GENE	RAL DE BIBLI	OTECAS _e °
9- 0	. 0703 89. 9784	.2505 -42.6423	. 2465 -128. 2353
11- 0	.0930 -179.6629	. 0820 53. 9814	.0796 -55.7431
12- 0	.0927 -173.8100	.0925 66.0205	.0924 -53.7698
13- 0	.1237 86.0491	.2384 -42.2717	.2312 - 1 35.7819

Como puede observarse en la tabla 3.5 las corrientes en capacitores son muy pequeñas, lo cual justifica despreciar estos elementos.

₽-d	$ I^{a} = \theta^{a}$	Ι ^Ϸ θ ^Ϸ	Ι [°] θ [°]
2- 1	.2059 -89.6627	.1119 173.3738	.2221 60.3429
1- 2	.1629 39.1271	.2364 -105.2597	.1405 117.1473
4-3	.1474 -89.8286	.1449 150.7445	.1464 31.4463
3-4	,1437 1.2254	.1464 -119.1249	.1443 120.1304
6- 5	.1383 -112.4166	.1407 127.8699	.1400 6.8758
5- 6	.1393 -22.6406	.1369 -142.9244	.1375 98.0711
8- 7	.1257 -149.8264	.2416 107.0354	.2455 -43.0697
7- 8	.2645 -57.9160	.1722 160.0749	.1666 82.6147

Tabla 3.6.- Corrientes en transformadores.

En las tablas 3.6 y 3.7 se presentan las corrientes en transformadores y lineas de transmisión, comparando estos valores con los presentados en las tablas 3.2 y 3.3 se observa que no existen diferencias notables, lo cual justifica el uso de las simplificaciones tradicionales en los estudios de fallas.

UNIVERS Tabla 3.7.- Corrientes en líneas de transmisión. LEON

CIEI DIN $\boldsymbol{\theta}^{b}$ $\theta^{\mathbf{a}}$ |I^b| θ° Iª |I^c| p-4 1-7 1.3862 86.5767 .6809 -83.7245. 5005 161.5181 7-1 1.3674 -93.4453.4816 -24.0411.6445 93.0766 1- 9 .8409 98.3435 .2406 -170.8649 . 4441 100.4302 9-1 .8239 -81.5578 .2770 1.7138 .4758-84.2633 2-11 .2058 90.4902 .1120 -6.4597 .2221 -119.5581 11-2 .2062 -91.3920.1095 170.8522 .2200 59.0677 3 - 5. 1471 68.9753 . 1105 -67.3672 .1361 167.4807 5-3 .1129 -121.6745 .0861 91.6326 .1151 -29.7613. 1541 4-12 79.8737 . 1518 -40.1982.1529 -159.4010 12-4 .1563 -102.4823 18.2246 . 1540 137.4157 .1550 6-12 . 1383 67.5953 . 1409 -52.1596.1401 -173.2260 12-6 .1418 -114.7805 .1443 125.5020 .1436 4.4546

(R)

· 같은 것은 그는 것은 것을 알려.			
7-13	. 2750 122. 5594	. 3968 134. 1167	.4140 75.8829
13- 7	. 2526 -53. 5957	. 4458 -45. 2408	.4544 -107.5553
8-11	.1255 30.2300	.2413 -72.9483	.2453 136.9179
11- 8	.1313 -151.2561	.2452 105.9085	.2511 -43.4305
9-10	1,1634 124.0163	.5105 90.6651	.2048 28.6971
10- 9	1,1521 -55.6534	.5238 -87.2710	.2267 -149.7818
13-14	.7439 153.5108	.7899 91.3197	.3397 5.0564
14-13	.7367 -25.3412	.8036 -87.3847	.3584 -172.9476
3-10	.8003 -42.6582	.4927 -110.2975	.2643 131.7536
3-10	.8003 -42.6582	.4927 -110.2975	.2643 131.7536
10- 3	.8280 135.7600	. 4901 64. 6204	.2680 -57.5920
10- 3	.8280 135.7600	. 4901 64. 6204	.2680 -57.5920
5-14	.6404 -22.3918	.6260 -105.6951	.3282 137.5024
5-14	.6281 -20.5614	.6047 -106.6605	.3472 135.1083
14- 5	.6593 154.6511	.6188 70.3552	. 3247 -50, 0981
14- 5	.6460 156.3708	.5982 69.2405	. 3454 -52, 0723

Tabla 3.7.- (Continuación).

Como se ha demostrado, es posible realizar los estudios de fallas considerando las simplificaciones mencionadas en el punto 3.1, sin sacrificar notablemente los resultados. Sin embargo, la consideración de las simplificaciones no reduce notablemente el número de operaciones, puesto que solo implica no leer y no incluir algunos datos en Y^{abc}.

DIRECCIÓN GENERAL DE BIBLIOTECAS

3.4.1c Falla de línea a tierra en las diferentes fases, comparación de resultados.

En los estudios de fallas tradicionales se considera que una falla de línea a tierra ocurre siempre en la fase <u>a</u>, sin embargo puede ocurrir en cualquiera de las tres fases. Se presentan algunos resultados de una falla sólida de línea a tierra para cada una de las fases del nodo 1, se trabaja con el sistema de ANDERSON^[2] sin simplificaciones, los datos son los mismos del punto 3.4.1b. En la tabla 3.8 se presentan las corrientes de la falla sólida de línea tierra para cada una de las fases del nodo 1.

Tabla	3.	8	Corrientes	de	falla.
				_	

pf [†]	If	θſ
1a	40.4252	98.0399
1b	40. 4331	-21,9648
1c	40.4331	-141.9551

+ punto de falla.

En la tabla 3.8 se observa que las magnitudes de las corrientes de falla son iguales, solo cambian los ángulos, los cuales están defasados 120 grados en la misma forma que los voltajes.

En la tabla 3.9 se presentan los voltajes de falla del nodo 1 y sus vecinos para cada una de las ubicaciones de la falla. Se observa que existe una relación entre los voltajes nodales cuando la falla ocurre en una fase o en otra, esta relación se presenta en la tabla 3.10.

UNIVERSID Tabla 3.9.- Voltajes nodales de falla. EVO LEÓN

p I	DIRE	CGvªÓN GªNE	RAVE DE BEBLI	OTverCAS _e c
1	1a	.0000 .0000	1.4462 -135.9494	1,4504 148,8804
	1b	1.4504 28.8815	.0000 .0000	1,4462 104,0522
	1c	1.4461 -15.9507	1.4504 -91.1212	.0000 .0000
2	1a	1.0075 95.2056	.8346 -31.9416	.8343 -137.6715
	1b	.8343 102.3314	1.0075 -24.7947	.8345 -151.9422
	1c	.8346 88.0561	.8343 -17.6709	1.0075 -144.7946
7	1a	.4195 -11.1565	1.4000 -137.5876	1.3428 140.3326
	1b	1.3425 20.3317	.4197 -131.1662	1.3999 102.4210
	1c	1.3997 -17.5868	1.3427 -99.6757	.4197 108.8627
9	1a	.35130216	1.2527 -132.6423	1.2325 141.7647
	1b	1.2323 21.7644	.3514 -120.0251	1.2527 107.3617
	1c	1.2526 -12.6430	1.2324 -98.2392	.3514 119.9866

Tabla 3.10. - Relación entre los voltajes nodales para la ubicación de la falla en cada una de las fases.

££ [†]	٧ª	۷ ^ь	۷°
а	α	β	
b	a ² y	a²α	a²β
с	a•ß	a•y	a•a

† fase fallada

En la tabla 3.11 se presentan las corrientes de las líneas que conectan al nodo 1 con sus vecinos, para la localización de la falla en cada una de las fases del nodo 1. Se observa que están relacionadas al igual que los voltajes como se muestra en la tabla 3.10.

labla 3.11 Corrientes en 11	líneas.
-----------------------------	---------

J	N _{p-q}	ERpfSI	DfraD	AUTÓN	IQ ι Þ/L	A De N	U fit°y () L _e cón
	1-2 ^{D]}	$R_{1b}^{1a}C$	1629 . 1406 . 2363	(39. 1271 -2. 7634 14. 7969	A 12364 . 1629 . 1407	-105.2597 -80.9469 -122.8436	0 1405 2361 . 1626	A117. 1473 134. 7517 159. 0999
	1-7	1a 1b 1c	1.3862 .5005 .6808	86.5767 41.4999 36.2747	. 6809 1. 3866 . 5007	-83.7245 -33.4277 -78.5005	. 5005 . 6807 1. 3865	161.5181 156.2879 -153.4090
	1-9	1a 1b 1c	. 8409 . 4442 . 2406	98. 3435 -19. 5705 -50. 8681	, 2406 . 8411 . 4442	-170.8649 -21.6579 -139.5699	. 4441 . 2405 . 8411	100.4302 69.1264 -141.6452

De acuerdo a lo anterior, los estudios de las fallas de línea a tierra pueden realizarse considerando que siempre ocurren en la fase a, y utilizar la tabla 3.10 para obtener los valores reales de acuerdo a la fase fallada. 3.4.2 Caso de prueba No. 2.

3.4.2a Caso especial, corriente de falla igual a cero.

En los casos donde las corrientes de falla resultan cero, el método del punto 3.1 no puede obtener los voltajes del sistema fallado y es necesario utilizar el algoritmo descrito en el punto 3.2. Se presenta un sistema donde una falla de línea a tierra no produce corriente de falla y se demuestra que a pesar de esto los voltajes nodales si cambian.

El sistema en estudio se presenta en la Fig. 3.3, se trata de un generador conectado en estrella sin aterrizar y en sus terminales una carga en conexión delta. Se estudia una falla a tierra en la fase c.

Figura 3.3. - Sistema de prueba No. 2.

De las impedancias de secuencia del generador, con $\psi^{\circ} = 0$ y $\psi^{-} = \psi^{+}$ aplicando la transformación inversa de componentes simétricas se obtiene Y_{g}^{abc} . La matriz de admitancias nodal de la carga se obtiene por inspección de su conexión (Fig. 3.3). Siguiendo las reglas para la formación de Y^{abc}, presentadas en el capítulo 2, se forma el sistema de ecuaciones nodales del SEP.

$$\left(\begin{array}{ccc} \frac{1}{3} \cdot y^{+} + y_{c} \end{array}\right) \cdot \left[\begin{array}{ccc} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{array}\right] \cdot \left[\begin{array}{c} V^{a} \\ V^{b} \\ V^{c} \end{array}\right] = \left[\begin{array}{c} I^{a} \\ I^{b} \\ I^{c} \end{array}\right]$$
(3.24)

El algoritmo de solución requiere triangularizar el sistema de ecuaciones (3.24), sin embargo no se tienen las corrientes nodales. El cálculo de las corrientes nodales se realizará utilizando un arranque plano para los voltajes (3.25).

Una vez que se tienen las corrientes nodales se sustituyen en el sistema de ecuaciones (3.24) y se triangulariza.

$$\begin{bmatrix} 1 & -1/2 & -1/2 \\ 0 & 1 & -1 \\ \hline 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} v^{a} \\ \frac{v^{b}}{v^{c}} \end{bmatrix} = \begin{bmatrix} 3/2 \\ 2 \cdot a^{2} + 1 \\ \hline 0 \end{bmatrix}$$
(3.27)

(3.25)

Del sistema triangularizado se obtiene Yeq y Ieq.

$$Y_{eq} = 0$$
; $I_{eq} = 0$ (3.28)

Utilizando (3.16) se calcula la corriente de falla.

$$if = 0$$
 (3.29)

Utilizando (3.21) se calcula el voltaje del punto fallado.

Se ha demostrado que a pesar que la corriente de falla es cero, los voltajes nodales cambian. Sin embargo, es conveniente observar que las diferencias entre los voltajes no cambian y por lo tanto las corrientes permanecen sin cambio.

3.4.3 Caso de prueba No. 3.

El sistema de estudio se presenta en la Fig. 3.4, se trata del sistema de ARRILLAGA^[1], los datos se presentan en el apendice C. Se trata de un sistema desbalanceado donde predominan las líneas de transmisión acopladas.

Se estudia el estado del SEP cuando se desconecta la fase a de la línea de transmisión 2-6. Los voltajes nodales de predisturbio usados en este estudio se tomaron de la tabla 4.37.

La falla se simulará conectando en paralelo con la línea 2-6 una red que desconecte esta línea ($-Y^{abc}$) y conecte una línea de transmisión con la fase a desconectada ($Y^{abc}_{m}_{12-6}$).

$$Y_{f} = \begin{bmatrix} -Y^{abc} + Y^{abc}_{12-6} \end{bmatrix}$$
(3.32)

Donde: Y^{abc} es la matriz Y^{abc} de la L.T. formado con los datos presentados en el apéndice C Y Y^{abc}_{12-6} es la matriz Y^{abc} de la L.T. con la fase a desconectada, se forma con las matrices $Y_{mp_{2-6}}$ Y^{Ym}_{c2-6}

En la tabla 3.12 se presentan las corrientes que fluyen de la red de falla al sistema de potencia.

pſ	Iſ	θf
2a	6.3463	11.9339
2b	1.2707	-172.7751
2c	1.8448	-161.7138
6a	6.4535 ·	-171.5655
6b	1.3517	4.0651
6c	1.8143	16.3200

Tabla 3.12. - Corrientes de falla.

Los voltajes nodales del sistema fallado se presentan en la tabla 3.13, se observa como la desconexión de la fase a de la línea 2-6 ocasiona una ligera caida de los niveles de voltajes en la fase a de los nodos 5 a 10.

	NODO	V ^a	θď	V ^b	θ ^b	Vc	θ°	
	STON	1.0297	2498	1.0972	-119.8882	1.0711	116.8475	
P	2 LERE	1.0534	28.2486	1.0987	-96,3342	1.0205	142.1355	
B	3	1.0484	23.4161	1.0721	-95.0909	1.0679	143.8566	ļ
SS	4	1.0450	-1.4170	1,0416	-120.7480	1.0539	119.0959	
	5	. 9748	16.6458	1.0515	-98.5388	1.0279	138.8064	1
A	6	. 9750	16.6550	1.0628	-98, 1014	1.0295	139. 4041	
NG V	7	.9944	18.3203	1.0598	-97.6139	1.0384	140.1346	
	8	. 9934	18.2895	1.0592	-97.7581	1.0389	140.0275	
	9	. 9900	18.2888	1.0667	-97.4170	1.0428	140, 4617	-
	10	. 9928	18.35 1 9	1.0671	-97.3876	1.0400	140.5617	, 1
UN	VER	SIDA	DAUI	CONO	MADE	NUEV	OLEC)N

Tabla 3.13. - Voltajes nodales en estado de falla.

DIRECCIÓN GENERAL DE BIBLIOTECAS

En la tabla 3.14 se presentan las corrientes en los transformadores, se observa que las corrientes de línea en el lado de la delta no son las mismas que en el lado de la estrella, esto se debe a que estas últimas son una combinación de las primeras.

En los estudios tradicionales no se incluyen los cambios de fase ocasionados por los transformadores en conexión Δ -Y. Esto ocasiona que las corrientes se tengan que calcular en forma particular al final del estudio de fallas. Una ventaja más del estudio trifásico es que las corrientes en transformadores se obtienen directamente.

G

p-q	I ^a θ ^a	IIP OP	I ^c θ ^c
3- 4	6.0469 -172.3598	4.8878 73.5673	5.4054 -50.6522
4- 3	6.0373 -19.7173	5.5480 -143.3289	5.4906 102.9816
2- 1	1.5128 -179.1668	2.2739 71.4452	2.6647 -52.6014
1- 2	2.2228 -33.7867	1.8417 -135.7594	2.5757 101.8284

Tabla 3.14 Corrientes en transformadores.

En la tabla 3.15 se presentan las corrientes en las líneas de transmisión, se observa como al desconectarse la fase a de la línea 2-6, el generador en el nodo 1 sólo puede alimentar la carga en el 2, mientras que la aportación que hacia en estado de predisturbio a las cargas en los nodos 6 y 5, las proporciona en estado de falla el generador del nodo 4.

IN FR	X	Tabla 3	.15 Corri	entes en 1	íneas de tra	ansmisión.		
	p-q	II	9 ^a	I ^b	θ _ρ	I°	θ ^c	
Γ								
	6-2	6.4535	-171.5655	2. 1891	26.8273	2.4615	-6.7953	
	2-6	6.3463	11.9340	1.8389	-145.4122	2.7133	-179.8373	
1	6-/5	RS. 7819	10.6220	1.4065	-125.8872	1.0874	109.9962	J
	6-5	1.1133	-2.8917	1.5715	-117.0735	1.7384	116.9044	16
	5-6	. 7894	-172, 8392	1.4310	52.4118	1.1088	-72.1045	U.
	5-6	E 1.1317	174.7873	R 1.5879	61.2308	1.7550	64 . 5253	
	7-5	1,4824	-6.7060	1.0395	-123.1271	1.2479	123, 3167	
	8-5	1.5730	-9.0191	. 9014	-122.2630	1.2908	127.5507	
	5-7	1.5249	170.3725	1.0818	52.4609	1.2759	-60.9084	
1	5-8	1.6150	168.3188	. 9407	52.4500	1.3121	-56.5297	
Ĩ	9-6	1.5900	8.1094	1.6107	-114,9510	1.5920	108.8684	
	10- 6	1.7991	3.7749	1.5973	-115.8994	1.6336	118.4451	
	6-9	1.6072	-174.3981	1.6320	62.3621	1.6342	-73.4903	
	6-10	1.8228	-178.4321	1.6200	61.4638	1.6629	-64.0883	
	3-7	1.3623	2.8870	. 9510	-107.6470	1.1932	137.0082	
	3-8	1.4537	5258	. 8308	-103.9580	1.2562	140.2106	
Î	3-9	1.5400	15,9514	1.5654	-106.2891	1.4719	116.6553	
	3-10	1.7299	10.7634	1.5438	-107.2870	1.5552	126.5978	
	7-3	1.4829	173.2247	1.0384	56.9477	1.2485	-56.6363	
	8-3	1.5748	170.8497	. 9013	57.7173	1.2934	-52.6050	1
	9-3	1.5888	-171.8520	1.6073	65.1975	1.5898	-70.9433	
	10- 3	1.7958	-176.1755	1.5954	64.3033	1.6353	-61.5434	1

47

Las corrientes de la línea de transmisión 2-6 en la tabla 3.15 no son las reales, puesto que la falla se simuló mediante la conexión de una red de falla que sumada a la línea 2-6 completa, resultase la línea con la fase a desconectada. Las corrientes de la línea 2-6 reales se obtienen restando de las corrientes para esta línea en la tabla 3.15, las corrientes de falla, estos valores se presentan en la tabla 3.16.

Tabla 3.16	Corrientes	reales	en	la	línea	2-6.	

p-q ONO/Iª	θ ^a	I ^b	θ ^b	1 [°]	θ°
6- 2 VIRITATIS.000	0 . 0000	1.0780	55.8483	1.0658	-48.7302
2- 6 .000	0000	0.9196	-105.9863	1.1185	149,2938

Debido a que los estudios tradicionales consideran al SEP balanceado no se tiene una referencia para comparar los resultados de este estudio. Sin embargo, se puede ver que los valores presentados resultan lógicos para las condiciones de falla v.g. corriente de la fase a cero en la tabla 3.16 y además se satisfacen las leyes básicas de los circuitos eléctricos.

DIRECCIÓN GENERAL DE BIBLIOTECAS

3.4.3b Caso especial, problema numérico.

Como se ilustra en el punto 3.4.2a, los estudios con corrientes de falla igual a cero no pueden realizarse utilizando el método del punto 3.1. Existen sin embargo ocasiones en que debido a causas numéricas este algoritmo puede realizar correctamente dichos estudios.

Se presenta un estudio donde la corriente de falla debería ser cero, sin embargo toma un valor, que aunque muy pequeño, permite calcular correctamente los voltajes nodales utilizando el método descrito en 3.1. El error es introducido por los redondeos en la formación de las matrices de admitancias nodal de los elementos del SEP.

Se estudia el sistema del punto 3.4.3a eliminando la conexión a tierra del neutro del generador 4. Los datos son tomados del punto 3.4.3a haciendo nula la admitancia de secuencia cero del generador en el nodo 4.

Se analiza una falla sólida a tierra en la fase a del nodo 4. La corriente de falla (3.33) toma un valor distinto de cero que permite realizar el estudio usando el método del punto 3.1.

U	NNODOEI	RSYDA		róľvo	MÅDE	NUE	VO [®] LEÓN	
		1.0000	. 0000	1.0000	-120.0000	1.0000	120.0000	R
	2	1.0000	30.0001	1.0000	-90.0000	1.0000	149.9999	
1	3	1.0000	30.0001	1.0000	-90.0000	1.0000	149.9999	
	4	. 0000	. 0000	1.7320	-149. 9999	1.7320	149.9999	

En la tabla 3.17 se presentan algunos de los voltajes nodales del sistema fallado, se observa que al igual que en el punto 3.4.2, la falla sólo afecta al nodo del generador. Los voltajes de los demas nodos del sistema permanecen sin cambios apreciables.

p-q	I ^a	θ ^a	[I ^b]	θ ^b	I ^c θ ^c
3-4	2.5110	122.0971	2.5110	2.0969	2.5110 -117.9031
4-3	2.6238	-87.9071	2.6240	152.0909	2.6240 32.0944
2~ 1	.5536	123,0145	. 5535	3.0153	.5536 -116.9835
1-2	. 5657	-86, 9925	. 5657	153.0063	. 5657 33. 0085

Tabla 3.18.- Corrientes en transformadores.

En la tabla 3.18 se presentan las corrientes en transformadores, estos valores corresponden a las corrientes del sistema sin falla.

Aun cuando la falla ocasiona cambios en los voltajes en el nodo 4 la diferencia entre fases no cambia, esto hace que las corrientes en el lado de la delta del transformador no cambien al ocurrir la falla.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN Ø DIRECCIÓN GENERAL <u>D</u>E BIBLIOTECAS

4 ESTUDIOS DE FLUJO DE POTENCIA EN SISTEMAS DESBALANCEADOS

4.0 PLANTEAMIENTO DEL PROBLEMA.

Los estudios de flujos permiten obtener el comportamiento del SEP en estado estable bajo condiciones de operación específicas. Las variables que interesa conocer son los flujos de potencia en los elementos del sistema, la potencia compleja de las unidades generadoras y los voltajes nodales complejos. Las condiciones de operación se definen por: la potencia activa y la magnitud del voltaje controlado en las unidades generadoras y por la potencia activa y reactiva en los nodos de carga. Adicionalmente existen restricciones impuestas al funcionamiento del SEP como son los límites de generación de potencia reactiva.

El objetivo del estudio de flujos de potencia es calcular los voltajes nodales complejos y a partir de éstos obtener cualquier variable del SEP. DIRECCIÓN GENERAL DE BIBLIOTECAS

La representación matemática del problema consiste en resolver un conjunto de ecuaciones de la forma:

$$f(\mathbf{x}) = 0$$

(4.1)

donde:

x es un vector formado por los voltajes nodales complejos del SEP. f es una función no lineal que define las condiciones específicas de operación. 63077

51

Existen diferentes métodos para resolver un conjunto de ecuaciones de la forma de la ecuación (4.1), en este trabajo se utilizará el método de Newton-Raphson, debido a que es uno de los métodos que presentan mejores características de convergencia y confiabilidad con tiempos de cálculo reducidos.

4.1 ESTUDIO TRIFASICO DE FLUJO MEDIANTE EL METODO DE NEWTON-RAPHSON

En el apéndice A se presenta el método de Newton Raphson para la solución de un conjunto de ecuaciones no lineales. Se observa que es necesario tener una ecuación por cada incógnita que se quiera calcular. Debido a que en cada nodo se tienen seis incógnitas (la parte real y la parte imaginaria de los voltajes nodales de las fases a, b y c) es necesario plantear seis ecuaciones por nodo. La forma de las ecuaciones depende del tipo de nodo. En la tabla 4.1 se presentan los tipos de nodos que se distinguen en un estudio de flujo trifásico, asi como los datos de entrada y los resultados obtenidos.

UNIVERSIDAD AUTONOMA DE NUEVO LEÓN

DIRECCI	BLIOTECAS	
Tipo de nodo	Datos	Resultados
Carga	Potencia compleja de cada fase	Voltajes nodales complejos de fase
Voltaje controlado	Potencia activa total generada, magnitud del voltaje controlado y potencia compleja de de carga por fase	Voltajes nodales y potencia generada por fase

Tabla 4.1.- Tipos de nodos en un estudio de flujo trifásico.

Tabla 4.1.- (Continuación).

Compensador	Magnitud v ángulo del	Voltajes nodales v		
· • • • • • • • • • • • • • • • • • • •	voltaje controlado.	potencia generada		
	potencia compleja de	por fase		
,	carga por fase			

4.1.1 Algoritmo de solución.

El método de Newton-Raphson requiere inicialmente un estimado de los voltajes nodales para después llevarlos iterativamente al valor que satisface las ecuaciones de restricción (Ec. (4.1)). El cambio en las variables Vi se calcula resolviendo el conjunto de ecuaciones siguiente:

 $\begin{bmatrix} \Delta f_1 \end{bmatrix} = - \begin{bmatrix} J_1 \end{bmatrix} \cdot \begin{bmatrix} \Delta Y_1 \end{bmatrix}$ (4.2) UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

donde:

- Δf_i es la diferencia entre el valor de f con los voltajes actuales y el valor que se desea tener.
 - Ji es el Jacobiano, matriz de primeras derivadas de f.
 - ΔVi son los incrementos en los voltajes nodales.
 - i denota la iteración en que se encuentra el proceso de solución.

Una vez que se ha obtenido el incremento de los voltajes nodales, estos se actualizan utilizando la ecuación (4.3).

$$\left[\begin{array}{c} V_{i+1} \\ \sim \end{array}\right] = \left[\begin{array}{c} V_{i} \\ \sim \end{array}\right] + \left[\begin{array}{c} \Delta V_{i} \\ \sim \end{array}\right]$$
(4.3)

para f = a, b, c

4.1.2 Ecuaciones de restricción.

 $-S_{k}^{f} = V_{k}^{f}$

La forma de las ecuaciones a resolver depende del tipo de nodo, siendo la mayoría ecuaciones cuadráticas. Se desarrollarán en detalle las ecuaciones de restricción partiendo de los datos en cada nodo.

 a) <u>Nodos de carga.</u> En estos nodos se especifica el valor de la potencia activa y reactiva de cada fase, de estas condiciones de operación se obtienen 6 ecuaciones.

La potencia que se entrega en la fase f del nodo k es dada por la ecuación (4,4).

(4.4)

El signo negativo de S_k^f se debe a que la potencia se considera positiva entrado a la red y siempre se especifica el valor de la potencia que sale del nodo hacia la carga.

Expresendo los elementos de la ecuación (4.4) en sus componentes reales e imaginarias: DIRECCIÓN GENERAL DE BIBLIOTECAS $-P_{k}^{f} - jQ_{k}^{f} = \left(e_{k}^{f} + jf_{k}^{f}\right) \cdot \left(a_{k}^{f} - jb_{k}^{f}\right)$ $-P_{k}^{f} - jQ_{k}^{f} = \left(e_{k}^{f} \cdot a_{k}^{f} + f_{k}^{f} \cdot b_{k}^{f}\right) + j\left(-e_{k}^{f} \cdot b_{k}^{f} + f_{k}^{f} \cdot a_{k}^{f}\right)$

igualando las partes reales e imaginarias de cada lado de la ecuación anterior:

$$\Delta P_{k}^{f} = 0 = P_{k}^{f} + e_{k}^{f} \cdot a_{k}^{f} + f_{k}^{f} \cdot b_{k}^{f}$$
(4.5)

$$\Delta Q_{\mathbf{k}}^{\mathbf{f}} = \mathbf{0} = Q_{\mathbf{k}}^{\mathbf{f}} - e_{\mathbf{k}}^{\mathbf{f}} \cdot b_{\mathbf{k}}^{\mathbf{f}} + f_{\mathbf{k}}^{\mathbf{f}} \cdot a_{\mathbf{k}}^{\mathbf{f}}$$
(4.6)

Es posible plantear para cada fase de cada uno de los nodo de carga las ecuaciones (4.5) y (4.6), por lo cual para los nodos de carga se tienen las seis ecuaciones requeridas.

b) <u>Nodos de voltaje controlado.-</u> En estos nodos se especifica el valor de la potencia activa total entregada al sistema y la magnitud del voltaje controlado.

Existen para los nodos de voltaje controlado tres tipos de ecuaciones, las cuales serán obtenidas a continuación:

i) Ecuación de la potencia activa total.

La potencia activa total generada en el nodo k es la parte real de la potencia compleja que sale del nodo hacia la red y hacia la carga.

Pgk = Real(Sgk)

UNIVERSIDAD, AUTÓNOMA DE NUEVO LEÓN $P_{gk} = Real \left\{ \sum_{m=a}^{c} v_{k}^{m} \left(I_{k}^{m} \right) + \sum_{m=a}^{c} PL_{k}^{m} \right\} + \sum_{m=a}^{c} PL_{k}^{m}$ DIR ECCIÓN GENERAL DE BIBLIOTECAS

Donde I_k^m es la corriente que sale de la fase m del nodo k hacia la red.

$$P_{gk} = \text{Real} \left\{ \sum_{m=a}^{c} \left(e_{k}^{m} + j f_{k}^{m} \right) \cdot \left(a_{k}^{m} - j b_{k}^{m} \right) \right\} + \sum_{m=a}^{c} PL_{k}^{m}$$

De la ecuación anterior se obtiene (4.8).

$$\Delta P_{gk} = P_{gk} - \sum_{m=a}^{c} PL_{k}^{m} - \sum_{m=a}^{c} \left(e_{k}^{m} \cdot a_{k}^{m} + f_{k}^{m} \cdot b_{k}^{m} \right)$$

$$(4.8)$$

(4.7)

ii) Ecuación del voltaje controlado.

El control automático de voltaje (CAV) de las unidades generadoras mantiene fija la magnitud de una función de los voltajes nodales de las fases terminales:

$$\mathbf{V}_{\mathbf{k}}^{\mathrm{reg}} = f(\mathbf{V}_{\mathbf{k}}^{\mathrm{a}}, \mathbf{V}_{\mathbf{k}}^{\mathrm{b}}, \mathbf{V}_{\mathbf{k}}^{\mathrm{c}})$$
(4.9)

La forma de la función f depende del esquema de control seleccionado.

Inicialmente se presenta la ecuación para el esquema de control de la magnitud del voltaje de la fase a, posteriormente se incluirá la ecuación para el esquema de control de secuencia positiva.

$$V_{gk}^{a} = | V_{k}^{a} | = | e_{k}^{a} + i f_{k}^{a} | = \int \left(e_{k}^{a} \right)^{2} + \left(f_{k}^{a} \right)^{2}$$

De la ecuación anterior se obtiene:
$$\Delta V_{k}^{2} = \left(V_{gk}^{a} \right)^{2} - \left(e_{k}^{a} \right)^{2} - \left(f_{k}^{a} \right)^{2}$$
(4.10)
UNIVERSIDADAUTÓNOMA DE NUEVO LEÓN

iii) Ecuaciones de las corrientes internas. DIRECCIÓN GENERAL DE BIBLIOTECAS

Debido a la construcción simétrica de los devanados del estator de la máquina síncrona los voltajes internos E_{qk}^{abc} son balanceados, esto es:

$$\mathbf{E}_{\mathbf{g}\mathbf{k}}^{\mathbf{a}} = a \cdot \mathbf{E}_{\mathbf{g}\mathbf{k}}^{\mathbf{b}} \tag{4.11}$$

$$\mathbf{E}_{\mathbf{gk}}^{\mathbf{a}} = a^{2} \cdot \mathbf{E}_{\mathbf{gk}}^{\mathbf{c}}$$
(4.12)

De las ecuaciones que modelan al generador se tiene (2.3)

 $I_{gk}^{abc} = \gamma_{gk}^{abc} \cdot E_{gk}^{abc}$

Debido a que Y_{gk}^{abc} es una matriz balanceada las fuentes de corriente internas del generador resultan ser balanceadas, esto es:

$$I_{gk}^{a} = a \cdot I_{gk}^{b}$$
(4.13)

$$I_{gk}^{a} = a^{2} \cdot I_{gk}^{c}$$
(4.14)

Expresando los elementos de la ecuación (4.13) en sus componentes reales e imaginarias.

$$A_{k}^{a} + jB_{k}^{a} = \left(\frac{1}{2} + j\frac{\sqrt{3}}{2}\right) \cdot \left(A_{k}^{b} + jB_{k}^{b}\right)$$
$$A_{k}^{a} + jB_{k}^{a} = -\left(\frac{1}{2} \cdot A_{k}^{b} + \frac{\sqrt{3}}{2} \cdot B_{k}^{b}\right) - j\left(\frac{1}{2} \cdot B_{k}^{b} - \frac{\sqrt{3}}{2} \cdot A_{k}^{b}\right)$$

Igualando las partes reales e imaginarias correspondientes de cada lado de la ecuación anterior se obtienen las ecuaciones (4.15) y (4.16).

$$\Delta A1_{k} = A_{k}^{a} + \frac{1}{2} \cdot A_{k}^{b} + \frac{\sqrt{3}}{2} \cdot B_{k}^{b}$$
(4.15)

$L_{AB1_{k}} = B_{k}^{a} = B_$

En la ecuación (2.2) se observa que la corriente interna del generador I_{gk}^{f} se divide en dos partes, una que va hacia la impedancia interna del generador y otra que sale hacia el SEP. Esta última a su vez se divide en dos partes: la que va hacia la red eléctrica y la que va hacia la carga local.

$$I_{gk}^{f} = I_{k0}^{f} + I_{k}^{f} + IL_{k}^{f} \qquad \text{para } f = a, b, c. \qquad (4.17)$$

Expresando la ecuación (4.17) en forma rectangular y separando las partes reales e imaginarias

$$A_{k}^{f} = a_{k0}^{f} + a_{k}^{f} + AL_{k}^{f}$$
 (4.18a)

$$B_{k}^{f} = b_{k0}^{f} + b_{k}^{f} + BL_{k}^{f}$$
 (4.18b)

Sustituyendo en (4.15) y (4.16) las ecuaciones (4.18)

$$\Delta A1_{k} = \left(a_{k0}^{a} + a_{k}^{a} + AL_{k}^{a}\right) + \frac{1}{2} \cdot \left(a_{k0}^{b} + a_{k}^{b} + AL_{k}^{b}\right) + \frac{\sqrt{3}}{2} \cdot \left(b_{k0}^{b} + b_{k}^{b} + BL_{k}^{b}\right)$$
(4.19)

$$\Delta B1_{k} = \left(b_{k0}^{a} + b_{k}^{a} + BL_{k}^{a}\right) + \frac{1}{2} \cdot \left(b_{k0}^{b} + b_{k}^{b} + BL_{k}^{b}\right) - \frac{\sqrt{3}}{2} \cdot \left(a_{k0}^{b} + a_{k}^{b} + AL_{k}^{b}\right)$$
(4.20)

Siguiendo un proceso similar al anterior para la ecuación (4.14) se obtienen las ecuaciones (4.21) y (4.22).

$$\Delta A2_{k} = \left(a_{k0}^{a} + a_{k}^{a} + AL_{k}^{a}\right) + \frac{1}{2} \left(a_{k0}^{c} + a_{k}^{c} + AL_{k}^{c}\right) - \frac{\sqrt{3}}{2} \left(b_{k0}^{c} + b_{k}^{c} + BL_{k}^{c}\right)$$
(4.21)
$$\Delta B2_{k} = \left(b_{k0}^{a} + b_{k}^{a} + BL_{k}^{a}\right) + \frac{1}{2} \left(b_{k0}^{c} + b_{k}^{c} + BL_{k}^{c}\right) + \frac{\sqrt{3}}{2} \left(a_{k0}^{c} + a_{k}^{c} + AL_{k}^{c}\right)$$
(4.22)

Las ecuaciones (4.8) y (4.10) junto con las ecuaciones (4.19) a (4.22) son las seis ecuaciones que se utilizarán para los nodos de generación.

DIRECCIÓN GENERAL DE BIBLIOTECAS

c) <u>Nodo compensador</u>. - El nodo compensador es un nodo de generación especial en el cual no se especifica la potencia activa generada, sin embargo se especifica la magnitud y el ángulo del voltaje controlado.

El hecho de dejar libre la potencia activa generada permite al nodo compensador absorber las pérdidas del sistema, las cuales no se conocen al inicio del estudio. Al especificar el ángulo del voltaje controlado se define una referencia de la posición angular de los fasores de voltaje y corriente.

Para el esquema de control de voltaje en la fase a se tienen que cumplir en cada iteración las ecuaciones (4.23) y (4.24)

$$\Delta e_{\mathbf{k}}^{\mathbf{a}} = 0 \tag{4.23}$$

$$\Delta f_{k}^{a} = 0 \qquad (4.24)$$

Se puede observar que en este nodo se tienen dos incógnitas menos, $\Delta e_k^a y \Delta f_k^a$, por lo cual pueden eliminarse dos ecuaciones. Estas serían las de la potencia activa total (Ec. (4.8)), y la del voltaje controlado (Ec. (4.10)), sin embargo desde el punto de vista computacional puede resultar problemático tener nodos con distinto número de ecuaciones, en este caso se colocan en los renglones correspondientes a las ecuaciones (4.8) y (4.10) las ecuaciones

4.1.3 Cálculo de los elementos del Jacobiano

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

La matriz Jacobiana está formada por submatrices de orden 6 por 6, a continuación se presentan dichas submatrices y se obtienen las ecuaciones para calcular sus elementos.

a) Nodos de carga.

(4.23) y (4.24).

En la Fig. 4.1 se presenta la estructura de la submatriz del Jacobiano correspondiente a los nodos de carga.

		∆e ^a j	∆e ^b . j	∆e° j	∆f ^a j	∆f ^b j	Δf°	1
	ΔP ^a k	$\frac{\partial \Delta P_{k}^{a}}{\partial e_{j}^{a}}$	$\frac{\partial \Delta P_{k}^{a}}{\partial e_{j}^{b}}$	$\frac{\partial \Delta P_{k}^{a}}{\partial e_{j}^{c}}$	$\frac{\partial \Delta P^{a}_{k}}{\partial f^{a}_{j}}$	$\frac{\partial \Delta P_{k}^{a}}{\partial f_{j}^{b}}$	$\frac{\partial \Delta P_{k}^{a}}{\partial f_{j}^{c}}$	
ΔQ ^a ΔP ^b ΔP ^b ΔP ^c ΔP ^c ΔQ ^c UNIVERS	$\frac{\partial \Delta Q_{k}^{a}}{\partial e_{j}^{a}}$	$\frac{\partial \Delta Q^{a}_{k}}{\partial e^{b}_{j}}$	$\frac{\partial \Delta Q_k^a}{\partial e_j^c}$	$\frac{\partial \Delta Q_k^a}{\partial f^a}$	$\frac{\partial \Delta Q_k^a}{\partial f_j^b}$	$\frac{\partial \Delta Q_k^a}{\partial f_j^c}$		
	AP ^b	$\frac{\partial \Delta P_k^b}{\partial e_j^a}$	$\frac{\partial \Delta P_{k}^{b}}{\partial e_{j}^{b}}$	$\frac{\partial \Delta P_{k}^{b}}{\partial e_{j}^{c}}$	$\frac{\partial \Delta P_{\mathbf{k}}^{\mathbf{b}}}{\partial \mathbf{f}_{\mathbf{j}}^{\mathbf{a}}}$	$\frac{\partial \Delta P^{b}_{\underline{k}}}{\partial f^{b}_{\underline{j}}}$	$\frac{\partial \Delta P_{k}^{b}}{\partial f_{j}^{c}}$	
		$\frac{\partial \Delta Q_k^b}{\partial e_j^a}$	$\frac{\partial \Delta Q_{\mathbf{k}}^{\mathbf{b}}}{\partial \mathbf{e}_{\mathbf{j}}^{\mathbf{b}}}$	$\frac{\partial \Delta Q_{k}^{b}}{\partial e_{j}^{c}}$	$\frac{\partial \Delta Q_{k}^{b}}{\partial f_{j}^{a}}$	$\frac{\partial \Delta Q_{k}^{b}}{\partial f_{j}^{b}}$	$rac{\partial\Delta Q_k^b}{\partial f_j^\circ}$	
	ΔP ^c k	$\frac{\partial \Delta P_{k}^{c}}{\partial e_{j}^{a}}$	$\frac{\partial \Delta P_{k}^{c}}{\partial e_{j}^{b}}$	$\frac{\partial \Delta P_{k}^{c}}{\partial e_{j}^{c}}$	$\frac{\partial \Delta P_{k}^{c}}{\partial f_{j}^{a}}$	$\frac{\partial \Delta P_{k}^{c}}{\partial f_{j}^{b}}$	$\frac{\partial \Delta P_{k}^{c}}{\partial f_{j}^{c}}$	
	ΔQ_k^c RS	$\frac{\partial \Delta Q_{k}^{c}}{\partial e_{j}^{a}}$	$A^{\partial e_{k}^{c}}$	$\frac{\partial \Delta Q_{k}^{c}}{\partial e_{j}^{c}}$	$\frac{\partial \Delta Q_{k}^{c}}{\partial f_{j}^{a}}$	$\frac{\partial \Delta Q_{k}^{c}}{\partial f^{b}}$	∂ΔQ ^c _k ∂f ^c j	.EÓN
								R

Fig. 4.1 Submatriz del Jacobiano correspondiente a los nodos de carga

i) Submatrices de la diagonal(j=k)

Derivando la ecuación (4.5) se obtiene (4.25)

$$\frac{\partial \Delta P_{k}^{f}}{\partial e_{k}^{f}} = e_{k}^{f} \cdot \frac{\partial a_{k}^{f}}{\partial e_{k}^{f}} + \frac{\partial e_{k}^{f}}{\partial e_{k}^{f}} \cdot a_{k}^{f} + f_{k}^{f} \cdot \frac{\partial b_{k}^{f}}{\partial e_{k}^{k}} + \frac{\partial f_{k}^{f}}{\partial e_{k}^{f}} \cdot b_{k}^{f}$$
(4.25)

A continuación se presenta el desarrollo para obtener las derivadas parciales de las corrientes nodales con respecto a los voltajes nodales.

De las ecuaciones nodales del sistema de potencia se obtiene (4.26).

$$I_{k}^{f} = \sum_{i=1}^{n} \sum_{m=a}^{c} \left(Y_{ki}^{fm} \cdot V_{i}^{m} \right)$$

$$(4.26)$$

Expresando los elementos de la sumatoria en sus componentes reales e imaginarias:

$$a_{k}^{f} + jb_{k}^{f} = \sum_{l=1}^{n} \sum_{m=a}^{c} \left\{ \left(G_{kl}^{fm} + jB_{kl}^{fm} \right) \cdot \left(e_{l}^{m} + jf_{l}^{m} \right) \right\}$$

$$a_{k}^{f} + jb_{k}^{f} = \sum_{l=1}^{n} \sum_{m=a}^{c} \left(G_{kl}^{fm} \cdot e_{l}^{m} - B_{kl}^{fm} \cdot f_{l}^{m} \right) + j\sum_{l=1}^{n} \sum_{m=a}^{c} \left(G_{kl}^{fm} \cdot f_{l}^{m} + B_{kl}^{fm} \cdot e_{l}^{m} \right)$$
Igualando las partes reales e imaginarias de cada lado de la ecuación anterior se obtienen las ecuaciones (4.27) y (4.28).
$$a_{k}^{f} = \sum_{i=1}^{n} \sum_{m=a}^{c} \left(G_{kl}^{fm} \cdot e_{l}^{m} - B_{kl}^{fm} \cdot f_{l}^{m} \right)$$

$$(4.27)$$

$$b_{k}^{f} = \sum_{i=1}^{n} \sum_{m=a}^{c} \left(G_{kl}^{fm} \cdot f_{l}^{m} + B_{kl}^{fm} \cdot e_{l}^{m} \right)$$

$$(4.28)$$

Derivando las ecuaciones (4.27) y (4.28) con respecto a las componentes de los voltajes nodales se obtienen las ecuaciones (4.29).

$$\frac{\partial a_{k}^{f}}{\partial e_{j}^{p}} = G_{kj}^{fp}$$

$$\frac{\partial a_{k}^{f}}{\partial f_{j}^{p}} = -B_{kj}^{fp}$$

$$(4.29a)$$

$$(4.29b)$$
$$\frac{\partial b_{k}^{f}}{\partial e_{j}^{p}} = B_{kj}^{fp}$$
(4.29c)

$$\frac{\partial b_{k}^{f}}{\partial f_{j}^{p}} = G_{kj}^{fp}$$
(4.29d)

$$\frac{\partial \Delta p^{f}}{\partial \sigma_{k}^{F}} = e_{k}^{f} \cdot G_{kk}^{ff} + a_{k}^{f} + f_{k}^{f} \cdot B_{kk}^{ff} \qquad (4.30)$$

$$Utilizando \quad (4.5), \quad (4.6) \quad y \quad las \quad ecuaciones \quad (4.29) \quad se \quad obtienen \quad las \quad ecuaciones \quad (4.31) \quad a \quad (4,37).$$

$$\frac{\partial \Delta p^{f}}{\partial e_{k}^{b}} = e_{k}^{f} \cdot G_{kk}^{fp} + f_{k}^{f} \cdot B_{kk}^{fp} \qquad (p \neq f) \qquad (4.31)$$

$$\frac{\partial \Delta p^{f}}{\partial e_{k}^{b}} = -e_{k}^{f} \cdot B_{kk}^{ff} + f_{k}^{f} \cdot G_{kk}^{ff} + b_{k}^{f} \qquad (4.32) \qquad (4.32) \qquad (4.32) \qquad (4.33)$$

$$\frac{\partial \Delta p^{f}}{\partial f_{k}^{p}} = -e_{k}^{f} \cdot B_{kk}^{fp} + f_{k}^{f} \cdot G_{kk}^{fp} \qquad (p \neq f) \qquad (4.33)$$

$$\frac{\partial \Delta p^{f}}{\partial f_{k}^{p}} = -e_{k}^{f} \cdot B_{kk}^{ff} - b_{k}^{f} + f_{k}^{f} \cdot G_{kk}^{ff} \qquad (p \neq f) \qquad (4.33)$$

$$\frac{\partial \Delta p^{f}}{\partial e_{k}^{f}} = -e_{k}^{f} \cdot B_{kk}^{ff} - b_{k}^{f} + f_{k}^{f} \cdot G_{kk}^{ff} \qquad (p \neq f) \qquad (4.33)$$

$$\frac{\partial \Delta Q^{f}}{\partial e_{k}^{f}} = -e_{k}^{f} \cdot B_{kk}^{fp} + f_{k}^{f} \cdot G_{kk}^{fp} \qquad (p \neq f) \qquad (4.33)$$

b) Nodos de generación.

En la Fig. 4.2 se presenta la estructura de las submatrices del Jacobiano correspondientes a los nodos de generación.

		∆e ^a j	∆e ^b j.	∆e ^c j	Δf ^a j	∆f ^b ز	∆f ^c j	1
	ΔPgk	∂ΔPgk ∂e ^a j	∂ΔPgk ∂e ^b _j	ðΔPgk 	∂ΔPgk ∂f ^a j	∂∆Pgk ∂f ^b j	ðΔPgk ðf [°] j	
	ΔV_{k}^{2}	$\frac{\partial \Delta V_{k}^{2}}{\partial e_{j}^{a}}$	$\frac{\partial \Delta V_{k}^{2}}{\partial e_{j}^{b}}$	$\frac{\partial \Delta V_{k}^{2}}{\partial e_{j}^{c}}$	$\frac{\partial \Delta V_{k}^{2}}{\partial f_{j}^{a}}$	$\frac{\partial \Delta V_{k}^{2}}{\partial f_{j}^{b}}$	$\frac{\partial \Delta V_{k}^{2}}{\partial f_{j}^{c}}$	
	AA1 NONKOA	$\frac{\partial \Delta A1_{k}}{\partial e_{j}^{a}}$	∂ΔΑ1 _k ∂e ^b j	$\frac{\partial \Delta A1_{k}}{\partial e_{j}^{c}}$	∂ΔΑ1 _k ∂f ^a j	∂ΔΑ1 k ∂f ^b j	$\frac{\partial \Delta A1_{k}}{\partial f_{j}^{c}}$	
RSIDAU	ALERE FLAMM VERITATIS	$\frac{\partial \Delta B1_{k}}{\partial e_{j}^{a}}$	$\frac{\partial \Delta B1_{k}}{\partial e_{j}^{b}}$	∂ΔB1 _k ∂e ^c j	$\frac{\partial \Delta B1_{k}}{\partial f_{j}^{a}}$	∂ΔB1 _k ∂f ^b j	$\frac{\partial \Delta B1_{k}}{\partial f_{j}^{c}}$	
HALF	AA2,	∂ΔΑ2 _k de ^a j	$\frac{\partial \Delta A2_{k}}{\partial e_{j}^{b}}$	$\frac{\partial \Delta A2_{k}}{\partial e_{j}^{c}}$	$\frac{\partial \Delta A2_{k}}{\partial f_{j}^{a}}$	$\frac{\partial \Delta AZ_{k}}{\partial f_{j}^{b}}$	$\frac{\partial \Delta A2_{k}}{\partial f_{j}^{c}}$	
UN	ΔB2 _k IVERSI	$\frac{\partial \Delta B2_{k}}{\partial e_{j}^{a}}$	∂ΔB2 _k ∂e ^b	$\frac{\partial \Delta B2_{k}}{\partial e_{j}^{c}}$	$\frac{\partial \Delta B2_{k}}{\partial f_{j}^{a}}$	$\frac{\partial \Delta B2_{k}}{\partial f^{b}}$	$\frac{\partial \Delta B2_{k}}{\partial f^{c}_{j}}$	EÓN
								R

DIRE Fig. 4.2 Submatriz del Jacobiano correspondiente AS a los nodos de generación.

i) Submatrices de la diagonal(j=k)

Derivando la ecuación (4.8) se obtienen (4.42) y (4.43).

$$\frac{\partial \Delta P_{gk}}{\partial e_{k}^{p}} = -\sum_{m=a}^{c} \left(e_{k}^{m} \cdot G_{kk}^{mp} + f_{k}^{m} \cdot B_{kk}^{mp} \right) - a_{k}^{p}$$

$$\frac{\partial \Delta P_{gk}}{\partial f_{k}^{p}} = \sum_{m=a}^{c} \left(e_{k}^{m} \cdot B_{kk}^{mp} - f_{k}^{m} \cdot G_{kk}^{mp} \right) - b_{k}^{p}$$

$$(4.42)$$

.

Derivando (4.10) se obtienen las ecuaciones (4.44) a (4.47).

$$\frac{\partial \Delta B2}{\partial e_{k}^{p}} = B_{gk}^{ap} + B_{kk}^{ap} + \frac{1}{2} \cdot \left(B_{gk}^{cp} + B_{kk}^{cp} \right) + \frac{\sqrt{3}}{2} \cdot \left(G_{gk}^{cp} + G_{kk}^{cp} \right) + \frac{\partial BL_{k}^{a}}{\partial e_{k}^{p}} + \frac{1}{2} \cdot \frac{\partial BL_{k}^{c}}{\partial e_{k}^{p}} + \frac{\sqrt{3}}{2} \cdot \frac{\partial AL_{k}^{c}}{\partial e_{k}^{p}}$$
(4.54)

$$\frac{\partial \Delta B2}{\partial f_{k}^{p}} = G_{gk}^{ap} + G_{kk}^{ap} + \frac{1}{2} \cdot \left(G_{gk}^{ep} + G_{kk}^{ep} \right) - \frac{\sqrt{3}}{2} \cdot \left(B_{gk}^{ep} + B_{kk}^{ep} \right) + \frac{\partial BL_{k}^{a}}{\partial f_{k}^{p}} + \frac{1}{2} \cdot \frac{\partial BL_{k}^{c}}{\partial f_{k}^{p}} + \frac{\sqrt{3}}{2} \cdot \frac{\partial AL_{k}^{c}}{\partial f_{k}^{p}}$$
(4.55)

A continuación se presentan las ecuaciones para evaluar las derivadas de las componentes reales e imaginarias de las corrientes de carga local en un nodo de generación.

Derivando (4.56) y (4.57) se obtienen las ecuaciones (4.58) a (4.63).

$$\frac{\partial AL_{\mathbf{k}}^{\mathbf{f}}}{\partial e_{\mathbf{k}}^{\mathbf{f}}} = \frac{1}{\left[\left(e_{\mathbf{k}}^{\mathbf{f}}\right)^{2} + \left(f_{\mathbf{k}}^{\mathbf{f}}\right)^{2}\right]^{2}} \cdot \left\{-\left[\left(e_{\mathbf{k}}^{\mathbf{f}}\right)^{2} - \left(f_{\mathbf{k}}^{\mathbf{f}}\right)^{2}\right] \cdot PL_{\mathbf{k}}^{\mathbf{f}} - 2 \cdot e_{\mathbf{k}}^{\mathbf{f}} \cdot f_{\mathbf{k}}^{\mathbf{f}} \cdot QL_{\mathbf{k}}^{\mathbf{f}}\right\}$$
(4.58)

$$\frac{\partial AL_{k}^{f}}{\partial f_{k}^{f}} = \frac{1}{\left[\left(e_{k}^{f}\right)^{2} + \left(f_{k}^{f}\right)^{2}\right]^{2}} \cdot \left\{ \left[\left(e_{k}^{f}\right)^{2} - \left(f_{k}^{f}\right)^{2}\right] \cdot QL_{k}^{f} - 2 \cdot e_{k}^{f} \cdot f_{k}^{f} \cdot PL_{k}^{f} \right\}$$
(4.59)

$$\frac{\partial BL_{k}^{f}}{\partial e_{k}^{f}} = \frac{\partial AL_{k}^{f}}{\partial f_{k}^{f}}$$
(4.60)

$\frac{\partial BL_{k}^{f}}{\partial f_{k}^{f}} = -\frac{\partial AL_{k}^{f}}{\partial e_{k}^{f}} $		(4.61)
$\frac{\partial AL_{k}^{f}}{\partial f_{k}^{p}} = 0$	(p≠f)	(4.62)
$\frac{\partial \mathrm{BL}^{f}_{\mathbf{k}}}{\partial \mathrm{e}^{\mathbf{p}}_{\mathbf{k}}} = 0$	(p≠f.)	(4.63)

Las ecuaciones (4.58) a (4.63) son utilizadas para evaluar las ecuaciones (4.48) a (4.55).

$$ij) \text{ Submatrices fuera de la diagonal (j \neq k).}$$
Derivando las ecuaciones (4.8), (4.10) y (4.19) a (4.22) se obtienen las siguientes ecuaciones.
$$\frac{\partial \Delta P_{gk}}{\partial e_{j}^{p}} = -\sum_{m=a}^{c} \left(e_{k}^{m} \cdot (e_{k}^{mp} + f_{k}^{m} \cdot B_{kj}^{mp}) \right) (j \neq k) \qquad (4.64)$$

$$\frac{\partial \Delta P_{gk}}{\partial f_{j}^{p}} = \sum_{m=a}^{c} \left(e_{k}^{m} \cdot B_{kj}^{mp} - f_{k}^{m} \cdot G_{kj}^{mp} \right) (j \neq k) \qquad (4.65)$$

$$\frac{\partial \Delta V_{k}^{2}}{\partial e_{j}^{p}} = 0 \text{ RECION GENER}(j \neq k) \text{ DE BIBLIOTECAS (4.66)}$$

$$\frac{\partial \Delta V_{k}^{2}}{\partial f_{j}^{p}} = 0 \qquad (j \neq k) \qquad (4.67)$$

$$\frac{\partial \Delta V_{k}^{2}}{\partial f_{j}^{p}} = -E_{kj}^{a,p} - \frac{1}{2} \cdot B_{kj}^{b,p} + \frac{\sqrt{3}}{2} \cdot B_{kj}^{b,p} \qquad (j \neq k)$$

$$\frac{\partial \Delta A l_{k}}{\partial e_{j}^{p}} = -E_{kj}^{a,p} - \frac{1}{2} \cdot B_{kj}^{b,p} + \frac{\sqrt{3}}{2} \cdot G_{kj}^{b,p} \qquad (j \neq k)$$

$$\frac{\partial \Delta A l_{k}}{\partial f_{j}^{p}} = -E_{kj}^{a,p} - \frac{1}{2} \cdot B_{kj}^{b,p} - \frac{\sqrt{3}}{2} \cdot G_{kj}^{b,p} \qquad (j \neq k)$$

$$\frac{\partial \Delta B l_{k}}{\partial e_{j}^{p}} = E_{kj}^{a,p} + \frac{1}{2} \cdot B_{kj}^{b,p} - \frac{\sqrt{3}}{2} \cdot G_{kj}^{b,p} \qquad (j \neq k)$$

$$\frac{\partial \Delta B l_{k}}{\partial e_{j}^{p}} = E_{kj}^{a,p} + \frac{1}{2} \cdot B_{kj}^{b,p} - \frac{\sqrt{3}}{2} \cdot G_{kj}^{b,p} \qquad (j \neq k)$$

$$\frac{\partial \Delta B l_{k}}{\partial e_{j}^{p}} = E_{kj}^{a,p} + \frac{1}{2} \cdot B_{kj}^{b,p} - \frac{\sqrt{3}}{2} \cdot G_{kj}^{b,p} \qquad (j \neq k)$$

c) Nodo compensador

$$\frac{\partial \Delta B_{1}}{\partial f_{j}^{p}} = G_{kj}^{ap} + \frac{1}{2} G_{kj}^{bp} + \frac{43}{2} B_{kj}^{bp} \qquad (j \neq k)$$

$$\frac{\partial \Delta A_{k}}{\partial e_{j}^{p}} = G_{kj}^{ap} + \frac{1}{2} G_{kj}^{cp} - \frac{43}{2} B_{kj}^{cp} \qquad (4.71)$$

$$\frac{\partial \Delta A_{k}}{\partial e_{j}^{p}} = -B_{kj}^{ap} - \frac{1}{2} B_{kj}^{cp} - \frac{43}{2} G_{kj}^{cp} \qquad (j \neq k)$$

$$\frac{\partial \Delta B_{k}}{\partial f_{j}^{p}} = -B_{kj}^{ap} - \frac{1}{2} B_{kj}^{cp} - \frac{43}{2} G_{kj}^{cp} \qquad (j \neq k)$$

$$\frac{\partial \Delta B_{k}}{\partial e_{j}^{p}} = B_{kj}^{ap} + \frac{1}{2} B_{kj}^{cp} + \frac{43}{2} G_{kj}^{cp} \qquad (j \neq k)$$

$$\frac{\partial \Delta B_{k}}{\partial e_{j}^{p}} = G_{kj}^{ap} + \frac{1}{2} B_{kj}^{cp} - \frac{43}{2} G_{kj}^{cp} \qquad (j \neq k)$$

$$\frac{\partial \Delta B_{k}}{\partial e_{j}^{p}} = G_{kj}^{ap} + \frac{1}{2} G_{kj}^{cp} - \frac{43}{2} G_{kj}^{cp} \qquad (j \neq k)$$

$$\frac{\partial \Delta B_{k}}{\partial e_{j}^{p}} = G_{kj}^{ap} + \frac{1}{2} G_{kj}^{cp} - \frac{43}{2} B_{kj}^{cp} \qquad (j \neq k)$$

$$\frac{\partial \Delta B_{k}}{\partial e_{j}^{p}} = G_{kj}^{ap} + \frac{1}{2} G_{kj}^{cp} - \frac{43}{2} B_{kj}^{cp} \qquad (j \neq k)$$

$$\frac{\partial \Delta B_{k}}{\partial e_{j}^{p}} = G_{kj}^{ap} + \frac{1}{2} G_{kj}^{cp} - \frac{43}{2} B_{kj}^{cp} \qquad (j \neq k)$$

$$\frac{\partial \Delta B_{k}}{\partial e_{j}^{p}} = G_{kj}^{ap} + \frac{1}{2} G_{kj}^{cp} - \frac{43}{2} B_{kj}^{cp} \qquad (j \neq k)$$

Las submatrices correspondientes al nodo compensador solo cambian, con respecto a las submatrices de los nodos de voltaje controlado, en los renglones correspondientes a las ecuaciones de la potencia activa total y del voltaje controlado las cuales pueden ser eliminadas o sustituídas por las ecuaciones (4.23) y (4.24). En la figura 4.3 se presentan dichos renglones.

	∆e ^a j	∆e ^b j	∆e ^c j	∆f ^a j	∆f ^b ا	∆f ^b j
∆f ^a k	1 (j=k) O (j≠k)	0	o	0	0	0
Δf ^a k	O	0	o	1 (j=k) 0 (j≠k)	O	O

4.1.4 Control de voltaje de secuencia positiva.

Se presenta la ecuación de restricción y los elementos del Jacobiano para el esquema del control de voltaje de secuencia positiva. En general para un esquema de control de voltaje particular basta obtener la ecuación de restricción y derivarla con respecto a las componentes de los voltajes nodales para obtener los elementos del Jacobiano.

Aplicando la transformación inversa de componentes simétricas al vector de voltajes de secuencia (abc) se obtiene el voltaje de secuencia positiva:

$$y_{k}^{*} = \frac{1}{3} \cdot \left(y_{k}^{a} + \alpha \cdot y_{k}^{b} + \alpha^{2} \cdot y_{k}^{c} \right)$$

$$Separando la ecuación (4.76a) en sus partes reales e imaginarias:$$

$$e_{k}^{*} = \frac{1}{3} \cdot \left[e_{k}^{a} - \frac{1}{2} \cdot \left(e_{k}^{b} + e_{k}^{c} \right) - \frac{\sqrt{3}}{2} \cdot \left(f_{k}^{b} - f_{k}^{c} \right) \right]$$

$$f_{k}^{*} = \frac{1}{3} \cdot \left[f_{k}^{a} - \frac{1}{2} \cdot \left(f_{k}^{b} + f_{k}^{c} \right) + \frac{\sqrt{3}}{2} \cdot \left(e_{k}^{b} - e_{k}^{c} \right) \right]$$

$$(4.76b)$$

$$(4.76b)$$

$$(4.76c)$$

UNIVERSIDAD AUTONOMA DE NUEVO LEON

Si se desea mantener fijo el voltaje de secuencia positivo en cada iteración se debe cumplir la ecuación (4.77).

$$V_{gk}^{+} = \left[\left(e_{k}^{+} \right)^{2} + \left(f_{k}^{+} \right)^{2} \right]$$

$$(4.77)$$

Donde V_{ak}^{\dagger} es la magnitud del voltaje especificado.

Arreglando (4.77) obtenemos la ecuación de restricción la cual sustituiría a la ecuación (4.10) en el caso de tener control de voltaje de secuencia positiva.

$$\Delta V_{\mathbf{k}}^{\dagger} = \left(V_{\mathbf{g}\mathbf{k}}^{\dagger} \right)^{2} - \left(e_{\mathbf{k}}^{\dagger} \right)^{2} - \left(f_{\mathbf{k}}^{\dagger} \right)^{2}$$
(4.78)

Derivando con respecto a las componentes de los voltajes nodales la ecuación (4.78) se obtienen los elementos del Jacobiano.

En el nodo compensador con el esquema de control de voltaje de secuencia positiva la ecuación (4.78) sustituye a (4.23) y la ecuación (4.24) debe ser sustituída por la ecuación del ángulo del voltaje de secuencia positiva.

$$\theta_{k}^{+} = \operatorname{arctg}\left(\frac{f_{k}^{+}}{e_{k}^{+}}\right)$$

$$(4.87)$$

Arreglando (4.87) se obtiene la ecuación (4.88).

$$\Delta \Theta_{k}^{+} = e_{k}^{+} tg \left(\Theta_{k}^{+} \right) - f_{k}^{+}$$
(4.88)

La ecuación (4.88) se utiliza para fijar el ángulo del voltaje de secuencia positiva en el nodo compensador. Los elementos del Jacobiano correspondientes a esta ecuación se obtienen derivándola con respecto a las componentes reales e imaginarias de los voltajes nodales.

4.1.5 Límites de potencia reactiva generada.

La potencia reactiva de las máquinas generadoras está limitada por diferentes factores de acuerdo a su curva de capabilidad, por lo tanto es necesario verificar en cada iteración si algunas máquinas han violado el límite superior o inferior de potencia reactiva. Si esto ocurre se deben tomar medidas correctivas.

La potencia reactiva de las máquinas generadoras es función de la magnitud de su voltaje en terminales, en consecuencia cuando una máquina viola un límite de reactivos se debe dejar libre la magnitud del voltaje y hacer que la potencia reactiva generada sea igual al valor del límite violado. Desde el punto de vista matemático equivale a sustituír la ecuación del voltaje controlado por una ecuación que restrinja la potencia reactiva generada. En los casos comunes la magnitud del voltaje disminuirá si el límite violado fue el superior y aumentará si el límite violado fue el inferior.

En ocasiones, los límites de reactivos se violan debido a que los estimados iniciales de los voltajes durante el proceso iterativo son malos. Sin embargo, en iteraciones posteriores al mejorar estos valores no se presentará el problema de límites de reactivos. Por lo tanto, se debe cambiar la ecuación de la potencia reactiva por la de voltaje controlado. La evidencia de que el problema de límites de reactivos ha desaparecido es que en iteraciones posteriores a la liberación del voltaje éste tome un valor mayor al especificado inicialmente, para el caso de límite superior violado.

DIRECCION GENERAL DE BIBLIOIECAS A continuación se presenta el desarrollo para obtener la ecuación de la potencia reactiva generada.

$$Q_{gk} = Img \left\{ \sum_{m=a}^{c} V_{k}^{m} \cdot \left(I_{k}^{m}\right)^{*} \right\} + \sum_{m=a}^{c} QL_{k}^{m}$$

Donde Qgk es el valor del límite de potencia reactiva violado.

$$Q_{gk} = Img \left\{ \sum_{m=a}^{c} \left(e_{k}^{m} + j f_{k}^{m} \right)^{*} \left(a_{k}^{m} - j b_{k}^{m} \right) \right\} + \sum_{m=a}^{c} QL_{k}^{m}$$

De la ecuación anterior se obtiene:

$$\Delta Q_{gk} = Q_{gk} - \sum_{m=a}^{c} QL_{k}^{m} - \sum_{m=a}^{c} \left(e_{k}^{m} \cdot b_{k}^{m} - f_{k}^{m} \cdot a_{k}^{m} \right)$$
(4.95)

La ecuación (4.95) remplazará a la ecuación del voltaje controlado Ec. (4.10) ó Ec. (4.78) dependiendo del esquema de control de voltaje implementado. A continuación se presentan los elementos del Jacobiano correspondientes a ésta ecuación.

4.2 DIAGRAMA DE FLUJO DEL ALGORITMO.

En la figura 4.4 se presenta un diagrama esquemático del algoritmo desarrollado para el estudio de flujo trifásico. A continuación se describen los puntos relevantes.

 Lectura de datos de la red. Se requieren los nodos y valores de impedancia de los elementos que constituyen el SEP.

Fig. 4.4 Diagrama de flujo del estudio de flujos trifásico.

- 2.- Lectura de las condiciones de operación del SEP. Se leen los valores de las potencias generadas, los voltajes controlados, los límites de reactivos y las cargas en cada nodo (ver tabla No. 4.1).
- 3.- Lectura de datos para control del algoritmo. Se requiere:
 - kq.- Número de la iteración para empezar a checar límite de reactivos. No es conveniente empezar a checar desde la primera iteración debido a que se parte con un estimado de los voltajes que puede ser erróneo y ocasionar que se violen los límites de reactivos injustificadamente.

1it.- Número máximo de iteraciones. Puede suceder que no existan voltajes nodales que satisfagan las condiciones de operación requeridas, por lo tanto no existe solución y debe de ponerse un límite máximo de iteraciones para evitar que el programa se quede trabajando indefinidamente.

tol.- Tolerancia para la convergencia.

 \odot

- 4. Formación de la matriz de admitancia nodal trifásica Y^{abc}. Con los datos de la red se forma la matriz de admitancia nodal de acuerdo a las reglas para su formación (cap. 2).
- 5.- Inicialización de los voltajes nodales. La buena o mala estimación inicial de los voltajes nodales influye en el número de iteraciones

requeridas para llegar a la solución. Algunas consideraciones son:

- La magnitud de los voltajes en cada fase es la misma y se toma para los nodos de generación el valor del voltaje a controlar y para los nodos de carga se asume la unidad.
- Los voltajes de fase estan desfasados 120°.
- Deben de considerarse los cambios de fase debido a transformadores en conexión Δ-Y y a transformadores desfasadores.
- 6.- Io = $Y \cdot V_0$ Se calculan las corrientes nodales con los estimados iniciales de los voltajes nodales. Ecuaciones (4.27) y (4.28).

- 7.- Δf(V₀) Se evaluan las funciones de restricción con los estimados de los voltajes nodales (errores nodales). Ecuaciones (4.5), (4.6), (4.8), (4.10), (4.19) a (4.22), (4.78), (4.88) y (4.95).
- 8.- $J(V_{k-1})$ Se evalua la matriz Jacobiana. Ecuaciones (4.30) a (4.55), (4.64) a (4.75), (4.79) a (4.86), (4.89) a (4.94) y (4.96) a (4.99).
- 9. $\Delta V_{k-1} = J(V_{k-1})^{-1} \cdot \Delta f(V_{k-1})$ Se calcula el incremento de los voltajes nodales.
- 10. $V_k = V_{k-1} + \Delta V_{k-1}$ Se obtiene un mejor estimado de los voltajes nodales.
- 11.- Checar limite de reactivos.- Para cada nodo de voltaje controlado checar primero cual es la segunda ecuación de restricción:

Si la ecuación es la del voltaje controlado, lo cual indica que no se habia violado alguno de los límites de reactivos, verificar si en esta iteración se viola alguno de los límites, si esto ocurre cambiar la ecuación del voltaje controlado (4.10) ó (4.78) por la ecuación de la potencia reactiva (Ec. (4.95)).

- Si la ecuación es la de la potencia reactiva (límite), verificar si en esta iteración se cumplen los requisitos para regresar a controlar la magnitud del voltaje controlado, si se cumplen cambiar la ecuación (4.95) por (4.10) ó (4.78), si no continuar.
 - 12. Evaluar las ecuaciones de restricción (4.5), (4.6), (4.8), (4.10), (4.19) a (4.22), (4.78), (4.88) y (4.95) y verificar si estan dentro de la tolerancia establecida. Si las ecuaciones de restricción no estan dentro de la tolerancia regresar al paso 8. Si las ecuaciones de restricción estan dentro de la tolerancia calcular flujos de potencia e imprimir resultados.

4.3 ANALISIS DE SISTEMAS DE PRUEBA.

Con la finalidad de ilustrar detalladamente la implementación del algoritmo descrito, se incluyen ejemplos numéricos que presentan los datos requeridos para realizar estudios de flujos de potencia trifásicos así como los resultados obtenidos.

4.3.1 Caso de prueba No. 1.

Para verificar los resultados obtenidos, se eligio como sistema de estudio el sistema de ANDERSON^[2], el cual se presenta en la figura 3.2.

Se realizaron los siguientes estudios del sistema:

a) Sistema simplificado.
 Considera al sistema exactamente igual que ANDERSON^[2]. Sistema completamente balanceado, transformadores en conexión Y-Y sólidamente aterrizados.

b) Sistema completo.
 Considera la conexión real de los transformadores Υ-Δ para los siguientes casos:

- i.- Sistema completo balanceado.
- ii.- Red eléctrica desbalanceada, carga balanceada.
- iii. Red eléctrica balanceada, carga desbalanceadas.
- iv. Red eléctrica y carga desbalanceada.

OBSERVACIONES.

 $\mathbf{N} \mathbf{V} \mathbf{C} \mathbf{K}$

Para todos los generadores se tomaron los mismos valores de impedancias,

 $z^{\circ} = .06j$, $z^{\top} = z^{-} = .01j$. Esto no influye en los resultados debido a que en estos estudios no se consideran las pérdidas en los generadores.

- El generador en el nodo 3 tiene fija la potencia activa y reactiva generada, por lo tanto el nodo 3 se analiza como de carga.
- Todas las corridas se realizarán con el esquema de control de voltaje de secuencia positiva.

4.3.1a Sistema simplificado balanceado.

Se pretende comparar resultados al reproducir el ejemplo de ANDERSON^[2], solo que en este caso para el sistema trifásico. A excepción de los transformadores y los voltajes de arranque, se utilizan los datos del apendice B, considerando las observaciones mencionadas en el punto anterior.

En los estudios de flujos de potencia convencionales, no se consideran los cambios de fase ocasionados por los transformadores en conexión Δ -Y, esto equivale a utilizar transformadores en conexión Y-Y equivalentes. Se utilizan los datos del apendice B con transformadores en conexión Y-Y sólidamente aterrizados, las matrices de admitancia nodal para estos transformadores se muestran a continuación:

$$Y_{t,2-1}^{abc} = \begin{bmatrix} -8.5025j & .0000j & .0000j & 8.4175j & .0000j & .0000j \\ .0000j & -8.5025j & .0000j & .0000j & 8.4175j & .0000j \\ .0000j & .0000j & -8.5025j & .0000j & .0000j & 8.4175j \\ 8.4175j & .0000j & .0000j & -8.3333j & .0000j & .0000j \\ .0000j & 8.4175j & .0000j & .0000j & -8.3333j & .0000j \\ .0000j & 8.4175j & .0000j & .0000j & -8.3333j & .0000j \\ .0000j & .0000j & 8.4175j & .0000j & .0000j & -8.3333j & .0000j \\ .0000j & .0000j & 8.4175j & .0000j & .0000j & -8.3333j & .0000j \\ .0000j & .0000j & 8.4175j & .0000j & .0000j & -8.3333j & .0000j \\ \end{bmatrix}$$

$$Y_{t4-3}^{abc} = Y_{t2-1}^{abc}$$

ESTUDIOS DE FLUJO DE POTENCIA EN SISTEMAS DESBALANCEADOS

	Contract of Contra					
	-8.5370j	.0000 <i>j</i>	.0000j	8.4345j	.0000j	.0000j
	.0000j	-8.5370j	.0000j	.0000j	8.4345j	.0000j
Y ^{abc} =	.0000j	.0000j	-8.5370j	.0000j	.0000j	8.4345j
t6-5	8.4345j	.0000j	.0000 <i>j</i>	-8.3333j	.0000j	.0000j
	. 0000j	8.4345j	.0000j	.0000j	-8.3333j	.0000j
	.0000j	.0000j	8.4345 <i>i</i>	.0000j	. 0000 <i>j</i>	-8. 3333j

	-8.8022j	.0000 <i>j</i>	.0000j	8.5645j	.0000j	.0000j
	. 0000 <i>j</i>	-8.8022j	.0000j	.0000j	8.5645j	
Y ^{abc} =	.0000j	.0000j	-8.8022j	.0000j	.0000j	8.5645j
t8-7	8.5645j	,0000j	.0000j	-8. 3333j	.0000j	.0000j
	RE FL. 0000j	8.5645j	.0000 <i>j</i>	.0000j	-8.3333j	.0000j
	.0000j	.0000j	8.5645j	.0000j	.0000j	-8.3333j

Los voltajes iniciales se toman del apendice B, pero sin el cambio de fase en los transformadores, debido a que se están considerando conexiones Y-Y.

En la tabla 4.2 se muestran los resultados de voltajes y potencias nodales del SEP. Si se comparan con los resultados reportados por ANDERSON^[2] se observa que son practicamente los mismos, existen diferencias muy pequeñas debidas a las tolerancias permitidas en el ajuste de las ecuaciones de restricción. DIRECCIÓN GENERAL DE BIBLIOTECAS

Tabla 4.2.- Voltajes y potencias de carga y generación nodales.

		n t	GENER	ACION	CA	RGA
NODO	JV]	θ	MWATTS	MVARS	MWATTS	MVARS
1 ^a	1.0199	6.5744	66.656	12.696	33. 333	16.667
1 ^b	1.0201	-113.4299	66.658	12.690	33. 333	16.667
1 ^c	1.0201	126.5790	66.659	12.692	33. 333	16.667
2 ^a	1.0074	5.2051	. 000	. 000	. 000	. 000
2 ^b	1.0076	-114.7988	. 000	. 000	. 000	. 000
2 ^c	1.0076	125.2101	. 000	. 000	. 000	. 000

$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	3ª	1.0128	9,7955	. 000	. 000	-33, 333	-2.067
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		3 ^b	1.0129	-110.2092	. 000	. 000	-33.333	-2.067
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3°	1.0129	129.7997	. 000	. 000	-33. 333	-2.067
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	e.	a						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		4 .b	. 9999	8.8155	. 000	. 945	. 000	.000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		4 .c	1.0001	-111,1889	.000	. 942	. 000	.000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4	1.0001	128.8199	.000	. 941	.000	.000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		5 ^a	1.0199	8.5144	66,665	22.585	33.333	16.667
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		5 ^b	1.0201	-111.4899	66.667	22, 581	33.333	16.667
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		5°	1.0201	128.5190	66,668	22.582	33.333	16.667
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		٤à	0005	7 7190	000	000	000	000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		6b	DN 9995	112 2960	.000	.000	. 000	.000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		60	9990	127 7229	.000	.000	.000	.000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			FRE FLAMMAN L	121.1220	. 000	. 000	. 000	.000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	7. ^a –	1.0399	.0000	21.004	37.382	33.333	16.667
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	E	7° (1.0401	-120.0041	20.999	37.383	33.333	16.667
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	\mathbb{S}	7°	1.0401	120.0047	20.997	37.380	33.333	16.667
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ξ	2 ^a	9995	- 4119	-000	A 000 -		000
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Sp (9997	-120 4157	.000	. 000	000	000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	8°	0007	119 5931	.000	000	.000	.000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	J.			117.3731		. 000		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		9 ^a	.9747	4.0554	.000	. 000	16.667	8.333
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		9	.9749	-115.9483	.000	. 000	16.667	8.333
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		9~	. 9749	124.0614	. 000	. 000	16.667	8.333
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-10 ^a	. 9734	5.6979	000		16.667	- 8.333
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Uľ	10	. 9736	A-114. 3060	ON.000/1/		16.667	8.333
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		10 [°]	. 9736	125.7035	. 000	.000	16.667	8.333
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		11 ^a	DEGA	01 926 N				6 667
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		110	,9304	-110 6675			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.667
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		110	. 9303	120 2417	.000	.000	8.333 8.333	6 667
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		11	. 2303	120.3417		,000	6.000	0.007
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		12 ^a	. 9274	6.1897	. 000	. 000	8.333	6.667
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		12	. 9275	-113.8146	. 000	.000	8.333	6.667
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		12	. 9275	126.1948	. 000	. 000	8.333	6.667
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		13 ^a	9875	1477	. 000	. 000	16 667	8.333
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		13 ^b	9876	-119.8559	. 000	. 000	16.667	8.333
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	13 ^c	. 9876	120.1539	. 000	. 000	16.667	8.333
14 .9822 3.1392 .000 .000 16.667 8.333 14 ^b .9824 -116.8645 .000 .000 16.667 8.333 14 ^c .9824 123.1450 .000 .000 16.667 8.333 Pérdidas : 12.973 MWATTS -63.001 MVARS		a	2 8 2 2				A	
14 .9824 -116.8645 .000 .000 16.667 8.333 14 [°] .9824 123.1450 .000 .000 16.667 8.333 Pérdidas : 12.973 MWATTS -63.001 MVARS		14	. 9822	3.1392	. 000	. 000	16.667	8.333
14 . 9824 123.1450 . 000 . 000 16.667 8.333 Pérdidas : 12.973 MWATTS -63.001 MVARS			.9824	-116.8645	. 000	. 000	16.667	8.333
Pérdidas : 12.973 MWATTS -63.001 MVARS		14~	. 9824	123.1450	. 000	. 000	16.667	8.333
				Pérdidas :	12.973 MWAT	TS -63.001	MVARS	

Tabla 4.2.- (Continuación)

•

En las tablas 4.3 y 4.4 se presentan los voltajes y las corrientes nodales de los generadores en componentes de secuencia (o+-), estos valores se utilizan como un medio para evaluar el grado de desbalance del 6EP. Se observa en la tablas 4.3 y 4.4 que los valores para las secuencia cero y negativa son nulos como consecuencia de que el sistema es balanceado.

NODO	vo	θ ^o	θ ^o v ⁺ θ ⁺		v	ອີ
1	. 0001	. 0000	1.0200	6.5745	.0000	. 0000
401	4 0 0001		1.0000	8,8155	.0000	. 0000
S ALERE F	LAM. 0001	. 0000	1.0200	8,5145	.0000	.0000
7 VENI	TATIS. 0001	. 0000	1.0400	. 0002	. 0000	,0000
Tabla 4.4.	Corrient	es nodales	: de genera	adores en val	lores de se	cuecia (o+-)
Tabla 4.4.	- Corrient I ⁰	es nodales 9 ⁰	de genera	adores en val 0 ⁺	lores de se I	cuecia (o+-)
Tabla 4.4.	Corrient I ⁰	es nodales 0	de genera	edores en va e ⁺	lores de se I	cuecia (o+-) θ
Tabla 4.4. NODO	Corrient I ⁰ .0000	es nodales θ ⁰ .0000	de genera 1 ⁺ . 9871	adores en va 0 ⁺ 13.3755	lores de se I ⁻ .0001	cuecia (o+-)
Tabla 4.4. NODO	Corrient I ⁰ .0000 .0000	es nodales θ ⁰ .0000 .0000	de genera 1 ⁺ .9871 .0283	adores en va 0 ⁺ 13.3755 -81.1840	lores de se I ⁻ .0001 .0000	cuecia (o+-)
Tabla 4.4. NODO 1 4 SER	Corrient I ⁰ .0000 .0000 .0000	es nodales θ ⁰ .0000 .0000 .0000	e de genera 1 ⁺ .9871 .0283 .9957	edores en va 0 ⁺ 13.3755 -81.1840 -1.5493	lores de se I ⁻ .0001 .0000 .0001	cuecia (o+-) 0 .0000 .0000 .0000
Tabla 4.4. NODO 1 4 SEP 7	Corrient I ⁰ .0000 .0000 .0000 .0000	es nodales θ ⁰ .0000 .0000 .0000 .0000	e de genera 1 ⁺ .9871 .0283 .9957 .6954	edores en va et 13.3755 -81.1840 -1.5493 -120.7686	lores de se I ⁻ .0001 .0000 .0001 .0001	cuecia (o+-) 0 .0000 .0000 .0000 .0000

Tabla 4.3. - Voltajes nodales de generadores en valores de secuencia (o+-).

En la tabla 4.5 se presentan los flujos de potencia en los capacitores, se observa como era de esperarse que el flujo de potencia activa es cero y que el flujo de reactivos es del elemento hacia la red.

p - q	Pa	Qª	P ^b	Q ^b	P ^c	0°
9- 0	. 000	-6.334	. 000	-6.336	. 000	-6.336
11- 0	. 000	-2.885	. 000	-2.886	. 000	-2.886
12- 0	. 000	-2.867	. 000	-2.868	. 000	-2.868
13- 0	. 000	-6.500	. 000	-6.503	. 000	-6.503

Tabla 4.5. - Flujos de potencia en capacitores.

En las Tablas 4.6 y 4.7 se presentan los flujos en transformadores y líneas de transmisión respectivamente, estos resultados concuerdan con los reportados por ANDERSON^[2].

2-	1	-6.889	- 572	-6,890	570	-6.890	57
1-	$\frac{1}{2}$	6,889	.736	6.890	.735	6.890	.73
4-	301	01-4.860	725	-4.860	727	-4.860	72
3-	4	4.860	.808	4.860	.810	4.860	. 81
6-	5 LEDE C	-3.984	-2.309	-3,983	-2.309	-3.983	-2.30
5-	6 VER	ATIS 3.984	2.386	3.983	2.385	3.983	2.38
8-	7	-2.133	-3.600	-2.132	-3.599	-2.132	-3.59
7-	8	2.133	3.662	2.132	3.662	2.132	3.66

Tabla 4.6.- Flujos de potencia en transformadores.

Tabla 4	.7	Flu jos	de	potencia	en	líneas	de	transmisión	sencillas.
		1111 -		•					

		12		12		
p - q	Pa	Qª	Рь	QÞ	P°	Q°
7-1 1-9	S 17.524 -16.804 8.909	A-8.836 9.501 4.129	17.527 -16.806 8.908	-8.839 9.504	17.528 -16.807 8.908	-8.837 9.502 4.127
9-1 2-11	ECC ^{8,710}	G ⁴ . 928 .572	RA-8.710 6.890	4. 127 B ^{4. 927} I	DT-8.709 6.890	-4.927 .570
11- 2 3- 5 5- 3	-6.393 3.109 -3.081	196 -2. 926 1. 565	-6.394 3.109 -3.081	195 -2. 926 1. 565	-6.394 3.109 -3.080	195 -2.926 1.565
4-12 12- 4 6-12	4.860 -4.578 3.983	1.669 -1.548 2.309	4.860 -4.578 3.983	1.668 -1.548 2.309	4.860 -4.578 3.983	1.668 -1.548 2.309
12- 6 7-13 13- 7	-3.755 2.342 -2.203	-2.252 7.551 -8.577	-3.755 2.339 -2.201	-2.251 7.551 -8.578	-3.755 2.339 -2.200	-2.251 7.550 -8.577
8-11 11- 8 9-10	2.133 -1.940 -7.957	3.600 -3.586	2.132 -1.940 -7.957	3.599 -3.586	2.132 -1.940 -7.957	3.599 -3.585
10-9 13-14 14-13	8.036 -14.464 14.735	-3.360 6.745 -6.626	8.037 -14.466 14.737	-3.361 6.747	8.037 -14.466 14.738	-3.361 6.746 -6.627
	p = q $1 - 7 = R$ $7 - 1$ $1 - 9$ $9 - 1$ $2 - 11$ $11 - 2$ $3 - 5$ $5 - 3$ $4 - 12$ $12 - 4$ $6 - 12$ $12 - 4$ $6 - 12$ $12 - 6$ $7 - 13$ $13 - 7$ $8 - 11$ $11 - 8$ $9 - 10$ $10 - 9$ $13 - 14$ $14 - 13$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$p - q$ P^a Q^a 1-7 17.524 -8.836 7-1 -16.804 9.501 1-9 8.909 4.129 9-1 -8.710 -4.928 2-11 6.889 .572 11-2 -6.393 196 3-5 3.109 -2.926 5-3 -3.081 1.565 4-12 4.860 1.669 12-4 -4.578 -1.548 6-12 3.983 2.309 12-6 -3.755 -2.252 7-13 2.342 7.551 13-7 -2.203 -8.577 8-11 2.133 3.600 11-8 -1.940 -3.586 9-10 -7.957 2.929 10-9 8.036 -3.360 13-14 -14.464 6.745 14-13 14.735 -6.626	$p - q$ P^a Q^a P^b $1 - 7$ 17.524 -8.836 17.527 $7 - 1$ -16.804 9.501 -16.806 $1 - 9$ 8.909 4.129 8.908 $9 - 1$ -8.710 -4.928 -8.710 $2 - 11$ 6.889 $.572$ 6.890 $11 - 2$ -6.393 196 -6.394 $3 - 5$ 3.109 -2.926 3.109 $5 - 3$ -3.081 1.565 -3.081 $4 - 12$ 4.860 1.669 4.860 $12 - 4$ -4.578 -1.548 -4.578 $6 - 12$ 3.983 2.309 3.983 $12 - 6$ -3.755 -2.252 -3.755 $7 - 13$ 2.342 7.551 2.339 $13 - 7$ -2.203 -8.577 -2.201 $8 - 11$ 2.133 3.600 2.132 $11 - 8$ -1.940 -3.586 -1.940 $9 - 10$ -7.957 2.929 -7.957 $10 - 9$ 8.036 -3.360 8.037 $13 - 14$ -14.464 6.745 -14.466 $14 - 13$ 14.735 -6.626 14.737	$p = q$ p^a Q^a p^b Q^b 1-717.524 -8.836 17.527 -8.839 7-1-16.8049.501-16.8069.5041-98.9094.1298.9084.1279-1 -8.710 -4.928 -8.710 -4.927 2-11 6.889 $.572$ 6.890 $.570$ 11-2 -6.393 196 -6.394 195 3-5 3.109 -2.926 3.109 -2.926 5-3 -3.081 1.565 -3.081 1.565 4-12 4.860 1.669 4.860 1.668 12-4 -4.578 -1.548 -4.578 -1.548 6-12 3.983 2.309 3.983 2.309 12-6 -3.755 -2.252 -3.755 -2.251 7-13 2.342 7.551 2.339 7.551 13-7 -2.203 -8.577 -2.201 -8.578 $8-11$ 2.133 3.600 2.132 3.599 11-8 -1.940 -3.586 -1.940 -3.586 9-10 -7.957 2.929 -7.957 2.930 10-9 8.036 -3.360 8.037 -3.361 13-14 -14.464 6.745 -14.466 6.747 14-13 14.735 -6.626 14.737 -6.628	$p - q$ P^a Q^a P^b Q^b P^c 1-717.524 A -8.83617.527 -8.839 17.5287-1 -16.804 9.501 -16.806 9.504 -16.807 1-9 8.909 4.129 8.908 4.127 8.908 9-1 C 8.710 -4.928 -8.710 74.927 2-11 6.889 $.572$ 6.890 $.570$ 6.890 $2-11$ -6.393 196 -6.394 195 -6.394 $2-11$ -6.393 196 -6.394 195 -6.394 $3-5$ 3.109 -2.926 3.109 -2.926 3.109 $5-3$ -3.081 1.565 -3.081 1.565 -3.080 $4-12$ 4.860 1.669 4.860 1.668 4.860 $12-4$ -4.578 -1.548 -4.578 -1.548 -4.578 $6-12$ 3.983 2.309 3.983 2.309 3.983 $12-6$ -3.755 -2.252 -3.755 -2.251 -3.755 $7-13$ 2.342 7.551 2.339 7.551 2.339 $13-7$ -2.203 -8.577 -2.201 -8.578 -2.200 $8-11$ 2.133 3.600 2.132 3.599 2.132 $11-8$ -1.940 -3.586 -1.940 -3.586 -1.940 $9-10$ -7.957 2.929 -7.957 2.930 -7.957 $10-9$ 8.036 -3.360 <

En la tabla 4.8 se presentan los flujos de potencia para las líneas de transmisión acopladas, es conveniente notar que debido a que el sistema es balanceado y a que los elementos que forman a las submatrices de acoplamiento son iguales, los acoplamientos no afectan el funcionamiento del sistema.

p - q	P ^a	Qª	P ^b	Q ^b	P ^c	0°
3-10	12.682	2.093	12.682	2.091	12.682	2.091
3-10	12.682	2.093	12.682	2.091	12.682	2.091
10- 3	-12.351	-2.487	-12.352	-2.486	-12.352	-2.486
10- 3 ALER	E FLA -12. 351	-2. 487	-12.352	-2.486	-12.352	-2.486
5-14	16.215	. 984	16.215	. 982	16.216	. 982
5-14	16.215	. 984	16.215	. 982	16.216	. 982
14- 5 💛	-15.701	854	-15.702	853	-15.702	853
14-5	-15.701	854	-15.702	853	-15.702	853

Tabla 4.8.- Flujos de potencias en líneas de transmisión acopladas.

Comparando los resultados de este inciso se observa que son iguales a los reportados por ANDERSON^[2], lo cual valida parcialmente el algoritmo para el estudio de flujos de potencia trifásico.

DIRECCIÓN GENERAL DE BIBLIOTECAS

4.3.1b Sistema completo balanceado.

Se estudia el sistema de potencia de ANDERSON^[2] con la conexión real de los transformadores (Δ -Y). Esta conexión solo ocasiona cambios en los ángulos de los voltajes en los nodos del lado de la estrella, por lo que es de esperarse que los resultados obtenidos sean los mismos del punto 4.3.1a solo con cambios en los ángulos de los voltajes mencionados.

Los datos de la red y las condiciones de operación son tomados del apendice B, considerando las observaciones del punto 4.3.1.

En la tabla 4.9 se presentan los voltajes y potencias de generación y carga nodales, se observa que son los mismos valores presentados en la tabla 4.2, a excepción de los angulos de los voltajes en los nodos 2, 4, 6, 8, 11 y 12, los cuales cambian +90°.

		ā	GENER	ACION	CARG	A
NODO	ONDA	θ	MWATTS	MVARS	MWATTS	MVARS
61a	1.0199	6.5744	66,655	12,701	33, 333	16.667
1b	1.0201	-113.4299	66,658	12.696	33.333	16.667
S 1c	1.0201	126.5790	66.659	12.698	33.333	16.667
2 2a (1.0075	95.2055	. 000	. 000	. 000	. 000
2b	1.0075	-24.7946	.000	. 000	. 000	,000
20	1.0075	-144.7945	. 000	. 000	.000	. 000
- 3a	1.0127	9,7959	. 000	. 000	-33.333	-2.067
3b	1.0129	-110.2096	. 000	. 000	-33.333	-2.067
3c	1.0129	129.8002	. 000	. 000	-33.333	-2.067
4a	. 9999	98.8157	. 000	. 937	. 000	. 000
4b	1.0000	-21.1879	007	. 952	.000	. 000
4c	1.0001	-141. 1807	[ON 007]	A . 950	\cup E.000 \Box	.000
	1.0199	8.5143	66.665	22.579	33.333	16.667
5b	1.0201	-111.4900	66.668	22.574	33.333 ∆ €	16.667
5c	1.0201	128.5190	66.668	22.576	33. 333	16.667
6a	. 9996	97.7180	. 000	.000	.000	. 000
6b	. 9996	-22,2822	. 000	.000	.000	. 000
6с	.9996	-142.2813	. 000	. 000	. 000	. 000
	1.0399	. 0000	21.003	37,383	33.333	16.667
7b	1.0401	-120.0042	20.999	37.386	33.333	16.667
7c	1.0401	120,0046	20.997	37.383	33, 333	16.667
8a	. 9996	89, 5885	. 000	. 000	. 000	. 000
8b	. 9996	-30.4117	. 000	. 000	.000	. 000
8c	. 9996	-150.4116	. 000	.000	.000	.000
9a	. 9747	4.0555	. 000	. 000	16.667	8.333
9b	. 9749	-115.9485	. 000	. 000	16.667	8.333
9c	. 9749	124.0617	. 000	.000	16.667	8,333

Tabla 4.9.- Voltajes y potencias nodales.

10a	. 9734	5.6981	. 000	.000	16.667	8.333
10b	. 9736	-114.3063	. 000	.000	16,667	8.333
10c	. 9736	125.7038	. 000	.000	16.667	8.333
11a	. 9305	90.3367	. 000	.000	8.333	6.667
11b	. 9305	-29.6634	. 000	.000	8.333	6.667
11c	. 9305	-149.6633	. 000	.000	8.333	6.667
12a	. 9274	96.1899	. 000	. 000	8.333	6.667
12b	.9275	-23.8121	. 000	.000	8.333	6.667
12c	ON.9275	-143.8078	.000	.000	8.333	6.667
13a	. 9875	. 1476	. 000	.000	16.667	8.333
13b	.9876	-119.8560	. 000	.000	16.667	8.333
13c	. 9876	120.1538	. 000	. 000	16.667	8.333
14a	. 9822	3, 1391	. 000	.000	16.667	8.333
14b	. 9824	-116.8646	.000	.000	16.667	8,333
14c	. 9824	123. 1449	. 000	.000	16.667	8.333
	$\overline{}$	Pérdidas :	12.972 MWATT	S -62.985	MVARS	<u> </u>

Tabla 4.9.- (Continuación).

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

En las tablas 4.10 y 4.11 se muestran los voltajes y corrientes nodales \bigcirc de generadores en valores de secuencia (0+-), se observa que estos resultados concuerdan con los presentados en las tablas 4.3 y 4.5.

[abla	4.10	Voltajes	nodales	de	generadores	en	sec	(0+-)).
-------	------	----------	---------	----	-------------	----	-----	-------	----

NODO	v°	θ ⁰	v*	θ+	v ⁻	θ_
1	.0001	. 0000	1,0200	6.5745	.0000	.0000
4	.0001	. 0000	1,0000	98.8157	.0000	.0000
5	.0001	. 0000	1,0200	8.5144	.0000	.0000
7	.0001	. 0000	1,0400	.0001	.0000	.0000

NODO	Io	θ ^o	1+	θ ⁺	I	θ_
1	. 0000	. 0000	. 9870	13.3657	. 0000	. 0000
4	. 0003	-167.7535	.0284	8.8168	. 0000	.0000
5	. 0000	.0000	.9957	-1.5386	.0001	.0000
7	.0000	, 0000	.6955	-120.7659	. 0000	.0000
0.4511 TVT						

Tabla 4.11.- Corrientes nodales de generadores en sec(0+-).

En las tablas 4.12, 4.13, 4.14 y 4.15 se presentan los flujos de potencia de capacitores, transformadores y líneas de transmisión, estos resultados son los mismos que los presentados en las tablas 4.5, 4.6, 4.7 y 4.8 respectivamente. Esto indica que en el caso balanceado no afecta el tener los transformadores aterrizados.

Tabla 4.12. - Flujos de potencias en capacitores.

	p q	Pa	Qª	Pb	Q ^b	P°	Q°
U	9- 0 11- 0 12- 0 13- 0	. 000 SID: 000 . 000	-6.334 -2.886 -2.867 -6.500	. 000 000 000 . 000	-6.336 -2.886 -2.868 -6.503	. 000 UE .000 . 000	-6.336 -2.886 -2.868 -6.503
3	DIR	FCCIÓN	GENE		RIRIT	OTECA	<u>с</u>

Tabla 4.13. - Flujos de potencia en transformadores.

p - q	P ^a	Qª	P ^b	Q ^b	P ^c	Q ^c
2-1	-6.889	571	-6.889	-,571	-6.889	571
1-2	6.889	. 740	6.890	. 740	6.890	. 741
4-3	-4.859	731	-4.866	717	-4.854	719
3-4	4.860	. 810	4.860	.811	4.859	. 811
6-5	-3.984	-2.310	-3,984	-2.309	-3,983	-2.309
5-6	3.983	2.378	3.984	2.378	3.984	2.379
8-7	-2.133	-3.600	-2.133	-3.600	-2.133	-3.600
7-8	2.133	3.664	2.133	3.664	2.133	3.665

p - q	Pa	Qª	P ^b	Q ^b	Pc	Qc
1-7	17.524	-8.836	17.527	-8.839	17.528	-8.83
7-1	-16.804	9.501	-16.806	9.504	-16.808	9.50
1-9	8.909	4.130	8.908	4.128	8.908	4.12
9-1	-8.710	-4.929	-8.710	-4.928	-8.709	-4.92
2-11	6.889	. 571	6.889	.571	6.889	. 57
11-2	-6.393	195	-6.393	195	-6.393	19
3-5	3.110	-2.928	3.109	-2.927	3.110	-2.92
5-3	-3.081	1.567	-3.081	1.565	-3.081	1.50
4-12	4.859	1.668	4.859	1.668	4.860	1.66
12-4	4.578	-1.547	-4.578	-1.548	-4.579	-1.54
6-12	3.984	2.310	3.984	2.309	3.983	2.30
12- 6	-3.756	-2.253	-3.755	-2.251	-3.754	-2.2
7-13 ALER	2.342	7.551	2.339	7.551	2.339	7.5
13-7	-2.203	-8.578	-2.201	-8.578	-2,200	-8.5
8-11	2. 133	3.600	2.133	3,600	2.133	3.60
11- 8	-1.940	-3.586	-1.940	-3,586	-1.940	-3.5
9-10	-7.957	2.930	-7.957	2,930	-7.958	2.9
10-9	8.036	-3.360	8.036	-3.361	8.037	-3.36
13-14	-14.464	6.745	-14.466	6.747	-14.466	6.74
14-13	14.735	-6.626	14.737	-6.628	14.738	-6.62

Tabla 4.14. - Flujos de potencia en líneas de transmisión sencillas.

Tabla	4.15 Flujc	s de poten	cia en línea	as de trans	misión acopl	ladas.
p - q	p ^a Fectión	Qª	P ^b	Q ^b	P ^c	Q°
3-10 3-10 10- 3	12.682 12.682 -12.351	2.092 2.092 -2.486	12.682 12.682 -12.352	2.091 2.091 -2.486	12.682 12.682 -12.352	2.091 2.091 -2.486
5-14 5-14	-12.351 16.215 16.215	-2, 486 . 984 . 984	-12.352 16.215 16.215	-2.486 .982 .982	-12. 352 16. 216 16. 216	-2. 486 . 982 . 982
14- 5 14- 5	-15.701 -15.701	854 854	-15.702 -15.702	853 853	-15.702 -15.702	853 853

Se puede observar que los resultados obtenidos en este punto son prácticamente iguales a los resultados del punto 4.3.1a, con la excepción de los ángulos de los voltajes en los nodos 2, 4, 6, 8, 11 y 12 los cuales

÷.

cambian +90°. Las pequeñas diferencias con los resultados del punto 4.3.1a se deben a las tolerancias en la convergencia permitida para las ecuaciones de restricción.

De esta forma se comprueba que en el caso de sistemas balanceados la conexión Δ -Y puede tratarse como una conexión Y-Y, haciendo las correcciones en los ángulos de los voltajes en los nodos del lado de la estrella y sus vecinos.

4.3.1c Sistema con red eléctrica desbalanceada.

Se estudia el sistema del punto 4.3.1b desconectando la fase 6 de la línea de transmisión 13-14. Los datos de este punto difieren de los del punto 4.3.1b solamente en las matrices de admitancia serie y paralelo de la línea de transmisión 13-14 las cuales se sustituyen por las siguientes matrices: NIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

DIRECCIÓN GENERAL DE BIBLIOTECAS

		2.0506	-6.4862j	.0000	.0000j	9971	2.4776j
Y ^{abc}	I	. 0000	.0000j	.0000	.0000j	.0000	.0000 <i>j</i>
		9971	2.4776 <i>i</i>	.0000	.0000j	2.0506	-6.4862j

	Γ	. 0079 <i>j</i>	.0000j	0013j
Ycabc	=	.0000j	.0000j	.0000j
19 14		0013j	.0000j	0.0079j

				GENE	RACION	CAR	GA
	NODO	 v	θ	MWATTS	MVARS	MWATTS	MVARS
	1ª	1.0198	6.5854	66.875	12.858	33.333	16.667
	1 ⁻ 1 ^c	1.0201	-113.4460 126.5841	67.754 67.232	12.750 13.288	33, 333 33, 333	16.667 16.667
		1 0000	95 0001		000		
	2b	1.0000	24 0704	.000	. 000	.000	. 000
	2 C	1.0080	-24.8704	· .000	.000	.000	.000
	2	1.0086	-144.8778	.000	. 000	.000	. 000
	3 ^a	LER 1.0148	12.1091	.000	. 000	-33, 333	-2.067
	ິ 3	V1.0111	-107.5362	. 000	. 000	-33.333	-2.067
E	3	1.0103	132.0970	. 000	. 000	-33.333	-2.067
K	4 ^ª	1.0000	101.3227	272	1.245	. 000	. 000
E	4 [°]	1.0001	-18.6895	, 244	1.248	. 000	. 000
Z	4 [°]	1.0000	-138.6796	. 028	1.713	, 000 *-	. 000
Z	5ª	1.0222	11.7800	73.700	27.575	33.333	16.667
	5 ^b	1.0192	-107.6108	55,032	25.445	33.333	16.667
	5°	1.0186	131.7851	71.269	16.965	33, 333	16.667
		1.0024	101.1989	. 000	. 000	. 000	. 000
	6 ^b	1.0007	-19.0164	.000	. 000	. 000	. 000
U	6 ^c	ER 9982	-138.8340	[O] 000]	MA.DOOE N	IUE 000	LEooo
	7 ^a	1.0379	9384	13.060	34.474	33, 333	16.667
	7 ^b	1.0415	H121.4836	31./939	34.543	33.333	€ 16.667
	7 [°]	1.0406	119.0290	18.001	45.283	33.333	¹⁰ 16.667
	8 ^ª	. 9970	88.4287	. 000	. 000	. 000	. 000
	80	. 9979	-31.3420	. 000	. 000	. 000	. 000
8	8 ^c	1.0009	-151.4971	, 000	. 000	. 000	. 000
	9 ^a	. 9749	5.2085	. 000	. 000	16,667	8.333
	9 ^b	. 9732	-114.6676	. 000	. 000	16.667	8.333
	9 [°]	. 9730	125.1900	. 000	. 000	16.667	8.333
	10 ^a	. 9739	7.4473	. 000	. 000	16.667	8,333
	10 ^b	.9712	-112.3298	. 000	. 000	16.667	8,333
	10 [°]	. 9708	127.4284	.000	. 000	16.667	8.333
	11 ^a	. 9286	89.7059	. 000	. 000	8.333	6.667
	11 ^b	. 9294	-30.1684	. 000	. 000	8,333	6.667
	11 [°]	. 9313	-150.2383	. 000	,000	8.333	6.667
	5 P-10-	2010 C 2010 2000		20, 2000, 2000	Nr 525225	SATS- 533.7028	-104/ ND67030

Tabla 4.16. - Voltajes y potencias de generación y carga nodales.

R

			-				
12 ^ª	. 9294	99.1836	}	. 000	.000	8.333	6.667
12 ⁶	. 9282	-20.9163	1	.000	. 000	8.333	6.667
12 [°]	. 9265	-140.8443		.000	.000	8.333	6.667
13	. 9930	1, 3829		. 000	. 000	16.667	8.333
13 ^D	. 9977	-128.7484		,000	.000	16.667	8.333
13°	. 9798	120.7660	•	.000	.000	16.667	8.333
14 ^ª	. 9890	5.2475		. 000	. 000	16.667	8,333
14 ^b	. 9810	-108.4585		.000	.000	16.667	8.333
14 ^c	. 9709	124.9737		.000	.000	16.667	8.333
		Pérdidas	ـــــ •	14.862 MWATT	S -56, 406	MVABS	
	ONON		-			100	

Tabla	4.16	(Continuación).
		1. March 1997 And 19 And 1997 And 19 And 1997 And 19 And 1997 And 1997 A	

En la tabla 4.16 se presentan los voltajes y potencias de generación y cargas nodales. Comparando estos valores con los del caso balanceado (tabla 4.12) se observa que sólo se afectan considerablemente la generación en los nodos 5 y 7. Esto se debe a que la potencia del nodo 13 es suministrada solo por los generadores 5 y 7, a través de las líneas 14-13 y 7-13, por lo tanto al desconectarse la fase b de la línea 13-14 el generador 7 no podrá alimentar la fase b de la carga en 13. De esta forma el generador 5 se encargará de alimentar dicha carga. Las pérdidas en este caso son mayores que las del punto 4.3.16 debido a que en algunas fases aumenta el flujo de potencia y en consecuencia las pérdidas, las cuales son función del cuadrado de la corriente.

Tabla 4.17	Voltajes nodale	es de g	eneradores er	valores	dę	secuencia.
------------	-----------------	---------	---------------	---------	----	------------

NODO	v ^o	θ ⁰	v*	θ+	v ⁻	θ
1	. 0003	166.0483	1.0200	6.5745	. 0001	90.0000
4	.0001	.0000	1.0000	101.3179	.0001	. 0000
5)	. 0046	-13.3910	1.0200	11.9846	.0026	-128.4581
7	. 0040	157.0336	1.0400	-1.1313	.0026	49,2945

En las tablas 4.17 y 4.18 se presentan los voltajes y las corrientes nodales de los generadores en valores de secuencia (o+-). Se observa que la desconexión de la fase b de la L.T. 13-14 afecta considerablemente a los generadores 5 y 7, debido a la cercania eléctrica con dicha línea. Las corrientes de secuencia negativa y cero son el 30% y el 8% del valor de secuencia positiva.

lapla 4.18. – Corriences nodales de generadores en valores de	ap	ie secuenci	encið
---	----	-------------	-------

l	NODO	I	θ ⁰	I*	θ ⁺	ī_	θ_
SIDA	1 4 5 7	.0032 - .0005 - .0805 .0677 -	-113.0268 -162.5653 78.6098 -112.1722	1.0045 .0421 1.0000 .7141	12.7952 11.3199 .6245 -121.0110	.0121 .0091 .2643 .2630	156.0511 -106.2237 -37.6380 139.8092
NUER		Tabla 4	.19 Flu	jos de pol	tencia en cap	bacitores.	
	p - d	Pa	Qª	P ^b	QÞ	P	¢ Q¢
U	9- 0 11- 0 12- 0 13- 0	. 000 RSID. 000 . 000 . 000	-6. 336 -2. 874 -2. 879 -6. 574	ÓNO .0 .0	00 -6.314 00 -2.879 00 -2.872 00 -6.636	NUE	000 -6.311 000 -2.891 000 -2.862 000 -6.400

Tabla 4.20.- Flujos de potencia en transformadores.

p - q	P ^a	Qª	PÞ	QÞ	P°	Qc
2-1	-7.402	393	-7,303	410	-7.316	293
1-2	7.275	. 539	7.390	. 508	7.357	. 623
4-3	-4.685	636	-4.289	616	-4.486	273
3-4	4.303	. 452	4.686	. 495	4.472	. 805
6-5	-4.419	-2.072	-4.304	-2.097	-4.324	-1.993
5-6	4.300	2.103	4.376	2.110	4.370	2.175
8-7	-1.701	-3,888	-1.782	-3.845	-1,779	-3.956
7-8	1.796	3.967	1.746	4.008	1.719	3.917

En la tabla 4.20 se presentan los flujos de potencia en los transformadores. En algunas de las fases se nota una ganancia de potencia, sin embargo no existe tal ganancia, esa potencia fluye a través de las ramas La suma de las pérdidas de potencia en las tres fases del de la delta. transformador resulta en cero potencia activa y un valor positivo de potencia reactiva. Esto era de esperarse debido a que se considera solo la reactancia de dispersión del transformador. Lo anterior implica que no es posible en el caso de sistemas desbalanceados analizar los transformadores Δ -Y como transformadores Y-Y, ni aún con la corrección en los angulos de los voltajes, debido a que la conexión Δ -Y permite el intercambio de potencia entre fases y la conexión Y-Y no.

TOP I

Tabla 4.21. - Flujos de potencia en líneas de transmisión sencillas.

ER	p - q	Pa	Qª	P ^b	Q ^b	P°	Q°
ALE	1-7 7-1 1-9	20. 361 -19. 375 5. 907 -5. 780	-9.500 10.809 5.152	21.304 -20.251 5.727 -5.585	-9.740 11.393 5.317 -6.312	20.651 -19.742 5.891 -5.756	-9.231 10.611 5.230 -6.208
U	2-11 11- 2 3- 5 5- 3	7. 402 -6. 833 SIL: 475 472	. 393 . 071 -2. 017 . 579	7.303 -6.750 0.086	. 410 . 036 -2. 040 . 608	7.316 -6.762 -332 UE327	. 293 . 151 -2. 357 . 930
	4-12	4.413	1.881	4.533	1.864	4.515	1.986
	12- 4	-4.168	-1.803	-4.275	-1.774	-4.254	-1.889
	6-12 R	4.419	2.072	R A 4.304	2.097	-4.324	S 1.993
	12- 6	-4.165	-1.985	-4.058	-2.021	-4.079	-1.916
	7-13	-2.695	3.031	17.111	2.476	2.691	14.089
	13- 7	2.731	-4.216	-16.667	-1.697	-2.102	-14.708
	8-11	1.701	3.888	1.782	3.845	1.779	3.956
	11- 8	-1.500	-3.864	-1.584	-3.823	-1.572	-3.927
	9-10	-10.887	4.152	-11.082	4.293	-10.911	4.186
	10- 9	11.042	-4.383	11.238	-4.491	11.053	-4.408
	13-14	-19.398	2.457	.000	.000	-14.564	12.775
	14-13	19.531	-1.694	.000	.000	15.269	-12.108

En las tablas 4.21 y 4.22 se presentan los flujos de potencia en las líneas de transmisión. Si se comparan con las tablas 4.17 y 4.18 se observa que la potencia que aportaba el generador 5 a la fase e de la carga 13, a

92

través de la línea 5-14, no pueda ser suministrada ahora debido a la desconexión de la fase 6 de la línea 13-14 y tiene que ser compensada por el generador 7 a través de la línea 7-13. También se observa que los flujos de potencia notablemente desbalanceados son los de las líneas que conectan los nodos 5, 7, 13 y 14 que forman la zona donde está el desbalance de la red.

p ~ q	Pa	Qª	P ^b	Q ^b	P°	Q°
3-10	14.278	1.816	14.366	1.806	14.265	1.810
3-10 ALE	E FLAM 14.278	1.816	14.366	1.806	14.265	1.810
10- 3	RITA-13.854	∠ −1. 975	-13.952	-1.921	-13.860	-1.962
10-3	-13.854	-1.975	-13.952	-1.921	-13.860	-1.962
5-14	18.310	4.043	8.535	3.029	16.987	-1.334
5-14	18.229	4. 184	8,697	3.031	16.906	-1.474
14-5	-18.130	-3.248	-8.255	-4.167 -	-16.014	1.826
14-5	-18.068	-3.392	-8.411	-4.166	-15.922	1.949

Tabla 4.22. - Flujos de potencia en líneas de transmisión acopladas.

Se puede observar que la desconexión de la fase b de la línea de transmisión 13-14 solo causa problemas en los elementos eléctricamente cercanos a dicha línea. Comparando los flujos de potencia en los elementos eléctricamente alejados de la línea 13-14 con respecto a los presentados en el punto 4.3.1b (caso balanceado) se observa que son afectados en la misma forma todas las fases.

4.3.1d Sistema con carga desbalanceada.

Se estudia el sistema presentado en el punto 4.3.1b con desbalances en las cargas, sin embargo se mantiene igual la potencia trifásica en cada nodo.

×.				GENEF	RACION	CAR	GA
	NODO	[v]	θ	MWATTS	MVARS	MWATTS	MVARS
	1 ^a 1 ^b 1 ^c	1.0225 1.0186 1.0190	6.6321 -113.3355 126.4267	65.105 66.252 68.785	11.397 12.664 14.210	34.000 33.000 33.000	17.000 16.500
	2 ^a	1.0082	95.2370	. 000	. 000	. 000	.000
	2 ^b	1.0053	-24.8667	. 000	. 000	. 000	.000
	2 ^c	1.0090	-144.7566	. 000	. 000	. 000	.000
- UIG	3 ^a	1.0385	9,9732	. 000	. 000	-33, 333	-2.067
	3 ^b	1.0026	-109.1456	. 000	. 000	-33, 333	-2.067
	3 ^c	.9973	128.5141	. 000	. 000	-33, 333	-2.067
IVERS	4 ^a	. 9998	98.8146	. 676	1.025	. 000	. 000
	4 ^b	. 9995	-21.2121	242	2.024	. 000	. 000
	4 ^c	1.0008	-141.1902	434	038	. 000	. 000
	5 ^a	1.0249	8.5967	63.570	20. 439	32,000	16.000
	5 ^b	1.0176	-111.2912	65.131	21. 956	33,000	16.500
	5 ^c	1.0176	128.1988	71.299	25. 493	35,000	17.500
U	6 ^a	1.0001	97.7935	. 000	.000	.000	. 000
	6 ^b	.9959	-22.4239	. 000	.000	.000	. 000
	6 ^c	1.0027	-142.2558	TÓ. 000 I	MA.000E]	.000 O	. 000
	7 ^a	1.0406	. 1271	18.751	36.305	32.000	16.000
	7 ^b	1.0381	-120. 0686	22.673	38.157	36.000	18.000
	7 ^c ∏	1.0413	119. 9248	21.576	37.766	32.000	16.000
	8ª	1.0000	89.5838	. 000	. 000	, 000	. 000
	8 ^b	.9985	-30.4690	. 000	. 000	, 000	. 000
	8 ^c	1.0003	-150.3668	. 000	. 000	, 000	. 000
	9 ^a	1.0138	4.9466	. 000	000 .	15.000	7.500
	9 ^b	.9571	-114.8701	. 000	000 .	17.000	8.500
	9 ^c	.9532	122.0107	. 000	000 .	18.000	9.000
	10 ^a	1.0168	6.4450	. 000	. 000	15.000	7.500
	10 ^b	.9559	-112.8428	. 000	. 000	16.000	8.000
	10 ^c	.9476	123.4012	. 000	. 000	19.000	9.500
	11 ^a	. 9334	90.5750	. 000	. 000	8.000	6.400
	11 ^b	. 9178	-30.0005	. 000	. 000	9.000	7.200
	11 ^c	. 9400	-149.5778	. 000	. 000	8.000	6.400

ж

Tabla 4.23. - Voltajes y potencias nodales.

	10 175					
12 ^a	. 9334	96.7023	. 000	. 000	8.000	6.400
12 ^b	. 9082	-24.1574	. 000	. 000	9.000	7.200
12 ^c	. 9405	-144.0181	. 000	. 000	8.000	6.400
13 ^a	1.0058	. 3617	. 000	. 000	16.000	8.000
13 ^b	.9844	-119. 0603	. 000	. 000	16.000	8.000
13 ^c	.9724	119. 1012	. 000	. 000	18.000	9.000
14 ^a	. 9999	3.2949	. 000	.000	16.000	8.000
14 ^b	. 9792	-116.0735	. 000	.000	16.000	8.000
14 ^c	. 9679	122.1524	. 000	.000	18.000	9.000
	A CARLON AND A CARLON	Pérdidas:	13.141 MWATTS	5 -62,401 1	MVARS	2009 2000 2000 2000 2000

Tabla 4.23.- (Continuación).

En la tabla 4.23 se presentan los voltajes nodales y las potencias de generación. Se observa como todos los voltajes del sistema están desbalanceados debido a que las cargas desbalanceadas estan distribuídas por todo el sistema. Las pérdidas de potencia son menores que las del punto 4.3.1c debido a que los desbalances no son muy grandes y no sobrecargan demasiado algunas de las fases.

DIRECCIÓN GENERAL DE BIBLIOTECAS

Tabla 4.24. - Voltajes nodales de generadores en valores de secuencia.

NODO	v ^o	e _o	v*	θ+	v ⁻	θ_	
1	. 0025	20.7006	1.0200	6.5745	. 0004	90.0000	
4	. 0005	-147.1683	1.0000	98.8041	. 0003	11.5498	
5	. 0051	18.0267	1.0200	8.5017	. 0009	108.6570	
7	. 0022	81.0100	1.0400	0055	. 0004	45.5412	

NODO	Io	00	1+	0 ⁺	1_	θ
1	. 0510	120.0066	, 9885	13,2463	. 0492	-177. 7391
4 5	.0080	-00.8615	.0301	8.8040	.0281	101.5448
7	. 0305	89.0836	. 6961	-120.7440	.0313	-143.9280

Tabla 4.25.- Corrientes nodales de generadores en valores de secuencia.

En las tablas 4.24 y 4.25 se presentan los voltajes y las corrientes nodales de los generadores en valores de secuencia. Se utilizan los valores de secuencia cero y negativa como índices del grado de desbalance del sistema. Se observa que todos los generadores presentan desbalances de orden similar, a excepción del generador 4 que se aprecia poco desbalanceado, debido a que solo se utiliza como condensador síncrono.

Tabla 4.26. - Flujos de potencia en capacitores.

p - q	P ^a	Qª	Pb	Q ^b	P°	Q ^c
U 9- 0 E	RSID.000D	-6.852	ON.000[A	-6.108	UE.000	-6.057
11- 0		-2.904	.000	-2.808	.000	-2.945
12- 0	.000	-2.904	.000	-2.750	.000	-2.948
13- 0	ECC ⁰⁰⁰ N	-6.744	RA1000	-6.461	IOT:000 A	S ^{-6.304}

Tabla 4.27.- Flujos de potencia en transformadores.

p - q	P ^a	Q ^a	P ^b	Q ^b	P°	Q°
2-1	-6.618	380	-7.294	-1.080	-6.767	260
1-2	6.800	1.009	6.716	. 532	7.163	. 690
4-3	-3.978	391	-5.589	130	-5.025	-1.489
3-4	5.837	1.125	4.106	1.382	4.650	222
6-5	-3.821	-2.124	-4.348	-2.699	-3.789	-2.119
5-6	3.902	2.670	3.788	2.174	4.269	2.308
8-7	-2.050	-3.417	-2.503	-3.891	-1.846	-3.506
7-8	2.050	3.963	1.923	3.453	2.426	3.593

2.0

p — q	P ^a	Qª	P ^b	Qр	P.c	Q°
1- 7	17.550	-8.790	17.693	-8.771	17.384	-8.961
7-1	-16.817	9.414	-16.946	9.501	-16.699	9.613
1-9	6.754	2,178	8.843	4,403	11.238	5.980
9-1	-6.777	-3.396	-8.428	-5.243	-10.973	-6.084
2-11	6.618	.380	7.294	1.080	6.767	.260
11-2	-6.144	063	-6.730	592	-6.312	. 076
3-5	3.892	-1.904	3.612	-3,258	1.833	-3.629
5-3	-3.813	. 499	-3.560	1.999	-1.860	2.274
4-12	4.655	1.416	5.347	2.154	4.591	1.451
12- 4	NO-4.395	-1.371	-4.959	-1.908	-4.382	-1.362
6-12	3.821	2.124	4.348	2.699	3.789	2.119
12- 6	-3,605	-2.125	-4.041	-2.542	-3.618	-2.090
7-13 ALE	5 FLAMM 1. 518	6.927	1.695	7.204	3,850	8.559
13- 7	-1.437	-8.137	-1.470	-8.254	-3.724	-9.313
8-11	2,050	3.417	2,503	3.891	1.846	3.506
11- 8 🗡	-1,856	-3.433	-2.270	-3.801	-1.688	-3.530
9-10	-8.223	2.748	-8.572	2.850	-7.027	3.141
10-9 🕖	8.327	-3.252	8.675	-3.187	7.059	-3.586
13-14	-14. 563	6.881	-14.530	6.715	-14.276	6.617
14-13	14.826	-6.788	14.802	-6.592	14.554	-6.480

Tabla 4.28.- Flujos de potencia en líneas de transmisión sencillas.

Tabla 4.29. - Flujos de potencia en líneas de transmisión acopladas.

NIVE	RSIDAD	AUT	DNOM	ADEI	NUEVO	LEO
p ~ q	P ^a	Qª	РЪ	Q ^b	P°	Q°
3-1DI	REG1802N	GAN	R 12,808	E BIRL	IO13,425	S2. 959
3-10	11,802	1.423	12.808	1.971	13.425	2.959
10- 3	-11.664	-2.124	-12.337	-2.406	-13.030	-2.957
10- 3	-11.664	-2.124	~12.337	-2.406	-13.030	-2.957
5-14	15.748	.608	15.924	. 648	16.965	1.726
5-14	15.732	. 662	15.979	. 635	16.926	1,686
14- 5	-15.418	579	-15.376	713	-16.297	-1.277
14- 5	-15.408	633	-15.427	696	-16.256	-1.243

En las tablas 4.28 y 4.29 se presentan los flujos de potencia en las líneas de transmisión. Se observa en la fase a de la línea 1-9 una aparente ganancia de potencia activa, esa potencia fluye de las fases b y c a través de los acoplamientos. En la fase c de la línea 3-5 también se observa ganacia aparente de potencia activa.

R
4.3.1e Sistema desbalanceado.

FONOM

Se realiza un estudio considerando tanto la red como las condiciones de operación desbalanceadas, se consideran simultáneamente los desbalances introducidos en los puntos 4.3.1c y 4.3.1d, desconexión de la fase b de la línea 13-14 y desbalance en las cargas. Los datos de la red y de las condiciones de operación se presentaron en los puntos 4.3.1c y 4.3.1d respectivamente.

20	ALERE FLAMMAM VERITATIS		,	······		
	JAC Z	EVO	GENER		CAL	RGA
NODO		8	MWATTS	MVARS	MWATTS	MVARS
1ª	1.0223	6.6473	65.273	11.608	34.000	17.000
1	1.0186	-113.3542	67.356	12.722	33.000	16.500
1 c	1.0191	126.4303	69.413	14.758	33.000	16.500
2 ª	1.0088	95.1288	. 000	.000	. 000	. 000
2	1.0058	-24.9426	.000	A.000	11 1.000	.000
2 [¢]	1.0100	-144.8404	101,000	VIA.000 C	110,000	.000
3ª	1,0407	12.2834	. 000	.000	-33,333	-2.067
3° ⊥	1.0011	-106.4395	NEROOOL	DE.000B	-33.333	A -2.067
З ^с .	. 9944	130.8367	. 000	.000	-33.333	-2.067
4 ^a	. 9999	101.3402	. 393	1.367	.000	. 000
4 [°]	. 9995	-18.6950	006	2.301	.000	. 000
4°	1.0007	-138.6709	386	.729	.000	. 000
5 [°]	1.0273	11.8801	70.792	25.485	32.000	16.000
5	1.0168	-107.3780	53,440	24.956	33.000	16.500
5	1.0160	131.4906	75.768	19.987	35.000	17.500
6ª	1.0029	101.3002	. 000	.000	. 000	. 000
6	. 9971	-19.1322	. 000	. 000	.000	. 000
6 ^c	1.0013	-138.7859	. 000	.000	.000	.000
7ª	1.0386	8139	10,681	33.372	32.000	16.000
7 ^D	1.0396	-121.5597	33,659	35.104	36.000	18.000
7 ^c	1.0419	118.9428	18,660	45.640	32.000	16.000

Tabla 4.30.- Voltajes y potencia nodales.

	8 ^ª	. 9974	88.4164	. 000	. 000	. 000	. 000
.9	8°	. 9968	-31,4061	. 000	. 000	.000	. 000
	8°	1.0016	-151.4571	. 000	. 000	.000	. 000
	9 <mark>°</mark>	1.0140	6.1172	. 000	. 000	15,000	7.500
	9 [°]	. 9554	-113.5793	.000	.000	17.000	8.500
	9 ^c	. 9513	123. 1353	, 000	. 000	18.000	9.000
	10 ^a	1.0174	8.1958	. 000	. 000	15.000	7.500
	10 ^b	. 9537	-110.8374	. 000	.000	16.000	8.000
3	10 ^c	.9446	125.1345	. 000	. 000	19,000	9.500
3	11ª	. 9315	89,9406	. 000	. 000	8,000	6,400
	11	LERE 9167	-30, 5098	.000	.000	9,000	7,200
	11 [°]	.9408	-150.1554	. 000	.000	8.000	6.400
SI	12 ^a	. 9353	99.7170	. 000	. 000	8.000	6.400
	12 ^b	. 9090	-21,2401	. 000	. 000	9,000	7.200
E.	12 [°]	. 9395	-141.0333	.000	. 000	8.000	6.400
9	13 ^ª	1.0112	1.6072	. 000	. 000	16.000	8.000
	13 ^b	. 9941	-128,0896	. 000	. 000	16.000	8.000
	13 ^c	.9647	119.7046	. 000	.000	18.000	9.000
	14 ^a	1.0067	5.4086	, 000	. 000	16,000	8,000
_	14 ^b	.9787	-107.5675	. 000	.000	16,000	8.000
IJ	14 ^c	.9561	123.9814		A .000	18.000	9.000
			Pérdidas :	15.042 MWATT	s -55.770	MVARS	
1							

Tal	bla	4.30,-	(Continuación).
		Contract Contract and Contract of Contract	0.000		×100

DIRECCIÓN GENERAL DE BIBLIOTECAS

En la tabla 4.30 se presentan los voltajes y potencias de generación y carga nodales, se observa que el grado de desbalance de este sistema es mayor que el de los puntos 4.3.1c y 4.3.1d. La diferencia entre las pérdidas de este caso y las del caso balanceado (punto 4.3.1b), son prácticamente la suma de las diferencias de las pérdidas de los puntos 4.3.1c y 4.3.1d con respecto al caso balanceado.

NODO	vo	θ ⁰	۷*	θ+	v ⁻	θ
1	. 0024	25.5227	1.0200	6.5745	. 0005	90.0000
4	.0005	-145.7578	1.0000	101.3248	. 0002	25.0542
5	. 0095	4.3884	1.0200	11.9973	. 0023	-146.6412
7	.0050	131.3089	1.0400	-1.1436	,0030	49,2456

Tabla 4.31. - Voltajes nodales de generadores en valores de secuencia.

Tabla 4.32. - Corrientes nodales de generadores en valores de secuencia.

NODO	ERE FLAMTAM	θο	I,	θ ⁺	I_	θ_
1	.0494	124.3342	1.0061	12.6696	. 0606	178.1757
4	.0079	-65.5569	.0440	11.3263	.0201	115.0474
5	.1372	89.3196	1.0010	. 3490	. 2437	÷48.0111
7	.0418	-126.9576	.7125	-121.0830	. 2749	146.7602

En las tablas 4.31 y 4.32 se presentan los voltajes y las corrientes nodales de los generadores en valores de secuencia, los valores de secuencia negativa y cero en general resultan ser la suma de los valores respectivos correspondientes a los puntos 4.3.1c y 4.3.1d. Se observa que en este caso es mayor el desbalance ocasionado por la red que por las condiciones de carga, los generadores 5 y 7 cercanos a línea 13-14 tienen los valores de secuencia negativo y cero más grandes.

Tabla 4.33.- Flujos de potencia en capacitores.

p - q	P ^a	Qª	Р _р	Q ^b	P ^c	Q ^c
9-0	. 000	-6.854	. 000	-6.085	. 000	-6.034
11-0	. 000	-2.892	. 000	-2.801	. 000	-2.951
12-0	. 000	-2.916	. 000	-2.754	.000	-2.942
13- 0	. 000	-6.817	. 000	-6.588	- 000	-6.205

p - q	Pª	Qª	P ^b	QÞ	Pc	Q°
2-1	-7.137	197	-7.705	923	-7.200	. 021
1-2	7.187	, 806	7.220	. 297	7.635	. 573
4-3	-3.811	266	-5.027	046	-4.627	-1.044
3-4	5.257	. 775	3,920	1,038	4.289	225
6- 5	-4.261	-1.883	-4.666	-2.489 c	-4.135	-1,798
5-6	4.222	2.393	4.186	1.904	4.654	2.103
8-7	-1.613	-3.708	-2.152	-4.135	-1.489	-3.868
7-80	NOA1.713	4.268	1.532	3.801	2.010	3.845

Tabla 4.34. - Flujos de potencia en transformadores.

Tabla	4.35	Flujos de	potencia	en	líneas	de	transmisión	sencillas.

	p q	Pa	Qª	Р	QÞ	Pc	Q°	
	1-7	20.412	-9.454	21.484	-9.674 11.410	20.525	- 9.363	
U	1-9EI	-3.673	3.256	5.651	5.599	-8 119	7.048	
	2-11	7.137	.197	7.705	-0.337 .923	7.200	-, 021	
	3-5	1. 155	953	.413	-2.425	893	-3.026	
	4-12	4.204	1.633	5.021	2.347	4,241	1.773	
	6-12	4.261	1.883	4.666	2.489	4.135	1.798	
	7-13	-3.624	2.381	16.527	1.892	4.306	15.064	
	8-11	1.613	-3.625	-16.000	-1.412 4.135	-3,789	-15, 344 3, 868	
	11- 8 9-10	-1.411 -11.322	-3.712 3.984	-1.918	-4.038 4.141	-1.313 -9.882	-3.877 4.474	
	10- 9 13- 14	11.512 -19.663	-4.296 2.442	11.871 .000	-4.214 .000	9.963 -14.211	-4. 727 12. 549	
	14-13	19.786	-1.700	. 000	. 000	14.918	-11.878	

p - q	P ^a	Q ^a	Pb	QÞ	P°	Q°
3-10	13. 461	1.123	14.500	1.727	14.969	2.659
3-10	13.461	1.123	14.500	1,727	14.969	2.659
10- 3	-13.256	-1.602	~13,935	-1.893	-14.481	-2.386
10- 3	-13.256	-1.602	-13.935	-1.893	-14.481	-2.386
5-14	17.904	3.712	8.209	2.766	17.679	551
5-14	17.805	3.909	8.427	2.756	17.558	732
14- 5	-17.930	-3.049	-7.895	-4.005	-16.527	1.362
14- 5	-17.856	-3.251	-8.105	-3.995	-16.391	1.516

Tabla 4.36.- Flujos de potencia en líneas de transmisión acopladas.

En las tablas 4.33 a 4.36 se presentan los flujos de potencia en capacitores, transformadores y líneas de transmisión. Se observan desbalances en todo el sistema pero especialmente en la zona cercana a los nodos 13 y 14, donde la desconexión de la fase 6 de la línea 13-14 impacta notablemente. Esto se debe a que esa línea es la mas cargada del sistema.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN 4.3.2 Caso de prueba No. ZENERAL DE BIBLIOTECAS

Se estudia un sistema de potencia considerando el estado desbalanceado tanto de la red como de las condiciones de operación del sistema. Se pretende mostrar las condiciones de operación que se presentan en un sistema real y lo alejado que puede estar del estado balanceado tradicionalmente supuesto.

El sistema en estudio es el de ARRILLAGA^[1] (Fig. 3.4), este sistema presenta los desbalances reales de un SEP, además considera los acoplamientos que existen entre líneas de transmisión cercanas. En el apéndice C se presentan los datos tanto de la red como de las condiciones de operación del sistema de potencia, se incluyen los estimados iniciales de lo voltajes nodales y los límites de reactivos de las unidades generadoras.

La conexión Y- Δ de los transformadores presentada en la Fig. C1 (apéndice C), ocasiona cambio de fase de +30, el cual debe considerarse en los valores de arranque para los voltajes nodales.

En la tabla 4.37 se presentan los voltajes nodales y las potencias de generación y carga del sistema, se observa en los voltajes nodales el estado desbalanceado del sistema y el cambio de fase en los nodos de carga ocacionados por la conexión Y- Δ de los transformadores.

Tabla 4.37. - Voltajes y potencias nodales.

	S S	////2/	GENER	ACION	CAF	RGA
NODO	IV	8	MWATTS	MVARS	MWATTS	MVARS
1 ^a	1.0499	-1.8346	95.268	37.923	. 000	. 000
1 ^b	1.0647	-120.5650	86.578	34.878	TT +000 7	
]°	1.0779	118.1592	97.943	28.005 E	NU.000	J L.000
2ª	1.0312	23.4144	. 000	. 000	48,000	20.000
2 ^b	1.0728	-95.9911	NEROOOL	DE.000	47.000	A12.000
2°	1.0465	141.8960	. 000	. 000	51.300	28.300
3 ^ª	1.0701	25.5191	. 000	, 000	. 000	.000
3 ^b	1.0826	-95.0442	. 000	. 000	. 000	. 000
3°	1.0641	144.5131	. 000	.000	. 000 %	001
Ąª	1.0449	6109	163.239	61,831	. 000	. 000
4 ^b	1.0548	-120.4727	160.245	46.586	. 000	.000
4 [°]	1.0522	119.0107	176.516	49.189	. 000	.000
5 ^a	1.0135	21.2398	. 000	. 000	150.000	79.999
5 ^b	1.0440	-98.4133	. 000	. 000	157.000	78.000
5°	1.0332	139.1121	.000	.000	173.000	71.998
6 ^a	1.0165	21.5176	.000	. 000	50.000	15.001
6 ^b	1.0517	-97.9737	. 000	. 000	45.000	14.001
6°	1.0369	139.5740	.000	.000	48.301	16.601

103

<u> </u>	1 1 1 2				e tek te de tek tek te	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
7 ^a	1.0302	22.3161	. 000	. 000	.000	. 000
7 ^b	1.0555	-97.5077	.000	. 000	.000	. 000
7°	1.0422	140.4660	. 000	. 000	. 000	.000
8ª.	1.0291	22.2749	. 000	. 000	. 000	. 000
8 ^D	1.0556	-97.6420	. 000	.000	. 000	. 000
8 ^c	1.0423	140.3910	. 000	.000	. 000	. 000
9ª	1.0279	22.4726	. 000	. 000	. 000	. 000
9°	1.0602	-97.3007	.000	.000	. 000	.001
9°	1.0472	140.7504	. 000	.000	. 000	. 000
10 ^a	1.0305	22.5102	. 000	. 000	. 000	. 000
10 ^b	1.0608	-97.2709	.000	.000	. 000	.001
10 ^c	AL1.0448	140.8273	. 000	.000	. 000	. 000
		Pérdidas :	10.188 MWAT	IS -77.489	MVARS	
ų						

Tabla 4.37.- (Continuación).

En las tablas 4.38 y 4.39 se presentan los voltajes y las corrientes nodales de los generadores en componentes de secuencia (o+-), se observa que los valores de secuencia cero son nulos, esto se debe a que la conexión Y- Δ de los generadores produce un circuito abierto para la secuencia cero del lado de la delta^[4], en los valores de secuencia negativa se observa el grado de desbalance del sistema.

Tabla 4.38.- Voltajes nodales de generadores en valores de secuencia.

NODO	v ^o	θ ^o	v*	θ ⁺	v	θ_
1	. 0002	-179.9711	1.0641	-1,4133	.0160	-152.5208
4	. 0001	-178.0354	1.0506	6910	.0058	164.6533

NODO	Io	θ ^o	I+	θ ⁺	ī	θ
1	. 0000	. 0000	2.7957	-21,2779	. 1755	-62.5210
4	. 0000	. 0000	4.9904	-18,2031	. 2760	-105.3460

Tabla 4.39. - Corrientes nodales de generadores en valores de secuencia.

En la tabla 4.40 se presentan los flujos de potencia en los transformadores, se observa una aparente ganancia de potencia en algunas de las fases, esta potencia circula de una fase a otra a través de las ramas de la delta, sin embargo la suma total de pérdidas resulta positiva. En este caso, a diferencia del sistema del punto 3.1, las pérdidas son también de potencia activa debido a que se considero la resistencia de los devanados.

p - q	P ^a	Q ^a	P ^b	Q ^b	P°	Q°	
3- 4	-157. 430	-40.938	-166.847	-30. 428	-174.246	-45.263	Ν
4-3	163.239	61.831	160.245	46.586	176.516	49.189	Ĩ
2-1	-92. 528	-27.385	- 87.250	-17.806	-98.445	-25.729	
1- 2	95, 268	37.923	86.578	34.878	97.943	28.005	

Tabla 4.40. - Flujos de potencia en transformadores.

Tabla 4.41. - Flujos de potencia en las líneas de transmisión.

p - q	P ^a	Qª	Pb	Q ^۲	P°	Q°
6- 2	-44.979	-19.681	-39.878	-19.657	-46.243	-9.659
2- 6	44.529	7.385	40.250	5.806	47.145	-2.571
6- 5	34.665	9.140	44.237	22.833	34.217	19.602
6- 5	44.141	20.653	52.740	17.991	59.727	22.478
5- 6	-34.609	-10.621	-44.148	-24.046	-34.230	-20.809
5- 6	-44.112	-22.087	-52.490	- 19.211	-59.669	-23.505

		N				
7-5	35.191	20.049	32,205	15,207	38.573	12,869
8-5	36.250	23.214	28.444	14.173	40,675	10.259
5-7	-35.119	~22.117	-32, 126	-17.786	-38, 532	-15.171
5-8	-36.160	-25.173	-28,235	-16.955	-40.569	-12.513
9-6	39,741	8.057	51.599	14.910	45.790	26.170
10-6	44.549	13.661	51.196	16.161	49.972	19.896
6-9	-39.524	-9.828	-51.240	-17.007	-45.954	-27.675
6-10	-44.301	-15.284	-50,860	-18. 159	-50.049	-21.349
3- 7	35.134	13.058	32.719	6.695	38.798	5.517
3-8	36.312	16.827	29.160	5.388	41.041	3.349
3-9	40.673	2.607	52.848	8.494	44.716	21.351
3-10	45.312	8.446	52.120	9.852	49.690	15.047
7-3	DF FI -35.191	-20,049	-32,205	-15.208	-38.573	-12,869
8-3	-36.250	-23, 214	-28.444	-14.173	-40.675	-10.259
9-3	-39, 741	-8.057	-51,599	~14.910	-45.790	-26.170
10- 3	-44. 549	-13.662	-51.196	-16.161	-49.972	-19.895
		╨╢╘╝╢╴┉╴╴╼╴				

Tabla 4.41.- (Continuación).

En la tabla 4.41 se presentan los flujos de potencia en las líneas de transmisión, se observa que circula potencia por los acoplamientos acasionando una aparente ganancia de potencia en algunas de las fases.

Los resultados en la tabla 4.41 muestran el grado de desbalance que puede existir en los flujos de potencia de un sistema real el cual puede ser considerable.

4.4 FACTORES QUE AFECTAN LA CONVERGENCIA.

Los factores principales que afectan el número de iteraciones requeridas para llegar a la solución son:

- La selección de los estimados iniciales de los voltajes nodales.
- El cambio de ecuaciones de restrición ocasionado por la violación de límites de reactivos.

La selección de los estimados iniciales de los voltajes nodales debe de hacerse de la siguiente forma:

- Seleccionar en cada nodo voltajes con magnitud unitaria y desfasados 120°.
- $_{\circ}$ Considerar el cambio de fase ocasionado por los transformadores en conexión Δ-Y.
- Fijar el ángulo del nodo compensador en cero. En caso de requerir ajustar el ángulo del nodo compensador en un valor diferente de cero, desplazar los ángulos de los nodos del sistema el valor del ángulo del nodo compensador.

Cuando se viola uno de los límites de reactivos de alguna unidad generadora, se realiza el cambio de la ecuación de restricción del voltaje controlado por la ecuación del control de reactivos, este cambio incrementa el número de iteraciones para llegar a la solución, es necesario por lo tanto evitar cuando sea posible que se violen los límites de reactivos. Cuando los estimados iniciales de los voltajes se encuentran un poco alejados de la solución pueden ocasionar que se violen los límites de reactivos, por lo tanto no es conveniente empezar a checar la violación de los límites de reactivos desde la primera iteración, sino desde la segunda o tercera iteración ya cuando los estimados de los voltajes se encuentren cercanos a la solución.

Para evaluar lo anterior, Se repitió el estudio del sistema del punto 4.3.1b, sin considerar en los estimados iniciales de los voltajes el cambio de fase introducido por la conexión de los transformadores y empezando a checar los límites de reactivos a partir de distintas iteraciones, los resultados se presentan en la tabla 4.42. Se observa como la selección de los estimados iniciales de los voltajes ocasiona un incremento en el número de iteraciones requeridas para llegar a la solución. Este incremento depende de la iteración en que se comienzan a checar límites de reactivos, el algoritmo no converge si se empiezan a checar los límites de reactivos desde la primera iteración. Tabla 4.42.- No. de iteraciones requeridas para llegar a la solución en función de la iteración donde se empezó a checar reactivos.

- * Iteración donde se empezó a checar el límite de reactivos.
- # Iteraciones requeridas para llegar a la solución.
- ∞ (infinito) No convergio.

Es lógico pensar que el algoritmo requiera menos iteraciónes mientras mas cercanos se encuentren los estimados iniciales de los voltajes a la solución. Para ilustrar lo anterior se repitió el estudio presentado en el punto 4.3.2 utilizando diferentes ángulos de arranque para los voltajes en los nodos 2, 3 y 5 a 10, no se consideraron límites de reactivos. Los resultados se muestran en la tabla 4.43.

Tabla 4.43.- Número de iteraciones requeridas para llegar a la solución del sistema del punto 4.3.2 en función de los ángulos iniciales de los voltajes en los nodos 2, 3 y 5 a 10.

En la tabla 4.43 se observa como el ángulo de los voltajes nodales influye en el número de iteraciones utilizadas en llegar a la solución. Lo anterior introduce la necesidad de iniciar el estudio de flujos de potencia con buenos ángulos iniciales para los voltajes nodales.

Una forma de obtener buenos valores de arranque de los voltajes nodales es utilizar la solución obtenida considerando al sistema balanceado, esto es recomendable para sistemas con problemas de convergencia.

4.5 CALCULO DE VOLTAJES DE NEUTROS.

Una de las ventajas del modelado trifásico de los SEP es la posibilidad de modelar los neutros de los elementos conectados en estrella, como es el caso de los transformadores, capacitores, cargas, etc.. En el modelado de elementos conectados en estrella, con neutros no-sólidamente aterrizados, existen dos alternativas, dejar los neutros como nodos adicionales o eliminarlos modiante la obtención de un circuito equivalente visto desde las fases (abc).

Cuando los neutros se excluyen del modelado, es posible al terminar el estudio calcular sus voltajes utilizando los voltajes de fase. En los datos para transformadores del apéndice B ya se habian eliminado los neutros. A continuación se presenta el proceso de eliminación del neutro y el cálculo posterior de su voltaje para el transformador 6-5 en el estudio del punto 4.3.1e.

Con los datos de la tabla B2 (apéndice B) de acuerdo a la Fig. B1 se forma el sistema de ecuaciones nodales del transformador 6-5 el cual incluye al neutro (ecuación (4.100)).

U	-8.5370j	R .0000j	D.0000j	.0000 <i>j</i>	-4.8697j	4.8697j	JEVO LEÓN	
	.0000j	-8.5370j	.0000j	4.8697 <i>j</i>	. 0000j	-4. 8697j		E
	.0000j	E. 0000j	-8.5370j	-4.8697j	4. 8697j	.0000j	TECAS	
	.0000j	4.8697j	-4.8697j	-5.5555j	2.7778j	2.7778j		
	-4.8697j	.0000j	4.8697j	2. 77 7 8j	-5,5555j	2.7778j		
	4.8697 <i>j</i>	-4.8697j	.0000j	2.7778j	2.7778j	-5.5555j		
	8.5370j	8.5370j	8.5370j	.0000j	.0000j	.0000j		
				8.5370j	V6ª	Ica		
				8.5370j	V6 ^b	Isp		
				8.5370j	V6 ^c	I6 [°]		
				.0000j	• V5ª	= Is ^a	(4.100)	

.0000j

.0000i

.8469-38.5991

٧s^b

۷s°

I5^b

I5^C

.0018

Para eliminar el neutro se utiliza el procedimiento descrito en el capítulo 2, la matriz que relaciona los voltajes de fase con el voltaje del neutro (Ec. (2.6)) se presenta en (4.101).

$$-Y_n^{-1} \cdot Y_{na} = \begin{bmatrix} .2211 - .0049j & .2211 - .0049j & .2211 - .0049j & 0 & 0 \end{bmatrix}^{-1}$$
(4.101)

Utilizando (2,6) con (4.101) y los voltajes de los nodos 6 y 5 del punto 4.3.1e se obtiene el voltaje del neutro.

(4.102)

En el caso de conexiones estrella aterrizadas a través de una impedancia finita el voltaje del neutro se puede obtener calculando la caida de voltaje en dicha impedancia (4.103), sin embargo ésto no es posible para conexiones estrella con neutro no aterrizado, donde se tiene que utilizar el proceso arriba mencionado.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN <sub>V6ⁿ = <u>16^a + 16^b + 16^c</u> URECCIÓN GENERAL DE BIBLIOTECAS
(4. 103)</sub>

$$I_6^f = \left(\frac{S_{6-5}^f}{V_6^f}\right)^* \qquad f = a, b, c \qquad (4.104)$$

Para este caso en particular los voltajes del nodo 5 no tienen influencia en el calculo del voltaje del neutro debido a que son nulos los coeficientes correspondientes en la ecuación (4.101).

5 TOPICOS SELECTOS

5.0 INTRODUCCION.

Se presenta la metodologia para implantar en los estudios de flujos de potencia restricciones adicionales, como el control del voltaje en nodos de carga y el control del intercambio de potencia activa entre áreas. Adicionalmente se comentan algoritmos desacoplados para aplicarse en estudios de flujos trifásicos.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN 5.1 CONTROL DEL VOLTAJE DE NODOS REMOTOS.

DIRECCIÓN GENERAL DE BIBLIOTECAS

Un requerimiento en los sistemas de potencia reales es ajustar los voltajes de los nodos de carga a un valor especificado. Esto se logra a través del ajuste de variables de control, algunas de las cuales son las siguientes:

- El voltaje de un generador.
- El tap de algún transformador.
- Compensador estático de VARS.

El problema consiste en determinar el valor de la variable de control para obtener el voltaje del nodo de carga (variable controlada) deseado, esto se puede lograr utilizando coeficientes de sensitividad. Un algoritmo que puede utilizarse es el siguiente:

Inicialmente se realiza el estudio de flujos de potencia con la variable de control en un valor inicial (ecuación (5.1)),

$$V_1 = V_1^{\circ}$$
(5.1)

cuando el estudio se encuentra cerca de la solución, para ese valor de la variable de control se obtiene la desviación de la variable controlada respecto a su valor deseado (ecuación (5.2)),

k denota la iteración del proceso de solución

con este error se calcula, utilizando un coeficiente de sensitividad, el incremento en la variable de control necesario para llevar a la variable controlada a su valor deseado (ecuación (5.3)),

JNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN v^{k+1} = v^k + $\frac{\Delta v^k}{CS}$ (5.3) DIRECCIÓN GENERAL DE BIBLIOTECAS

donde:

A11

ΔV

$$CS = \frac{\partial V_s}{\partial V_i}$$
 es el coeficiente de sensitividad

una vez que se ha realizado el ajuste de la variable de control, el proceso de solución continua repitiendo en cada iteración el ajuste anterior. El proceso se detiene cuando la ecuación (5.2) y las ecuaciones de restricción del sistema quedan dentro de una tolerancia especificada.

Los coeficientes de sensitividad pueden obtenerse mediante simulaciones, realizando cambios en las variables de control y observando los cambios en las variables controladas. Otro procedimiento es obtener expresiones analíticas, las cuales pueden ser exactas o aproximadas. La efectividad de la acción de control dependerá del valor de los coeficientes de sensitividad, que a su vez dependen de la distancia eléctrica del elemento de control al podo de carga a controlar. En la ecuación (5.3) para valores grandes de CS la acción de control es más efectiva debido a que los cambios en V, impactan notablemente en V_.

Los coeficientes de sensitividad dependen de las condiciones de operación y debido a la no linealidad del sistema sólo son válidos para cambios pequeños.

La variable controlada V, y la variable de control V pueden ser en general una función de los voltajes de fase (abc) de los nodos de generación y carga respectivamente. Por ejemplo el voltaje de secuencia positiva o el voltaje de alguna de las fases.

En el caso del control de voltaje de un nodo de carga a través del voltaje de un nodo de generación, el coeficiente de sensitividad se puede obtener de los elementos de la inversa de la matriz Jacobiana:

 $C_1 \cong \frac{\partial e_s^a}{\partial V_{g1}}$ (5.5)donde: ~ ~a (5.6)C

113

$$2 \cong \frac{\partial 1_s}{\partial V_{g1}}$$

1

Para controlar con el voltaje del generador i el voltaje de la fase a, en el nodo de carga s, el coeficiente de sensitividad se obtiene con la ecuación (5.7).

$$CS = \left[\left(C_1 \right)^2 + \left(C_1 \right)^2 \right]$$
(5.7)

Para controlar otra magnitud de voltaje en el nodo de carga, por ejemplo el voltaje de secuencia positiva, el coeficiente de sensitividad resulta una función de los coeficientes de sensitividad de las componentes real e imaginaria de cada fase del nodo de carga. Estos coeficientes de sensitividad se encuentran en una sola columna de la inversa del Jacobiano (j en la Ec. (5.4)), por lo tanto no es necesario invertir por completo la matriz Jacobiana para obtener el coeficiente de sensitividad.

5.2 CONTROL DEL INTERCAMBIO DE POTENCIA ENTRE AREAS.

En los ultimos años ha existido la tendencia de interconectar los sistemas de potencia de distintas compañías e incluso países, esto con la finalidad de intecambiar potencia y soportar mejor las contingencias. Lo anterior ha generado la necesidad de disponer de algoritmos para el control del intercambio neto de potencia activa entre sistemas (áreas).

El problema consiste en ajustar la potencia activa neta de intercambio de cada área con respecto a sus vecinos en un valor deseado. En un sistema de N áreas solo es posible definir el intercambio de potencia de N-1 áreas, el intercambio de la última área se ajusta a los intercambios de las restantes.

El intercambio de potencia activa entre áreas, se logra mediante el ajuste de la potencia activa de algunas unidades generadoras llamadas reguladoras, este ajuste se realiza utilizando un proceso iterativo. El proceso se inicia con el estudio de flujos, ajustando la potencia activa de las unidades reguladoras de cada área en un valor inicial (ecuación (5.8)). Con esto se espera obtener un intercambio de potencia entre áreas cercano al requerido.

$$P_{g1}^{1} = P_{g1}^{1}(0)$$
, $i \in \mathbb{R}_{1}$
 $P_{g1}^{2} = P_{g1}^{2}(0)$, $i \in \mathbb{R}_{2}$
 \vdots

 $P_{ql}^{N-1} = P_{ql}^{N-1}(o) , i \in \mathbb{R}^{N-1}$

(5.8)

donde: Rj es el conjunto de unidades reguladoras del área j.

cuando el estudio se encuentra cerca de la solución, de acuerdo a los valores establecidos en (5.8), se calculan los intercambios de flujo de potencia y se obtienen las desviaciones respecto al intercambio deseado (ecuación (5.9)),

para eliminar las desviaciones calculadas en (5.9), se ajustan las unidades reguladoras de cada área; el ajuste se realiza mediante una lista de coeficientes de participación (CP) previamente definida de acuerdo a (5.10),

$$P_{gi}^{1}(k+1) = P_{gi}^{1}(k) + CP_{i}^{1} \cdot \Delta P_{err}^{1}(k) , i \in \mathbb{R}$$

$$P_{gi}^{2}(k+1) = P_{gi}^{2}(k) + CP_{i}^{2} \cdot \Delta P_{err}^{2}(k) , i \in \mathbb{R}$$

$$\vdots$$

$$P_{gi}^{N-1}(k+1) = P_{gi}^{N-1}(k) + CP_{i}^{N-1} \cdot \Delta P_{err}^{N-1}(k) , i \in \mathbb{R}$$
(5.10)

donde: « denota la iteración donde se encuentra el proceso de solución.

con las nuevas potencias de generación se continua el proceso de solución, repitiendo el ajuste de las potencias al final de cada iteración. El proceso termina cuando el error del intercambio de potencia (5.9) queda dentro de una tolerancia especificada y además se han satisfecho las ecuaciones de restricción del estudio de flujos.

Los coeficientes de participación se pueden seleccionar de acuerdo a los siguientes criterios para la toma o liberación de carga:

- Control automático de generación.
- Despacho económico.
- Capacidad de generación.
 - Disponibilidad de generación.

Tabla 5.1. Cálculo de los coeficientes de participación.

E				ITERACION				
	gen	0	k	k+1	k+2		k+j	
		30	30/100	30/90	0		0	
	2	40	40/100	40/90	40/60		40/70	
UNIVER	S ₃ D	20	20/100	20/90	20/60	DE	20/70	VO LEON
	4	10	10/100	0	0		10/70	(
DIR	ECC	IÓN	I GEN	ERAI	DE	BIBI	LIOTI	ECAS

Se deben tener para cada área dos listas de CP, una para tomar carga y otra para liberarla, dependiendo si el error en el intercambio de potencia es positivo o negativo. Cuando una de las máquinas no puede tomar o liberar carga debido a que se encuentra en su límite de generación superior o inferior, su coeficiente de participación debe hacerse cero y las unidades reguladoras restantes deben repartirse la potencia que esta máquina no puede tomar. En la tabla (5.1) se muestran los CP para una área de cuatro generadores. En la iteración k se empieza a checar el intercambio de potencia entre áreas y el error se compensa con las cuatro unidades; en la siguiente iteración ya se llegó al límite de generación de la unidad 4, por lo cual se modifican los coeficientes de participación. En la iteración k+2el generador 1 ya está en su límite de generación por lo cual su coeficiente de participación se hace cero. En la siguientes iteraciones el error se hace negativo, por lo cual se utiliza la otra tabla de coeficientes de participación. En la iteración k+j el error se vuelve positivo, pero el generador 4 ya liberó carga por lo cual puede servir como unidad reguladora.

Se puede presentar el caso que mientras la generación de las unidades reguladoras de una área aumenten, en algunas áreas vecinas disminuyan; lo que ocaciona sobrepasos en la corrección del intercambio de potencia entre áreas, el error cambia de positivo a negativo o viceversa, afectando la convergencia e inclusive pudiendo ocasionar que no se llegue a la solución. Para corregir los sobrepasos se utilizan coeficientes de suavizamiento, los cuales ponderan el error actual y el de la iteración anterior.

$$\Delta P_{err}^{j}(k) = \beta \cdot P_{err}^{j}(k) + (1 - \beta) \cdot P_{err}^{j}(k-1) \quad j=1,2, ..., N-1 \quad (5.11)$$

Debe dársele mas peso al error de la iteración actual que al de la iteración anterior, debido a que contiene las desviaciones actuales del sistema con respecto a la solución. INIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

5.3 FORMULACIONES DESACOPLADAS.

Unas desventajas del método de Newton-Raphson son la cantidad requerida de recursos computacionales y el número de operaciones algebraicas por iteración. Esto motivó la búsqueda de simplificaciones al método que redujeran las necesidades computacionales sin sacrificar las buenas características de convergencia. Las formulaciones desacopladas^[1,8,11,12] son variantes del método de Newton-Raphson, las cuales presentan buenas características de convergencia requiriendo menos recursos computacionales que el método formal. Los métodos desacoplados se basan en la simplificación del método de Newton-Raphson expresando las ecuaciones de restricción en coordenadas polares. La expansión y agrupación de las ecuaciones de restricción hasta la primera derivada resulta en la ecuación (5.12). Se observa que en (5.12) no aparecen las ecuaciones de las corrientes internas del generador, por lo cual es necesario definir el funcionamiento balanceado del generador por otros medios^[1,8].

ΔΡ]	J11	J 12		
ΔQ	510	J21	J22	۲	
<u>v</u>	ALE	J31	J32		Δ٧/٧
0XIII		VERITATIS	/ 1		5

(5.12)

Los métodos desacoplados surgen de la eliminación en la ecuación (5.12) de las submatrices J12, J21 y J31, cuyos elementos se ha observado tienen valores muy pequeños, especialmente cuando el sistema opera con un régimen de carga bajo. Esta eliminación lleva a las ecuaciones (5.13) y (5.14), las cuales requieren menos memoria para su solución y además son sistemas de ecuaciones más pequeños.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN $\begin{bmatrix} \Delta P \end{bmatrix} = \frac{1}{2} \begin{bmatrix} JE \end{bmatrix} \begin{bmatrix} \Delta 0 \end{bmatrix} \text{ GENERAL DE BIBLIOTECA}(5, 13)$ $\begin{bmatrix} \Delta Q \\ \Delta V \end{bmatrix} = - \begin{bmatrix} J2 \end{bmatrix} \cdot \begin{bmatrix} \Delta V/V \end{bmatrix}$ (5.14)

La versión más simplificada de los métodos desacoplados es conocida como desacoplado rápido, se obtiene mediante la introducción de algunas consideraciones practicas:

 La parte real de las impedancias de los elementos que constituyen el SEP es muy pequeña comparada con la parte compleja. La diferencia angular entre nodos vecinos es muy pequeña.

Simplificando las ecuaciones (5.13) y (5.14) con la ayuda de las dos consideraciones anteriores se obtienen^[1] las ecuaciones (5.15) y (5.16).

 $\left[\Delta P/V\right] = -\left[B'\right]\left[\Delta\Theta\right]$ (5.15)

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN ® DIRECCIÓN GENERAL DE BIBLIOTECAS

6 CONCLUSIONES Y RECOMENDACIONES

6.1 CONCLUSIONES

6.1.1 Modelación del SEP en componentes de fase

En sistemas de potencia reales generalmente existen desbalances tanto en la red como en las condiciones de operación los cuales son ignorados al efectuar los estudios convencionales.

El modelado trifásico del sistema de potencia permite considerar en detalle las condiciones desbalanceadas del SEP y la simulación de condiciones de operación especiales.

- La modelación del SEP en coordenadas de fase permite la visualización de las variables físicas y la modelación de cualquier punto del sistema v.g. neutros de generadores y transformadores.
- En la modelación trifásica se consideran directamente los cambios de fase ocasionados por las conexiones Δ-Y de transformadores.
- La formulación nodal matricial es un procedimiento sistemático para modelar las fases de cualquier elemento del SEP.

- La obtención de la matriz de admitancias nodal trifásica es similar a la de secuencia positiva, sólo que ahora el número de ecuaciones nodales es tres veces mayor.
- En la solución de estudios trifásicos se tiene mayor necesidad de utilizar técnicas computacionales eficientes debido al tamaño del modelo matemático.

Los estudios de fallas permiten evaluar el comportamiento del sistema ante disturbios, ésto los hace indispensables en el diseño y operación de redes eléctricas.

 En la evaluación de fallas es necesario utilizar técnicas de análisis que consideren las condiciones reales del sistema, por lo cual es recomendable el uso de las formulaciones trifásicas.

- El uso de equivalentes y la metodología de caracterizar la falla como un conjunto de corrientes superpuestas a las fuentes de corriente del sistema es una alternativa eficiente para la solución trifásica del problema de fallas.
- A diferencia de los estudios convencionales donde la participación de una fase en la falla requiere calcular el equivalente desde el punto de falla en las tres redes de secuencia, en los estudios trifásicos solo se requiere calcular el equivalente visto desde la fase fallada.
- En la formulación trifásica es posible obtener equivalentes vistos desde fases de diferentes nodos, neutros o cualquier punto del sistema.

- En el análisis y ajuste de esquemas de protección resulta de gran utilidad el estudio trifásico de fallas, ya que permite evaluar el comportamiento de relevadores considerando condiciones cercanas a las de la operación real.
- En sistemas desbalanceados el uso de formulaciones balanceadas para el ajuste de protecciones puede ocasionar un funcionamiento incorrecto de los esquemas de protección, principalmente en condiciones de carga máxima.

Los estudios trifásicos de fallas permiten simular con facilidad condiciones complejas de disturbio, las cuales no se podrian realizar con formulaciones balanceadas.

En las formulaciones trifásicas cualquier falla se representa por su sistema de ecuaciones nodales, sin importar que el evento involucre fases de diferentes nodos o que participe el neutro de algún elemento.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN 6.1.3 Estudio de flujo trifásico

- DIRECCIÓN GENERAL DE BIBLIOTECAS
- Los estudios de flujos trifásicos determinan el comportamiento del sistema en estado estable considerando desbalances en la red y en las condiciones de operación. Estos estudios son de gran utilidad en la planeación y operación de las redes electricas, debido a que evaluan con más detalle y precisión el estado del sistema.
- Los métodos empleados en estudios de flujos balanceados pueden generalizarse a sistemas desbalanceados. A diferencia de los estudios balanceados, en las formulaciones trifásicas es necesario representar el comportamiento interno de generadores.

- En la modelación trifásica es posible implantar diferentes esquemas para el control del voltaje en las unidades generadoras, los cuales en general son función de los voltajes de fase.
- La implantación en estudios trifásicos de características de operación especiales v.g. el intercambio de potencia entre áreas y el control de voltaje en nodos remotos, se pueden realizar en forma similar como en sistemas balanceados.
- En los ejemplos presentados se observaron algunas características no incluídas en estudios balanceados; como son el intercambio de potencia entre fases a través de los acoplamientos en líneas de transmisión y de la conexión Y-Δ de transformadores.

En el caso de sistemas balanceados la conexión Δ -Y de transformadores puede tratarse como conexión Y-Y efectuando correcciones en los ángulos de los voltajes nodales. En el caso de sistemas desbalanceados no es posible hacer esta consideración debido a que la conexión Δ -Y permite el intercambio de potencia entre fases.

- En los ejemplos presentados se observaron desbalances en los voltajes nodales del orden del 5%. Los desbalances en los flujos de potencia fueron más notables, especialmente en puntos cercanos a elementos con fases abiertas o a cargas desbalanceadas.
 - Las pérdidas de transmisión en los sistemas desbalanceados son mayores que en los balanceados, esto se debe a la distribución de la potencia en las fases y a que las pérdidas son función del cuadrado de la corriente.
 - Algunos de los factores que afectan la convergencia de los estudios de flujos trifásicos son: los estimados iniciales de los voltajes nodales y el cambio de ecuaciones de restricción ocasionados por la violación de los limites de reactivos.

6.2 RECOMENDACIONES PARA ESTUDIOS FUTUROS

- Debido a la facilidad con la cual se pueden implementar en los estudios de flujo diferentes esquemas de control de voltaje en los nodos de generación, es importante estudiar su efecto sobre el sistema de potencia.
- Es necesario evaluar el impacto de los desbalances en la implantación de esquemas de protección. Como se observó en los ejemplos numéricos, en sistemas desbalanceados las corrientes de secuencia negativa de generadores toman valores considerables, por lo que deben considerarse en el ajuste de protecciones.
 - Es importante el análisis de diversas formulaciones desacopladas para obtener algoritmos más rápidos que faciliten la toma de decisiones de los operadores en los centros de control.
- Una vez que se ha realizado la modelación trifásica del sistema y se ha aplicado en estudios de fallas y flujo de potencia, el siguiente tema de interés es el estudio de estabilidad trifásico.
- Se recomienda el desarrollo de un paquete computacional que permita realizar estudios trifásicos en forma interactiva y rápida, el cual sería de gran utilidad en la enseñanza, el diseño y la operación de los sistemas de potencia.

6.3 APORTACIONES DE ESTA TESIS

- Se presenta una alternativa general para modelar con más detalle los sistemas eléctricos de potencia. Las formulaciones analizadas facilitan la implantación de condiciones y elementos especiales y se tiene acceso a la información de cualquier punto del sistema.
- Se desarrollaron formulaciones eficientes para realizar estudios trifásicos de fallas. Se analizan las diferencias conceptuales de las formulaciones y se comparan con los estudios convencionales.
 - Se detalla una formulación para realizar estudios de flujo de potencia en sistemas desbalanceados. La formulación facilita la implementación de condiciones especiales en el SEP, las cuales no podrian simularse utilizando estudios convencionales.
- A través de ejemplos numéricos en diferentes sistemas de prueba se muestra el grado de desbalance que puede existir en un sistema de potencia. Se comparan los resultados con los obtenidos en un sistema balanceado.

DIRECCIÓN GENERAL DE BIBLIOTECAS

REFERENCIAS

- J. Arrillaga, C. P. Arnold. Computer Modelling of Electrical Power Systems. John Wiley & Sons, 1983.
- [2] Paul M. Anderson. Analysis of Faulted Power Systems. The Iowa State University Press / Ames, 1973.
- [3] J. M. García, F. Aboytes. Análisis de Sistemas de Potencia Desbalanceados, Parte I, Modelación y Estudios de Fallas. U.A.N.L., F.I.M.E., DIE-87-02, Agosto de 1987.
- [4] L. D. Aréchiga, F. Aboytes. Modelado de Transformadores en Sistemas de Potencia. U.A.N.L., F.I.M.E., DIE-87-06, Agosto de 1987.
- [5] R.G. Wasley, M. A. Shlash. Newton-Raphson Algorithm for 3-Phase load flow. Proc. IEE, Vol. 121, No. 7, July 1974.
- [6] M. A. Laughton. Analysis of Unbalanced Polyphase Networks by the Method of Phase Co-ordinates, Part 1. System Representation in Phase Frame of

Reference. Proc. IEE, Vol. 115, No. 8, August 1968.

- [7] M. A. Laughton. Analysis of Unbalanced Polyphase Networks by the Method of Phase Co-ordinates, Part 2. Fault Analysis. Proc. IEE, Vol. 116, No. 5, May 1969.
- [8] L. Roy, B. H. Rao, M. A. Laughton. Analysis of Unbalanced Polyphase Networks by the Method of Phase Co-ordinates, Part III. Load Flow Analysis. IEEE, Winter Meeting, New York, N. Y., February 4-9 1979.
- [9] D. G. Taylor, J. A. Treece. Load Flow analysis by the Gauss-Seidel Method. Symposium on Power Systems Load Flow Analysis, University of Manchester, Institute of Science and Technology, Manchester, U.K., 1967.

- [10] W. F. Tinney, C. E. Hart. Power Flow Solution by Newton's Method. IEEE, Winter Meeting, New York, N. Y., January 29-February 3, 1967.
- [11] B. Stott. Decoupled Newton Load Flows. IEEE, Transactions on Power Appartatus and Systems, Vol. Pas-91, September/October 1972.
- [12] B. Stott, O. Alsac. Fast Decoupled Load Flow. IEEE, Summer Meeting, Vancouver, B.C., Canada, July 15-20, 1973.
- [13] R. Mota P.. Técnicas Computacionales Eficientes Aplicadas al Análisis de los Sistemas Eléctricos de potencia. Instituto Politecnico Nacional, Tesis de Maestria, Abril de 1980.
- [14] W. F. Tinney, J. W. Walker. Direct Solutions of Sparse Network Equations by Optimally Order Triangular Factorization. Proc. IEEE, Vol. 55, November 1967.
- [15] E. C. Ogbuobiri, W. F. Tinney, J. W. Walker. Sparsity-Directed Decomposition for Gaussian Elimination on Matrices. Transactions on Power Apparatus and Systems, Vol. Pas-89, January 1970.
- [16] F. Aboytes. Análisis de Sensitividad para el Control de Voltaje y Potencia Reactiva. SIEEEM-87, Monterrey N. L., Septiembre de 1987.
 - [17] Henry J. Guevara. Técnicas para el Análisis de Intercambio de Potencia en Sistemas Interconectados Multiáreas. U.N.A.M., Trabajo de Mestria.

APENDICE A

Método de Newton-Raphson para la solución de un conjunto de ecuaciones no-lineales.

Dado un conjunto de n ecuaciones de la forma:

 $f(\mathbf{x}) = 0$

ONOM

(A1)

donde $x = x_1, x_2, x_3, ..., x_n$

y una estimación inicial x_0 , el método de Newton-Raphson obtiene iterativamente los valores de x (raíces de las ecuaciones) que satisfacen dichas ecuaciones. El método consiste básicamente en una expansión en series de Taylor de las n funciones f(x) hasta la primera derivada despreciando los residuos de mayor orden.

Una ecuación f(x) puede ser expandida alrededor de un punto x_0 utilizando la formula de Taylor:

UNIV $\underset{N=0}{k} \underbrace{f^{(N)}(x_0)}_{N!} \rightarrow (x - x_0) + Rk$ DIRECCIÓN GENERAL DE BIBLIOTECAS donde:

$$R_{k} = \sum_{N=k+1}^{\infty} \frac{f^{(N)}(x_{0})}{N!} \cdot (x - x_{0})$$
(A3)

Realizando la expansión de la ecuación (A1) hasta la primera derivada (k=1) y despreciando R1, se obtiene la ecuación (A4).

$$f(\underline{x}) = 0 = f(\underline{x}_0) + f'(\underline{x}_0) \cdot (\underline{x} - \underline{x}_0)$$

$$f(\underline{x}_0) = -f'(\underline{x}) \cdot \Delta \underline{x}$$
(A4)

Agrupando las n ecuaciones de la forma (A1) expandidas como en (A4), se obtiene la ecuación (A5).

$$\begin{bmatrix} f_1(\mathbf{x}_0) \\ f_2(\mathbf{x}_0) \\ \vdots \\ \vdots \\ f_n(\mathbf{x}_0) \end{bmatrix} = -\begin{bmatrix} \mathbf{J} \\ \mathbf{J} \end{bmatrix} \cdot \begin{bmatrix} \Delta \mathbf{x} \\ \tilde{\mathbf{x}} \end{bmatrix}$$
(A5)

La matriz de derivadas parciales de primer orden del lado derecho de la ecuación (A5) es conocida en la literatura como Jacobiano. Escribiendo la ecuación (A5) en forma compacta:

La ecuación (A6) se resuelve repetitivamente para obtener el vector Ax que aproxime al vector de estimaciones iniciales a la solución, la actualización de x se realiza utilizando la ecuación (A7). NIVER JNOMA DE NI ΗÌ, (A7)

$x = x_0 + \Delta x$

 $f(x_0) = -$

J·Ax

DIR

El algoritmo llega a la solución cuando (A4) queda dentro de una tolerancia especificada para las n ecuaciones.

(A6)

APENDICE B

Datos del sistema de ANDERSON^[2].

B.1 Datos de la red.

Se presentan las matrices de admitancia de los elementos del SEP en componentes (abc), los datos se presentan en valores por unidad con base 33.33 MVA.

Tabl	ALERE FLAMMAN a B10HTIS In	mpedancias de gene	eradores en valore	es de secuencia (o	+-)
ERS	nodo	zo	Z+	z-	
Z		.001 + .060‡	. 010j	.010į	
	3	.001 + .070j	.010 <i>j</i>	. 010 <i>j</i>	
	4	.001 + .070j	. 010 <i>j</i>	. 010 <i>j</i>	
	5	.001 + .050j	. 010j	.010j	
	7	no existe	.002 + .010j	.002 + .010j	
UNIV	ERSII	DAD AUTO	DNOMA B	E NUEVO	LEON

Con los datos de la tabla B1 aplicando la transformación inversa de componentes simétricas se obtienen las matrices Z_g^{abc} . Los datos se presentan en secuencia (o+-) debido a que estos elementos son por diseño balanceados.

Las matrices de admitancia en componentes de fase (abc) para los capacitores en los nodos 9, 11, 12 y 13 son:

 $Y_{c9}^{abc} = \begin{bmatrix} .2j & .0j & .0j \\ .0j & .2j & .0j \\ .0j & .0j & .2j \end{bmatrix} \qquad Y_{c11}^{abc} = \begin{bmatrix} .1j & .0j & .0j \\ .0j & .1j & .0j \\ .0j & .0j & .1j \end{bmatrix}$

$$Y_{c12}^{abc} = \begin{bmatrix} .1j & .0j & .0j \\ .0j & .1j & .0j \\ .0j & .0j & .1j \end{bmatrix} \qquad Y_{c13}^{abc} = \begin{bmatrix} .2j & .0j & .0j \\ .0j & .2j & .0j \\ .0j & .0j & .2j \end{bmatrix}$$

Tabla B2.- Datos de la unidades monofásicas con las cuales se forman los transformadores trifásicos.

P	a 4+	¥9	tap‡
NOM	1 -8. 3333 <i>j</i>	solidamente aterr.	. 9900
234	3 -8. 33334	.9232 - 16.6151 <i>j</i>	. 9900
RE FLAMMAM Teritation —	5 -8. 3333 <i>i</i>	. 8469 – 12. 9882 <i>j</i>	. 9880
8 -	7 -8.3333j	solidamente aterr.	. 9730

† Admitancia de dispersión. ‡ Tap del lado de p.

En el ejemplo se asume que los transformadores trifásicos estan formados por tres unidades monofásicas idénticas, los datos para estas unidades se encuentran en la tabla B2, con estos datos se forman (ver Cap. 2) las matrices de admitancias nodal en componentes (abc) para la conexión Δ -Y mostrada en la Fig. B1. GENERAL DE BIBLIOTECAS

Fig. B1.- Transformador en conexión Y-A

En las matrices mostradas a continuación se han eliminado los neutros de las conexiones estrella, se utilizo el proceso descrito en el capítulo 2.

DIRECCIÓN GENERAL DE BIBLIOTECAS

Y^{abc} t6-5

	0414-6.6497j	.0414 1.8872;	.0414 1.8872;	,0000j	-4.8697j	4. 8697j	S.
	0414 1.8872j	. 0414-6. 6497;	.0414 1.8872j	4.8697 <i>i</i>	.0000j	-4.8697j	100
a (0414 1.8872	.0414 1.8872 <i>i</i>	.0414-6.6497j	-4.8697j	4.8697j	. 0000 <i>j</i>	
	10000.0000	.0000 4.8697i	.0000- 4 .8697 <i>i</i>	-5.5555j	2.7778j	2.7778j	
<u>،</u>	0000-4.8697i	.0000 .00001	.0000 4.86971	2.7778j	-5.5555	2.7778	
	0000 4.8697;	. 0000-4. 8697	.0000 .0000i	2.7778j	2.7778j	-5.5555j _	Ę
	이 안 이 밖에 있는 것이 없다.	20 C243 S70 S20 -					

٦

Y ^{abc} =	-8.8022j	.0000j	.0000j	.0000j	-4.9447j	4.94471
	. 0000j	-8.8022j	.0000j	4.9447j	.0000j	-4.9447j
	. 0000j	.0000j	-8.8022j	-4.9447j	4.9447j	.0000 <i>j</i>
	. 0000j	4.9447j	~4.9447j	-5.5555j	2.7778j	2.7778j
	-4.9447j	.0000 <i>j</i>	4.9447j	2.7778j	-5.5555j	2.7778j
	4.9447j	-4.9447j	.0000j	2.7778j	2.7778j	-5.5555 <i>j</i>

Las matrices de admitancia serie y paralelo de las líneas de transmisión (L.T.) en componentes de fase se presentan a continuación:

135

L

A continuación se presentan los datos para dos grupos de líneas acopladas, los elementos de la submatriz de admitancia de los acoplamientos son iguales, esto indica que las líneas estan muy separadas.

	1.1258	-3. 4829j	3802	1.0126;	3802	1.0126	
	3802	1.0126 <i>j</i>	1.1258	-3. 4829 <i>į</i>	3802	1.0126;	
v ^{abc} =	3802	1.0126j	-, 3802	1.0126j	1,1258	-3.4829j	
13-10,3-10	0618	.1256j	0618	. 1256 <i>j</i>	0618	1256 <i>j</i>	
	0618	. 1256j	~.0618	. 1256 <i>j</i>	0618	. 1256 <i>j</i>	
NTONO	0618	.1256j	0618	. 1256j	0618	. 1256 <i>j</i>	
TALERE FLAM		\					
VERITATIS	0618	. 1256 <i>j</i>	-,0618	.1256j	0618	. 1256j	
S	0618	<. 1256j	0618	. 1256j	0618	. 1256j	
	0618	. 1256j	0618	. 1256j	0618	.1256j	
	1. 1258	-3. 4829j	3802	1.0126j	3802	1.0126j	
	3802	1.0126j	1.1258	-3. 4829j	3802	1.0126j	
	3802	1.0126j	3802	1.0126j	1.1258	-3.4829j	
	.0184į	0026j	0026j	.0000j .	0000 <i>j</i> .C	10000j	/
UNIVERS	. 0184j 0026j	0026 <i>j</i> A. 0184 <i>j</i>	0026j 0026j	.0000 <i>j</i> . .0000 <i>j</i> E.	0000 <i>j</i> .c		ÓN
	. 0184j 0026j 0026j	0026j . 0184j 0026j	0026j 0026j .0184j	.0000 <i>j</i> . .0000 <i>j</i> .	0000 <i>j</i> .c 0000 <i>j</i> .c 0000 <i>j</i> .c	0000 <i>j</i> 0000 <i>j</i> 0000 <i>j</i>	ÓN
$UNIVERS$ $\frac{y_{c}^{abc}}{3-10,3-10} = 0$. 0184 <i>j</i> 0026 <i>j</i> 0026 <i>j</i> . 0000 <i>j</i>	0026 <i>j</i> . 0184 <i>j</i> 0026 <i>j</i>	0026j 0026j .0184j .0000j	.0000j . .0000j . .0000j . .0184j	0000 <i>i</i> .0 0000 <i>i</i> .0 0000 <i>i</i> .0 0026 <i>i</i> .0	0000 <i>j</i> 0000 <i>j</i> 0000 <i>j</i> 0026 <i>j</i>	ÓΝ
v ^{abc} 3-10,3-10RE	. 0184 <i>j</i> 0026 <i>j</i> 0026 <i>j</i> . 0000 <i>j</i> . 0000 <i>j</i>	0026 <i>j</i> . 0184 <i>j</i> 0026 <i>j</i> . 0000 <i>j</i> . 0000 <i>j</i>	0026j 0026j .0184j .0000j	.0000j . .0000j . .0000j . .0184j .0026j .	0000 <i>i</i> . 0 0000 <i>i</i> . 0 0000 <i>i</i> . 0 0026 <i>i</i> - 0 0184 <i>i</i> - 0	0000 <i>j</i> 0000 <i>j</i> 0000 <i>j</i> 0026 <i>j</i> 0026 <i>j</i>	ÓN
Y ^{abc} 3-10,3-10	. 0184 <i>j</i> 0026 <i>j</i> 0026 <i>j</i> . 0000 <i>j</i> . 0000 <i>j</i> . 0000 <i>j</i>	0026 <i>j</i> . 0184 <i>j</i> 0026 <i>j</i> . 0000 <i>j</i> . 0000 <i>j</i> . 0000 <i>j</i>	0026j 0026j .0184j .0000j .0000j - .0000j	.0000j . .0000j . .0000j . .0184j .0026j .	0000 <i>i</i> . 0 0000 <i>i</i> . 0 0000 <i>i</i> . 0 0026 <i>i</i> - 0 0184 <i>i</i> - 0 0026 <i>i</i> . 0	0000 <i>j</i> 0000 <i>j</i> 0000 <i>j</i> 0026 <i>j</i> 0026 <i>j</i> 0184 <i>j</i>	ÓN
Y ^{abc} 3-10,3-10	. 0184j 0026j 0026j . 0000j . 0000j . 0000j	0026 <i>j</i> . 0184 <i>j</i> 0026 <i>j</i> . 0000 <i>j</i> . 0000 <i>j</i> . 0000 <i>j</i>	0026j 0026j .0184j .0000j .0000j .0000j	.0000j . .0000j . .0000j . .0184j 0026j . 0026j	0000 <i>i</i> . 0 0000 <i>i</i> . 0 0000 <i>i</i> . 0 0026 <i>i</i> - 0 0184 <i>i</i> - 0 0026 <i>i</i> . 0	0000 <i>j</i> 0000 <i>j</i> 0000 <i>j</i> 0026 <i>j</i> 0184 <i>j</i>	ÓN
UNIVERS Y ^{abc} 3-10, 3-10	. 0184j - 0026j - 0026j . 0000j . 0000j . 0000j	0026j A.0184j 0026j .0000j .0000j .0000j	0026j 0026j .0184j .0000j .0000j .0000j	.0000j . .0000j . .0000j . .0184j 0026j . 0026j	0000 <i>i</i> .0 0000 <i>i</i> .0 0026 <i>i</i> 0 0184 <i>i</i> 0 0026 <i>i</i> .0	0000 <i>j</i> 0000 <i>j</i> 0000 <i>j</i> 0026 <i>j</i> 0184 <i>j</i>	ÓN
UNIVERS	. 0184 <i>j</i> - 0026 <i>j</i> - 0026 <i>j</i> . 0000 <i>j</i> . 0000 <i>j</i> . 0000 <i>j</i>	0026 <i>j</i> . 0184 <i>j</i> 0026 <i>j</i> . 0000 <i>j</i> . 0000 <i>j</i> . 0000 <i>j</i>	0026j 0026j .0184j .0000j .0000j .0000j	.0000j . .0000j . .0184j - .0026j . .0026j	0000 <i>i</i> . 0 0000 <i>i</i> . 0 0026 <i>i</i> - 0 0184 <i>i</i> - 0 0026 <i>i</i> . 0	.9713 <i>j</i>	Ń
UNIVERS	. 0184 <i>j</i> - 0026 <i>j</i> - 0026 <i>j</i> . 0000 <i>j</i> . 0000 <i>j</i> . 0000 <i>j</i> . 0000 <i>j</i> 3521	0026 <i>j</i> . 0184 <i>j</i> 0026 <i>j</i> . 0000 <i>j</i> . 0000 <i>j</i> . 0000 <i>j</i> . 0000 <i>j</i>	0026 <i>i</i> 0026 <i>i</i> .0184 <i>i</i> .0000 <i>i</i> .0000 <i>i</i> .0000 <i>i</i> 3521 1.1539	.0000j . .0000j . .0000j . .0184j .0026j . .0026j .9713j .3.5242j	0000 <i>i</i> .0 0000 <i>i</i> .0 0026 <i>i</i> 0 0184 <i>i</i> 0 0026 <i>i</i> .0 3521 3521	. 9713 <i>j</i> . 9713 <i>j</i>	Ń
vabc	. 0184 <i>j</i> - 0026 <i>j</i> - 0026 <i>j</i> - 0000 <i>j</i> . 0000 <i>j</i> . 0000 <i>j</i> - 0000 <i>j</i> - 3521 - 3521	0026 <i>j</i> . 0184 <i>j</i> 0026 <i>j</i> . 0000 <i>j</i>	0026 <i>i</i> 0026 <i>i</i> .0184 <i>i</i> .0000 <i>i</i> .0000 <i>j</i> .0000 <i>j</i> .00000 <i>j</i> .000000 <i>j</i> .000000 <i>j</i> .000000 <i>j</i> .000000 <i>j</i> .000000000000000000000000000000000000	.0000j . .0000j . .0000j . .0184j .0026j . .0026j .9713j -3.5242j .9713j	0000j . 0 0000j . 0 0020j . 0 0184j 0 0026j . 0 3521 3521 1.1539	0000 <i>j</i> 0000 <i>j</i> 0026 <i>j</i> 0184 <i>j</i> .9713 <i>j</i> .9713 <i>j</i> -3.5242 <i>j</i>	Ń
$\frac{V_{c}^{abc}}{_{3-10,3-10}} = \frac{Y_{c}^{abc}}{_{15-14,5-14}} =$. 0184 <i>j</i> - 0026 <i>j</i> - 0026 <i>j</i> - 0000 <i>j</i> . 0000 <i>j</i> . 0000 <i>j</i> . 0000 <i>j</i> - 3521 - 3521 - 3521 - 0833	0026 <i>j</i> . 0184 <i>j</i> 0026 <i>j</i> . 0000 <i>j</i> . 0000 <i>j</i> . 0000 <i>j</i> . 0000 <i>j</i> -3. 5242 <i>j</i> . 9713 <i>j</i> . 9713 <i>j</i> . 1448 <i>j</i>	0026 <i>i</i> 0026 <i>i</i> .0184 <i>i</i> .0000 <i>i</i> .00000 <i>i</i> .000000 <i>i</i> .000000 <i>i</i> .000000 <i>i</i> .000000 <i>i</i> .000000000000000000000000000000000000	.0000j . .0000j . .0000j . .0184j .0026j . .0026j . .0026j .9713j .3.5242j .9713j .1448j	0000 <i>i</i> . 0 0000 <i>i</i> . 0 0026 <i>i</i> - 0 0184 <i>i</i> - 0 0026 <i>i</i> . 0 . 3521 - 3521 1. 1539 - 0833	0000 <i>j</i> 0000 <i>j</i> 0026 <i>j</i> 0184 <i>j</i> .9713 <i>j</i> .9713 <i>j</i> -3.5242 <i>j</i> .1448 <i>j</i>	Ń

-.0833 .1448*j* -.0833 .1448*j* -.0833 .1448*j*

٠,

0833	. 1448 <i>j</i>	0833	.1448 <i>j</i>	0833	. 1448 <i>j</i>
0833	. 1448 <i>j</i>	~.0833	.1448j	0833	. 1 4 48j
0833	. 1448 <i>j</i>	0833	. 1448j	0833	. 1448j
1.1513	-3.48184	3547	1.0137j	3547	1.0137j
3547	1.0137j	1.1513	-3.4818j	3547	1.0137j
3547	1.0137j	3547	1.0137j	1.1513	-3.4818j

 $Y^{abc}_{c_{5-14,5-14}} = Y^{abc}_{c_{3-10,3-10}}$

B.2 Datos de las condiciones de operación.

En la tabla B3 se presentan los datos del sistema en cantidades para cada fase. Los voltajes se presentan en valores por unidad, los ángulos se han elegido de acuerdo a la conexión Δ -Y de los transformadores.

UNIVER STADA AUTONOMA DE NUEVO LEON Tabla B3. - Datos de las condiciones de operación.

		Potencia Real Total			CARGA		
NODO	[V]	θ	Qmax	1	Qmin	MWATTS	MVARS
1 ^a 1 ^b 1 ^c	1.0200 1.0200 1.0200	6.5745 -113.4255 126.5745	сол	pens	ador	33, 333 33, 333 33, 333	16.667 16.667 16.667
2 ^a 2 ^b 2 ^c	1.0000 1.0000 1.0000	90.0000 -30.0000 210.0000			n a share a she dan kan a she a s	. 000 . 000 . 000	. 000 . 000 . 000
3 ^a 3 ^b 3 ^c	1.0000 1.0000 1.0000	.0000 -120.0000 120.0000				-33, 333 -33, 333 -33, 333	-2.067 -2.067 -2.067

DIRECCIÓN GENERAL DE BIBLIOTECAS

•

	4 ^a	1.0000	90.0000		. 00	00	. 000	. 000
	4 4 [°]	1.0000	-30.0000 210.0000	0	1	100	. 000	. 000
	5 ^a	1.0200	. 0000	20	0.00	0	33.333	16.667
	5° 5°	1.0200 1.0200	-120.0000 120.0000	0	1	100	33, 333 33, 333	16.667 16.667
	6ª	1.0000	90.0000	**************************************		a 6 ((((((((((((((((((. 000	. 000
	6° 6°	1.0000	-30.0000 210.0000				. 000 . 000	. 000 . 000
	7 ^a	1.0400	. 0000		53.00)0	33.333	16.667
	7° 7°	1.0400	-120.0000 120.0000	0	/	120	33, 333 33, 333	16.667 16.667
	8ª	1.0000	90.0000	7.			. 000	. 000
RS	8 ⁶ 8 ⁶	1.0000	-30.0000 210.0000				, 000 , 000	. 000 . 000
A H	9ª	1.0000	. 0000		Y		16.667	8.333
1	9 ^b 9 ^c	1.0000	-120.0000 120.0000				16.667 16.667	8.333 8.333
	10 ^a	1.0000	. 0000				16.667	8.333
	10 ⁶ 10 [°]	1.0000	-120.0000 120.0000				16.667 16.667	8, 333 8, 333
T	11 ^ª	1.0000	90.0000	TON)M	A DE	8, 333	6.667
	11 ^b 11 ^c	1.0000	-30.0000 210.0000	IOITC			8,333 8,333	6.667 6.667
	12 ^ª	1.0000	90,0000	NERAI	ΕÐ	EBIB		6.667
	12 ^b 12 ^c	1.0000	-30.0000 210.0000				8.333 8.333	6.667 6.667
	13 ^a	1 0000	0000		1. mm1.11.8. (87		16 667	8 333
	13 ^b	1.0000	-120,0000	5			16.667	8.333
	13°	1.0000	120.0000				16.667	8.333
	14 ^a	1.0000	. 0000				16.667	8.333
	14 14 ^c	1.0000	120.0000				16.667	8.333 8.333

Tabla B3 (Continuación)

-

R

1

.

APENDICE C

Datos del sistema de ARRILLAGA^[1].

C.1 Datos de la red.

Se presentan las matrices de admitancias en componentes de fase (abc) de los elementos que constituyen al SEP, los datos se presentan en valores por unidad con base 33.33 MVA. En el caso de los generadores debido al diseño balanceado es posible presentar las impedancias en valores de secuencia (o+-). En la tabla C1 se presentan las impedancias de generadores.

	7245	2	2			
Tabla	C1	Impedancias	de generadores	en valores d	le secuencia (o	+-)

NODO	20	2+	Z-	
1	. 1500 <i>;</i> 0800 <i>;</i>	. 0100 <i>j</i>	. 0910 <i>j</i>	
UNIVERSIC	AD AUTÓ	NOMA DE	NUEVOI	EÓN

Con los datos de la tabla C1 aplicando la transformación inversa de \mathbb{R} componentes simétricas se obtienen las matrices Z_{d}^{abc} .

> Tabla C2.- Datos de las unidades monofásicas con las cuales se forman los transformadores trifásicos.

p - q	41	tap ‡
3 - 4	2.2278-60.8941j	1.045
2 - 1	1.3812-26.2431j	1.022

* admitancia de dispersión

‡ tap del lado de p.

Los transformadores estan formados por unidades monofásicas, los datos de estas unidades se presentan en la tabla C2, con esos valores de acuerdo a la conexión mostrada en la figura C1 se forman las matrices de admitancia nodal de los transformadores (ver capítulo 2).

.00001	.0000	-33.6433j	1.2309	33.6433j	-1.2309
-33.6433j	1.2309	33.6433 <i>j</i>	-1.2309	.0000j	. 0000
33.6433j	-1.2309	. 0000 <i>j</i>	.0000	-33.6433j	1.2309
20.2980j	7426	20.2980j	7426	-40.5961 <i>j</i>	1.4852
20.2980j	7426	-40.5961j	1.4852	20.2980j	7426
-40.5961j	1.4852	20.2980j	7426	20.2980j	7426

		1.3224	-25.1254j	.0000	.0000j	.0000	.0000j
		.0000	.0000j	1.3224	-25. 1254j	.0000	.0000j
yabc	=	. 0000	.0000j	. 0000	.0000j	1.3224	-25.1254j
-t2-1		7803	14. 8253j	.0000	.0000 <i>j</i>	.7803	-14.8253
		. 7803	-14.8253j	7803	14.8253j	. 0000	.0000j
		. 0000	.0000j	.7803	-14.8253j	-, 7803	14.8253 <i>j</i>

.0000 <i>j</i>	.0000	-14.8253j	. 7803	1 4 . 8253j	7803
-14. 8253 <i>j</i>	. 7803	14.8253j	7803	.0000j	.0000
14.8253j	7803	.00001	.0000	-14. 8253j	7803
8.7477j	4604	8.7477;	4604	-17. 4954j	. 9208
8.7477j	4604	-17.4954 <i>j</i>	. 920 8	8.7477j	LERE FLAN 4604
-17.4954j_	.9208	8.7 47 7j	4604	8.7477;	4604

Se presentan las matrices de admitancia de los efectos serie y paralelo de las líneas de transmisión en secuencia (abc), aparecen en su estado natural acoplado y desbalanceado.

 $Y_{16-2}^{abc} = \begin{bmatrix} 4.0201 - 26.3269j & -.3939 & 5.4418j & -2.0724 & 7.3143j \\ -.3939 & 5.4418j & 2.7916 & -23.5701j & -.9519 & 6.5257j \\ -2.0724 & 7.3143j & -.9519 & 6.5257j & 4.4880 & -25.6987j \end{bmatrix}$

	. 1750 <i>j</i>	0300j	0200j
$Y_{c_{6-2}} =$	–. 0300 <i>j</i>	.1760 <i>j</i>	0300j
	0200j	0300j	. 1700j

Y ^{abc} =		16.5916	-107.631j	-4.4966	34.5147 <i>j</i>	-2.5484	20. 8748j
		-4.4966	34.5147j	17.2263	-111.126j	-7.5320	34.3866j
	=	-2.5484	20.8748j	-7.5320	34.3866j	18.7889	-102.530j
	-1	-1.7740	10.4013j	-1.7430	9.3611j	-, 9111	8.7962j
		-2.5097	9.57 4 7j	-1.8172	6.7239j	- 1.0108	6.3232j
		-1.0780	10.7818j	0673	7.0431j	-3.0306	7.6496j

	-1.7740	10. 4013 <i>j</i>	-2.5097	9.5747j	-1.0780	10.7818j	
	-1.7430	9.3611j	-1.8172	6.7239j	0673	7.0431j	
	9111	8.7962j	-1.0108	6.3232j	-3.0306	7.6496j	
	22.8384	-133.5684	-3. 5541	36.9009j	-12.2459	54.2082j	
	-3.5541	36.9009j	28.8420	-124.018j	-18.2358	49.1629j	2
	-12.2459	54. 2082j	-18.2358	49.1629 <i>j</i>	37.9109	-156.128j	
	. 0225 <i>i</i>	0040 <i>i</i>	0045 <i>i</i>	0035 <i>i</i>	0015 <i>i</i>	0010 <i>i</i>]	
	0040 <i>i</i>	.0200 <i>i</i>	00554	0015i	00251	00104	
abc	- 00454	00554	01754	0015/	- 0010/	- 00203	
Yc 6-5, 6-5 =	- 0035/	00154	- 0015j	02204	~ 0050 <i>i</i>	- 00504	
ALERE F	- 00152	- 00251	- 00104	- 0050j	02002	- 00554	
	0010 <i>i</i>	00104	- 0020 <i>i</i>	0050 <i>i</i>	00554	.01804	
S						ر (۱۹۶۰۰	
	RII						
Z	5,4436	-41.8288j	. 2492	8.9600j	. 9796	3.4236j	
	. 2492	8.9600j	4.9820	-44.8908j	. 2076	8.3296j	
$Y_{17-5}^{abc} =$.9796	3.4236j	. 2076	8.3296j	5.5992	-42.4088j	
	-1.0628	4.6668j	5656	3.3956j	-1.8212	3.6648j	
	-1.1172	2.5480j	-1.0096	5.1952 <i>j</i>	-1.1128	5.3920j	
IINIVER	-1.6872	4.0248j	-1.0536	4.7232j	9772	5,1856j	ÓN
		DAUI			NUL	VU LL	R
ותות	-1.0628	4.6668j	-1. 1172	2.5480j	-1.6872	4.0248j	
DIKI	5656	3. 39564	-1.0096	5.1952j	-1.0536	4.7232j	
	-1.8212	3.6648j	-1.1128	5.3920j	9772	5.1856j	
	5.5368	-43. 3824j	. 3844	8.1352j	1700	7.6768j	
	. 3844	8.1352j	5.0840	-44.3180j	. 3588	7:6336j	
	1700	7.6768	. 3588	7.6336j	5.7424	-43.7092j	
	03712	- 0075/	- 00634	- 0050/	- 00564	00504	
	0075/	03741	-,0075;	00371	00441	00401	
vabc	\$2,000 -	- 0075/	. 03884	00441	0040 <i>i</i>	00354	
^{rc} 7-5,8-5 =	- 00502	- 00371	- 0044;	03712	- 0075/	00634	
	- 0056j	- 00112	- 00401	- 0075/	.03742	00754	
	- 00503	- 00404	- 0035/	- 00631	- 0075/	03754	
	L .000002	.00403	. 00009	, 00009			

10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	9.2048	-59.6608j	-4.1132	22.3412j	-1.1972	10.5276j	
	-4.1132	22. 3412 <i>j</i>	14.7940	-75.8224j	-4.7292	24.5600j	
v ^{abc} =	-1.1972	10.5276 <i>j</i>	-4.7292	24.5600j	10.5780	-64. 8404j	
19-6,10-6	-1.8676	11.2584 <i>j</i>	-1.2988	2.6988j	2.1360	-6.3752j	
	-1.2988	2.6988j	-1.4856	9.3216j	-1.2352	2.3636j	
	2.1360	-6.3752j	-1.2352	2.3636j	-2.3632	13, 1020 <i>j</i>	
	-1.8676	11.2584 <i>j</i>	-1.2988	2.6988j	2.1360	-6.3752j	7
	-1.2988	2.6988j	-1.4856	9.3216 <i>j</i>	-1.2352	2.3636j	
TON	2.1360	-6.3752j	-1.2352	2.3636j	-2.3632	13.1020 <i>j</i>	
	9.2048	-59.6608j	-4.1132	22. 3412j	-1.1972	10. 5276 <i>j</i>	
ALERE FL	-4.1132	22.3412j	14.7940	-75.8224j	-4.7292	24. 5600j	Ĩ
	-1.1972	10.5276j	-4.7292	24.5600j	10.5780	-64.8404j	<u>]</u> .
RS S		40				s. 	
	. 0321 <i>j</i>	0625j	0056j	0054j	0040j	0035j	
	0063j	0325j	0052j	0050j	0047j	0040j	
yabc =	0056j	0052j	. 0314į	0040 <i>j</i>	0035j	0031;	
~9-6,10-6	0054j	0050j	0040j	.0321j	0063 <i>j</i>	0056j	
	0040j	0047j	0035j	0063j	.0325j	0051j	
	0035j	0040j	0031j	0056j	0051 <i>j</i>	.0314j	<u> </u>
UNIVER	SIDAL	JAUT	UNUN	IADE	NUE	VO LEO	UN

 $Y_{13-7,3-8,3-9,3-10}^{abc} = 0.0276i = 0.02$

1.8609-	14.0831 <i>j</i>	. 1276	2.8862 j	. 3719	1.0276	3512	1.5153
. 1276	2.8862j	1.7246-	15.1372j	. 1133	2.6586j	1848	1.1006j
. 3719	1.0276j	.1133	2.6586j	1.9092-	14.2432j	6007	1.1808j
3512	1.5153 <i>j</i>	1848	1.1006j	6007	1.1808j	1.8541-	-14.5078j
3740	. 8298j	3411	1.7174 <i>j</i>	3740	1.7929 <i>j</i>	, 1271 -	2.7214j
5613	1.3178j	3424	1.5369j	3231	1.6997j	0589	2.5642j
~. 1348	.8162j	0600	0427j	1971	.5821 <i>j</i>	-, 1405	. 7496j
.0648	0588j	. 0528	. 3992j	.0632	0620j	. 0048	1911j
1808	. 3608j	3801	1.2465 <i>j</i>	1469	.6990j	. 0061	.1097j
0715	.1355j	2148	. 7692 j	1092	.4411 j	0181	. 3833j
1615	. 5885j	. 0239	1901 <i>j</i>	0493	.0787 <i>j</i>	. 0829	2179j
0828	. 3989j	0225	0173 <i>į</i>	1256	. 2544 <i>j</i>	.0532	- .2681j

3740	. 8298j	5613	1.3178j	1348	. 8162 <i>j</i>	.0648	0588j
3411	1.7174j	3424	1.5369j	0600	0427j	. 0528	. 3992 <i>j</i>
3740	1.7929j	3231	1.6997j	1971	.5821j	.0632	0620j
. 1271	2.7214j	0589	2.5642j	~. 1405	.7496j	.0048	1911j
1.7122-	14. 8343j	. 1172	2.5570j	. 0711	2520j	2963	1.0984j
. 1172	2.5570j	1.9218-	14.6123 j	0213	. 1571;	. 0125	2236j
.0711	2520j	0213	. 1571j	3.0605-	-19.4794 <i>j</i>	-1.8198	8.5578j
2963	1.0984 <i>j</i>	.0125	2236j	-1.8198	8.5578j	5.3817-	26.3783j
. 1215	4 352j	1116	.6344j	. 6439	.2864j	-2.0246	9.2455j
. 0989	3191j	. 0776	3751j	-, 4596	3.3676j	4164	.7570j
0612	.4860j	. 0964	2352j	5072	.9681 <i>j</i>	4064	2.9682j
. 0751	1963}	0432	.4763j	. 5228	-1.5478j	~. 39 19	.6607j
	R	-	-				
		2					
1808	.3608j	-, 0715	. 1355j	1615	. 5885j	0828	. 3989j
- 2901	1 21651	- 2140	76021	0230	- 1901 <i>i</i>	- 0225	- 01737

1.24654 -.2148 . 19014 . 01731 -. 3801 . 16923 .0239 . 0225 -. 1469 .4411j -.0493 .0787j -.1256 .2544 .6990j -.1092 .0061 .1097j -.0181 . 3833j .0829 -.2179j .0532 -. 2681 -. 3191*j* . 1215 . 43521 .0989 -.0612 .4860j .0751 -.1963j -.2352j -. 1116 .6344j .0776 -.3751j .0964 -.0432 . 4763j .6439 .2864j -. 5072 . 9681 -. 4596 3. 3676j . 5228 -1. 5478 -2.0246 9.2455 2.9682j -. 4164 .7570j -. 4064 -. 3919 .6607j 3.5710-21.2872j .5733 -1.6704j -.5028 .9061*i* -.6095 3.9584j .5733 -1.6704j 3.0506-19.8859j -1.3645 7.4349j -. 3368 3. 3660j 4.9597-25.3272 -1.5629 8.1563j -.5028 .9061j -1.3645 7.4349j 3.4806-21.54694 -.3368 3.3660j -1.5629 8.1563j -. 6095 3. 9584j

R

B.2 Datos de las condiciones de operación del SEP.

En la tabla C3 se presentan los datos de las condiciones de operación del SEP, de los estimados iniciales de los voltajes nodales y de las restricciones impuestas al sistema como son los límites de potencia reactiva en las unidades generadoras. Se considera en los estimados iniciales de los voltajes en los nodos 2, 3 y 5 a 10 el cambio de fase ocasionado por la conexión $Y-\Delta$ de los transformadores.

	÷	*		Potenc	ia Real	Total	CA	RGA
1	NODO	[V]	θ	Qmax	/	Qmin	MWATTS	MVARS
		1.0641 1.0641 1.0641	-1. 4133 -121. 4133 118. 5867	Co	mpensad	ог	. 000 . 000 . 000	. 000 . 000 . 000
SIDA	2 ^a 2 ^b 2 ^c	1,0000 1,0000 1,0000	30.0000 -90.0000 150.0000				48.000 47.000 51.300	20.000 12.000 28.300
IVER.	3 ^a 3 ^b 3 ^c	1.0000 1.0000 1.0000	30.0000 -90.0000 150.0000				. 000 . 000 . 000	. 000 . 000 . 000
	4 ^a 4 ^b 4 ^c	1.0506 1.0506 1.0506	.0000 -120.0000 120.0000	0	500	200	. 000 . 000 . 000	. 000 . 000 . 000
UN	5 ^a 15 ^b 5 ^c	1.0000 R1.0000 1.0000	30.0000 -90.0000 150.0000	ÓNON	A D	DE NU	150.000 157.000 173.000	80.000 78.000 72.000
	6° 6°	1.0000 1.0000 1.0000	Ó-90.0000 150.0000	ERAL	DE B	IBLIC	T 50.000 45.000 48.300	15.000 14.000 16.600
	7 ^a 7 ^b 7 ^c	1.0000 1.0000 1.0000	30.0000 -90.0000 150.0000				. 000 . 000 . 000	. 000 . 000 . 000
	8ª 8 ^b 8 ^c	1.0000 1.0000 1.0000	30.0000 -90.0000 150.0000				. 000 . 000 . 000	. 000 . 000 . 000
	9 ^a 9 ^b 9 ^c	1.0000 1.0000 1.0000	30.0000 -90.0000 150.0000				, 000 , 000 , 000	. 000 . 000 . 000
	10 ^a 10 ^b 10 ^c	1.0000 1.0000 1.0000	30.0000 -90.0000 150.0000	land and a second s	***********************	ALTONIA (1994) (1994) (1994)	. 000 . 000 . 000	. 000 . 000 . 000

Tabla C3 Datos de las condiciones de operación.

