UNIVERSIDAD AUTONOMA DE MIEVO LEON FACULTAD DE CIENCIAS FISICO-MATEMATICAS DIVISION DE ESTUDIOS DE POSTGRADO

ANALISIS POR ACTIVACION DE NEUTRONES EN EL ESTUDIO DE ELEMENTOS DE CORROSION EN POLIMEROS COMPATIBLES BOP.F

TESIS

QUE EN REQUISITO PARCIAL PARA OBTENER EL ITTULO DE MAESTRIA EN CIENCIAS CON ESPECIALIDAD EN INGENIERIA NUCLEAR

> PRESENTA ENRIQUE LOPEZ RIVERA

MONTERREY, N. L.

MAYO DE 1993

1020091222

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

UNIVERSIDAD AUTONOMA DE NUEVO LEON

FACULTAD DE CIENCIAS FISICO-MATEMATICAS DIVISION DE ESTUDIOS DE POSTGRADO

UNIVERSIDAD AUTÓROMAS DE NUEVO LEÓN

DIRECCIÓN GENERAL DE BIBLIOTECA EL TITULO DE MAESTRIA EN CIENCIAS CON ESPECIALIDAD EN INGENIERIA NUCLEAR

PRESENTA ENRIQUE LOPEZ RIVERA

MONTERREY, N. L.

MAYQ DE 1993

TH 26651 FCFM 1993 L6

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

UNIVERSIDAD AUTONOMA DE NUEVO LEON FACULTAD DE CIENCIAS FISICO-MATEMATICAS DIVISION DE ESTUDIOS DE POSTGRADO

UNIVERSIDAD AUTÓESISMA DE NUEVO LEÓN

QUE EN REQUISITO PARCIAL PARA OBTENER EL TITULO DE MAESTRIA EN CIENCIAS CON ESPECIALITADO INGENIERIA NUCLEAR PRESENTA:

ENRIQUE LOPEZ RIVERA

MONTERREY. N. L.

MAYO DE 1993

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

DIRECCIÓN GENERAL DE BIBLIOTECAS

FONDO TESIS

4683

ANALISIS POR ACTIVACION DE NEUTRONES EN EL ESTUDIO DE ELEMENTOS DE CORROSION EN POLIMEROS COMPATIBLES BOP.F

Enrique López Rivera.

Trabajo de Tesis de Maestría en Ciencias con Especialidad en Ingeniería Nuclear aprobado por la División de Estudios Superiores de la Facultad de Ciencias Físico-Matemáticas de la Universidad Autónoma de Nuevo León por el siguiente Jurado.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

Dr. Federico Angel Rodríguez González

M. C. Carlos Flores Jáuregui

M. C. Enrique R. Ramírez Hernández

"ANALISIS POR ACTIVACION DE NEUTRONES EN EL ESTUDIO DE ELEMENTOS DE CORROSION EN POLIMEROS COMPATIBLES BOP.F"

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

DIRECCI UNIVERSIDAD AUTONOMA DE NUEVO LEON AS FACULTAD DE CIENCIAS FISICO MATEMATICAS DIVISION DE ESTUDIOS SUPERIORES

MONTERREY, NUEVO LEON, MAYO DE 1993.

AGRADECIMIENTOS

Deseo expresar mi agradecimiento al Dr. Carlos de la Garza Páez, Jefe de Cirugía del Departamento de Traumatología y Ortopedia del Hospital Universitario de la Facultad de Medicina de la Universidad Autónoma de Nuevo León, por sugerir el tema de tesis y haber proporcionado los polímeros para llevarla a cabo.

Quedo profundamente agradecido al Dr. Federico A. Rodríguez González por sus enseñanzas, orientación, apoyo y por su valioso tiempo que me dedicó para que fuera posible realizar esta investigación. Pero sobre todo quiero expresarle mi admiración por el amor que le profesa a la ciencia.

Al Lic. y M.C. Carlos R. Flores Jáuregui deseo agradecerle por la revisión, sugerencias y orientación sobre este trabajo.

Agradezco también al Lic. y M.C. Enrique R. Ramírez Hernández por sus consejos y correcciones para la presentación de esta tésis.

Mi agradecimiento también a los Profesores del Departamento de Ingeniería Mecánica del Programa de Ingeniería Nuclear, de la Universidad de Texas en Austin, especialmente al Dr. Bernard W. Wehring, Director del Departamento y al Dr. Thomas L. Bauer, Director Asistente y supervisor del reactor, por haberme permitido hacer uso de las instalaciones para llevar a cabo este trabajo.

Igualmente quedo agradecido al Dr. Felib V. Iskander, Jefe de Servicios de Analítica Nuclear, por su gran apoyo para llevar a cabo el trabajo. Va también mi agradecimiento para el compañero y amigo Ing. y M.C. Héctor René Vega Carrillo, por su apoyo y orientación en la parte experimental.

A la señorita C.P. Luz María Viveros Hernández le quedo muy agradecido por su desinteresada ayuda en la parte mecanográfica de esta tesis. Mi eterno agradecimiento a mis padres, hermanos y hermanas que siempre me han brindado su apoyo y consejos cuando más los he necesitado.

A mi esposa Elsa y a mis hijas Elsy, Claudia y Pamela, por su comprensión, sacrificio, paciencia y por el tiempo que me han obsequiado para dedicarme a mis estudios.

Y sobre todo agradezco al Dios Universal porque cada día no dejo de maravillarme de la gran naturaleza que nos ha legado.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

ABSTRACTO

El objetivo de esta investigación es aplicar la técnica del análisis por activación de neutrones para buscar elementos de corrosión en polímeros BOP.F. Este polímero, el cual es un producto Belga, está en forma de fibras de 10mm. de longitud, fabricados de poliamide-6, gluconato de calcio y copolímero SOP (NVP-MMA).

En este experimento se efectúa una evaluación cuantitativa de los elementos que puedan ocasionar corrosión debido a que es un material que se aplica en los poros o fisuras de los huesos del cuerpo humano y podría causarle efectos nocivos.

La aplicación de materiales poliméricos en medicina es un área especializada con un amplio rango de aplicaciones y requerimientos específicos.

El interés en las aplicaciones biomédicas de polímeros data de aproximadamente 50 años. Este interés es debido, en parte, al hecho de que la mayoría de los biomateriales presentes en el cuerpo humano son macromoléculas (proteínas, ácidos nucléicos, etc.). Cuando los tejidos u órganos que contienen estos componentes necesitan un reemplazo completo o parcial, es lógico efectuar este reemplazo con materiales poliméricos sintéticos si no están disponibles materiales de reemplazo naturales. Aunque en ciertos casos se pueden usar materiales metálicos o de cerámica, la mayoría de las aplicaciones biomédicas requieren del uso de algún polímero sintético o de una macromolécula natural modificada.

Las propiedades de un polímero son de gran importancia en cualquier aplicación. Para los polímeros biomédicos la propiedad más importante es probablemente la biocompatibilidad. La biocompatibilidad se refiere a las interacciones de los tejidos del cuerpo humano, compuestos y fluídos (incluyendo la sangre) con cualquier material implantado (esto es, polímero, cerámica o metal) y por último se refiere a las interacciones del cuerpo humano con un dispositivo biomédico o prótesis.

En algunos casos de fractura o enfermedad degenerativa de huesos, es necesario reparar por medio de una fijación interna. Estos procedimientos generalmente se efectúan con placas de acero inoxidable o bien de una aleación de cobalto o titanio. Sin embargo, con estos materiales surgen algunos problemas. Las placas metálicas a menudo corroen el medio ambiente fisiológico y algunas veces exhiben fractura por fatiga. Se han efectuado algunos estudios experimentales con placas de diferentes plásticos con variaciones en los grados de fuerza y flexibilidad, y estos parece que han dado buenos resultados en el restablecimiento de los huesos. Otros trabajos experimentales están teniendo un buen progreso con polímeros biodegradables. La meta es tener un polímero degradable y que vaya desapareciendo mientras el hueso se va sanando hasta que tenga una completa recuperación¹.

Hobart Tafa Technologies, Concord, N.H., ha desarrollado un método para producir un revestimiento en porosidades para implantes ortopédico de titanio por medio de un rociado con arco eléctrico dirigido a una atmósfera de argón. El proceso produce una capa controladora de porosidades que mejora la adhesión del hueso y hace que el cemento sea innecesario. Un proceso similar se ha estado estudiando para los implantes de cobaltocromo ². RECIÓN GENERAL DE BIBLIOTECAS

En este trabajo se describe el análisis de radiactivación a varias muestras del polímero BOP.F. Este método se basa en la irradiación por neutrones de las muestras y del conteo en el decaimiento de la radiación gamma inducida de los radionúclidos formados de esta manera. Con este conteo se forma un espectro de rayos gamma, para el cual se utiliza un complejo equipo conectado a una computadora para que toda la gran cantidad de datos se pueda transformar en una información que nos ayude a detectar los elementos que existen en la muestra. Las muestras del polímero se irradían junto con otras muestras cuyos elementos que son de una alta pureza son conocidos, esta manera de efectuar el experimento se conoce como técnica de comparación. Para la irradiación de las muestras se utilizó el reactor nuclear TRIGA MARK II, cuya potencia es de hasta 1MW, que se encuentra en la Universidad de Texas en la ciudad de Austin.

Después que las muestras fueron irradiadas, se colocaron a cierta distancia de un detector de germanio hiperpuro y el conteo se grabó en un analizador de pulsos que contiene 4096 canales para formar el espectro. Este espectro es analizado posteriormente por una computadora VAX para obtener la información final y efectuar la evaluación de estos resultados.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

INDICE

Agradecim	ientos	i
Abstracto		111
Introducció	on Maria	1
CAPITULO:	ELAMMAAM ITATIS	
ER	Teoría de Análisis por Activación	2
E	A) Reacciones	2
	B) Decaimiento Radiactivo	3
	C) Tipos de radiaciones nucleares	5
	D) Interacción de los neutrones con la materia	11
	E) Producción de radioisótopos	12
UNIVER	F) Identificación de radiosótopos radiactivos	EČ5N
	G) Ellores	17 (
DIRFEQUIDO Experimental RAL DE BIBLIOTECAS		
	A) Reactor Nuclear	20
	B) Sistema de Espectropía de Rayos Gamma	24
I II.	Procedimiento Experimental	30
	A) Preparación de las muestras y los estándares	30
	B) Irradiación de las muestras y estándares	32
	C) Procedimiento de conteo	33
IV.	Resultados y Recomendaciones	64

Apéndice "B"	81
Referencias	88
Bibliografía	89

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

INTRODUCCION

El análisis por activación con neutrones es una técnica experimental que se aplica a la mayoría de los elementos químicos. Las mediciones de trazas extremadamente pequeñas de materiales, las cuales no pueden determinarse por las técnicas normales analíticas, pueden efectuarse relativamente de una manera más rápida y simple, si el elemento puede convertirse en radiactivo por el bombardeo de partículas rápidas, neutrones, o rayos gamma. Con la disponibilidad de reactores nucleares de investigación como fuente de neutrones y un equipo sofisticado para medir la radiación, existe un gran potencial en el uso de análisis por activación de neutrones en la ciencia, en la medicina y en la industria.

El principio básico del análisis por activación consiste en que un isótopo estable irradiado con neutrones térmicos puede pasar por una transformación nuclear y producir un núcleo radiactivo. Los radioisótopos artificiales producidos de este modo decaen con la emisión de radiación gamma o beta y pueden ser identificados y medidos cuantitativamente detectando esas emisiones. El número de átomos activados es proporcional al número de átomos presentes y al flujo de neutrones. Dado que el decaimiento de la actividad de los radioisótopos se efectúa con una vida media característica, es posible medir las características del decaimiento como un medio más para identificar el isótopo del elemento en estudio. La emisión de rayos gamma característicos de cada radioisótopo es la clave para la identificación de los elementos que se encuentran presentes en la muestra irradiada.

Con el avance en la tecnología de los detectores de rayos gamma, el análisis por activación puede efectuarse de una manera rápida, contando también, por supuesto, con un buen equipo electrónico para obtener las señales, tales como preamplificadores, amplificadores, convertidor análogo digital, analizador de pulsos y, por supuesto, una computadora que almacene y trace el espectro de rayos gamma con sus energías características, las cuales nos ayudarán a identificar el elemento en estudio.

CAPITULO I TEORIA DE ANALISIS POR ACTIVACION

A) REACCIONES.

Todos los elementos estables en la naturaleza se presentan como:

- 1. Especies isotópicas simples (como: Al, Mn, Co, Cs, etc.).
- 2. Una mezcla de dos o más isótopos estables.

Cuando un isótopo estable es bombardeado con partículas nucleares, este puede sufrir cierta reacción nuclear para formar un producto isotópico especificado. Los isótopos estables pueden pasar por una variedad de transformaciones nucleares. Las partículas nucleares utilizadas en los trabajos de análisis por activación incluyen neutrones, partículas cargadas (protones, deuterones y partículas alfa) y fotones (rayos X y rayos gamma).

Todos los núcleos, estables y radiactivos, consisten de dos partículas nucleares llamadas "nucleones": protones y neutrones.

El número de protones en un núcleo se llama número atómico (denotado por Z), esto determina qué elemento es; por ejemplo, Z = 1 es el hidrógeno, Z = 26 es hierro, Z = 82 es plomo, etc. El número de neutrones en un núcleo se denota por N. Estos no tienen carga eléctrica y casi tienen la misma masa de los protones. El número total de nucleones en un núcleo recibe el nombre de "número másico". Así,

A = N + Z

Los átomos del mismo elemento (misma Z), pero que tienen diferentes números másicos (debido a los diferentes números de neutrones), reciben el nombre de isótopos de este elemento.

La reacción nuclear más comúnmente aplicada en el análisis por activación es la reacción neutrón-gamma, la cual es denotada por (n, γ) .

Cuando un isótopo estable se expone en un flujo de neutrones "térmicos" (E~0.025 eV), el evento más probable es la captura de un neutrón. Si esto sucede se forma un núcleo compuesto excitado de número másico una unidad mayor, pero del mismo elemento. Este se desexcita rápidamente emitiendo uno o más rayos gamma "rápidos".

Esta reacción se describe en forma general como:

$$z^{X^{A}} + o^{n^{1}} \rightarrow [z^{X^{A+1}}]^{*} \rightarrow z^{X^{A+1}} + \gamma$$

o bien de una manera más concisa como:

$$z^{X^A}$$
 (n, γ) $z^{X^{A+1}}$

donde X representa el símbolo del elemento en estudio.

 $\begin{array}{c} \text{Ejemplos:} \\ 17^{\text{Cl}37} + 0^{1} \rightarrow 17^{\text{Cl}38} + \gamma & \text{o bien} & 17^{\text{Cl}37} (n,\gamma) & 17^{\text{Cl}38} \\ 13^{\text{Al}27} + 0^{1} \rightarrow 13^{\text{Al}28} + \gamma & \text{o bien} & 13^{\text{Al}27} (n,\gamma) & 13^{\text{Al}28} \end{array}$

Debido a que no se efectúa ningún cambio en z en la captura del neutrón, el radioelemento residual retiene la identidad química del material expuesto en el flujo de neutrones.

Otros tipos de reacciones que puede utilizarse son: (n,p), (n, ∞), (n,2n), (p, γ), (d,p), (d,n), (d, ∞), (∞ ,n), (∞ ,p) y (n,f). Estas reacciones requieren energías más altas que las energías térmicas.

B) DECAIMIENTO RADIACTIVO.

Para cualquier especie radiactiva dada, la actividad inducida en una muestra irradiada decrece con el tiempo. Esta razón de decaimiento tiene un valor constante característico del isótopo particular. La razón de decaimiento de una especie dada en cualquier instante es directamente proporcional al número de átomos presentes en el radioisótopo en ese instante.

Así la relación de decaimiento está dada por
$$dN/dt = -\lambda N$$
 (1)

La solución de la ecuación con las condiciones de un tiempo arbitrario cero y un tiempo t después, será

$$N = N_0 \exp(-\lambda t)$$
 (2)

donde

N = Número de átomos radiactivos en el tiempo t, N₀ = Número de átomos radiactivos en el tiempo t=0 y λ = Constante de desintegración radiactiva para el núclido particular.

Si el tiempo, $T_{1/2}$, es la medición durante la cual el número de átomos decrece a la mitad del número que originalmente estaban presentes, tenemos que

1/2 N₀ = N₀ exp (-λT_{1/2}) UNIVERSIDAD AUTONOMA DE NUEVO LEÓN

de donde

λ

T 1/2 recibe el nombre de vida media del radionúclido.

Sustituyendo (3) en (2) tenemos que

$$N = N_0 \exp \frac{-t \ln 2}{T_{1/2}}$$

Después de un período de n vidas medias

$$N = N_0 (1/2)^{r}$$

En la Figura 1 se muestra la gráfica correspondiente a la ecuación (2).

C) TIPOS DE RADIACIONES NUCLEARES.

TONOM

Existe una variedad de procesos por los cuales los radionúclidos decaen desde estados de energías altas a estados de energías bajas.

Los procesos de mayor interés en el análisis por activación son: emisión beta (B^-), emisión de positrones (B^+), emisión de fotones (γ), y la captura electrónica orbital.

Las transformaciones radiactivas beta se caracterizan por la emisión de electrones del núcleo (Negatrón) o electrones positivos (Positrón), o por la captura de un negatrón por el núcleo.

La radiación beta de los elementos radiactivos naturales consiste de electrones (B^-). Sin embargo, ciertos elementos radiactivos emiten radiación beta de positrones (B^+).

Las partículas beta emitidas por una fuente muestran una distribución contínua de energía, estos rangos de energía van desde valores muy pequeños hasta valores máximos definidos (E_{max}).

La Figura 2 es un ejemplo de curva del espectro beta, en este caso para el P^{32} .

La desintegración beta negativa es la más importante y la más amplia forma del decaimiento beta. Este decaimiento sucede cuando la razón del número de neutrones y protones dentro del núcleo de un núclido dado excede un cierto límite.

En el decaimiento beta negativo, un neutrón en el núcleo atómico se convierte en un protón, en un electrón y un antineutrino, es decir:

 $_{0}n^{1} \rightarrow _{1}H^{1} + _{-1}B^{0} + _{0}\overline{\nu}^{0}$

Como resultado del decaimiento negativo el número atómico aumenta en una unidad mientras que el número másico permanece sin cambio:

 $_{Z}X^{A} \rightarrow _{Z+1}X^{A} + _{0}\overline{v}^{0}$

Por ejemplo:

 ${}_{15}P^{32} \rightarrow {}_{16}S^{32} + {}_{-1}e^0 + {}_{0}\nabla^0$

El esquema de desintegración para P³² se muestra en la Figura 3.

La desintegración beta positiva está relacionada con la emisión de positrones. En el decaimiento beta positivo un protón en el núcleo se convierte en un neutrón, en un positrón y en un neutrino:

$$_{1}p^{1} \rightarrow _{0}n^{1} + _{+1}B^{0} + _{0}v^{0}$$

En este decaimiento el número atómico decrece en una unidad y el número másico permanece sin cambio:

Por ejemplo:

FONOM

 $z^{X^A} \rightarrow z_{-1}^{Y^A} + {}_{+1}^{B^0} B^0$ ${}_{11}^{Na^{22}} \rightarrow {}_{10}^{Ne^{22}} + {}_{+1}^{B^0} + \gamma$

El esquema de desintegración para el decaimiento del Na²² se muestra en la Figura 4.

Cuando un positrón decrece considerablemente en su velocidad al final de su trayectoria, reacciona muy fácilmente con un negatrón, dando lugar a dos rayos gamma emitidos en direcciones opuestas. La energía de rayos gamma así formados es equivalente a la masa en reposo de las partículas originales (0.511 Mev). La radiación gamma que se produce de esta manera recibe el nombre de radiación de aniquilación.

La emisión de fotones de un radionúclido puede surgir de dos diferentes fuentes. A una emisión de fotones que se origina directamente desde el núcleo de un átomo se le da el nombre de rayos gamma. Este tipo de emisión es precedida frecuentemente por un decaimiento beta del mismo núcleo. También es posible que el núcleo capture electrones orbitales. Este evento por sí mismo no exhibe una emisión de fotones, sin embargo, electrones orbitales de orden más alto se mueven para caer en las órbitas K, o L, que se encuentran vacantes, y esto da lugar a la emisión de rayos X.

Las energías de los fotones son características del elemento cuyos radioisótopos que pertenecen a ese elemento los produce. En general, un análisis de las energías de los fotones emitidos de una fuente desconocida frecuentemente nos ayuda a la identificación de los radionúclidos.

D) INTERACCION DE LOS NEUTRONES CON LA MATERIA.

El carácter de las interacciones entre neutrones y una sustancia está determinada por las fuerzas que actúan entre los neutrones y las partículas de la sustancia (electrones y núcleo atómico).

Estas fuerzas son de muy bajas energías. Como los neutrones no tienen carga eléctrica no existen fuerzas Coulombianas.

Entonces el comportamiento de los neutrones en su camino a través de la sustancia está determinado casi exclusivamente por el núcleo atómico. Esta interacción resulta de las fuerzas nucleares. La probabilidad de que una interacción se lleve a cabo entre un núcleo y un neutrón es más alta con neutrones térmicos que con neutrones rápidos.

La explicación de esto es que debido a las bajas energías del neutrón y, por lo tanto, bajo en velocidad, se quedará más tiempo en la vecindad del núcleo y tendrá una probabilidad más alta de una interacción. Por lo cual, el análisis de absorción tendrá lugar más frecuentemente con neutrones lentos.

Una interacción entre un neutrón y un núcleo puede ser de la siguiente manera:

- 1. Dispersión elástica
- 2. Dispersión inelástica
- 3. Reacción nuclear:
 - a) Reacción nuclear ordinaria
 - b) Fisión (n,f)
 - c) Captura radiactiva (n,γ)

De entre estas diferentes formas de interacción entre un neutrón y un núcleo, el proceso de absorción de captura radiactiva (n,γ) es el más importante para las aplicaciones analíticas.

En todos los procesos de interacción de neutrones con el núcleo atómico de un absorsor se efectúa una atenuación del flujo de neutrones. Esta atenuación se puede expresar por la siguiente relación exponencial:

$$\phi = \phi_0 \exp(-\sigma d N)$$

donde

 ϕ_0 = flujo incidente de neutrones en el absorsor (n/cm² - seg),

 ϕ = flujo residual de neutrones después de pasar cierto espesor en el absorsor (n/cm² - seg),

d = espesor del absorsor,

N = número de átomos por cm³ en el absorsor y,

 σ = sección eficaz total del absorsor.

PRODUCCION DE RADIOISOTOPOS.

Cuando se expone una muestra en un flujo constante de neutrones, la razón de formación de núclidos radiactivos es constante y está dada por

 $P = N \sigma \phi$ donde P es la razón de producción del núclido radiactivo, N es el número de átomos blanco presentes, σ es la sección eficaz de activación para la reacción (en cm²) y es una medida de la probabilidad de que los átomos blanco interactuen con las partículas que los bombardean, y ϕ es el flujo de las partículas de bombardeo (en neutrones/cm² - seg).

La razón neta de cambio en el número de núcleos radiactivos está dada por la diferencia entre la razón de la producción y la razón de decaimiento del isótopo. Así

$$dN/dt = P - \lambda N$$
 (5)

Asumiendo que el número de átomos radiactivos presentes inicialmente es cero, la ecuación (5) tiene la solución

$$N = P/\lambda \{1 - \exp(-\lambda t_i)\}$$
(6)

donde

La razón de desintegración dN/dt de estos átomos radiactivos en el instante que son removidos del flujo está dada por

$$A = dN/dt = P \{1 - \exp(-\lambda t_{j})\}$$
(7)

La razón de desintegración dN/dt es llamada la actividad A de la muestra.

Si t_d es el tiempo que transcurre después de haber removido la muestra del flujo de neutrones, entonces la actividad como una función del tiempo estará dada por

$$A = P \{1 - \exp(-\lambda t_i)\} \{\exp(-\lambda t_d)\}$$
(8)

De la ecuación (6) se puede observar que para tiempos de irradiación muy grandes, la actividad tiende a un valor máximo de P/ λ , este valor límite es llamado actividad de "saturación".

En la Figura 5 se muestra una curva de crecimiento y decaimiento típica en donde se observa que el máximo o actividad de "saturación" es sólo una aproximación al límite teórico.

Retomando la ecuación (3) tenemos que $T_{1/2} = \ln 2/\lambda$ y como $\ln 2 = 0.693$

tenemos que la ecuación (7) se puede expresar por

$$A = P \{1 - \exp(-0.693 t_i/T_{1/2})\}.$$
 (9)

Si $t_j = T_{1/2}$

A = P (1 - 1/2) = P/2

si $t_i = 2 T_{1/2}$, entonces

A = 3/4 P, y así sucesivamente.

Podemos observar de la Figura 5 que es preferible no irradiar el material mucho más que dos o tres vidas medias.

Es importante hacer notar de que para irradiaciones de tiempos más cortos que una vida media, la relación entre la actividad inducida y el tiempo de irradiación es aproximadamente lineal.

Para obtener una actividad mayor se requiere de una razón de producción más alta, es decir, un flujo más alto.

En la Figura 6 se observa el aumento en la actividad para el Cu con el aumento en el flujo de neutrones.

F) IDENTIFICACION DE RADIOISOTOPOS RADIACTIVOS.

Cuando se irradía una muestra, la razón de producción normalmente se mantiene constante manteniendo el flujo de irradiación constante sin importar la naturaleza de las partículas bombardeantes.

La razón de producción, para el caso de un flujo de neutrones constante, en una muestra estará dada por la ecuación (4),

 $P = N \sigma \phi$

N se puede expresar como

$$N = N_{a}WK/M$$
(10)

donde

Na = Número de Avogadro,

W = Masa del elemento,

- K = Abundancia isotópica fraccional de un núcido dado tomado como blanco y,
- M = Masa atómica del elemento.

Sustituyendo en la ecuación (7) tenemos

$$A = N_a W K_{\sigma\phi} / M \{ 1 - \exp(-\lambda t_i) \}$$
(11)

Si la actividad no se comienza a detectar hasta que ha transcurrido un tiempo t_d después de terminada la irradiación, los átomos radiactivos ya habrán decaído en ese lapso por el factor exp(- λt_d). La actividad en este tiempo estará dada por

 $A = N_a W K \sigma \phi / M \{ 1 - \exp(-\lambda t_i) \} \{ \exp(-\lambda t_d) \}$ (12)

Despejando W de la ecuación (12) se obtiene la masa de núclido en cuestión

Existen algunas interferencias que son causantes de interpretaciones erróneas en los análisis por activación de neutrones. Estas interferencias pueden ser de primer y segundo orden. Las interferencias primarias pueden ocurrir cuando de dos o más diferentes núclidos estables se forma un mismo radionúclido. Algunos ejemplos de estas interferencias se muestran a continuación:

DIRECCIÓN F¹⁹(n,p) 0¹⁹AL yE 0¹⁶ (n, γ) 0¹⁹CAS Na²³(n, γ) Na²⁴ y Mg²⁵(n,p) Na²⁴ Br⁸²(n, γ) Br⁸² y Rb(n, ∞) Br⁸²

Las interferencias de segundo orden son aquéllas en las cuales un producto, que proviene de capturar un neutrón, sufre una captura adicional de un neutrón.

Algunos ejemplos son:

 $S^{36}(n,\gamma)S^{37}$ seguido por $S^{37} \rightarrow {}_{-1}B^0 + C1^{37}$ y $Cl^{37}(n,\gamma)Cl^{38}$ Se⁸⁰(n, γ)Se⁸¹ seguido por Se⁸¹ $\rightarrow {}_{-1}B^0 + Br^{81}$ y $Br^{81}(n,\gamma)Br^{82}$ También pueden existir errores en la interpretación de resultados debido a los neutrones de la misma muestra, por materiales sólidos o componentes en la muestra de una sección transversal alta. Todos estos efectos pueden minimizarse o eliminarse utilizando muestras pequeñas, o bien, preparando estándares en una forma similar a la muestra desconocida, e irradiando todas las muestras al mismo tiempo en el mismo flujo neutrónico.

Este último método mencionado, llamado el método de comparación es el más comúnmente utilizado en el análisis por activación con neutrones.

TONOM

En este método, una muestra que se identifica como la desconocida y otra muestra pura, de la que se conoce su masa y el elemento que se trata de identificar en la desconocida, son irradiados bajo las mismas condiciones, para el mismo tiempo y en el mismo flujo neutrónico.

 $Wx = \frac{Ws}{Cs} \frac{Cx}{Cs}$ (14)

donde

- Wx = Masa del elemento en la muestra desconocida,
- Ws = Masa del elemento en el estándar,
- Cx = Razón de conteo de la muestra y,
- Cs = Razón de conteo del estándar

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

CAPITULO II EQUIPO EXPERIMENTAL

A) REACTOR NUCLEAR.

,

El reactor nuclear en la Universidad de Texas es un TRIGA MARK II, es un reactor de investigación versátil y seguro, diseñado y fabricado por la General Atomics. Este reactor provee de suficiente potencia y flujo de neutrones para trabajos fructíferos en muchos campos como la física, química, ingeniería, medicina y metalurgia.

El reactor TRIGA puede operar a niveles de potencia de 1MW o bien hasta 1500MW cuando éste es pulsado, alcanzando esta última potencia en tiempos muy cortos de alrededor de 10mseg. La operación del pulsado es particularmente útil en el estudio de cinética y control del reactor.

El corazón o parte principal del reactor está formado por un ensamble de 90 barras de combustible rodeados por un anillo de grafito que sirve como reflector de neutrones. Cada una de las barras de combustible mide 38 cm. de longitud y 3.6 cm. de diámetro y están dentro de un tubo de paredes muy delgadas de acero inoxidable, los extremos del tubo están cerrados con tapas de grafito. La sección de combustible es una aleación metálica de uranio con bajo enriquecimiento (19.7%) uniformemente distribuído en hidruro de zirconio.

El corazón del reactor se encuentra en el fondo de un tanque cuya estructura es de concreto, material que sirve como blindaje o contra la radiación. Este tanque está lleno de agua, con una profundidad de 27 pies. El agua altamente purificada sirve como refrigerante del reactor, moderador de neutrones y como blindaje de la radiación para proteger al personal del laboratorio.

En todo tiempo es posible el acceso al corazón del reactor, ya sea visual o físico.
Uno de los principales propósitos de la utilización del reactor es la irradiación de muestras y producción de isótopos, para que el experimentador pueda tener un mejor estudio de sus pruebas tiene disponibles cuatro dispositivos.

Uno de ellos es un soporte horizontal giratorio (Rotary specimen rack) que consiste de un anillo de aluminio que contiene 40 copas también de aluminio, uniformemente distribuídas. Estas copas sirven como contenedores para albergar cilindros de plástico de 10 cm de altura, 2.5 cm de diámetro y un volumen de aproximadamente 50 cm³.

El soporte giratorio está localizado en el reflector de grafito que rodea el corazón del reactor.

Otro de los dispositivos es un sistema neumático de transferencia ("rabbit"). Consiste de dos tubos que conducen a una cámara de irradiación localizada en el corazón del reactor. Las muestras que se van a investigar son transferidas rápidamente por aire comprimido dentro de los tubos para entrar y salir de la cámara. Los cilindos o ampolletas de plástico que contienen a la muestra, y que se utilizan para introducirlos a la cámara de irradiación por el sistema neumático son más pequeñas que las que se utilizan en el estante rotativo, pues tienen un volumen de aproximadamente 5 cm³. y un diámetro de 1.9 cm. Este sistema es particularmente apropiado para la producción de isótopos de vida media muy corta.

DIRECCION GENERAL DE BIBLIOTECAS

Un tercer dispositivo es un tubo central (Central thimble), este tubo está colocado en el centro del corazón del reactor y permite que las muestras estén en la región que contiene el máximo flujo neutrónico.

Los tres dispositivos mencionados se pueden observar en la figura 7.

El cuarto dispositivo son los llamados puertos de rayos (Beam ports), son 5 huecos cilíndricos en la estructura de concreto del blindaje protector. Por estos huecos pueden fluir los neutrones fuera del corazón del reactor.

Los experimentos pueden efectuarse por la parte interna de los puertos o bien por fuera de los mismos en el blindaje de concreto.

En la figura 8 se muestran los 5 puertos del TRIGA MARK II.

El nivel de potencia del reactor está controlado por cuatro barras, llamadas barras de control. De estas, tres son tubos sellados de acero inoxidable, que contienen carburo de boro espolvoreado, seguido por hidruro de zirconio y uranio (UZr H). Una de estas barras se usa para regular el flujo neutrónico y las otras dos para nivelarlo. Si estas barras son retiradas del corazón del reactor, el boro (que es un absorsor de neutrones) se va alejando del mismo y el combustible (UZr H) entra ahora en él, incrementando la potencia. La cuarta barra de control, llamada barra transitoria, es un cilindro sólido de grafito borado cubierto de aluminio, operado por presión neumática para permitir operaciones de pulsado. La expulsión repentina de la barra transitoria del corazón del reactor produce una precipitación inmediata de potencia.

TABLA 1	
PARAMETROS DE DISEÑO EN EL TRIGA MA	ARK II
UNIVERSIDAD AUTÓNOMA DE NU	EVO LEÓN
Razón de H/Zr Contenido de Uranio N GENERAL DE BIBLIO	1.6 8.5wt%
Enriquecimiento del uranio	19.7%
Longitud del combustible	38 cm.
Diámetro del combustible	3.6 cm.
Masa total del uranio	18 kg
Volumen del tanque de la piscina	11,000 gal
FLUJO DE NEUTRONES A 1MW	(n/cm-S)
Promedio del flujo de neutrones térmicos	
en el corazón del reactor	1.1 x 10 ¹³
Promedio del flujo de neutrones rápidos en	
el corazón del reactor	6.4 x 10 ¹²

Flujo de neutrones térmicos en el soporte
giratorio (ROTARY SPECIMEN RACK) 6.5×10^{12}
 6.5×10^{12} Flujo de neutrones térmicos en el tubo
central (CENTRAL THIMBLE) 2.2×10^{13} Flujo de neutrones térmicos en los puertos
(Salida) (BEAM PORTS) $10^6 - 10^9$

B) SISTEMA DE ESPECTROPIA DE RAYOS GAMMA.

El sistema de conteo de rayos gamma para el análisis de trazas de elementos consiste, normalmente, de un detector semiconductor y un equipo electrónico asociado a él para reunir y formar los pulsos producidos.

Los pulsos son clasificados en analizadores de espectros, los cuales, comúnmente, están basados en computadoras para almacenar y procesar en memoria o en un disco. Los programas de computadores son utilizados para encontrar picos, calcular razones de conteo y correcciones para el tiempo muerto y otras pérdidas debido al equipo electrónico. Junto con las computadoras pueden utilizarse intercambiadores mecánicos de muestras para automatizar todo el procedimiento de conteo.

En la figura 9 se esquematiza un diagrama de un sistema de espectropía de rayos gamma que muestra el equipo electrónico requerido para el análisis cuantitativo de multielementos.

Detector

El detector utilizado en este experimento es un detector coaxial de Germanio hiperpuro (HP Ge) con un 40% de eficiencia. La construcción de todos los detectores semiconductores es muy similar, en la figura 10 se muestra una configuración de un detector típico.

El detector está enclaustrado en un castillo de aluminio en el cual se ha efectuado el vacío y opera a una temperatura de nitrógeno líquido(77k).

Durante la operación el detector es enfriado por medio de una barra de cobre que está sumergida en un botellón Deware que contiene el nitrógeno líquido.

Los pulsos producidos en el detector son muy pequeños, debido a eso se coloca un preamplificador de formas, donde éstas se amplifican. El pulso resultante es clasificado por un analizador de pulsos. La salida del amplificador principal es un pico cuya forma se aproxima a una Gaussiana con una amplitud proporcional a la energía del rayo gamma que entra al detector. El convertidor análogo digital cambia este pulso en una señal digital proporcional a la altura del pulso, la cual se deposita como una cuenta en un número de canal apropiado del analizador multicanal.

Este analizador está conectado a un sistema computacional, el cual se encarga de analizar el espectro capturado por el analizador multicanal.

El analizador multicanal que tiene disponible la Universidad de Austin es un modelo 7010 de 4096 canales, el cual está conectado a un sistema de computadora 1150 EG y G ORTEC.

El espectro de rayos gamma es característico para cada emisor de rayos gamma. La forma de un espectro de rayos gamma se debe a las interacciones que se llevan a cabo en el detector. Como un ejemplo, en la figura 11 se muestra el espectro de Cs 137.

DIRECCIÓN GENERAL DE BIBLIOTECAS

•

27

28

•

ž

FIGURA 11

CAPITULO III PROCEDIMIENTO EXPERIMENTAL

A) PREPARACION DE LAS MUESTRAS Y LOS ESTANDARES.

En la preparación de las muestras, que en este experimento consistieron de fibras de polímero, cuyas características ya se mencionaron, se procedió a encapsularlas en ampolletas de plástico (Polyvial) con un diámetro de 1 cm y 2.5 cm de largo.

Debido a que tanto las fibras de polímero como los polyviales pueden contaminarse por el contacto de las manos, el procedimiento de encapsulado se efectúa con guantes y pinzas para evitar agregar elementos extraños a la muestra, principalmente el sodio, elemento más común que aparece en la piel humana.

Los estándares también se prepararon con el mismo cuidado que las muestras.

Después de introducir la muestra en el polyvial, éste se marca cuidadosamente con un cautín, colocándole una clave para detectarlo, ya que será irradiado junto con otras muestras. Enseguida se le coloca una tapa sellándola con el cautín probando que esté bien sellada, esto se hace introduciéndolo en un recipiente con agua.

El siguiente paso consiste en el pesaje de las muestras y los estándares. Esto se efectúa en una balanza marca Mettler AE 163 que tiene una precisión de décimas de miligramo.

Para el experimento se prepararon 2 muestras, 5 estándares y un polyvial vacío, el cual se denotó por "blanco". Las características de cada uno de éstos se denota en la tabla 2 y en la tabla 3 respectivamente.

MUESTRAS

Número de	Peso (g)	
identificación		
011	Fibras de polímero (sin lav	ar) 0.21033
013 ERE FLAMMAM	Fibras de polímero (lavadas	s)* 0.12905
* El lavado se efectuó el calor que provenía	o con agua tridestilada, secándola del cautín.	s inmediatamente con
	ESTANDARES	
	(Irradiación corta: 10 min.)	
UNIVERSIDAI Número de	DAUTÓNOMA DE NU Nombre	JEVO LEÓN Peso (g) 🔹
identificación	N GENERAL DE BIBLIC	TECAS
S-14	NBS-1632 a (COAL)	0.06985
S-15	NBS-1633 a (FASH)	0.13296
S-0	Blanco	1.0000

ESTANDARES

(Irradiación: 4 horas)

S-13	BCR-1*	0.11263
S-4ONOM	DTS-1*	0.10077
S- <u>5</u>	PCC-1*	0.12076
S-2 Sveritatis	Blanco	1.00000
S-26	NBS 1632 a *	0.195874
S-27	NBS 1633 a *	0.241050

B) IRRADIACION DE LAS MUESTRAS Y ESTANDARES.

Las irradiaciones fueron efectuadas en el soporte giratorio horizontal (Rotary specimen rack) del reactor nuclear TRIGA MARK II, a una potencia de 1MW y un flujo de 2 x 10^{12} neutrones/cm-seg.

En la primera irradiación las muestras 11 (Sample 11) y 13 (Sample 13), los estándares NBS 1632 a (Sample 14 coal), NBS 1633 a (Sample 15 Fash), y un polyvial vacío (Sample 0 "blank") estuvieron simultáneamente en el flujo de neutrones ya mencionados por un lapso de 10 minutos. Enseguida las muestras, estándares y el polyvial vacío fueron extraídos del reactor y se dejaron "enfriar" por un lapso de 15 minutos antes de colocarlos en el detector y proceder al conteo.

En la segunda irradiación las muestras 11 (Sample 11) y 13 (Sample 13), los estándares BCR-1 (Sample S-3), DTS-1 (Sample S-5) polyvial vacío

(Sample 25), NBS 1632 a (Sample 26), NBS 1633 a (Sample 27) estuvieron simultáneamente en el mismo flujo de neutrones por un lapso de 4 horas. Después de esto, las muestras, estándares y el polyvial vacío se extrajeron del reactor y se dejaron "enfriar" por un tiempo de 48 horas, antes de proceder al conteo.

C) PROCEDIMIENTO DE CONTEO.

Antes de proceder al conteo de las muestras y estándares en el detector, se efectúa la calibración del analizador multicanal. Esto se hace con estándares cuyas energías son conocidas, que se almacenan en determinados canales. En el experimiento se utilizó el EU-152 cuyas energías y canales se muestran en las tablas 4 y 5. En la figura 12 aparece la gráfica de calibración.

NUCLEAR ENGINEERING TEACHING LABORATORY NUCLEAR ANALYTICAL SERVICES

SAMPLE PARAMETERS

Sample id: Calib Source Sample weight: 1.00000E+00 g Project: Calibration of tennelec 40 Acquisition time: A 23 Jul-1992 11:03:38.29 VO LEON 6-DEC-1991 00:00:00.00 Decay corrected to: 0 00:00:00.00 Preset live time: 0 00:05:00.00 Preset real time: Elapsed live time: 0 00:05:00.00 Elapsed real time: 0 00:05:01.31

Detector name: TENNELEC40 Ave efficiency: 40.00000 Calibration date: 23-JUL-1992 11:10:07.13 Geometry: Sample change # of Iterations: 10 FWHM: 7.75847E-01 Energy Tolerance: 2.00000 Sensitivity: 10.00000 Kev/Channel: 5.01737E-01 Start channel: 25 Half life ratio: 8.00000 Stop channel: 4096

Energy (KEV) = (2.12565E+00) + (5.01737E-01) * Channel + (1.80534E-07) * Channel**2

Energy Calibration Report

Energy + -2.126 + 0.5017*Channel + 1.8053E-07*(Channel **2)

	Centroid	True	computed					
Nbr	Channel	Energy	Energy	Difference				
1	24.85	121.78	121.74	0.045				
2	690.39	344.28	344.36	-0.076				
3	1555.75	778.91	778.89	0.022				
4	1924.48	964.13	964.13	0.005				
5	ALE 2218.95	1112.12	1112.09	0.023				
6	2807.71	1408.01	1408.03	-0.020				
ER		0						
E								
NUCLEAR ENGINEERING TEACHING LABORATORY								
NUCLEAR ANALYTICAL SERVICES								

NIVERSIDAD A SAMPLE PARAMETERS NUEVO LEO

Sample id: Calib Source GENERAL D Sample weight: 1.00000E+00 g Project title:

Configuration: Calibration of tennelec40

Acquisition time:	23 Jul-1992	11:03:38.29	
Decay corrected to:	6-DEC-1991	00:00:00	
Preset live time:	0 00:05:00.00	Preset real time:	0 00:00:00.00
Elapsed live time:	0 00:05:00.00	Elapsed real time:	0 00:05:01.31

Detector name: TENNELEC40 Ave efficiency: 40.00000 Calibration date: 23-JUL-1992 11:10:07.13 Geometry: Sample change # of Iterations: 10 7.75768E-01 FWHM: Energy Tolerance: 2.00000 Sensitivity: 10.00000 Key/Channel: 5.01737E-01 Start channel: 25 Half life ratio: 8.00000

Energy (KEV) = (-2.12565E+00) + (5.01737E-01) + Channel + (1.80534E-07) Channel 2 FWHM (KEV) = (7.75768E-01) + (3.66780E-02) SQRT (ENERGY)

UN FWHM = 0.7558 + 3.6678E-02*(Energy**1/2) NUEVO LEÓN

DIRECCIÓN GENTRUE AL DE BEOMPUTEDECAS

Nbr	Energy	FWHM	FWHM	Difference
1	121.78	1.25	1.18	0.070
2	344.28	1.36	1.46	-0.091
3	778.91	1.68	1.80	-0.121
4	964.13	2.02	1.91	0.101
5	1112.12	2.09	2.00	0.089
6	1408.01	2.10	2.15	-0.049

Después de efectuada la calibración se procedió al conteo de las muestras y estándares.

En la irradiación corta (10 min.) tanto las muestras como los estándares y el polyvial vacío permanecieron en enfriamiento un tiempo de 15 minutos, antes de colocarlos en un carrusel automático, que los pondría al frente uno por uno de un detector compuesto con montaje horizontal de nombre TENNELEC 40 con una eficiencia promedio del 40%. El tiempo de conteo fue por 10 minutos.

Los resultados de conteo de las muestras 11 y 13, así como el de los estándares NBS 1632 a (COAL) (muestra 14) y del polyvial vacío (muestra 0) se muestran en las tablas de la 6 a la 9. Estos datos son proporcionados por la computadora, la cual está conectada al detector.

En esta serie de datos que se muestran en las siguientes tablas se tiene la siguiente información: Peso de la muestra (Sample Weight), tiempo en que la muestra llega al detector (Acquisition time), tiempo fijo para el conteo (Preset live time), fecha de calibración (Calibration date), el canal donde inicia la información y donde el espectro de la muestra empieza a tomar forma (Start Channel) y el último canal en donde termina el espectro (Stop Channel).

En la parte final de los datos que se presentan en las mismas tablas, aparece la información principal en varias columnas. Mencionando las columnas de izquierda a derecha tenemos: el número de pico en el espectro (PK), la energía del pico (Energy), el área correspondiente al pico (Area), la radiación de fondo (Bkgnd), la anchura del pico a su altura media (FWHM), el canal donde se encuentra localizado el pico (Channel), como la base del pico tiene cierta anchura, la siguiente columna nos dá la información en donde empieza la base del pico (Left), después tenemos la medida de la base del pico (Pw), enseguida tenemos las cuentas por segundo correspondiente a cada pico (cts/sec) y por último el porcentaje de error en el área de cada pico (%Err).

23-JUL-1992 20:45:23.10

NUCLEAR ENGINEERING TEACHING LABORATORY NUCLEAR ANALYTICAL SERVICES

SAMPLE PARAMETERS Sample id: Sample 11 Sample weight:2.10360E-01 gm Project title: MONTERREY PROJECT Configuration: QACAL1000 Acquisition time: 23-JUL-1992 15:06:15.70 Decay corrected to: 23-JUL-1992 00:00:00.00 Preset live time: 0 00:08:20.00 Preset real time: 0 00:00:00.00 Elapsed live time: Elapsed real time: 0 00:08:20.00 0 00:08:25.52

Detector name:	TENNELEC40	Ave efficiency:	40.00000
Calibration date:	23-JUL-1992 11:10:0	08.86 Geometr	y: Sample change
# of Iterations:	10	FWHM: 7.76	873E-01 R
Energy Toleranc	e:ÓN 2.00000RAL	Sensitivity:	10.00000
Kev/Channel:	5.01788E-01	Start channel:	25
Half life ratio:	8.00000	Stop channel:	4096

Energy (KEV) = (-2.14037E+00) + (5.01788E-01) + Channel + (1.63275E-07) + Channel + (1.6327E-07) + C

TABL	46
------	----

Pk	lt	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	
1	0	36.88	523	2428	0.97	77.76	74	9	1.05E+00	17.5	
2	0	442.98	4423	1535	1.45	886.82	880	14	8-85E+00	2.4	
3	0	511.08	8110	2449	2.72	1022.45	1013	24	1.62E+01	2.0	
4	0	526.77	497	1241	1.40	1053.69	1046	16	9.95E-01	16.9	
5	0	554.35	1478	1064	1.57	1108.62	1101	13	2.96E+00	5.4	
6	3	616.77	1189	703	1.48	1232.92	1224	20	2.38E+00	5.3	
7	3	619.01	047	833	1.87	1237.37	1224	20	1.89E+00	7.7	
8	0	698.23	505	638	1.68	1395.12	1391	9	1.01E+00	10.2	
9	0	76.56	1386	1043	1.84	1551.07	1544	14	2.77E+00	5.6	
10	0	828.05	268	987	1.49	1653.57	1648	12	5.36E-01	24.1	
11	0	1293.46	3606	405	2.09	2579.80	2571	16	7.21E+00	2.1	
12	0	1317.44	404	390	2.40	2627.50	2620	17	8.08E-01	12.8	
13	0	1368.55	29640	717	2.22	2729.1 9	2719	21	5.93E+01	0.6	
14	0	1732.04	1655	404	2.92	34.52	3443	19	8.31E+00	3.9	
				E E		J					

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

23-JUL-1992 20:45:31.02

NUCLEAR ENGINEERING TEACHING LABORATORY NUCLEAR ANALYTICAL SERVICES

SAMPLE PARAMETERS

Sample id: Sample 13	3	Sample weight:	1.29050E-01 gm					
Project title: MON	ITERREY PROJECT							
Configuration: QACAL1001								
Acquisition time:	23-JUL-1992	15:15:47.18						
Decay corrected to:	23-JUL-1992	00:00:00:00						
Preset live time:	0 00:08:20.00	Preset real time:	0 00:00:00.00					
Elapsed live time:	0 00:08:20.00	Elapsed real time:	0 00:08:24.66					
	9							
	×							
Detactor nemos			40,0000					

Detector name:TENNELEC40Ave efficiency:40.00000Calibration date:23-JUL-199211:10:08.86Geometry:Sample change# of Iterations:10FWHM:7.76873E-01REnergy Tolerance:2.00000Sensitivity:10.00000Kev/Channel:5.01788E-01Start channel:25Half life ratio:8.00000Stop channel:4096

Energy (KEV) = (-2.14037E+00) + (5.01788E-01) + Channel + (1.63275E-07)+Channel++2FWHM (KEV) = (7.76873E-01) + (3.67163E-02) + SQRT (ENERGY)

Pk	Ħ	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err
1	0	37.14	517	1919	0.81	78.27	74	9	1.03E+00	16.0
2	0	442.97	2691	1239	1.44	886.80	880	15	5.38E+00	3,5
3	0	511.11	6783	1880	2.85	1022.51	1013	25	1.36E+01	2.2
4	0	526.69	238	610	1.46	1053.53	1050	9	4.76E-01	20.5
5	0	554.28	1248	765	1.67	1108.47	1102	13	2.50E+00	5.5
6	3	616.85	790	680	1.59	1233.07	1227	18	1.58E+00	7.5
7	3	619.10	672	686	1.66	1237.55	1227	18	1.34E+00	8.9
8	0	698.46	300	725	2.01	1395.57	1390	11	7.79E-01	14.2
9	0	776.38	1230	862	1.78	1550.71	1543	16	2.46E+00	6.4
10	0	1293.47	4290	488	2.22	2579.82	2571	19	8.58E+00	2.0
11	0	1368.54	26987	669	2.27	2729.17	2719	22	5.40E+-1	0.7
12	0	1731.99	1510	480	3.27	3452.03	3442	23	3.02E+00	4.6
13	0	1810.76	488 🤇	377	2.71	3608.64	3598	18	9.75E-01	10.9
ANA						JΑ				

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

23-JUL-1992 20:45:38.90

NUCLEAR ENGINEERING TEACHING LABORATORY NUCLEAR ANALYTICAL SERVICES

SAMPLE PARAMETERS

Sample id: Sample 1	4 (coal)	Sample weight: 6.9	8500E-02 gm			
Project title: MONTERREY PROJECT						
Configuration: QACAL1002						
Acquisition time:	23-JUL-1992	15:25:27.05				
Decay corrected to:	23-JUL-1992	00:00:00.00				
Preset live time:	0 00:08:20.00	Preset real time:	0 00:00:00.00			
Elapsed live time:	0 00:08:20.00	Elapsed real time:	0 00:08:22.94			
	5/					

Detector name:TENNELEC40Ave efficiency:40.00000Calibration date:23-JUL-199211:10:08.86Geometry:Sample change# of Iterations:10FWHM:7.76873E-01®Energy Tolerance:2.00000Sensitivity:10.00000Kev/Channel:5.01788E-01Start channel:25Half life ratio:8.00000Stop channel:4096

Energy (KEV) = (-2.14037E+00) + (5.01788E-01) + Channel + (1.63275E-07)+Channel++2FWHM (KEV) = (7.76873E-01) + (3.67163E-02) + SQRT (ENERGY)

Pk	lt	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err
1	0	47.07	1090	2382	1.82	93.08	92	13	2.18E+00	9.6
2	0	94.67	1769	2086	1.13	192.91	188	11	3.54E+00	5.6
3	0	121.81	877	1974	1.27	247.00	242	11	1.75E+00	10.5
4	0	165.68	321	1673	1.33	334.42	330	10	6.41E-01	24 .6
5	0	361.79	328	940	1.35	725.11	718	13	6.56E-01	20.8
6	0	511.17	2566	1296	2.67	1022.61	1013	24	5.13E+00	4.4
7	0	554.64	223	547	1.23	1109.19	1106	9	4.46E-01	20.4
8	0	776.33	220	507	1.63	1550.61	1543	15	4.41E-01	23.9
9	2	841.67	531	475	2.03	1680.69	1675	29	1.06E+00	9.4
10	2	846.87	10183	352	1.74	1691.04	1675	29	2.04E+01	1.1
11	0	963.37	362	460	2.05	1922.93	1918	12	7.23E-01	13.4
712	0	1293.42	7 5517	372	2.17	2579.71	2570	17	1. 1 0E+0 1	1.6
13	0	1368.54	5820	325	2.21	2729.16	2719	18	1.16E+01	1.5
14	0	1524.81	615	213 -	2.36	3040.01	3032	17	1.23E+00	7.0
15	0	1642.98	571	146	2.36	3275.02	3266	22	1. 14 E+00	7.7
16	0	1732.19	366	182	2.58	3452.43	3444	20	7.32E-01	11.2
17	0	1810.86	1688	188	2.66	3608.84	3597	23	3.38E+00	3.3

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

23-JUL-1992 20:46:49.61

NUCLEAR ENGINEERING TEACHING LABORATORY NUCLEAR ANALYTICAL SERVICES

SAMPLE PARAMETERS

Sample id: Sample -0 (blank) Sample weight: 1.00000E+00 gm								
Project title: MONTERREY PROJECT								
Configuration: QACAL1011								
23-JUL-1992	18:00:52.06							
23-JUL-1992	00:00:00.00							
0 00:08:20.00	Preset real time:	0 00:00:00.00						
0 00:08:20.00	Elapsed real time:	0 00:08:20.93						
	0 (blank) ITERREY PROJECT AL1011 23-JUL-1992 23-JUL-1992 0 00:08:20.00 0 00:08:20.00	0 (blank) Sample weight: 1.00 ITERREY PROJECT CAL1011 23-JUL-1992 18:00:52.06 23-JUL-1992 00:00:00.00 0 00:08:20.00 Preset real time: 0 00:08:20.00 Elapsed real time:						

Detector name:TENNELEC40Ave efficiency:40.00000Calibration date:23-JUL-199211:10:08.86Geometry:Sample change# of Iterations:10FWHM:7.76873E-01®Energy Tolerance:2.00000Sensitivity:10.00000Kev/Channel:5.01788E-01Start channel:25Half life ratio:8.00000Stop channel:4096

Energy (KEV) \approx (-2.14037E+00) + (5.01788E-01) * Channel + (1.63275E-07)*Channel**2 FWHM (KEV) = (7.76873E-01) + (3.67163E-02) * SQRT (ENERGY)

TA	BLA	9

PK	IŢ	Energy	Area	8kgnd	FWHM	Channel	Left	Day	6 / 6	
ĩ	0	510.86	301	244			LUIL	ΓW	Cts/Sec	%Err
-			331	344	2.64	1022.00	1014	16	7.81E-01	116
2	0	1293.45	9530	100	2.20	2570 70	2500			11.0
3	a	1642 41	00	5459-1919-05		23/3./3	2209	19	1.91E+01	1.0
vv	1072.41	88	8	2.04	3273.89	3263	19	1.76E-01	12.4	

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS En la irradiación larga (4 horas) las muestras, los estándares y el polyvial vacío permanecieron en enfriamiento después de la irradiación por un período de 48 horas, siendo colocados después en el carrusel que los pondría al frente uno por uno, frente a un detector ahora con un montaje vertical de nombre TENNELEC 30 con una eficiencia promedio del 30%. El tiempo de conteo fue de 45 minutos.

Los resultados del conteo de las muestras 11 y 13, así como de los estándares BCR-1 (Sample S-3), DTS-1 (Sample S-4), PCC-1 (Sample S-5), polyvial vacío (Sample 25), NBS 1632 a (Sample 26) y NBS 1633 a (Sample 27) se muestran en las tablas de la 10 a la 17.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

7-AUG-1992 15:06:09.32

NUCLEAR ENGINEERING TEACHING LABORATORY NUCLEAR ANALYTICAL SERVICES

SAMPLE PARAMETERS

Sample id: Sample 1	1	Sample weight: 2.10360E-01 G					
Project title: MONTERREY PROJECT LONG COUNT							
Configuration: GEO	0057 [°]						
Acquisition time:	7-AUG-1992	12:00:28.26					
Decay corrected to:	4-AUG-1992	16:36:00.00					
Preset live time:	0 00:00:00.00	Preset real time:	0 00:45:00.00				
Elapsed live time:	0 00:44:31.68	Elapsed real time:	0 00:45:00.00				

Detector name:TENNELEC30Ave efficiency:30.00000Calibration date:29-JUL-199211:45:22.37Geometry:25 CM# of Iterations:10FWHM:1.69957E+00Image: Sensitivity:5.00000Energy Tolerance:2.00000Sensitivity:5.00000Sensitivity:5.00000Kev/Channel:4.99483E-01Start channel:25Half life ratio:8.00000Stop channel:4096

Energy (KEV) = (1.61774E+00) + (4.99483E-01) * Channel + (-5.85355E-08)*Channel**2FWHM (KEV) = (1.69957E+00) + (3.84821E-02) * SQRT (ENERGY)

TAI	BI A	1	0
1.000			~

Pk	lt	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err
1	3	27.92	5824	1109	2.49	52.66	48	29	2.18E+00	2.4
2	3	30.52	5119	5761	2.84	57.87	48	29	1.92E+00	4.9
3	3	33.67	4185	12488	3.20	64.18	48	29	1.57E+00	6.8
4	3	36.80	1748	12724	2.66	70.45	48	29	6.54E-01	12.6
5	0	74.22	8369	25123	3.65	145.36	136	19	3.13E+00	4.6
6	0	85.26	4089	21626	2.86	167.46	159	17	1.53E+00	8.4
7	0	91.86	771	11021	1.93	180.68	177	9	2.88E-01	24.9
8	0	221.38	3264	19403	2.20	440.01	433	14	1.22E+00	9.2
9	0	273.53	1442	15872	2.88	544.42	538	14	5.40E-01	18.7
10	0	510.79	26262	16684	3.54	1019.52	1007	24	9.83E+00	1.4
H	0	554.23	45785	12814	2.76	1106.52	1097	20	171E+01	0.8
912	0	606.19	850	6853	1.97	1210.57	1204	13	3.18E-01	20.4
213	0	618.96	25675	10230	2.81	1236.14	1226	20	9.61E+00	1.2
巴14	0	698.31	14931	837	2.89	1395.05	1386	20	5.59E+00	1.7
15	0	776.46	40709	8501	2.97	1551.58	1541	21	1.52E+01	0.8
16	0	827.81	10781	7828	3.00	1654.42	1645	19	4.04E+00	2.2
17	0	1043.98	10769	11448	3.18	2087.38	2074	23	4.03E+00	2.8
18	0	1317,42	8503	3629	3.29	2635.14	2623	24	3.18E+00	1.9
19	0	1368.56	140607	4782	3.44	2737.58	2722	34	5.26E+01	0.3
2.0	0	1474.85	4631	2547	3.43	2950.53	2938	N28 E	1.73E+00	3.0
21	0	1731.16	9038	3452	3.99	3464.06	3449	30	3.38E+00	1.9

DIRECCIÓN GENERAL DE BIBLIOTECAS

7-AUG-1992 15:06:36.52

NUCLEAR ENGINEERING TEACHING LABORATORY NUCLEAR ANALYTICAL SERVICES

SAMPLE PARAMETERS

Sample id: Sample 13 Sample weight: 1.29050E-01 G								
Project title: MONTERREY PROJECT LONG COUNT								
Configuration: GEO0058								
Acquisition time:	7-AUG-1992	12:46:51.98						
Decay corrected to:	4-AUG-1992	16:36:00.00						
Preset live time:	0 00:00:00.00	Preset real time:	0 00:45:00.00					
Elapsed live time:	0 00:44:36.80	Elapsed real time:	0 00:45:00.00					

Detector name:TENNELEC30Ave efficiency:30.00000Calibration date:29-JUL-199211:45:22.37Geometry:25 CM# of Iterations:10FWHM:1.69957E+00Image: Sensitivity:5.00000Energy Tolerance:2.00000Sensitivity:5.00000Sensitivity:5.00000Kev/Channel:4.99483E-01Start channel:25Half life ratio:8.00000Stop channel:4096

Energy (KEV) = (1.61774E+00) + (4.99483E-01) * Channel + (-5.85355E-08)*Channel**2FWHM (KEV) = (1.69957E+00) + (3.84821E-02) * SQRT (ENERGY)

Pk	ĺt	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err
1	6	27.99	5282	825	2.64	52.80	48	41	1.97E+00	2.7
2	6	30.53	3850	2870	2.48	57.88	48	41	1.44E+00	5.4
3	6	32.85	2972	4176	2.18	62.52	48	41	1.11E+00	6.3
4	6	35.22	2732	6124	2.28	67.28	48	41	1.02E+00	7.3
5	6	37.77	2210	8280	2.25	72.37	48	41	8.25E-01	9.0
6	6	40.65	2017	12961	3.05	78.14	48	41	7.54E-01	12.1
7	6	43.76	846	8747	3.32	84.37	48	41	3.16E-01	17.9
8	0	, 74.20	6995	20300	3.87	145.31	136	19	2.61E+00	5.0
9	3	84.57	2282	12355	2.08	166.08	158	18	8.53E-01	10.1
10	3	86.79	968	12349	2.36	170.52	158	18	3.61E-01	23.7
11	0	92.52	374	10249	1.17	181.99	178	10	1.40E-01	50.7
212	0	221.49	2472	14995	2.54	440.22	434	13	9.23E-01	10.4
2 13	0	510.76	22683	13988	3.43	1019.46	1006	26	8.47E+00	1.6
814	0	554.22	34505	11378	2.83	1106.49	1094	23	1.29E+01	1.0
15	0	618.99	19085	8738	2.86	1236.20	1225	22	7.13E+00	1.5
16	0	698.19	11442	6586	2.74	1394.82	1385	20	4.27E+00	2.0
17	0	776.43	30076	7289	2.93	1551.51	1540	22	1.12E+01	0.9
18	0	827.79	8380	6523	2.95	1654.38	1644	20	3.13E+00	2.6
19	0	1044.05	8393	8065	3.09	2087.53	2077	20	3.14E+00	2.9
20	0	1317.43	6166	3493	3.36	2635.15	2626	27	2.30E+00	2.6
21	0	1368.55	119185	3629	3.45	2737.58	2723	28	4.45E+01	0.3
22	0	1474.76	3365	1864	3.39	2950.35	2938	JO25 E	1.26E+00	3.4
23	0	1731.23	7690	2618	4.17	3464.21	3451	28	2.87E+00	2.0

7-AUG-1992 18:49:36.35

NUCLEAR ENGINEERING TEACHING LABORATORY NUCLEAR ANALYTICAL SERVICES

SAMPLE PARAMETERS

Sample id: Sample S	-3	Sample weight: 1.1	2630E-01 G
Project title: MON	ITERREY PROJECT	LONG COUNT	
Configuration: GEO	0044		
Acquisition time:	7-AUG-1992	15:13:30.78	
Decay corrected to:	4-AUG-1992	16:36:00.00	
Preset live time:	0 00:00:00.00	Preset real time:	0 00:45:00.00
Elapsed live time:	0 00:43:03.66	Elapsed real time:	0 00:45:00.00
	9/		
	<u> </u>		

Detector name:	TENNELEC30	Ave efficiency:	30.00000
Calibration date:	29-JUL-1992 11:45:	22.37 Geometr	Y: 25 CMLEÓN
# of Iterations:	10	FWHM: 1.69	957E+00 ®
Energy Toleranc	e:ÓN 2.00000 RAL	Sensitivity:	5.00000
Kev/Channel:	4.99483E-01	Start channel:	25
Half life ratio:	8.00000	Stop channel:	4096

Energy (KEV) = (1.61774E+00) + (4.99483E-01) + Channel + (-5.85355E-08)+Channel++2FWHM (KEV) = (1.69957E+00) + (3.84821E-02) + SQRT (ENERGY)

1020091222

Pk	lt	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err
1	6	28.06	22814	7051	2.81	52.93	48	17	8.03E+00	1.2
2	6	30.89	8188	32293	2.18	58.60	48	17	3.17E+00	4.7
3	0	37.02	279	34213	2.83	70.87	68	8	1.08E-01	115.4
4	0	74.19	24618	107585	3.47	145.30	137	22	9.53E+00	3.5
5	0	85.12	14685	81985	2.89	167.18	158	18	5.68E+00	4.6
6	0	103.08	22311	65894	2.60	203.15	196	15	8.64E+00	2.6
7	0	121.74	2594	41559	2.36	240.51	236	10	1.00E+00	14.9
8	0	328,77	5017	50991	2.44	655.04	648	14	1.94E+00	9.6
9	0	346.28	3100	39457	2.69	690.10	685	12	1.20E+00	12.9
10	0	486.76	7372	34166	2.89	971.39	965	14	2.85E+00	5.5
11	0	510.78	147660	59946	3.66	1019.51	1006	26	5.72E+01	0.5
S12	0	815.93	2719	25060	3.12	1630.62	1625	13	1.05E+00	12.2
2 13	0	857.30	3277	32202	4.16	1713.47	1706	16	1.27E+00	12.4
巴 14	0	889.28	8004	32599	3.16	1777.53	1770	16	3.10E+00	5.2
15	0	1099.17	1373	43912	2.38	2197.93	2192	13	5.31E-01	31.5
16	0	1120.30	6427	57686	3.24	2240.28	2233	16	2.49E+00	8.5
17	0	1291.80	1791	19159	3.73	2583.81	2573	22	6.93E-01	16.8
18	0	1368.57	795399	29374	3.51	2737.60	2722	35	3.08E+02	0.1
19	0	1524.61	5308	12547	3.40	3050.23	3038	26	2.05E+00	5.1
20	0	1596.00	6162	12516	3.46	3193.25	3181	N24	2.39E+00	E (4.3)
21	0	1731.29	51956	28121	4.20	3464.32	3450	36	2.01E+01	0,9

DIRECCIÓN GENERAL DE BIBLIOTECAS

7-AUG-1992 18:49:43.77

NUCLEAR ENGINEERING TEACHING LABORATORY NUCLEAR ANALYTICAL SERVICES

SAMPLE PARAMETERS

Sample id: Sample S	5-4	Sample weight: 1.00770E-01 G				
Project title: MONTERREY PROJECT LONG COUNT						
Configuration: GEO	0045					
Acquisition time:	7-AUG-1992	15:59:57.45				
Decay corrected to:	4-AUG-1992	16:36:00.00				
Preset live time:	0 00:00:00.00	Preset real time:	0 00:45:00.00			
Elapsed live time:	0 00:44:57.67	Elapsed real time:	0 00:45:00.00			

Detector name:TENNELEC30Ave efficiency:30.00000Calibration date:29-JUL-199211:45:22.37Geometry:25 CM# of Iterations:10FWHM:1.69957E+00Image: Colored co

Energy (KEV) = (1.61774E+00) + (4.99483E-01) * Channel + (-5.85355E-08)*Channel**2FWHM (KEV) = (1.69957E+00) + (3.84821E-02) * SQRT (ENERGY)

Pk	lt	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err
1	0	28.29	328	809	2.55	53.40	51	8	1.22E-01	1.47
2	0	74.16	1393	3343	4.01	145.24	136	24	5.16E-01	11.7
3	0	320.08	8277	1632	2.61	637.63	629	21	6.78E+00	0.9
4	0	510. 79	1947	978	3.52	1019.53	1008	23	7.22E-01	4.7
5	0	564.36	'411	713	3.15	1126.80	1117	19	1.53E-01	17.2
6	0	834.42	99	422	1.23	1667.65	1662	11	3.66E-02	41.6
7	0	889.36	891	921	2.75	1777.70	1767	22	3.30E-01	9.4
8	0	1099.30	1837	901	2.83	2198.20	2185	25	6.81E-01	5.0
9	0	1120.68	912	978	2.38	2241.03	2228	26	3.38E-01	9.9
10	0	1173.12	1711	636	3.35	2346.08	2333	27	6.34E-01	4.2
11	0	1291.57	1145	245	2.79	2583.35	2568	30	4.24E-01	4.6
S12	0	1332.29	1525	149	2.89	2664.93	2650	29	5.65E-01	3.5
2 13	0	1368.48	6379	183	3.39	2737.42	2723	28	2.36E+00	1.4
14	0	1460.21	136	88 -	0.86	2921.19	2911	22	5.02E-02	18.1
15	0	1731.14	440	140	3.83	3464.02	3450	29	1.63E-01	8.7
KAN I										
	Ĭ									

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

7-AUG-1992 18:49:51.67

NUCLEAR ENGINEERING TEACHING LABORATORY NUCLEAR ANALYTICAL SERVICES

SAMPLE PARAMETERS

Sample id: Sample S	-5	Sample weight: 1.20760E-01 G				
Project title: MONTERREY PROJECT LONG COUNT						
Configuration: GEO	0046					
Acquisition time:	7-AUG-1992	16:46:22.14				
Decay corrected to:	4-AUG-1992	16:36:00.00				
Preset live time:	0 00:00:00.00	Preset real time:	0 00:45:00.00			
Elapsed live time:	0 00:44:57.62	Elapsed real time:	0 00:45:00.00			

Detector name:TENNELEC30Ave efficiency:30.00000Calibration date:29-JUL-199211:45:22.37Geometry:25 CM# of Iterations:10FWHM:1.69957E+00Image: Sensitivity:5.00000Energy Tolerance:2.00000Sensitivity:5.00000Sensitivity:5.00000Kev/Channel:4.99483E-01Start channel:25Half life ratio:8.00000Stop channel:4096

Energy (KEV) = (1.61774E+00) + (4.99483E-01) * Channel + (-5.85355E-08)*Channel**2FWHM (KEV) = (1.69957E+00) + (3.84821E-02) * SQRT (ENERGY)

Pk	lt	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err
1	9	28.2 6	916	266	3.48	53.34	48	20	3.39E-01	6.1
2	9	32.05	337	1074	2.95	60.93	48	20	1.26E-01	21.2
3	0	41.66	286	3390	9.92	80.17	67	27	1.06E-01	58.5
4	0	74.13	1114	2603	3.68	145.18	136	18	4.13E-01	11.3
5	0	192.38	363	1296	2.73	381.93	376	11	1.35E-01	20.1
6	0	320.06	14356	2041	2.57	637.59	626	26	5.32E+00	1.2
7	0	511.00	1930	1143	3.73	1019.94	1007	26	7.15E-01	5.3
8	0	564.17	713	966	2.47	1126.41	1117	21	2.64E-01	11.4
9	0	810.64	418	803	2.76	1620.03	1608	21	1.55E-01	17.4
10	0	889.31	2885	849	2.90	1777.60	1768	21	1.07E+00	3.3
$/\mathbf{\hat{H}}$	0	1099.31	1994	906	3.02	2198.21	2186	24	7.39E-01	4.6
212	0	1120.39	2509	878	2.97	2240.45	2227	26	9.30E-01	4.1
13	0	1173.22	1580	628	3.33	2346.28	2334	26	5.86E-01	4.5
I 14	0	1291.58	1277	-165	3.25	2583.37	2572	22	4.73E-01	3.7
15	0	1332.53	1411/	230	3.50	2665.41	2653	30	5.23E-01	3.9
16	0	1368.48	6646	162	3.23	2737.43	2722	30	2.46E+00	1.3
17	0	1731.37	424	170	4.35	3464.49	3449	31	1.57 E-01	9.1
			111							

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

7-AUG-1992 11:35:01.73

NUCLEAR ENGINEERING TEACHING LABORATORY NUCLEAR ANALYTICAL SERVICES

SAMPLE PARAMETERS

Sample id: Sample 2	5	Sample weight: 1.00000E+00 G				
Project title: MONTERREY PROJECT LONG COUNT						
Configuration: GEO	0041					
Acquisition time:	6-AUG-1992	22:45:42.33				
Decay corrected to:	4-AUG-1992	16:36:00.00				
Preset live time:	0 00:00:00.00	Preset real time:	0 00:45:00.00			
Elapsed live time:	0 00:44:54.35	Elapsed real time:	0 00:45:00.00			
	<u> </u>					

Detector name:	TENNELEC30	Ave efficiency:	30.00000
Calibration date:	29-JUL-1992 11:45:	22.37 Geometr	y:25 CM_EÓN
# of Iterations:	10	FWHM: 1.69	957E+00 ®
Energy Tolerance	e:ÓN 2.00000 RAL	Sensitivity:	5.00000
Kev/Channel:	4.99483E-01	Start channel:	25
Half life ratio:	8.00000	Stop channel:	4096

Energy (KEV) = (1.61774E+00) + (4.99483E-01) * Channel + (-5.85355E-08)*Channel**2FWHM (KEV) = (1.69957E+00) + (3.84821E-02) * SQRT (ENERGY)
- A	631			F
1.4	S	A	1940	
				-

Pk	lt	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err
1	0	27.84	888	1541	1.71	52.50	50	7	3.29E-01	8.0
2	0	74.07	5631	10974	3.91	145.06	135	19	2.09E+00	4.7
3	0	85.39	1954	8320	3.47	167.73	160	15	7.25E-01	10.5
4	0	510.82	6334	2254	3.59	1019.58	1008	25	2.35E+00	2.4
5	0	889.11	705	932	2.95	1777.19	1770	16	2.61E-01	10.7
6	0	1099.30	742	1386	3.55	2198.19	2190	19	2.75E-01	13.0
7	0	1120.78	831	1345	3.07	2241.22	2232	19	3.09E-01	11.4
8	0	1291.71	490	587	2.93	2583.63	2573	23	1.82E-01	12.1
9	0	1368.51	15499	634	3.38	2737.48	2722	30	5.75E+00	0.9
10	0	1524.25	634	274	3.33	3049.51	3036	27	2.35E-01	7.4
11	0	1731.20	1127	391	4.20	3464.14	3449	28	4.18E-01	5.3
	11 E									

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

7-AUG-1992 15:07:41.47

NUCLEAR ENGINEERING TEACHING LABORATORY NUCLEAR ANALYTICAL SERVICES

SAMPLE PARAMETERS

Sample id: Sample 2	6	Sample weight: 1.95371E+01 G			
Project title: MON	TERREY PROJECT	LONG COUNT			
Configuration: GEO	0042				
Acquisition time:	7-AUG-1992	13:33:16.65			
Decay corrected to:	4-AUG-1992	16:36:00.00			
Preset live time:	0 00:00:00.00	Preset real time:	0 00:45:00.00		
Elapsed live time:	0 00:44:43.86	Elapsed real time:	0 00:45:00.00		
Detector name: TEN	NELEC30	Ave efficiency: 3	0.00000		
Calibration date: 29	IUL-1992 11:45	:22.37 Geometry:	25 CM EÓN		

of Iterations: 10FWHM: 1.69957E+00Energy Tolerance:2.00000 ALSensitivity:5.00000

Kev/Channel:4.99483E-01Start channel:25Half life ratio:8.00000Stop channel:4096

Energy (KEV) = (1.61774E+00) + (4.99483E-01) * Channel + (-5.85355E-08)*Channel**2FWHM (KEV) = (1.69957E+00) + (3.84821E-02) * SQRT (ENERGY)

					TABL	A 16				
Pk 1	lt 9	Energy 28.28	Area 6725	Bkgnd 595	FWHM 3.66	Channel 53.39	Left 48	Pw 53	Cts/Sec 2.51E+00	%Err 1.9
2	9	31.88	5318	4013	3.80	60.59	48	53	1.98E+00	5.1
3	9	34.98	2956	5106	3.12	66.80	48	53	1.10E+00	7.9
4	9	37.72	3201	7654	3.45	72.28	48	53	1.198+00	8.0
5	9	41.26	4454	12869	4.53	79.38	48	53	1.66E+00	7.1
6	9	46.46	2894	14639	4.79	89.78	48	53	1.08E+00	9.5
7	0	74.32	5142	16846	3.27	145.57	138	16	1.92E+00	5.9
8	0	85.00	2468	14085	2.92	166.94	160	15	9.19E-01	10.7
9	0	103.27	19329	18431	2.44	203.53	196	20	7.20E+00	1.9
10	0	122.02	1541	11178	2.83	241.06	234	14	5.74E-01	14.7
11	0	221.51	951	9276	1.88	440.26	435	11	3.54E-01	19.8
12	0	328.75	5679	9820	2.63	655.00	647	16	2.12E+00	4.2
13	0	486.94	9446	6877	2.85	971.75	965	18	3.52E+00	2.3
214	0	510.90	13406	8370	3.46	1019.75	1007	24	4.99E+00	2.0
2 15	2	554.23	15466	5482	2.74	1106.51	1098	25	5.76E+00	1.4
H 16	2	558.98	4266	5223	2.63	1116.02	1098	25	1.59E+00	4.1
17	0	618.99	9170	6425	2.83	1236.20	1225	23	3.42E+00	2.5
18	0	657.16	784	3843	2.28	1312.65	1305	16	2.92E-01	18.2
19	0	698.20	5265	4443	2.86	1394.84	1385	20	1.96E+00	3.4
20	0	751.13	476	3912	1.94	1500.84	1495	17	1.78E-01	30.3
21	0	776.42	14086	5449	2.97	1551.48	1538	26	5.25E+00	1.7
22	0	815.77	2935	3967	2.65	1630.29	1622	UTZ \	1.09E+00	5.3
23	3	927.83	3846	3747	3.03	1654.45	1644	31	1.43E+00	4.1
24	3	834.19	C115N	3385	3.05	1667.19	1644	0 31 E	4.29E-01	11.7
25	0	841.49	682	2721	3.32	1681.81	1676	13	2.54E-01	16.2
26	0	868.13	864	3813	2.56	1735.27	1727	19	3.22E-01	17.5
27	0	889.20	3040	3973	3.07	177.37	1768	18	1.13E+00	5.2
28	0	925.19	725	3134	3.18	1849.45	1843	14	2.70E-01	16.9
29	0	1043.90	3684	5242	3.26	2087.23	2075	21	1.37E+00	5.3
30	0	1120.41	2738	5698	3.23	2240.48	2231	18	1.02E+00	6.8
31	0	1291.83	417	2191	3.85	2583.87	2574	20	1.55E-01	23.8
32	0	1317.42	2960	2558	3.13	2635.13	2622	25	1.10E+00	4.4
33	0	1368.54	63837	3364	3.40	2737.55	2722	34	2.38E+01	0.5
34	0	1474.94	1729	1085	3.35	2950.72	2938	26	6.44E-01	5.1
35	0	1524,49	3257	1200	3.54	3049.98	3036	27	1.21E+00	3.1
36	0	1596.01	7377	1007	3.68	3193.27	3183	22	2.75E+00	1.5
37	0	1731.37	4089	1492	4.10	3464.49	3451	29	1.52E+00	2.8

7-AUG-1992 15:08:23.98

NUCLEAR ENGINEERING TEACHING LABORATORY NUCLEAR ANALYTICAL SERVICES

SAMPLE PARAMETERS Sample id: Sample 27 Sample weight: 2.41050E-01 G Project title: MONTERREY PROJECT LONG COUNT Configuration: GE00043 Acquisition time: 7-AUG-1992 14:19:43.10 Decay corrected to: 4-AUG-1992 16:36:00.00 Preset live time: <0 00:00:00.00 Preset real time: 0 00:45:00.00 Elapsed live time: 0 00:44:09.80 Elapsed real time: 0 00:45:00.00 Ave efficiency: 30.00000 Detector name: TENNELEC30 Calibration date: 29-JUL-1992 11:45:22.37 Geometry: 25 CM

of Iterations: 10FWHM: 1.69957E+00Energy Tolerance: N 2.00000 RALSensitivity: OT 5.00000Kev/Channel:4.99483E-01Start channel: 25Half life ratio:8.00000Stop channel: 4096

Energy (KEV) = (1.61774E+00) + (4.99483E-01) * Channel + (-5.85355E-08)*Channel**2FWHM (KEV) = (1.69957E+00) + (3.84821E-02) * SQRT (ENERGY)

TAD	1 4	-	-
IAD	LA	- 1	1

P	k H	t	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err
1		7	27.93	15585	1497	2.42	52.69	49	50	5.88E+00	1.2
2		7	30.40	10915	7638	2.74	5 7.6 3	49	50	4.12E+00	3.5
3		7	33.55	28460	28462	6.10	63.93	49	50	1.07E+01	2.4
4		7	40.56	28441	72258	7.13	77.96	49	50	1.07E+01	3.1
5		7	47.19	6408	38299	3.19	91.25	49	50	2.42E+00	5.7
6		3	69.7 6	14519	60679	2.94	136.42	128	26	4.58E+00	4.2
7		3	74.43	24327	58551	3.82	145.77	128	26	9.18E+00	2.4
8		8	80.53	1719	28322	1.40	157.99	154	21	6.49E-01	17.2
9		8	84.76	8238	57782	2.93	166.46	154	21	3.11E+00	6.6
1	0	8	99.51	22784	89821	6.21	195.99	18 2	33	8.60E+00	4.0
1		8 ALI	103.21	142391	47144	2.54	203.39	182	33	5.37E+01	0.4
	2	0	113.29	1523	25758	2.79	223.57	220	9	5.75E-01	19.3
SI	3	0	121.85	11142	38780	2.49	240.72	234	14	4.20E+00	3.9
HE I	4	0	145.39	1857	26209	2.20	287.85	284	10	7.01E-01	16.5
ZI	5	0 (159.43	1457	24899	2.37	315.97	311	10	5.50E-01	20.4
Z	6	0	208.68	3052	32062	3.00	414.58	409	13	1.1 SE+00	12.2
Y	7	0	227.97	3346	32309	2.68	453.20	447	13	1.26E+00	11.2
1	8	0	277.19	2913	25661	1.89	551.75	546	12	1.10E+00	11.2
1	9	0	282.24	1086	21630	1.66	561.86	558	10	4.10E-01	25.6
T 11 ²	0	0	293.18	2016	24748	1.76	583.76	578	12	7.61E-01	15.8
2	1	0	312.25	4126	28339	2.89	621.95	616	14	1.56E+00	8.8
2	2	0	320.18	1447	21481	2.32	637.82	633	11	5.46E-01	19.8
2	3	0	328.74	39600	30967	C 2.65	654.96	647	017	1.49E+01	1.1
2	4	0	344.52	2492	24690	3.41	686.56	680	14	9.40E-01	13.5
2	5	0	396.20	3224	19487	2.78	790.05	783	15	1.22E+00	9.6
2	6	0	432.35	4270	17337	2.72	862.44	855	15	1.61E+00	6.9
2	7	4	479.67	3327	17488	3.83	957.21	94 9	32	1.26E+00	9.2
2	8	4	486.90	62807	16992	2.78	971.69	94 9	32	2.37E+01	0.6
2	9	0	510.87	40177	22720	3.58	1019.68	1007	24	1.52E+01	1,1
3	0	3	559.00	86341	15838	2.77	1116.07	1103	32	3.26E+01	0.5
3	1	3	563.65	8867	16078	3.24	1125.38	1103	32	3.35E+00	4.5
3	2	0	618.61	1565	12385	2.71	1235.45	1229	15	5.91E-01	15.6
3	3	0	629.88	2652	13036	2.65	1258.01	1250	16	1.00E+00	9.8
3	4	0	656.86	11007	13970	2.90	1312.05	1303	18	4.15E+00	2.7
3	5	0	685.74	2288	11496	2.86	1369.89	1362	16	8.63E-01	10.7

36	0	751.52	4742	11768	2.73	1501.62	1492	20	1.79E+00	5.9
37	0	776.70	1381	9467	2.42	1552.04	1545	15	5.21E-01	5.6
38	0	815.73	20905	12856	3.00	1630.22	1620	21	7.89E+00	1.5
39	0	834.07	8148	10540	3.03	1666.96	1658	17	3.08E+00	3.1
40	0	841.56	53 58	9306	3.17	1681.94	1675	15	2.02E+00	4.2
41	0	867.83	4927	10579	2.92	1734.57	1726	17	1.86E+00	5.1
42	4	889.31	23098	11661	3.00	1777.60	1768	25	8.72E+00	1.3
43	4	894.30	623	7114	2.18	1787.59	1768	25	2.35E-01	27.3
44	3	919.43	2260	8922	3.46	1837.91	1831	28	8.53E-01	9.3
45	3	925.30	5816	10901	3,11	1849.67	1831	28	2.19E+00	4.5
46	0	963.40	4530	11380	2.92	1925.99	1917	19	1.71E+00	5.9
47	0	1099.18	5769	14810	3.35	2197.97	2188	20	2.18E+00	5.3
48	0	1120.49	19996	19946	3.19	2240.65	2228	25	7.55E+00	2.0
49	0	1172.74	944	9874	3.24	2345.31	2338	17	3.56E-01	20.8
50	2	1212.82	1386	6852	2.66	2425.60	2419	24	5.23E-01	11.6
51	2	1216.19	3494	8735	2.98	2432.36	2419	24	1.82E+00	5.7
52	0	1228.62	936	7860	2.64	2457.25	2449	17	3.53E-01	18.8
53	0	1291.51	3636	6986	3.32	2583.23	2574	18	1.37E+00	4.9
54	0	1332.15	857	6598	2.79	2664.64	2657	17	3.24E-01	19.0
55	0	1368.57	139758	11567	3.45	2737.60	2722	31	5.27E+01	0.3
56	0	1524.57	16858	3684	3.61	3050.14	3036	27	6.36E+00	1.2
57	0	1596.01	48063	3650	3.70	3193.28	3178	30	1.81E+01	0.6
58	0	1731.17	9258	3121	4.10	3464.09	3451	27	3.49E+00	1.8

(R)

DIRECCIÓN GENERAL DE BIBLIOTECAS

CAPITULO IV RESULTADOS Y RECOMENDACIONES

A) IRRADIACION CORTA.

En las tablas 18 y 19 se muestran los resultados de la irradiaión corta de las muestras 11 y 13 respectivamente.

 t_d = diferencia del tiempo que existe entre la muestra y el estándar al pasar al detector para su conteo.

El área neta del fotopico se obtiene con la diferencia del área total menos el Background (Bkgnd).

Tabla 19

Muestra 13 Estándar NBS-1632 a

Además se utilizará el factor de corrección $e^{-\lambda t}d$, dado que el estándar y las muestras pasaron al frente del detector con una diferencia de tiempo. DIRECCIÓN GENERAL DE BIBLIOTECAS

Antes de esto se efectúa un análisis del estándar blanco (polyvial vacío) dado que pueden existir energías que no pertenezcan a la muestra sino a la ampolleta en sí, como en realidad ocurrió en el experimento, ya que en el blanco se presentaron las energías .51086, 1.29345 y 1.64241. De éstas la que contiene una área bastante considerable es la de 1.29345 que corresponde al isótopo del Argón 41. Por lo tanto si en alguna muestra o estándar apareciera una energía o pico correspondiente a este elemento no se tomaría en cuenta. Este elemento puede aparecer debido a que el aire penetró al polivial al ser sellado.

El único elemento que se observó en las muestras 11 y 13 en la irradiación corta fue el Na²⁴.

El estándar que se escogió para compararlo con la muestra fue el NBS 1632a ya que este contiene el elemento sodio.

Se efectúan primero operaciones con los datos de la muestra 11 y el estándar NBS 1632a para encontrar el contenido de Na:

Peso de la muestra 11 = 0.21036 gm. Peso del estándar (1632a) = .06985 gm. $t_d = 19.9$ min. Contenido de sodio en el estándar (1632a) = 800 ppm.

Contenido de sodio en los 0.0698 gm del estándar = $800 \ \mu g \ge 0.06985 \ \mu g = 55.88 \ \mu g$

Tomando el área neta del fotópico del estándar y de la muestra que contengan menor error y haciendo uso de la ecuación (14) tenemos

 $W_X = (55.88 \,\mu g)(28923)/(5495) = 294.13 \,\mu g$

y ya que $T_{1/2}$ para el Na-24 es de 15h, tenemos que $\lambda = 0.693/(15) (3600 s) = .0000128 seg^{-1}$

DIRECCIÓN GENERAL DE BIBLIOTECAS

y $\lambda td = (.0000128 \text{ seg}^{-1})(1194 \text{ seg}) \approx 0.0152832$,

por lo tanto el factor de corrección es $e-\lambda td e^{-0.0152832} = 0.984833.$

Aplicando este factor de corrección en la Wx ya calculada tenemos

 $W_X = (294.13 \text{ Mg})(0.984833) = 289.67 \mu g$

El contenido de Na en la muestra es $\frac{289.67 \ \mu g}{0.21036 \ gm}$ = 1377 ppm 0.21036 gm

El mismo procedimiento se efectúa con la muestra 13, con la diferencia que t_d = 9.66 min.

B) IRRADIACION LARGA.

En las tablas 20 y 21 tenemos los resultados de la irradiaión larga de las muestras 11 y 13, respectivamente.

Mues	ALERE FLAMMAM VERITATIS	Est NBS-	Tabla tándar 1632 a	a 20			
Energia	Area Neta	Energía	Area Neta	Elemento	Tura	Contenido	
(Mev)	del Fotopico	(Mev)	del Fotopico		1/2	en ol	, 9
	(cuentas)		(cuentas)		DF NI	Fstándar	FÓN
UNI							(LOIN)
		τόν					
0.55423	32971	0.55423	9984	Br82	35.87h	JIECAS	1 556
0.61896	15445	0.61899	2745	Br82	35.87h	41	1.550
0.69831	6560	0.69820	822	Br82	35.87h	41	
0.77646	32208	0.77642	8637	Br82	35.87h	41	
0.82781	2953	0.82783	99	Br82	35.876	41	
1.31742	4874	1.31742	402	Br82	35.87h	41	
1.47485	2084	1.47494	644	Br82	35.87h	41	
1.36856	135825	1.36854	60473	Na ²⁴	15h	800	
1.73116	5586	1.73137	2597	Na ²⁴	15h	800	

Tabla 21

Muestra 13 Estándar NBS-1632 a

Energía	Area Neta	Energía	Area Neta	Elemento	T1/2	Contenido	td
(Mev)	del Fotopico	(Mev)	del Fotopico			en el	
1	(cuentas)		(cuentas)	%		Estándar	
A			8			(ppm)	
$\overline{\mathbf{z}}$	ALERE FLAMMAN VERITATIS						
0.55422	23127	0.55423	9984	Br82	35.87h	41	56 mín.
0.61899	10347	0.61899	2745	Br82	35.87h	41	
0.69819	4856	0.69820	822	Br82	35.87h	41	
0.77643	22787	0.77642	8637	Br 8 2	35.87h	41	
0.82779	1857	0.82783	99	Br 8 2	35.87h	41	
1.31743	2673	1.31742	402	Br82	35.87h	41	
1.47476	1501	1.47494	644	Br 8 2	35.87h	41	
1.36855	115556	1.36854	60473	Na24	15h	800	
1.73123	5072	1.73137	2597	Na ²⁴) 15h [800	LEÓN
							(

DIRECCIÓN GENERAL DE BIBLIOTECAS

B) IRRADIACION LARGA.

Aquí se procede de la misma manera que en la irradiación corta. De nuevo observamos los picos que se dan del polyvial vacío, y de las energías que aparecen, las .51082, 1.36851 y 1.73120 pertenecen al sodio, la 1.52425 al potasio y, por último, las 1.09930 y 1.29171 al hierro.

Tanto en la muestra 11 como en la 13 se observa las energías correspondientes al Na-24 y Br-82.

Como el sodio ya se calculó en la irradiación corta, se procede a analizar el Bromo-82. Las energías correspondientes a este elemento son 0.55423, 0.61896, 0.69831, 0.77646, 0.82781, 1.31742 y 1.47485.

Tomando de nuevo el estándar 1632a, ya que es el que tiene también las energías ya mencionadas del elemento Bromo-82 y, además, tomando el área de menos error, tenemos:

Peso de la muestra 11 = 0.21036 gm. Peso del estándar (1632a) = 0.19537 gm. $t_d = 1.55 h$ Contenido de bromo en el estándar (1632a) = 41 ppm. Contenido de bromo en los 0.19537 gm del estándar = $(41 \ \mu g/gm)(\ 0.19537 gm) = 8.01 \ \mu g$ $Wx = (8.01)(32971)/(9989) = 26.45 \ \mu g$ $y \ como \ T_{1/2} \ para \ el \ Br-82 \ es \ de \ 35.87 \ h \ tenemos \ que$ $\lambda = (0.693)/(35.87)(3600 \ seg) = 0.0000053 \ seg^{-1},$ $y \ \lambda t_d = (0.0000053 seg^{-1})(5580 seg) = 0.029574,$ Peso del estándar (1632a) = 41 ppm. $Mx = (0.0000053 seg^{-1})(5580 seg) = 0.029574,$ $Mx = (0.0000053 seg^{-1})(5580 seg) = 0.029574,$

e^{-λt}dr=e^{-0.029574} = 0.971 RAL DE BIBLIOTECAS

Aplicando este factor de corrección en Wx ya calculada tenemos

 $Wx = (26.45 \ \mu g)(0.971) = 25.68 \ \mu g$

El contenido de Br en la muestra es $(25.68 \ \mu g)/(0.21036 \ gm) = 122 \ ppm$

En la tabla 22 se presentan los elementos que se determinaron y su concentración en partes por millón. Estos elementos se presentaron en ambas muestras (11 y 13).

Т	a	b	а	2	2

Elemento Blanco	Cantidad (ppm)	
Na ²³	1377	
Br ⁸¹	122	

De acuerdo con los resultados obtenidos, se puede concluir que tanto el sodio (Na^{23}) como el bromo (Br^{81}) son elementos que no causan corrosión. Estos elementos están contenidos en la osamenta del ser humano.

En el año de 1987 se hizo una comparación de huesos arqueológicos y huesos modernos utilizando el análisis por activación con neutrones para determinar el número y trazas de elementos contenidos en esos huesos. El propósito del trabajo era ver si las trazas de elementos en los huesos podrían ser usadas como una indicación de la dieta.

Las muestras, que tenían un peso entre 100 y 600 mg, se limpiaron con una pequeña lija a base de carburo silicio antes de irradiarse en un flujo de 10¹⁵n/cm²-s de 1 a 3 minutos para medir Na, Mg, Al, P, Cl, Ca, Ti, V, Mn, Br, Sr, Ba y Dy. Después de 1 hora de decaimiento las muestras fueron nuevamente contadas para el Dy, Ba, Sr, Mn y Na. Aunque el trabajo analítico fue un éxito, los resultados indicaron una variación amplia en el contenido de los elementos en las muestras de los huesos ³.

Para cuantificar los elementos a estudiar en el cuerpo humano, es necesario establecer el concepto de miliequivalentes por litro. Para esto es necesario explicar el proceso de ionización.

La ionización es el proceso en virtud del cual los compuestos se rompen en iones cargados positivamente y cargados negativamente cuando se disuelven en un solvente. Los compuestos que se ionizan al disolverse se llaman electrólitos. Los electrólitos existentes en los líquidos corporales son iones de carga positiva o cationes y iones de carga negativa o aniones. Al estudiar el balance de electrólitos, la concentración de estos iones se expresa en miliequivalentes por litro de líquido corporal. Miliequivalentes por litro (meq/l) equivale al peso atómico (expresado en miligramos) por litro dividido entre la valencia. La concentración de sodio para un individuo normal es de unos 327 mg/100 ml. Para expresar estas concentraciones en meg/l, se procede así⁴;

 $\frac{\text{mg/100ml x 10}}{\text{peso atómico}} = \frac{327 \text{ mg/100 ml x 10}}{23} = \frac{3270}{23} = 142 \text{ meq/l Na}$ valencia
1

La concentración normal de sodio en el cuerpo humano son de 140 miliequivalentes por litro, cuando baja a una concentración menor de 120 meq por litro se produce la hiponatremia. Los síntomas son: náuseas, malestar, letargia, calambres, psicosis, convulsiones y coma. El sodio se puede perder por sudor y vómitos. Si la concentración de sodio es mayor de 160 meq por litro se produce la hipernatremia. Los síntomas son: temblores, irritabilidad, ataxia, espasticidad, confusión mental, convulsiones y coma⁵.

El bromo se encuentra en una concentración normal de 8 miliequivalentes por litro en el cuerpo humano. El diagnóstico de intoxicación crónica se establece cuando este elemento se presenta con una concentración mayor que los 8 meq por litro. Es en el sistema nervioso central donde comúnmente se presentan los síntomas, los cuales son: somnolencia, dificultad para pensar y disminución de memoria, vértigo e irritabilidad y, en casos más graves causan delirio, alucinaciones, letargia y coma. En el sistema gastrointestinal causan anorexia, mal olor del aliento y estreñimiento⁶.

Las cantidades obtenidas de Na^{23} y de Br^{81} presentadas en la tabla 22 no alteran para nada el equilibrio de estos elementos en el cuerpo humano. Existen otras técnicas analíticas para encontrar elementos en una muestra. En el apéndice A se pueden observar algunas de ellas junto con los límites de detección para algunos elementos. En la mayoría de estos elementos se tienen mejores límites de detección por el método de Análisis por Activación con neutrones, pues con este método se pueden llegar a detectar mediciones de hasta nanogramos.

RECOMENDACIONES.

1. Dado que las fibras de polímero formadas de gluconato de calcio y copolimero SOP(NVP-MMA), cuya fórmula es $NH(CH_2)_5CO$, contienen los elementos oxígeno y nitrógeno, se recomienda hacer uso del sistema neumático (rabbit) para su detección y de algunos otros elementos de vida media corta que pudieran estar presentes.

2. Es conveniente efectuar una irradiación de las muestras de polímero en un flujo de neutrones de 2.6 x 10^{12} n/cm²-s por un tiempo de 5 minutos, retirar estas muestras de ese flujo y en un plazo de 3 minutos efectuar el conteo por 6 minutos. De esta manera poder detectar el elemento calcio (Ca) presente en el gluconato de calcio.

En este trabajo no aparece este elemento debido a que, después de haber removido la muestra del reactor, ésta tardó entre 15 y 20 minutos para estar frente al detector y, ya que la vida media del calcio es de 8.7 minutos, no se logró detectar.

3. Los elementos básicos del polímero, aparte del O y N, son H y C, elementos que tienen sección eficaz demasíado pequeñas para cuando se utilizan neutrones térmicos, ésta es una ventaja para cuando se desean medir otros elementos con altas secciones eficaces en la presencia de alguno o algunos de los elementos ya mencionados. Pero para estos elementos con el método por activación con neutrones térmicos no será posible detectarlos. Se recomienda una irradiación con partículas de alta energía.

4. Efectuar un conteo de más tiempo para la irradiación larga. Es posible que puedan aparecer algunos otros elementos de vida media grandes que estén presentes en las fibras del polímero BOP.F.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

TABLA 1

Límites de determinación para elementos estándares: una comparación de la activación con neutrones con otras técnicas analíticas.

Elemento		FAASª	ICP-AES ^b	ICP-MSC	INAAd	
		(mg dm-3)	(mg dm-3)	(mg dm-3)	(mg kg-1)	
AI		0.06	0.046	0.00097	0.001	
Sb		0.12	0.064	0.00028	0.00005	
As	TONO	0.003	0.106	0.0028	0.00001	
Ba	CORRECT ON CONTRACTOR	0.06	0.0026	0.0002	0.001	
Bi	ALERE FLAM	0.12	0.272	0.00001	0.010	
B		2.1	0.0096	0.0038	3 1	
Cd		0.003	0.0050	0.00057	0.0005	
Ca		0.003	0.020	0.010	0.10	
С		-) 5	0.35	-	-	
Се			0.104	0.0001	0.0001	
Cs		0.06	83.0	0.00009	0.0001	
Cr		0.009	0.014	0.00011	0.003	
Co		0.015	0.012	0.00034	0.00001	
Co	VERS	0.009 D AUTO) 0.0108 A D	0.00023	0.00001	
Dv	ļ	0.15	0.054	0.0001	0.000 001 🔍	
Er	DIRE	0.12ÓN GENE	R0.036DE B	0.00006	0.0001	
Eu		0.09	0.0054	0.00006	0.00001	
Gd		6.0	0.050	0.0001	0.0001	
Ga		0.21	0.092	0.00098	0.00005	
Ge		0.3	0.096	0.00096	0.010	
Au		0.03	0.034	0.00011	0.000 0001	
Ηf		6.0	0.030	0.00002	0.0001	
Ho		0.18	0.0114	0.00004	0.0002	
In		0.12	0.126	0.00026	0.0001	

Elemento	FAAS ^a I	CP-AES ^b	ICP-MSc	INAAd
	(mg dm-3) (mg dm-3)	(mg dm-3)	(mg kg-1)
lr	1.5	0.056	0.00008	0.000 001
Fe	0.015	0.0124	0.001	0.10
La	6.0	0.020	0.00008	0.00001
Pb	0.06	0.084	0.003	1.0
Li	0.003	0.045	0.00029	
Lu	0.09	0.0020	0.00005	0.00001
Mg	0.0006	0.060	0.00094	0.010
Mn JION	0.006	0.0028	0.00029	0.00001
Hg	0.51	0.050	0.00023	0.0001
MO VERIT	0.06	0.0158	0.0007	0.001
Nd	3.0	0.0150	0.0002	0.0005
Ni 💦	0.015	0.030	0.004	0.010
Nb	6.0	0.072	0.00003	0.001
Os	0.3	0.0007	0.00044	0.001
Pd	0.045	0.088	0.0041	0.00005
P	120.0	0.152	0.032	0.001
Pt	0.21	0.11	0.00041	0.0005
к	0.003	12.0	0.004	0.0002
PrNIVER	95.0AD AUT(0.094 A	0.00009	0.00001
Re	2.4	0.012	0.004	0.00001
Rh DIRE	E 0.015 ÓN GENE	10.088 DE 1	30.002 OTE	0.0001
Rb	0.015	75	0.00036	0.0001
Ru	0.9	0.060	0.00044	0.001
Sm	3.0	0.086	0.0002	0.000 005
Sc	0.15	0.0030	0.00006	0.00001
Se	0.6	0.15	0.00028	0.005
Si	0.45	0.024	0.033	0.010
Ag	0.006	0.00032	0.00032	0.001
Na	0.001	0.058	0.003	0.0001
Sr	0.015	0.00084	0.0001	0.010
Та	4.5	0.050	0.00001	0.00005

Elemento	FAAS ^a	ICP-AES ^b	ICP-MS¢	INAAd
	(mg dm-3)	(mg dm-3)	(mg dm-3)	(mg kg-1)
Те	0.15	0.082	0.003	0.010
Tb	3.0	0.056	0.00003	0.0001
ТІ	0.06	0.080	0.00003	0.010
Th	÷	0.166	0.00001	0.0001
Тm	0.3	0.0104	0.00001	0.00001
Sn	0.3	0.09	0.00043	0.001
Ті	0.21	0.0076	0.0024	0.003
W	3.6	0.060	0.00001	0.00001
U	90.0	0.500	0.00002	0.00001
V VERIT	0.15	0.15	0.00016	0.00001
Yb	0.12	0.0036	0.00006	0.00001
Ŷ	0.6	0.0070	0.0001	0.0001
Žn 💦	0.003	0.0036	0.0059	0.010
Zr	4.5	0.0142	0.00011	0.100

Sources: ^a Flame atomic absorption spectrometry (Potts, 1987), ^b Inductively coupled plasma atomic emission spectrometry (Potts, 1987), ^c Inductively coupled plasma mass spectrometry (Jarvis, unpublished; Jarvis and Williams, 1989; Potts, 1987), ^d Instrumental thermal neutron activation analysis (Revel, 1987).

DIRECCIÓN GENERAL DE BIBLIOTECAS

TABLA 2.

Límites de determinación para una roca de silicato: una comparación de la activación por neutrones con otras técnicas analíticas.

Elemento	FAAS ^a	ICP-AES ^b	ICP-MSc	INAAd
	(mg dm-3)	(mg dm-3)	(mg dm-3)	(mg kg-1)
AI	12	9	0.485	100
Sb JTON	SMA	20	0.14	0.1
As	60	15	1.4	1
Ba	10	1	0.1	20
Bi	57	20	0.005	-
B	90 0	2	0.19	1
Cd	2	5	0.285	-
Ca	0.6	4	5	200
C	- 7	70		-
Ce		35	0.05	3
Cs	12	16 600	0.045	0.2
Cr	10		0.055	0.5
CONVER	51DAD AU I	O500MA I	0.17 UEV	0.1LEON
Cu	5	5	0.115	. R
Dy DIRE	ESOCION GEN	ERSL DE E	0.05 OTE	0.2
Er	21	15	0.03	-
Eu	18	2	0.03	0.5
Gd	1 200	5	0.06	3.9
Ga	42	16	0.49	20
Ge	60	40	0.48	-
Au	0.1	10	0.055	0.005
Hf	1 200	6	0.01	0.2
Но	36	15	0.02	0.1
١n	24	25	0.13	0.2
Ir	300	11	0.04	0.005
Fe	5	2.5	0.5	50

Elemento	FAASa	ICP-AES ^b	ICP-MSc	INAAd
	(mg dm-3)	(mg dm-3)	(mg dm-3)	(mg kg-1)
La	1 200	5	0.04	0.1
Pb	10	20	0.15	-
Li	3	3	0.15	-
Lu	180	0.4	0.025	0.05
Mg	0.12	12	0.47	•
Mn	5	15	0.15	100
Hg	102	10	0.12	-
Mo	3	¹ 0	0.35	2
Nd Alere	FLAI 3 IAM	25	0.10	5
Ni	5	5	2	50
Nb	90	5	0.02	-
Os	60	0.14	0.22	10
Pd	9	18	0.21	10
P	24 000	30	16	
Pt	42	22	0.21	<u> </u>
κ	0.6	2 400	2	
Pr	3 000	40	0.05	-
IRENIVER	S480 AD AT		DZ NUEV	VOLEÓN
Rh	3	18		
Rb DID	ECIÓN CE	15 000 E	D10.18	0.10
Ru DIK	180	12	0.22	-CAS
Sm	600	15	0.1	0.1
Sc	10	2	0.03	0.05
Se	120	50	0.14	0.5
Si	90	5	16.5	-
Ag	2	5	0.16	2
Na	0.2	12	1.5	10
Sr	1	5	0.05	100
Та	900	10	0.01	0.03
Те	30	16	1.5	-
Tb	600	80	0.02	0.1
			(***);	

Elemento	FAASª (mg dm-3)	ICP-AES ^b (mg dm-3)	ICP-MS ^c (mg dm-3)	INAA ^d (mg kg-1)
		184 - 24		
т	12	16	0.02	-
Th	i anex	-	0.01	0.2
Tm	60	2	0.01	0.34
Sn	20	6	0.22	
ті	42	1.5	1.2	100
w	90	50	0.01	1
II	90	80	0.01	0.1
V JTON	19MA	5	0.08	1
Yb June	24	1	0.03	0.2
ALERE	RITATIS	5	0.05	-
70	08	5	0.30	10
7.	6	6	0.06	100

Flame atomic absorption spectrometry (Potts, 1987), d a Sources: Inductively coupled plasma atomic emission spectrometry (Potts, 1987), b Inductively coupled plasma mass spectrometry, 3 sigma assuming dilution С x 500 (Jarvis, 1988 and unpublished data), d Instrumental thermal neutron activation analysis (Potts, 1987; Parry, unpublished data). LEÓN

DIRECCIÓN GENERAL DE BIBLIOTECAS

DAUIUNU

REFERENCIAS

3.

- 1. APLICACION MEDICA DE POLIMEROS. Charles G. Gebelin, Departamento de Química, Universidad del Estado de Youngstown.
- 2. ADVANCED MATERIALS & PROCESSES. Volumen 142, Número 4, Octubre 1992.

QUIMICA ORGANICA Y BIOQUIMICA. Donald J. Burton y Joseph I. Routh Editorial McGraw-Hill, 1989.

HANCOCK et al., 1987.

 MANUAL DE TERAPEUTICA MEDICA.
 Séptima Edición AUTÓNOMA DE NUEVO LEÓN W. Clayborne Dunagan
 M. L. Ridner Ó GENERAL DE BIBLIOTECAS Departamento de Medicina de Washington University Editorial Salvat Páginas 68 - 71.

 TRATADO DE MEDICINA INTERNA. Cecil Loeb Editorial Interamericana, 1977. Páginas 696 y 697.

BIBLIOGRAFIA

3.

- Parry, Jusan J.
 Activation spectometry in chemical analysis.
 A Wiley Interscience Publication.
 1991.
- Ehmann, William D. Radiochemistry and nuclear methods of analysis. A Wiley - Intersience Publication. 1991.

Tsoolfanidis, Nicholas. Measurement and detection of radiation. Hemisphere Publishing Corporation. 1983.

 Lyon, William S., Jr. Guide to activation analysis.
 D. Van Nostrand Company, Inc.

UNI¹⁹⁶⁴ RSIDAD AUTÓNOMA DE NUEVO LEÓN

- Morrison, George H.
 Trace analysis: Physical methods. DE BIBLIOTECAS Interscience Publishers.
- Kruger, Paul.
 Principles of activation analysis.
 Wiley Interscience.
 1970.
- Tess, Roy W.
 Applied polymer science.

- Clegg, D.W., and Collyer A. A. Irradiation efects on polymers.
 Elsevier applied science.
 London and New York.
- Price, W. J.
 Nuclear radiation detection.
 McGraw-Hill.
 1964.

10. Taylor, Denis. Neutron irradiation and activation analysis. Dr. Van Nostrand Company, Inc.

 Tolgyessy J., and Varga S. Nuclear analytical chemistry. 1989.

12. Lapp, Ralph E., and Andrews, Howard L. Nuclear radiation physics. UNPrentice-Hall.AD AUTÓNOMA DE NUEVO LEÓN

DIRECCIÓN GENERAL DE BIBLIOTECAS

lorizontal section through reactor core and neutron beam ports

FIGURA 8

