UNIVERSIDAD AUTONOMA DE NUEVO LEON

FACULTAD DE INGENIERIA MECANICA Y ELECTRICA DIVISION DE ESTUDIOS DE POSTGRADO

MODELACION DE SISTEMAS DE POTENCIA EN EL DOMINIO ARMONICO DE HARTLEY

TESIS

QUE PARA OBTENER EL GRADO DE MAESTRO EN CIENCIAS DE LA INGENIERIA ELECTRICA ESPECIALIDAD EN POTENCIA

PRESENTA MANUEL MADRIGAL MARTINEZ

MONTERREY, N. L. DICIEMBRE DE 1995

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

UNIVERSIDAD AUTONOMA DE NUEVO LEON

FACULTAD DE INGENIERIA MECANICA Y ELECTRICA DIVISION DE ESTUDIOS DE POSTGRADO

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

QUE PARA OBTENER EL GRADO DE DIR E MAESTRO EN CIENCIAS DE LA INGENIERIA ELECTRICA CON ESPECIALIDAD EN POTENCIA

PRESENTA

MANUEL MADRIGAL MARTINEZ

MONTERREY, N. L.

DICIEMBRE, 1995.

UNIVERSIDAD AUTONOMA DE NUEVO LEON FACULTAD DE INGENIERIA MECANICA Y ELECTRICA DIVISION DE ESTUDIOS DE POSTGRADO

Los miembros del comité de tesis recomendamos que la tesis MODELACION DE SISTEMAS DE POTENCIA EN EL DOMINIO ARMONICO DE HARTLEY realizada por el Ing. Manuel Madrigal Martínez sea aceptada para su defensa como opción al grado de Maestro en Ciencias de la Ingeniería Eléctrica con especialidad en Potencia.

El Comité de Tesis
ALERE FLAMMAM VERITATIS Asesor Dr. Salvador Acha Daza
Coasesor Dr. Florencio Aboytes García Dr. José Antonio de la O Serna
M.C. Marco A. Méndez Cavazos División de Estudios de Postgrado

Monterrey, N.L., Diciembre de 1995

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

FONDO TESIS

DEDICO EL ESFUERZO REALIZADO

A mis padres

Marcelino Madrigal Pérez y Adelaida Martínez Duarte

UNIVERSIDAD A y a todas esas pequeñas cosas...UEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

Los aprecio más que a la sal...

AGRADECIMIENTOS

A mi asesor Dr. Salvador Acha Daza por apoyarme desde el inició de mis estudios de maestría.

A los profesores sinodales Dr. Florencio Aboytes García y Dr. José Antonio de la O Serna por sus comentarios y sugerencias de la tesis.

Al Dr. Enrique Acha y Jesús Rico por apreciar el trabajo realizado.

A los maestros y alumnos del Programa Doctoral en Ingeniería Eléctrica.

A mis amigos de siempre

! No se dice rompido, se dice roto ... !

Al Consejo Nacional de Ciencia y Tecnología (CONACyT).

Después de esto, luego a consecuencia de esto...

...it deals only in real numbers, which are the only kind of data we have in the world of experiments, and proceeds straight to the answers we need, which are also usually expressed in real terms, without the need to move into the domain of the complex.

Ronald N. Bracewell

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

RESUMEN

MODELACION DE SISTEMAS DE POTENCIA EN EL DOMINIO ARMONICO DE HARTLEY

Publicación No.

Manuel Madrigal Martínez, M. C. en Ing. Eléctrica Universidad Autónoma de Nuevo León, 1995

Profesor Asesor: Dr. Salvador Acha Daza

SIDAD AU

La presente tesis muestra los fundamentos y el desarrollo de la modelación y el análisis en estado estable de sistemas eléctricos de potencia ante condiciones desbalanceadas y señales periódicas no-sinusoidales. TONOMA DE NUEVO I

La modelación presentada, se realiza en el dominio real armónico utilizando la transformada y series de Hartley. La modelación se hace en dos grupos, el primero incluye la parte lineal de los elementos y el segundo la parte no-lineal. La parte no-lineal se representa por un equivalente Norton linealizado.

En el trabajo se propone un modelo trifásico del generador sincrono el cual incluye el efecto de conversión de frecuencias y el efecto de saturación. Para obtener el modelo del transformador, se parte de un modelo monofásico y se deducen los modelos de bancos trifásicos para estudios armónicos. Esta tesis se complementa con dos trabajos de investigación previos [1,2].

El análisis de Hartley es una herramienta nueva aplicada a la modelación de elementos del sistema de potencia, por lo cual se muestra en forma detallada su aplicación para estudios armónicos monofásicos y trifásicos, la cual presenta la característica primordial de usar solamente números reales. El software requerido para la implementación numérica de los modelos se desarrolló en MATLAB en una computadora PC compatible, por las múltiples ventajas que presenta para el desarrollo de este tipo de investigación.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

INDICE

Resumen	
Indice de figuras	
Indice de tablas	
1. INTRODUCCION	
1.1 Antecedentes del análisis armónico1	
1.2 Operación de los sistemas de potencia	
1.3. Conceptos básicos sobre calidad de la energía y ubicación de esta tesis	
1.4. Antecedentes sobre modelación y análisis armónico	
1.5. Uso de la transformada Hartley	
1.6. Introducción al análisis armónico	
1.7. Objetivos de la tesis	
1.8. Aportaciones de la tesis	R
1.9. Descripción por capítulos	
2. LA TRANSFORMADA HARTLEY Y SUS PROPIEDADES	
2.1. Introducción	
2.2. La transformada Hartley	
2.3. Simetría entre las transformadas de Hartley y de Fourier	
2.4. Ejemplo númerico	
2.5. Series de Hartley	
2.6. La transformada discreta de Hartley	

8

INDICE (Continuación)

	2.7. Características de la función cas(.)	20
	2.8. Resumen	20
3. DH	EFINICIONES Y CONCEPTOS FUNDAMENTALES	21
	3.1. Introducción	21
	3.2. Potencia instántanea	22
	3.3. Potencia media	23
S	3.4. Valores rms	24
	3.5. Potencia aparente	25
SSI	3.6. Factor de potencia	26
E	3.7. Volts-amperes no-activos (volts-amperes reactivos)	27
E	3.8. Resumen	29
4. RF	EPRESENTACION DE ELEMENTOS LINEALES Y NO-LINEALES EN EL	
DC	OMINIO HARTLEY	30
UNI	V4.1 Introducción D. A.L.T.Ó.N.O.M.A. DE NUEV.O. L.EÓ.	30
	4.2. Representación de elementos lineales	1 1 (
	4.3. Representación de la matriz de admitancias nodal de Hartley	33
	4.4. Ejemplo númerico	34
	4.4.1. Caso monofásico	34
	4.4.2. Caso trifásico	5
	4.5. Linealización de elementos no-lineales	18
	4.6. Corriente de saturación en un elemento inductivo	42
	4.7. Ejemplo númerico	43
	4.8. Resumen	46

11 A

INDICE (Continuación)

5. REPRESENTACION DEL GENERADOR SINCRONO EN EL

DOMINIO HARTLEY
5.1. Introducción
5.2. Consideraciones preliminares
5.2.1. Operación del generador síncrono bajo condiciones desbalanceadas49
5.3. Obtención de la matriz de admitancias de Hartley $Y_{d_q0_b}$
5.4. Obtención de la matriz de admitancias de Hartley $Y_{\alpha\beta\gamma_h}$
5.5. Obtención de la matriz de admitancias de Hartley Y _{abe_h}
5.6. Inclusión de una característica no-lineal
5.7. Conexión del generador al sístema de potencia
5.8. Resumen
6. REPRESENTACION DEL TRANSFORMADOR EN EL DOMINIO HARTLEY65
6.1. Introducción
6.2. Modelo del transformador monofásico
6.3. Modelos de bancos trifásicos
6.4. Resumen

7. REPRESENTACION DEL SISTEMA ELECTRICO DE POTENCIA EN EL

DOMINIO HARTLEY	7 2
7.1. Introducción	72
7.2. Método de solución	73
7.3. Ejemplos númericos	75
7.3.1. Ejemplo 1	75
7.3.2. Ejemplo 2	77

INDICE (Continuación)

7.3.3. Ejemplo 3	81
7.3.4. Ejemplo 4	84
7.3.5. Ejemplo 5	85
7.3.6. Ejemplo 6	87
7.4. Resumen	

8. COI	NCLUSIONES Y TRABAJOS FUTUROS	91
	8.1. Conclusiones	€1
5	8.1.1. Principales características de la transformada de Hartley	91
SSI	8.1.2. Principales resultados del análisis de circuitos eléctricos usando	
Ě	análisis de Hartley	92
E	8.1.3. Principales resultados en la modelación para estudios armónicos	
Y	utilizando análisis de Hartley	92
	8.2. Aportaciones)3
	8.3. Trabajos futuros	14
UNI	VERSIDAD AUTÓNOMA DE NUEVO LEÓ	Ν
REFE	RENCIAS	95 (
	DIRECCIÓN GENERAL DE BIBLIOTECAS	
APEN	DICE A: OBTENCION DE LAS SERIES Y TRANSFORMADA DE HARTLEY	
	A PARTIR DE LAS SERIES TRIGONOMETRICAS DE FOURIER	99
APEN	DICE B: LISTADOS DE LA TRANSFORMADA RAPIDA DE HARTLEY1	05
APEN	DICE C: CARACTERISTICA POLINOMIAL DE LA CURVA DE	

MAGNETIZACION	8
APENDICE D: CARACTERISTICA NO-LÍNEAL DE LA MAGNETIZACION DE	
ELEMENTOS INDUCTIVOS	1

APENDICE E: DATOS DE	L GENERADOR Y TRANSFORMADOR	117

• a

È.

INDICE DE FIGURAS

1.1.	a) Circuito alimentado por fuente no-sinusoidal. b) Forma de onda de la fuente7
1 .2 .	Forma de onda del voltaje en el capacitor
2.1.	Circuito serie 16
2,2.	Representación de la transformada de la función v(t). a) Transformada Hartley.
\mathbb{R}	b) Transformada de Fourier
4.1.	Red lineal con una fuente de armónicas
4.2.	Forma de la matriz de admitancias nodal de Hartley del sistema monofásico
4.3.	Forma de la matriz de admitancias nodal de Hartley del sistema trifásico
4.4.	Equivalente Norton en el dominio Hartley
5.1.	Representación de los voltajes y corrientes en diferentes espacios
5.2.	Representación de la máquina síncrona, mostrando los ejes dq0, $\alpha\beta\gamma$ y abc
-5,3	Devanados del generador para estudios armónicos
5.4.	Forma de la matriz de admitancias Hartley que representa al generador
	incluyendo el efecto de conversión de frecuencias y el efecto de saturación
5.5.	Representación de los devanados del estator del generador
5.6.	Generador conectado al sistema de potencia. a) Estrella. b) Delta
5.7.	Equivalente de generador síncrono para estudios armónicos. a) Equivalente
	Norton b) Equivalente Thévenin
6.1.	Modelo del transformador monofásico para estudios armónicos
6.2.	Equivalente del transformador monofásico para estudios armónicos
6.3,	Equivalente de la parte lineal67
6.4.	Equivalente de la parte no-lineal

.

INDICE DE FIGURAS (Continuación)

(E	Constitution for the second seco	
0.3.	Conexion de un banco tritasico.	
6.6.	Equivalente del banco de la Figura 6.5	
6.7.	Forma de la matriz de admitancias Hartley para la conexión delta-estrella	
	aterrizada, incluyendo el efecto de saturación70	
7.1.	Representación de la red eléctrica en parte lineal y parte linealizada.	
	a) Red eléctrica. b) Equivalente	
7.2.	Diagrama de flujo	
7.3.	Carga trifăsica	
3.4.	Voltaje en la carga. a) Sin considerar saturación. b) Considerando saturación	
RS	y pérdidas en el núcleo76	
7.5.	Magnitud de las armónicas de los voltajes. a) Sin considerar saturación,	
E	serie Hartley. b) Sin considerar saturación, serie Coseno. c) Considerando	
	saturación y pérdidas en el núcleo, serie Hartley. d) Considerando saturación	
	y pérdidas en el núcleo, serie Coseno77	
7.6.	Generador-carga desbalanceada	I
U7.7.	Voltajes y corrientes de las fases. a) Fase a. b) Fase b. c) Fase c	
7.8.	Magnitud de las armónicas. a) Voltajes. b) Corrientes	(
7.9.	Voltajes y corrientes de las fases. a) Fase a. b) Fase b. c) Fase c	
7,10.	Magnitud de las armónicas. a) Voltajes. b) Corrientes	
7.11.	Voltajes y corrientes de las fases. a) Fase a. b) Fase b. c) Fase c	
7.1 2 .	Magnitud de las armónicas. a) Voltajes. b) Corrientes	
7.13.	Generador-transformador-carga	
7.14	Voltajes. a) Lado delta del transformador. b) Lado estrella del transformador	
7.15.	Magnitud de las armónicas del voltaje. a) Lado delta del transformador.	
	b) Lado estrella del transformador	

INDICE DE FIGURAS (Continuación)

7.16.	Voltajes. a) Lado delta del transformador. b) Lado estrella del transformador83	
7.1 7 .	Magnitud de las armónicas del voltaje. a) Lado delta del transformador.	
	b) Lado estrella del transformador	
7.18.	Voltajes del lado de alta del transformador. a) Hasta la séptima armónica.	
	b) Hasta la quinceava armónica	
7.19.	Magnitud de las armónicas del voltaje del lado de alta del transformador.	
/-	a) Hasta la séptima armónica. b) Hasta la quinceava armónica	
7.20.	Fuente de armónicas-transformador-carga	
7.21.	Formas de onda, a) Fuente de corriente, b) Voltaje en la delta del transformador.	
SSI	c) Voltaje en la estrella del transformador	
7.22.	Magnitud de las armónicas del voltaje. a)Lado delta. b)Lado estrella	
7.23.	Formas de onda de voltaje. a) Delta del transformador. b) Estrella del	
N.	transformador	
7.24.	Magnitud de las armónicas del voltaje. a)Lado delta. b) Lado estrella	
7.25,	Voltajes y corrientes de las fases. a) Fase a. b) Fase b. c) Fase c	
7.26.	Magnitud de las armónicas. a) Voltajes. b) Corrientes.	
7.27.	Voltajes considerando hasta la séptima armónica. a) Formas de onda.	í
	b) Magnitud de las armónicas FRAL DE BIBLIOTECAS 88	
7.28.	Voltajes considerando hasta la quinceava armónica. a) Formas de onda.	
	b) Magnitud de las armónicas	
· 7.29.	Voltajes considerando hasta la trigésima primera armónica. a) Formas de onda.	
	b) Magnitud de las armónicas	
C .1.	Característica experimental de un transformador trifásico moderno	
C.2.	Característica experimental y característica de ajuste polinomial	

12

INDICE DE TABLAS

1.1.	Valores para cada armónica8
2.1.	Propiedades de la transformada de Fourier y de la transformada Hartley
2.2.	Simplificación de la convolución en la transformada Hartley
2.3.	Simplificación de los coeficientes de las series Hartley
2.4.	Propiedades de la función cas(.)

UANL

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

CAPITULO 1 INTRODUCCION

1.1. ANTECEDENTES DEL ANALISIS ARMONICO

El término "armónica" tiene sus orígenes en la acústica, donde una armónica es el sonido que se obtiene apoyando el dedo en una cuerda que vibra, o dicho de otra manera es la frecuencia que se obtiene como múltiplo de la frecuencia original con que la cuerda vibra (frecuencia fundamental). El término armónica tiene su significado muy similar en las matemáticas, donde en 1822 el matemático francés Jean-Baptiste-Joseph Fourier (1768-1830) en su trabajo *Théorie analytique de la chaleur* mostró que una función periódica de período T puede ser expresada en series trigonométricas como

$$f(t) = a_0 + \sum_{n=1}^{\infty} (a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t))$$

donde ω_0 es la frecuencia fundamental $\omega_0=2\pi/T_0$ y los coeficientes a_n y b_n son números reales asociados a f(t), a cada término $a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t)$

se le denominó "armónica n" de la función f(t). Las armónicas comúnmente se le asocian a una magnitud c_n y a un ángulo ϕ_n como

$$c_n \cos(n\omega_0 t - \phi_n)$$

donde $\mathbf{c}_{n} = \sqrt{\mathbf{a}_{n}^{2} + \mathbf{b}_{n}^{2}}$ y $\phi_{n} = tg^{-1} \left(\frac{\mathbf{b}_{n}}{\mathbf{a}_{n}} \right)$

así, el análisis armónico se puede interpretar como el proceso de calcular las magnitudes y ángulos de la frecuencia fundamental y de orden superior de funciones periódicas que se llevan a cabo en el dominio armónico, aunque estrictamente sería calcular las magnitudes a_n y b_n de las funciones armónicas de una función periódica.

El análisis armónico se asocia con el análisis de Fourier (análisis en el dominio de la frecuencia usando series complejas) el cual se lleva a cabo usando solamente los coeficientes de las armónicas y no interviene el tiempo. El análisis armónico empezó a tener importancia en los sistemas de eléctricos de potencia en Alemania, en los años 1920's y 1930's cuando debido a convertidores estáticos las formas de onda de voltaje presentaban distorsión por componentes armónicas, y a partir de entonces se ha hecho un intenso trabajo en lo referente al análisis armónico en los sistemas eléctricos de potencia.

1.2. OPERACION DE LOS SISTEMAS DE POTENCIA

Los sistemas eléctricos de potencia normalmente (ideales) se consideran balanceados y operando bajo señales sinusoidales (solamente frecuencia fundamental, 60 Hz.) y en estado estable. Pero la realidad es otra, dado que los sistemas de potencia operan bajo condiciones de operación desbalanceadas y ante señales no-sinusoidales (contenido de armónicas) además de estar sujetos a constantes cambios de operación. Con la presencia de señales no-sinusoidales en los sistemas de potencia se requiere que el sistema sea modelado en el dominio armónico.

El modelar los sistemas eléctricos bajo estas condiciones de operación, hace necesario considerar las siguientes características:

- La operación bajo condiciones desbalanceadas es debida a líneas de transmisión no transpuestas, cargas desbalanceadas, bancos de transformadores formados por unidades monofásicas distintas, etc. Estas condiciones hacen necesario una modelación trifásica del sistema.
- Las señales no-sinusoidales son debidas a elementos que introducen señales armónicas a la red, esto es, señales de corriente y/o voltaje con frecuencias distintas a la frecuencia fundamental del sistema, como son: convertidores de CD/CA, compensadores estáticos de

VARs (CEV's) que utilizan reactores controlados por tiristores (RCT's) y/o switcheo de capacitores por tiristores (CST's), hornos eléctricos, lámparas fluorescentes, otros elementos no-lineales (saturación del núcleo de elementos inductivos) y demás dispositivos de estado sólido, etc. Otra fuente de armónicas es el generador síncrono, el cual al alimentar cargas desbalanceadas presenta un efecto de conversión de frecuencias que provoca la inyección de corrientes armónicas en la red.

 El cambio constante de los sistemas de potencia se debe a aperturas de líneas, switcheo de capacitores, cambios de carga, cambios de generación, etc. Sin embargo se puede considerar que el sistema de potencia, en un determinado intervalo de tiempo, no presenta cambios significativos, considerándo entonces que opera en estado estable.

Encontrar la respuesta total (transitoria y estado estable) de los sistemas de potencia resulta muy complicado, dado que los sistemas de potencia son extremadamente no-lineales además de ser de gran dimensión, por lo que en la actualidad no existe método para resolver el problema en forma completa⁴. De aquí la necesidad de dividir los problemas en estado transitorio y estado estable. En lo que respecta al análisis armónico, este cae dentro del análisis en estado estable para lo cual existen técnicas eficientes de solución como el análisis fasorial, que en forma más general es el análisis de Fourier. Así, la modelación de los elementos del sistema de potencia en estado estable se debe desarrollar en forma trifasica y en el dominio armónico para que sea una modelación más precisa y además elegante.

DIRECCION GENERAL DE BIBLIOTECAS

Estas técnicas de modelación y análisis en el dominio armónico vienen acompañadas con nuevos conceptos de potencia activa, potencia reactiva, factor de potencia, etc. dado que el sistema opera bajo condiciones de operación diferentes a los sistemas ideales. Algunos trabajos importantes referentes a conceptos nuevos para sistemas que operan bajo condiciones desbalanceadas y no-sinusoidales se reportaron en (1993-1994) [3,4,5,6,7] y una referencia significativa es [8].

^{*} M. Pavella, P. G. Murthy, Transient Stability of Power Systems, John Wiley & Sons, 1994.

1.3. CONCEPTOS BASICOS SOBRE CALIDAD DE LA ENERGIA Y UBICACION DE ESTA TESIS

Varias áreas de investigación se han desarrollado recientemente debido a las nuevas condiciones de operación de los sistemas eléctricos ante señales no-sinusoidales, estas áreas caen dentro del concepto de calidad de la energía eléctrica[•] [9,10,12,23] la cual contempla las siguientes clasificaciones:

 Modelación y análisis: Obtención de modelos de los elementos de sistema usando el dominio armónico, métodos estocásticos, etc. análisis en el tiempo, o usando transformadas como Laplace, Fourier, Walsh y Hartley, técnicas de estimación, redes neuronales, etc.

Instrumentación: Mediciones, analizadores de ondas, etc.

 Fuentes: Convertidores, rectificadores, FACT's, hornos eléctricos, lámparas fluorescentes, y demás elementos no-lineales.

Solución: Filtros pasivos y activos, etc.

• Conceptos: Definiciones y estandares.

Efectos: Sobrecarga de banco de capacitores, interferencia con el sistema carrier (5 a 50 kHz.) utilizado como canal de comunicación en las líneas de transmisión, pérdidas adicionales y sobrecalentamiento de máquinas síncronas y de inducción así como disminución de la velocidad y pares parásitos, sobrevoltajes y sobrecorrientes debido a efectos de resonancia (capacitores y líneas de transmisión) en el sistema, problemas en dieléctricos y aislantes de cables, interferencia inductiva con los sistemas de telecomunicaciones, error en medidores tipo inducción, problemas en los controles de excitación de unidades generadoras, operación incorrecta de dispositivos de protección, etc.

De lo anterior se establece la importancia del estudio de los sistemas de potencia ante señales no-sinusoidales. Este trabajo de tesis cae dentro de la modelación y el análisis de los sistemas eléctricos de potencia.

^{*} Calidad de la energía eléctrica significa diferentes cosas para diferentes personas [23].

1.4. ANTECEDENTES SOBRE MODELACION Y ANALISIS ARMONICO

Trabajos referentes a la modelación y el análisis para estudios armónicos (nosinusoidales) han sido numerosos y de gran importancia. Entre las principales publicaciones están las de Daozhi Xia y G.T. Heydt (1982) [41,42] y posteriormente J. Arrillaga, Bradley y Bodger publicaron en 1985 uno de los principales textos en el área [11]. Otra referencia, donde se describen en detalle los métodos existentes para la solución al problema de armónicas se presenta en [12].

Trabajos más recientes, referentes a la modelación de los sistemas eléctricos, para estudios armónicos fueron presentados por A. Semlyen, E. Acha y J. Arrillaga (1988) [13,14], quienes utilizaron series complejas de Fourier para representar al sistema en el dominio armónico complejo, esta modelación representa a los elementos no-lineales del sistema por un equivalente Norton; una vez que se ha linealizado en el dominio complejo armónico. E. Acha [14] muestra en forma detallada la representación de transformadores para estudios armónicos fueron publicados en (1987) [15], donde se presenta el modelo equivalente del generador síncrono que incluye el efecto de conversión de frecuencias y el efecto de saturación. Posteriormente W. Xu, W. Dommel y J.R. Martí (1991) [16] obtienen un modelo similar al publicado en [15].

Modelos más exactos de los elementos del sistema de potencia en el dominio armónico complejo son reportados por A. Medina y J. Arrillaga (1993) [17,18] además de proporcionar técnicas más eficientes de solución. La modelación basada en el dominio armónico complejo requiere de gran capacidad de memoria computacional, y la aplicación de técnicas de dispersidad es muy importante debido a la gran dimensión de las ecuaciones lineales^{*} que representan a los sistemas eléctricos.

^{*} Para un sistema trifásico, de n nodos y considerando hasta la h-ésima armónica, la matriz de admitancias nodales que representa al sistema tiene dimensión de orden 3n(2h+1)x3n(2h+1) y es altamente dispersa.

1.5. USO DE LA TRANSFORMADA HARTLEY

En 1942 apareció la tranformada Hartley la cual se empezó a aplicar en estudios de señales de radiofrecuencia, y posteriormente, como lo hace evidente la literatura técnica referente a la transformada Hartley [24,26,27,28], se hace posible el tener aplicaciones en otras áreas de investigación. La bibliografía referente a la transformada Hartley entre 1991 y 1993, se puede dividir de acuerdo a las áreas en que se ha aplicado [19]: métodos de cálculo y la transformada rápida de Hartley (24.5%); teoría de la transformada Hartley (21%); ondas y aplicación a tratamiento de imágenes (11.5%); aplicaciones en ingeniería de potencia (10.5%); aplicaciones en biomedicina (9.5%); arquitectura de dos y tres dimensiones (6.5%); teoría de los números (2%); aplicaciones en redes neuronales artificiales (2%). Otras aplicaciones incluyen astronomía y la arquitectura VLSI.

En los años 1990's aparecen los primeros reportes con aplicaciones de la transformada Hartley al análisis de la propagación de armónicas en redes eléctricas monofásicas. Los trabajos presentados por G.T. Heydt, K.J. Olejniczak, R. Sparks y E. Viscito (1991-1994) [19,20,21] muestran la bondad de la transformada Hartley al trabajar solamente con números reales. Posteriormente G. T. Heydt [22,23] muestra que es posible representar los elementos pasivos de un circuito eléctrico por matrices reales, denominadas impedancias Hartley.

1.6. INTRODUCCION AL ANALISIS ARMONICO BIBLIOTECAS

El estudio armónico en un sistema eléctrico es un problema que se puede resolver mediante la descomposición de las fuentes no-sinusoidales en términos de sus armónicas. Esto hace necesario encontrar la respuesta de la red para cada armónica (siempre y cuando se trate de una red lineal), y obtener la respuesta total aplicando el principio de superposición. Estos principios básicos se muestran en el siguiente ejemplo ilustrativo. Se desea encontrar la caída de tensión en estado estable del capacitor de 1 F, cuando está alimentado por una fuente no-sinusoidal, cuya forma de onda se muestra en la Figura 1.1.b.

La forma de onda de seis pulsos v_s(t) es representada por la serie de Fourier como:

$$\mathbf{v}_{s}(t) = \operatorname{sen}(\omega_{0}t) + \frac{1}{5}\operatorname{sen}(5\omega_{0}t) - \frac{1}{7}\operatorname{sen}(7\omega_{0}t) - \frac{1}{11}\operatorname{sen}(11\omega_{0}t) + \frac{1}{13}\operatorname{sen}(13\omega_{0}t) + \dots (1.1)$$

donde
$$\omega_o = 2\pi f_o \operatorname{con} f_0 = 1 \operatorname{Hz}$$

Usando análisis fasorial se tiene que la tensión en el capacitor está dada por:

 $V_{c}(\omega) = H(\omega)V_{s}(\omega)$ (1.2)
UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN
donde H(\omega) = $\frac{1}{1+j\omega}$ (1.2)

La ecuación (1.2) se puede resolver por superposición al aplicar cada una de las componentes de $V_s(\omega)$, obteniéndose la siguiente expresión:

$$V_{c}(\omega) = \sum_{n=1}^{\infty} \{H(n\omega_{0})V_{s}(n\omega_{0})\} \qquad n = 1, 5, 7, 11, 13,...$$
(1.3)

al resolver para las armónicas n = 1, 5, 7, 11, 13, se tiene la Tabla 1.1.

n	$H(n\omega_0)$	$V_s(n\omega_0)$	$V_{c}(n\omega_{0})$
1	0.15718∠-80.95°	1∠0°	0.15718∠-80.95°
5	0.03181∠-88.17°	$\frac{1}{5} \angle 0^{\circ}$	0.00636∠-88.17°
7	0.02273∠-80.7°	$\frac{1}{7} \angle 180^{\circ}$	0.00325∠91.3
11	0.01447∠-89.17°	$\frac{1}{11} \angle 180^{\circ}$	0.00132∠90.83⁰
13	0.01224∠ - 89.29°	$\frac{1}{13} \angle 0^{\circ}$	0 00094∠ - 89.29°

Tabla 1.1. Valores para cada armónica.

De los resultados obtenidos en forma fasorial se regresa al dominio del tiempo para conocer la forma de la onda de la tensión en el capacitor, la cual resulta ser:

 $\mathbf{v}_{c}(t) = 0.15718 \operatorname{sen}(\omega_{0}t - 80.95^{\circ}) + 0.00639 \operatorname{sen}(5\omega_{0}t - 88.17^{\circ}) + 0.00325 \operatorname{sen}(7\omega_{0}t + 91.3^{\circ}) \\ + 0.00132 \operatorname{sen}(11\omega_{0}t + 90.83^{\circ}) + 0.00094 \operatorname{sen}(13\omega_{0}t - 89.29^{\circ})$

la onda de voltaje $v_c(t)$ del capacitor se presenta en la Figura 1.2, donde se puede apreciar el suavizamiento que existe, respecto a la señal de excitación $v_s(t)$.

Figura 1.2. Forma de onda del voltaje en el capacitor.

De este ejemplo ilustrativo se puede partir para comprender el principio del análisis armónico. De aquí en adelante toda la notación usada en esta tesis se hará en el dominio Hartley, al menos que se especifique lo contrario.

1.7. OBJETIVOS DE LA TESIS

El modelado de los elementos en el dominio armónico complejo y el uso de la transformada Hartley en el análisis de propagación de armónicas dio lugar a la presente investigación, la cual conjunta las técnicas de modelación seguidas por A. Semlyen, J. Arrillaga, E. Acha, J. F. Eggleston y A. Medina y las técnicas de análisis de Hartley inicialmente propuestas en estudios de calidad de energía por G.T. Heydt, K.J. Olejniczak, R. Sparks y E. Viscito. Así el presente trabajo de investigación pretende cumplir con los siguientes objetivos:

- Analizar las características de la transformada Hartley para su aplicación en los sistemas eléctricos de potencia para estudios armónicos.
- Obtener modelos de los elementos lineales y no-lineales usando el dominio de Hartley.
- Tratar el problema de armónicas desde el punto de vista trifásico en el dominio Hartley.
- Obtener el modelo del generador síncrono en el dominio de Hartley para estudios
 armónicos incluyendo el efecto de conversión de frecuencias y el efecto de saturación.
- Obtener el modelo del transformador para estudios trifásicos armónicos considerando el efecto de saturación.
- Mostrar la forma de integrar estos modelos para representar un sistema eléctrico de potencia usando el análisis de Hartley.
- Visualizar posibles aplicaciones futuras de la transformada Hartley en los sistemas eléctricos de potencia.

1.8. APORTACIONES DE LA TESIS

Se considera que la tesis aporta una nueva visión para el modelado de los sistemas de potencia en estado estable, y en general para el análisis de circuitos eléctricos en estado estable usando notación con números reales (dominio Hartley) solamente.

En especial:

- Muestra modelos detallados de los elementos lineales y no-lineales en el dominio armónico de Hartley.
- Presenta un modelo del generador síncrono para estudios trifásicos armónicos el cual incluye el efecto de conversión de frecuencias y el efecto de saturación.
- Desarrolla una forma de obtener modelos de bancos de transformadores para estudios armónicos.
- Presenta una forma general de representar al sistema eléctrico de potencia en el dominio real haciendo uso de la transformada y las series Hartley para análisis armónico.
- Se desarrollaron las rutinas para la transformada Rápida de Hartley.

1.9. DESCRIPCION POR CAPITULOS

UNIVERSIDAD AUTONOMA DE NUEVO LEON

La tesis está organizada en capítulos cuyo contenido se describe a continuación.

DIRECCION GENERAL DE BIBLIOTECAS

Capítulo 2. Se describen las características principales de la transformada de Hartley y su semejanza con la transformada de Fourier, así como algunas de sus propiedades principales.

Capítulo 3. En este capítulo se presentan los principales conceptos de potencias activa y reactiva y factor de potencia para sistemas excitados por señales no-sinusoidales; haciendo uso de las series de Hartley.

Capítulo 4. Se muestra el procedimiento y la forma matricial que presentan los elementos lineales de un circuito eléctrico al ser representados en el dominio de Hartley. Se obtiene un equivalente Norton linealizado en el dominio de Hartley que representa a los elementos no-lineales. En forma particular se obtiene un equivalente Norton para la característica de saturación de un elemento inductivo, así como un procedimiento para incluir las pérdidas en el núcleo.

Capítulo 5. En el se obtiene un modelo equivalente del generador síncrono para estudios armónicos trifásicos, el cual incluye el efecto de conversión de frecuencias y el efecto de saturación.

Capítulo 6. Desarrolla un equivalente del transformador monofásico para estudios armónicos, así como un procedimiento para la formación de bancos trifásicos; tomando como base el equivalente monofásico.

Capítulo 7. Muestra en forma simple el procedimiento para representar a un sistema eléctrico en el dominio de Hartley y así poder realizar estudios armónicos. Se presentan ejemplos ilustrativos a fin de visualizar el proceso de modelación y los elementos que intervienen en el

análisis.versidad autónoma de nuevo león

Capítulo 8. Presenta las principales conclusiones del trabajo, las aportaciones más relevantes de la investigación y posibles trabajos futuros en el análisis de redes eléctricas usando el dominio de Hartley.

11

CAPITULO 2

1

LA TRANSFORMADA HARTLEY Y SUS PROPIEDADES

2.1. INTRODUCCION

El análisis de Fourier ha sido desde hace un siglo y medio la principal herramienta para los estudios armónicos. Para señales discretas en el tiempo se desarrolló la transformada discreta de Fourier [24] dando lugar, a mediados del presente siglo, a la transformada rápida de Fourier. Una de las principales características de la transformada y de las series de Fourier es la utilización de números complejos.

En 1942 el ingeniero y matemático norteamericano Ralph Vinton Lyon Hartley (1890-1970) [25] propuso una nueva integral denominada transformada Hartley, la cual, a diferencia de la transformada de Fourier, trabaja con números reales. En el presente capítulo se parte de la definición y se revisan sus principales propiedades, aplicables en el análisis de sistemas de potencia.

DIRECCIÓN GENERAL DE BIBLIOTECAS

2.2. LA TRANSFORMADA HARTLEY

R. V. Hartley introdujo el siguiente par de integrales [27]:

$$H(v) = \int_{-\infty}^{\infty} V(t) cas(vt) dt$$

$$V(t) = \int_{-\infty}^{\infty} H(v) cas(vt) dv$$
(2.1)
(2.2)

donde $v = 2\pi f$ es la frecuencia angular en rad/seg. y f es la frecuencia en Hz. La función cas(.) está definida como:

$$cas(\theta) = cos(\theta) + sen(\theta)$$
(2.3)

A la ecuación (2.1) se le conoce como la transformada Hartley de V(t) y a (2.2) como la transformada inversa de Hartley de H(v). Se debe observar que tanto (2.1) como (2.2) contienen el mismo kernel cas(.).

La única relación directa que existe entre la transformada de Hartley y la transformada de Fourier es que mantienen algunas simetrías, las cuales pueden relacionarse entre sí.

2.3. SIMETRIA ENTRE LAS TRANSFORMADAS DE HARTLEY Y DE FOURIER

La transformada de Fourier se puede representar de la siguiente manera[27]:

 $\mathbf{F}(\omega) = \int \mathbf{V}(t) \cos(\omega t) dt - j \int \mathbf{V}(t) \sin(\omega t) dt$

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

donde V(t) se descompone en sus partes par $V_e(t)$ e impar $V_o(t)$

DIRECCION GENERAL DE BIBLIOTECAS

 $V(t)=V_e(t)+V_o(t)$

(2.5)

(2.4)

sustituyendo (2.5) en (2.4) se tiene:

$$\mathbf{F}(\omega) = \int_{-\infty}^{\infty} V_{e}(t) \cos(\omega t) dt + \int_{-\infty}^{\infty} V_{o}(t) \cos(\omega t) dt - j \int_{-\infty}^{\infty} V_{e}(t) \sin(\omega t) dt - j \int_{-\infty}^{\infty} V_{o}(t) \sin(\omega t) dt \quad (2.6)$$

Al integrar una función par, donde el integrando es impar, como $V_o(t)\cos(\omega t)$ o viceversa, como $V_e(t)\sin(\omega t)$, dicha integral resulta ser cero, entonces (2.6) se reduce a:

$$F(\omega) = \int_{-\infty}^{\infty} V_{e}(t) \cos(\omega t) dt - j \int_{-\infty}^{\infty} V_{o}(t) \sin(\omega t) dt = R(\omega) + jX(\omega)$$
(2.7)

Al comparar con la transformada Hartley, (2.1) puede representarse como:

$$H(v) = \int_{-\infty}^{\infty} V(t)\cos(vt)dt + \int_{-\infty}^{\infty} V(t)\sin(vt)dt$$

=
$$\int_{-\infty}^{\infty} V_{e}(t)\cos(vt)dt + \int_{-\infty}^{\infty} V_{o}(t)\cos(vt)dt + \int_{-\infty}^{\infty} V_{e}(t)\sin(vt)dt + \int_{-\infty}^{\infty} V_{o}(t)\sin(vt)dt \qquad (2.8)$$

=
$$\int_{-\infty}^{\infty} V_{e}(t)\cos(vt)dt + \int_{-\infty}^{\infty} V_{o}(t)\sin(vt)dt = E(v) + O(v)$$

De lo anterior se concluye que la transformada de Fourier está formada por la parte par de la transformada de Hartley menos j (complejo) veces la parte impar, y la transformada Hartley está formada por la parte real de la transformada de Fourier menos la parte imaginaria,

esto es:
UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

$$H(v) = (R(\omega) - X(\omega))|_{\omega = v}$$
ENERAL DE BIBLIOTECAS
 $F(\omega) = (E(v) - jO(v))|_{v=\omega}$
(2.9)

Se puede citar algunas otras propiedades de la transformada de Fourier y la transformada Hartley; como se muestra en la Tabla 2.1.

Teorema	V(t)	F(ω)	Η(ν)
Similaridad	V(t/T)	TF(Ta)	T H(Tv)
Adición	$V_1(t) + V_2(t)$	$\overline{F_1(\omega)} + \overline{F_2(\omega)}$	$H_1(v) + H_2(v)$
Negativo	V(-t)	F(-ω)	H(-v)
desplazada	V(t-T)	$e^{-j\omega T}F(\omega)$	sen(vT)H(-v) + cos(vT)H(v)
Modulación	$V(t)Cos(\omega_0 t)$	$\frac{1}{2}F(\omega-\omega_0)+\frac{1}{2}F(\omega+\omega_0)$	$\frac{1}{2}H(v-v_0) + \frac{1}{2}H(v+v_0)$
Convolución	V ₁ (t)*V ₂ (t)	$F_1(\omega)F_2(\omega)$	$\frac{1}{2}[H_{1}(v)H_{2}(v) - H_{1}(-v)H_{2}(-v) + H_{1}(-v)H_{2}(-v)]$
Autocorrelación	$V_1(t) V_2(t)$	 F(ω) ²	$\frac{1}{2} \left[H^{2}(v) + H^{2}(-v) \right]$
Producto	V1(t)V2(t)	$F_1(\omega) * F_2(\omega)$	$\frac{1}{2}[H_{1}(v) * H_{2}(v) - H_{1}(-v) * H_{2}(-v) + H_{1}(v) * H_{2}(-v) + H_{1}(-v) * H_{2}(v)]$
Derivada	V '(t)	j ωF(ω)	-vH(-v)
2 [*] derivada	V'(t)	$-\omega^2 F(\omega)$	$-v^2 H(v)$
	5111		

Tabla 2.1. Propiedades de la transformada de Fourier y de la transformada Hartley.

JNIVER S	2.2. Simplificación de la conve	dución en la transformada Ha	LEÓN
DIRFO	Η ₁ (ν) CCIÓN GENERA	$\mathcal{H}\left\{\mathbf{f}_{1}(t) * \mathbf{f}_{2}(t)\right\}$	CAS
	Par	$\overline{H_1(v)H_2(v)}$	
	Impar	$H_{1}(v)H_{2}(-v)$	
4	H ₂ (v)	$\mathcal{H}\left\{\mathbf{f}_{1}\left(\mathbf{t}\right)^{*}\mathbf{f}_{2}\left(\mathbf{t}\right)\right\}$	
÷	Par	$H_1(v)H_2(v)$	-
	Impar	$H_1(-\nu)H_2(\nu)$]

2.4. EJEMPLO NUMERICO

Se desea encontrar la corriente que circula por el circuito mostrado en la Figura 2.1, utilizando la transformada de Fourier y la transformada Hartley. Se supone una excitación $v(t)=10e^{-t}u(t)$.

Solución:

de donde se obtiene una expresión de convolución en la frecuencia para la corriente $I(\omega)$:

$$I(\omega) = H(\omega)V(\omega) = \left(\frac{1}{2+j\omega}\right)\left(\frac{10}{1+j\omega}\right)$$
(2.12)

y al desarrollar (2.12):

$$I(\omega) = \frac{10}{1+j\omega} - \frac{10}{2+j\omega}$$
(2.13)

ι7

Aplicando la antitransformada se escribe la expresión de la corriente en el tiempo:

$$i(t) = \mathcal{F}^{-1}\{I(\omega)\} = 10e^{-t}u(t) - 10e^{-2t}u(t)$$
(2.14)

Como la transformada de Fourier existe, se puede obtener la transformada Hartley, aplicando (2.9):

$$H(v) = \left(\operatorname{Re} \{ H(\omega) \} - \operatorname{Im} \{ H(\omega) \} \right) \Big|_{\omega = v} = \frac{2 + v}{4 + v^2}$$

$$V(v) = \left(\operatorname{Re} \{ V(\omega) \} - \operatorname{Im} \{ V(\omega) \} \right) \Big|_{\omega = v} = 10 \frac{1 + v}{1 + v^2}$$
(2.15)

así, se tiene que la convolución de H(v) con V(v) para obtener la corriente en el dominio de Hartley, de acuerdo a la Tabla 2.1:

$$I(v) = \frac{1}{2} [H(v)V(v) - H(-v)V(-v) + H(v)V(-v) + H(-v)V(v)]$$
(2.16)

y desarrollando resulta en DAUTÓNOMA DE NUEVO LEÓN

$$I(v) = \frac{10}{2} \left\{ \left(\frac{2+v}{4+v^2} \right) \left(\frac{1+v}{1+v^2} \right) - \left(\frac{2-v}{4+v^2} \right) \left(\frac{1-v}{1+v^2} \right) + \left(\frac{2+v}{4+v^2} \right) \left(\frac{1-v}{1+v^2} \right) + \left(\frac{2+v}{4+v^2} \right) \left(\frac{1+v}{1+v^2} \right) \right\} \right\}$$

= $10 \left(\frac{2+3v-v^2}{(4+v^2)(1+v^2)} \right) = I0 \left(\frac{1+v}{1+v^2} \right) - I0 \left(\frac{2+v}{4+v^2} \right)$ (2.17)

Aplicando la transformada inversa se expresa la respuesta de la corriente en el dominio del tiempo:

$$i(t) = \mathcal{H}^{-1}\{I(v)\} = 10e^{-t}u(t) - 10e^{-2t}u(t)$$
(2.18)

....Ĥ
Como se puede observar se tiene el mismo resultado si se usa la transformada de Fourier o la transformada de Hartley. En forma gráfica se muestra la transformada de la función v(t) en la Figura 2.2.

Al igual que en las series de Fourier, existen expresiones para las series de Hartley. Toda función periódica f(t)=f(t+T), con período T, continua por tramos e integrable sobre cualquier intervalo, se puede representar por series de Hartley:

$$\mathbf{f}(\mathbf{t}) = \sum_{n=-\infty}^{\infty} \mathbf{S}_n \operatorname{cas}(n \mathbf{v} \mathbf{t}) \qquad \forall \mathbf{n}$$
(2.16)

donde $v = 2\pi/T$ rad/seg., y los coeficientes S_n , están dados por:

$$\mathbf{S}_{n} = \frac{1}{T} \int_{-T/2}^{T/2} \mathbf{f}(t) \cos(n \vee t) dt \qquad \forall n$$
(2.17)

La Tabla 2.3. presenta algunas simplificaciones para los coeficientes de las series Hartley.

Simetria	Coeficientes de Hartley
$\frac{\text{Par}}{f(t)=f(-t)}$	$S_n = S_{-n}$
$\frac{1}{f(t)=-f(-t)}$	$S_n = -S_{-n}$
Media onda impar $f(t) = -f\left(t + \frac{T}{2}\right)$	$S_n = 0$ para n par
non	no simplificación

Tabla 2.3. Simplificación de los coeficientes de las series Hartley.

2.6. LA TRANSFORMADA DISCRETA DE HARTLEY

La transformada discreta de Hartley para una función v(t) está dada por:

$$H(k\Delta\nu) = \frac{1}{N} \sum_{i=0}^{N-1} V(i\Delta T) cas(ik\Delta\nu\Delta T) \qquad k=0,1,...,N-1 \qquad (2.18)$$
$$V(k\Delta T) = \sum_{i=0}^{N-1} H(i\Delta\nu) cas(ik\Delta\nu\Delta T) \qquad k=0,1,...,N-1 \qquad (2.19)$$

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

A (2.18) se le conoce como la transformada discreta de Hartley y a (2.19) como la R transformada inversa discreta de Hartley. RAL DE BIBLIOTECAS donde:

N	número de puntos de muestreo. $N=2^n$ donde n es el número o							
	armónicas a considerar.							

 T_{total} tiempo total por período (por ejemplo, señal de 60 Hz, para un ciclo $T_{total} = 16.67$ ms.)

- $\Delta T = \frac{T_{\text{total}}}{N}$ tiempo de muestreo.
- $\Delta v = \Delta \omega = \frac{2\pi}{N\Delta T}$ frecuencia de muestreo.

2.7. CARACTERISTICAS DE LA FUNCION CAS(.)

La función cas(.), definida por cas(.)=cos(.)+sen(.) tiene las propiedades que se muestran en la Tabla 2.4.

	$cas(-\alpha) = cos(\alpha) - sen(\alpha)$	$\cos(\alpha) = \frac{1}{2}(\cos(\alpha) + \cos(-\alpha))$
	$\operatorname{sen}(\alpha) = \frac{1}{2}(\operatorname{cas}(\alpha) - \operatorname{cas}(-\alpha))$	$cas(\pm \alpha) = \sqrt{2} \cos(\alpha \mp \frac{\pi}{4})$
	$cas(\alpha)cas(-\alpha) = cos(2\alpha)$	$cas^{2}(\alpha) - cas^{2}(-\alpha) = 2 sen(2\alpha)$
	$cas^{2}(\alpha) + cas^{2}(-\alpha) = 2$	$cas^{2}(\alpha)cas^{2}(\alpha) = 2(1 + sen(2\alpha))$
	$cas(2\alpha) = cas^{2}(\alpha) - 2 sen^{2}(\alpha)$	$cas(\alpha + \frac{\pi}{2}) = cas(-\alpha)$
	$\frac{d(cas(\alpha t))}{dt} = \alpha cas(-\alpha t)$	$\frac{d(cas(-\alpha t))}{dt} = -\alpha cas(\alpha t)$
ERS	$\int \cos(\alpha t) dt = -\frac{1}{\alpha} \cos(-\alpha t)$	$\int cas(-\alpha t)dt = \frac{1}{\alpha}cas(\alpha t)$
E	$cas(\alpha + \beta) = cos(\beta)cas(\alpha) + sen(\beta)cas(\alpha)$	(-α)
	$e^{j\alpha} = \frac{1}{2}(cas(\alpha) + cas(-\alpha)) + \frac{1}{2}j(cas(\alpha))$	$(1) - cas(-\alpha))$
	$cas(\alpha)cas(\beta) = \frac{1}{2} [cas(\alpha + \beta) + cas(\alpha - \beta)]$	$-\beta$) + cas($-\alpha + \beta$) - cas($-\alpha - \beta$)]
UNIV	$\cos(\alpha)\cos(\beta) = \cos(-\alpha + \beta) + \cos(\alpha + \beta)$ $\sin(\alpha)\cos(\beta) = \cos(\alpha - \beta) - \cos(-\alpha - \beta)$	β A DE NUEVO LEÓN
Т	DIDECCIÓN CENEDAI	DE DIDI IOTECAS

Tabla 2.4.	Prot	biedades	de la	función	casí	.)	Í.

2.8. RESUMENCCION GENERAL DE BIBLIOTECAS

En este capítulo se mostraron las características principales de la transformada Hartley, así como un ejemplo para ilustrar su uso en el análisis de circuitos eléctricos. El hecho de poder representar casi cualquier función periódica mediante las series de Hartley da la posibilidad de hacer un uso extensivo para el análisis de circuitos eléctricos que operan en estado estable sinusoidal y no-sinusoidal. La obtención de las series y de la transformada Hartley se presentan en forma detallada en el Apéndice A; otras propiedades y aplicaciones pueden consultarse en [24,27,34].

CAPITULO 3

DEFINICIONES Y CONCEPTOS FUNDAMENTALES

3.1. INTRODUCCION

Como se mencionó en la presentación de este trabajo de investigación es de vital importancia establecer conceptos básicos para sistemas que operan bajo señales no-sinusoidales. En este capítulo se hace uso de las series de Hartley para revisar conceptos como potencia instantánea, media, valores rms, potencia aparente y factor de potencia, votls amperes no-activos y el factor de distorsión.

En general cualquier forma de onda periódica puede representarse por las series de Hartley, así la respuesta de corriente en una carga lineal o no-lineal, ante una señal periódica de voltaje está dada por: DAUTÓNOMA DE NUEVO LEÓN

$$\mathbf{v}(t) = \sum_{m=-\infty}^{\infty} V_m \operatorname{cas}(mvt) \quad \text{GENERAL DE BIBLIOTECAS}$$
(3.1)
$$\mathbf{i}(t) = \sum_{n=-\infty}^{\infty} I_n \operatorname{cas}(nvt) \quad \cdot \quad (3.2)$$

donde se tiene que n=m si la carga es lineal y n≠m si la carga es no-lineal [8].

Si se tiene una carga lineal excitada por una fuente de voltaje que sólo contiene la frecuencia fundamental y no contiene una componente de c.d., entonces el voltaje y la corriente estarán representadas por las siguientes expresiones:

$$\mathbf{v}(t) = \mathbf{V} \cdot cas(-\mathbf{v}t) + \mathbf{V} \cdot cas(\mathbf{v}t)$$
(3.3)

22

$$i(t) = I_{-1} cas(-vt) + I_{-1} cas(vt)$$
 (3.4)

donde los valores $V_{\pm 1}$ y $I_{\pm 1}$ son los coeficientes de la serie de Hartley de v(t) e i(t) respectivamente. En [1,23] se denomina a estos valores como las componentes positiva y negativa de frecuencia fundamental. A continuación se abordarán algunos conceptos importantes para el análisis de elementos eléctricos ante señales no-sinusoidales [1,8].

3.2. POTENCIA INSTANTANEA

$$\mathbf{p}(\mathbf{t}) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \frac{\mathbf{V}_m \mathbf{I}_n}{2} \left\{ \cos(m+n)\mathbf{v}\mathbf{t} + \cos(m-n)\mathbf{v}\mathbf{t} + \cos(-m+n)\mathbf{v}\mathbf{t} - \cos(-m-n)\mathbf{v}\mathbf{t} \right\}$$
(3.7)

3.3. POTENCIA MEDIA

La potencia media está definida por la integral en un período T de la potencia instantánea p(t):

$$P = \frac{1}{T} \int_{-T/2}^{T/2} p(t) dt$$
(3.8)

sustituyendo (3.7) en (3.8) se tiene:

La ecuación (3.10) expresa que la potencia media o potencia activa está dada por la suma de los productos de los coeficientes de la serie Hartley de la misma componente armónica.

Por ejemplo, si v(t) e i(t) están dados por (3.3) y (3.4) se tendrá que:

$$\mathbf{P} = \mathbf{V}_{-1}\mathbf{I}_{-1} + \mathbf{V}_{+1}\mathbf{I}_{+1} \tag{3.11}$$

a su vez, si v(t)=V sen(vt) e i(t)=I sen(vt+ ϕ), con valores máximos V e I, entonces:

$$V_{+1} = \frac{V}{2}; \quad V_{-1} = -\frac{V}{2}; \quad I_{-1} = \frac{1}{2} \operatorname{cas}(-\phi); \quad I_{-1} = -\frac{1}{2} \operatorname{cas}(\phi)$$
(3.12)

que al substituir (3.12) en (3.11) se obtiene:

$$P = \frac{VI}{2}\cos(\phi) \tag{3.13}$$

así, se puede representar a (3.10) en una forma más familiar como:

UNIVER $\sqrt{1}$ $T^{T2}_{V_{rms}}$ AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

usando (3.1) se tiene que:

$$v^{2}(t) = \sum_{m=-\infty}^{\infty} V_{m}^{2} \operatorname{cas}^{2}(m\nu t) + \sum_{m=-\infty}^{\infty} \sum_{\substack{n=-\infty\\n\neq m}}^{\infty} V_{m} V_{n} \operatorname{cas}(m\nu t) \operatorname{cas}(n\nu t)$$
(3.16)

sustituyendo (3.16) en (3.15):

$$V_{\rm rms} = \sqrt{\frac{1}{T}} \int_{-T/2}^{T/2} \sum_{m=-\infty}^{\infty} V_{\rm m}^2 \cos^2(m\nu t) dt} = \sqrt{\frac{1}{T}} \int_{-T/2}^{T/2} \sum_{m=-\infty}^{\infty} V_{\rm m}^2 \{1 + \cos(m\nu t) \sin(m\nu t)\} dt}$$

$$= \sqrt{\frac{1}{T}} \int_{-T/2}^{T/2} \sum_{m=-\infty}^{\infty} V_{\rm m}^2 dt}$$
(3.17)

25

asi

$$V_{\rm tms} = \sqrt{\sum_{m=-\infty}^{\infty} V_m^2} \tag{3.18}$$

La ecuación (3.18) establece que el valor rms de una señal periódica, está dada por la raíz cuadrada de la suma de los cuadrados de los coeficientes de la serie de Hartley.

S=VreusIrms CIÓN GENERAL DE BIBLIOTECAS (3.20)

sustituyendo (3.18) en (3.20) se obtiene:

$$\mathbf{S} = \sqrt{\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} V_m^2 \mathbf{I}_n^2} \tag{3.21}$$

3.6. FACTOR DE POTENCIA

El factor de potencia está definido por medio de la relación:

$$F.P = \frac{P}{S} = \frac{\text{potencia media}}{\text{potencia aparente}}$$
(3.22)

sustituyendo (3.10) y (3.21) en (3.22), se tiene:

La ecuación (3.24) expresa que sólo existe un factor de potencia y no significa que el factor de potencia es el ángulo de desfasamiento entre voltaje y corriente de la misma armónica.

Si v(t)=Vsen(vt) entonces (3.23) queda como:
$$\Box$$
 BIBLIOTECAS

$$F_{.}P = \frac{\frac{VI}{2}\cos(\varphi_{1})}{\sqrt{(V_{-1}^{2} + V_{+1}^{2})\sum_{n=-\infty}^{\infty}I_{n}^{2}}} = \frac{\frac{VI}{2}\cos(\varphi_{1})}{\frac{V}{\sqrt{2}}\sqrt{\sum_{n=-\infty}^{\infty}I_{n}^{2}}} = \frac{\frac{I}{\sqrt{2}}\cos(\varphi_{1})}{\sqrt{\sum_{n=-\infty}^{\infty}I_{n}^{2}}} = \frac{I_{rms_{1}}}{\sqrt{\sum_{n=-\infty}^{\infty}I_{n}^{2}}}\cos(\varphi_{1})$$
(3.25)

De (3.25) se puede definir el factor de desplazamiento y el factor de distorsión como:

 $cos(\phi_1)$ factor de desplazamiento

(3.26)

Las definiciones (3.26) y (3.27) sólo existen cuando se trata de la respuesta de una carga no-lineal ante condiciones sinusoidales de voltaje.

Se puede hacer notar que no existe relación de (3.27) para cuando v(t) contiene armónicas, esto se muestra en (3.28)

F.P =
$$\frac{V_{ms_{2}}I_{ms_{k}}\cos(\varphi_{1}) + V_{ms_{2}}I_{ms_{k}}\cos(\varphi_{2}) + \cdots}{\sqrt{(V_{ms_{k}}^{2} + V_{ms_{2}}^{2} + \cdots)\sum_{n=\infty}^{\infty}I_{n}^{2}}}$$
 (3.28)
3.7. VOLTS-AMPERES NO-ACTIVOS (volts-amperes reactivos)
Los volts-amperes reactivos se definen a partir de la potencia aparente donde:
 $S^{2} = \sum_{m=-\infty}^{\infty}\sum_{n=-\infty}^{\infty}V_{m}^{2}I_{n}^{2} = \sum_{m=-\infty}^{\infty}V_{m}^{2}I_{m}^{2} + \sum_{m=-\infty}^{\infty}\sum_{n=-\infty}^{\infty}V_{m}^{2}I_{n}^{2}$ (3.29)
En (3.29) se pueden identificar dos grupos de términos:
 $f(x,y)$ (grupo de términos que) (grupo de términos que)

	grupo de terminos que		grupo de terminos que					
$S^2 =$	involucran productos de la	÷	involucran productos					
	misma frecuencia 🧷	1	cruzados de frecuencia,					

la expresión (3.29) se puede descomponer, como se muestra enseguida:

$$\mathbf{S}^{2} = \left(\sum_{m=-\infty}^{\infty} \mathbf{V}_{m} \mathbf{I}_{m}\right)^{2} + \left(\sum_{m=-\infty}^{\infty} \mathbf{V}_{m}^{2} \mathbf{I}_{-m}^{2} - \sum_{m=-\infty}^{\infty} \mathbf{V}_{m} \mathbf{I}_{m} \mathbf{V}_{-m} \mathbf{I}_{-m}\right) + \left(\sum_{m=-\infty}^{\infty} \sum_{\substack{n=-\infty\\n\neq m}}^{\infty} \mathbf{V}_{m}^{2} \mathbf{I}_{n}^{2}\right)$$
(3.30)

27

(3.27)

la cual se puede representar por:

$$S = \sqrt{P^2 + Q^2 + D^2}$$
(3.31)

La ecuación (3.31) establece que la potencia aparente está dada por la raíz cuadrada de la suma de los cuadrados de las potencias P, Q y D, a su vez expresadas por los coeficientes de las series de Hartley:

P Potencia activa dada por la suma de los productos de voltaje y corriente de la misma armónica.
 Q Potencia no-activa (reactiva) dada por la suma de los productos cruzados de voltajes y corrientes de la misma armónica.
 D Potencia no-activa (potencia de distorsión) dada por la suma de los productos de voltaje y corriente de diferentes armónicas. Esta potencia existe sólo cuando las armónicas son m≠n que es el caso de elementos no-lineales.

Así, R se define como los volts-amperes no-activos:

UNI $R^2 = S^2 - P^2 = Q^2 + D^2$ UTÓNOMA DE NUEVO LE(3.32)

Como ejemplo, tomando (3.30) cuando m=n=1 (circuito lineal a frecuencia fundamental), se tiene que:

$$S^{2} = (V_{-1}I_{-1} + V_{+1}I_{+1})^{2} + V_{-1}^{2}I_{+1}^{2} + V_{+1}^{2}I_{-1}^{2} - 2V_{-1}I_{-1}V_{+1}I_{+1} = P^{2} + Q^{2}$$
(3.33)

substituyendo (3.12) en (3.33) se obtiene:

$$S^{2} = \left(\frac{VI}{2}\cos(\varphi)\right)^{2} + \left(\frac{VI}{2}\sin(\varphi)\right)^{2}$$
(3.34)

si m = n (circuito lineal), (3.30) queda como:

$$S^{2} = \left(\frac{V_{1}I_{1}}{2}\cos(\varphi_{1}) + \frac{V_{2}I_{2}}{2}\cos(\varphi_{2}) + \cdots\right)^{2} + \left(\frac{V_{1}I_{1}}{2}\sin(\varphi_{1}) + \frac{V_{2}I_{2}}{2}\sin(\varphi_{2}) + \cdots\right)^{2} \quad (3.35)$$

donde no existe potencia de distorsión D.

Si m=1 y n=2 en el caso de un circuito no-lineal, (3.30) queda como:

este caso ya muestra potencia de distorsión D. JNIVERSIDAD AUTONOMA DE NUEVO LEÓN 3.8. RESUMEN DIRECCIÓN GENERAL DE BIBLIOTECAS

En este capítulo se presentaron conceptos básicos sobre la definición de potencia en circuitos eléctricos con excitaciones no-sinusoidales. Como se puede apreciar existen diferencias entre los conceptos básicos de potencia para estudios sinusoidales y los estudios no-sinusoidales, así es importante no aplicar directamente los conceptos básicos a circuitos alimentados por fuentes no-sinusoidales. Para mayor información sobre el comportamiento de circuitos ante señales no-sinusoidales se recomienda ampliamente la referencia [8].

CAPITULO 4

REPRESENTACION DE ELEMENTOS LINEALES Y NO-LINEALES EN EL DOMINIO HARTLEY

4.1. INTRODUCCION

El uso de los números complejos para el análisis sinusoidal de circuitos eléctricos lineales en estado estable fue inicialmente propuesto por Kenelly [40] en 1893. Posteriormente, en 1964 P. Moon y D. E. Spencer [40], mostraron una forma de representar a los elementos líneales de un circuito por matrices reales. En la actualidad el uso de la notación compleja en el análisis de circuitos eléctricos está vigente y su uso se ha extendido mediante el uso de técnicas de Fourier a los sistemas no-sinusoidales. En este capítulo se muestra una forma diferente de representar los elementos lineales en los circuitos eléctricos, mostrando también, la forma general para el análisis no-sinusoidal usando el dominio Hartley. El análisis del caso sinusoidal se muestra en detalle en [1], además de mostrar que todas las técnicas de análisis de circuitos eléctricos son válidas en el dominio de Hartley. Se puede mostrar que elementos no-lineales ante condiciones puramente sinusoidales dan como respuesta una señal periódica no-sinusoidal. Asimismo, ante señales periódicas no-sinusoidales su respuesta es una señal periódica nosinusoidal. Esto muestra que la función de transferencia entre voltaje y corriente presenta acoplamiento entre armónicas, lo que hace posible obtener un equivalente similar al obtenido para elementos lineales, dicho equivalente se puede interpretar como un equivalente Norton linealizado.

En forma general se tiene que la respuesta de una carga eléctrica, ante señales periódicas no-sinusoidales, está dada por las siguientes ecuaciones de voltaje y corriente:

$$\mathbf{v}(t) = \sum_{m=-\infty}^{\infty} V_m \cos(m\nu t)$$
(4.1)

$$i(t) = \sum_{n=-\infty}^{\infty} I_n cas(nvt)$$
(4.2)

Los subindices m y n de (4.1) y (4.2) dependen del tipo de la carga, donde n=m si se trata de una carga lineal y n \neq m si se trata de una carga no-lineal. La representación de elementos para el análisis armónico se ha hecho desde inicos de siglo en el plano complejo [11], aquí se tratará su representación en el plano real; trabajando con las series de Hartley.

4.2. REPRESENTACION DE ELEMENTOS LINEALES

Se considera que los elementos pasivos de una red eléctrica (resistores, inductores y capacitores), tienen la siguiente respuesta de voltaje ante señales periódicas de corrientes nosinusoidales de la forma (4.2):

Voltaje en un resistor R

$$v_{R}(t) = Ri(t) = R \sum_{n=-\infty}^{\infty} I_{n} cas(nvt)$$

Voltaje en un inductor LAD AUTÓNOMA DE NUEVO LEĆ

$$v_{\rm L}(t) = L \frac{{\rm di}(t)}{{\rm d}t} = L \sum_{n=-\infty}^{\infty} n v I_n \cos(-n v t) \text{ AL DE BIBLIOTECAS}$$
(4.4)

Voltaje en un capacitor C

$$v_{c}(t) = \frac{1}{C} \int i(t) dt = \frac{1}{C} \sum_{n=-\infty}^{\infty} \frac{-1}{nv} I_{n} cas(-nvt)$$
 (4.5)

los voltajes $v_R(t)$, $v_L(t)$ y $v_C(t)$ tienen la forma (4.1). Las ecuaciones (4.3), (4.4) y (4.5) se pueden escribir en forma matricial para todo el rango de m y n, eliminando los términos cas(.), dado que son comunes en ambos lados de la ecuación, obteniendo lo siguiente:

31

(4.3)

Como se aprecia en (4.6-4.9) no se presentan acoplamientos entre armónicas, esto es debido a que la corriente presenta las mismas armónicas que el voltaje, ya que se trata de elementos lineales. Asimismo, existe la matriz inversa, dando lugar a la matriz de admitancia Hartley, definida por (4.10).

4.3. REPRESENTACION DE LA MATRIZ DE ADMITANCIAS NODAL DE HARTLEY

Un sistema monofásico con elementos lineales es representado por el siguiente conjunto de ecuaciones nodales:

$$\mathbf{I}_{\text{nodal}_{h}} \stackrel{\text{ALERE Framman}}{=} \mathbf{Y}_{\text{nodal}_{h}} \mathbf{V}_{\text{nodal}_{h}}$$
(4.11)

donde la matriz nodal de admitancias Y_{nodal_h} tiene dimensiones n(2h+1)xn(2h+1), donde n es el número de nodos de la red y h el número de armónicas a considerar en el estudio. Así, los vectores de (4.11) tienen la forma:

$$I_{nodal_{a}} = [I_{1_{-b}} \dots I_{1_{b}}, \dots \dots I_{1_{b}}, \dots \dots I_{n_{-b}} \dots I_{n_{b}}]^{T}$$
(4.12)
UNIVERSIDAD AU (4.12)
De la misma manera, para sistemas trifásicos se tiene:
DIRECCIÓN GENERAL DE BIBLIOTECAS
$$I_{nodal_{abch}} = Y_{nodal_{abch}} V_{nodal_{abch}}$$
(4.13)

donde las dimensiones de la matriz nodal de admitancias $Y_{nodal_{max}}$ es de orden 3n(2h+1)x3n(2h+1), y los vectores de (4.13) tienen la siguiente forma:

$$I_{nodal_{abc_{h}}} = I_{1_{s_{-h}}} \cdot I_{1_{a_{0}}} \cdot I_{1_{a_{h}}}, I_{1_{b_{-h}}} \cdot I_{1_{b_{0}}}, I_{1_{c_{-h}}} \cdot I_{1_{c_{0}}}, I_{1_{c_{h}}}, \cdots \end{bmatrix}^{T} (4.14)$$

a b c (fase)
1 (nodo)

La solución de (4.11) y (4.13) es conocido como el método lineal o método de inyección de corrientes para propagación de armónicas.

4.4. EJEMPLO NUMERICO

Las formas que toman las matrices de la sección 4.2 se muestran en el ejemplo siguiente, donde se desea obtener la matriz de admitancias Hartley del circuito de la Figura 4.1.

Considerando hasta la tercera armónica, en el dominio Hartley se obtiene:

con dimensiones 3(2h+1)x3(2h+1) donde h=3.

4.4.2. Caso Trifásico. Se toman los datos de la red monofásica suponiendo un sistema balanceado donde:

$$\begin{aligned} z_{abc_{g}} &= \begin{bmatrix} z_{g} & m_{g} & m_{g} \\ m_{g} & z_{g} & m_{g} \\ m_{g} & m_{g} & z_{g} \end{bmatrix}; z_{abc_{t}} = \begin{bmatrix} z_{t} & m_{t} & m_{t} \\ m_{t} & z_{t} & m_{t} \\ m_{t} & m_{t} & z_{t} \end{bmatrix}; z_{abc_{t}} = \begin{bmatrix} z_{1} & m_{1} & m_{1} \\ m_{1} & z_{1} & m_{1} \\ m_{1} & m_{1} & z_{1} \end{bmatrix}; \\ z_{abc_{e}} &= \begin{bmatrix} z_{e} & m_{e} & m_{e} \\ m_{e} & z_{e} & m_{e} \\ m_{e} & m_{e} & z_{e} \end{bmatrix} \quad m_{g} = \frac{1}{10} z_{g}, m_{t} = \frac{1}{10} z_{t}, m_{t} = \frac{1}{10} z_{t}, m_{e} = \frac{1}{10} z_{e} \end{aligned}$$

$$\mathbf{v}_{\mathbf{I}_{abc}}(t) = [\cos(\omega t) \cos(\omega t - 120^{\circ}) \cos(\omega t + 120^{\circ})]^{T}$$
$$i_{\mathbf{I}_{abc}} = \left[\sum_{n=-h}^{h} I_{a_{n}} \cos(n\omega t) - \sum_{n=-h}^{h} I_{b_{n}} \cos(n\omega t) - \sum_{n=-h}^{h} I_{c_{n}} \cos(n\omega t)\right]^{T}$$

En el dominio Hartley y hasta la tercera armónica:

$$Z_{abc_{0}} = \begin{bmatrix} Z_{G} & M_{G} & M_{G} \\ M_{G} & Z_{G} & M_{G} \\ M_{G} & M_{G} & Z_{G} \end{bmatrix} Y_{abc_{0}} = Z_{abc_{0}}^{-1}; \quad Z_{abc_{T}} = \begin{bmatrix} Z_{T} & M_{T} & M_{T} \\ M_{T} & Z_{T} & M_{T} \\ M_{T} & M_{T} & Z_{T} \end{bmatrix}; \quad Y_{abc_{T}} = Z_{abc_{T}}^{-1}$$

$$Z_{abc_{L}} = \begin{bmatrix} Z_{L} & M_{L} & M_{L} \\ M_{L} & Z_{L} & M_{L} \\ M_{L} & M_{L} & Z_{L} \end{bmatrix}; \quad Y_{abc_{L}} = Z_{abc_{1}}^{-1}; \quad Z_{abc_{0}} = \begin{bmatrix} Z_{C} & M_{C} & M_{C} \\ M_{C} & Z_{C} & M_{C} \\ M_{C} & M_{C} & Z_{C} \end{bmatrix}; \quad Y_{abc_{C}} = Z_{abc_{C}}^{-1}$$

$$V_{bac_{n}} = [0 \ 0 \ \frac{1}{2} \ 0 \ \frac{1}{2} \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ \frac{\sqrt{3}-1}{4} \ 0 \ 0 \end{bmatrix}^{T};$$

$$I_{2abc_{0}} = [1_{a_{2}} \ 1_{a_{2}} \ 1_{a_$$

La matriz nodal de admitancias Hartley de la red trifásica está dada por:

$$Y_{123_{abc_{h}}} = \begin{bmatrix} Y_{abc_{f}} + Y_{abc_{T}} & -Y_{abc_{T}} & 0\\ -Y_{abc_{T}} & Y_{abc_{T}} + Y_{abc_{L}} & -\tilde{Y_{abc_{L}}}\\ 0 & -Y_{abc_{L}} & Y_{abc_{L}} + Y_{abc_{C}} \end{bmatrix}$$
(4.16)

y tiene dimensiones de 9(2h+1)x9(2h+1) donde h=3.

La forma de las matrices (4.15) y (4.16) se muestran en las Figuras 4.2 y 4.3.

Figura 4.2. Forma de la matriz de admitacias nodal de Hartley del sistema monofásico.

Figura 4.3. Forma de la matriz de admitancias nodal de Hartley del sistema trifásico.

4.5. LINEALIZACION DE ELEMENTOS NO-LINEALES

Un procedimiento común para representar elementos no-lineales en redes eléctricas ha sido utilizando equivalentes Norton. Diferentes trabajos se han publicado al respecto, algunos de estos trabajos representan los elementos no-lineales por un equivalente Norton linealizado en el espacio armónico complejo [13,14]. En esta sección se usa la misma metodología utilizada en [13,14] con la diferencia de que se trabaja en el espacio armónico real, cualidad obtenida al trabajar con la transformada Hartley.

Si (4.17) es diferenciable, entonces la forma incremental de primer orden se expresa mediante:

$$\Delta \mathbf{y}(\mathbf{t}) = \mathbf{f}'(\mathbf{x}_{\mathbf{b}}(\mathbf{t}))\Delta \mathbf{x}(\mathbf{t}) \tag{4.20}$$

donde:

 $\Delta x(t) = \sum_{h=-\infty}^{\infty} \Delta X_h \cos(hvt)$ (4.21)

$$\Delta y(t) = \sum_{k=-\infty}^{\infty} \Delta Y_k \operatorname{cas}(kvt)$$
(4.22)

$$f'(x_{b}(t)) = \sum_{j=-\infty}^{\infty} C_{j} \operatorname{cas}(ivt)$$
(4.23)

sustituyendo (4.21), (4.22) y (4.23) en (4.20) se obtiene:

$$\sum_{k=-\infty}^{\infty} \Delta Y_k \operatorname{cas}(k\nu t) = \frac{1}{2} \sum_{i=-\infty}^{\infty} \sum_{h=-\infty}^{\infty} C_i \Delta X_h [\operatorname{cas}((i+h)\nu t) + \operatorname{cas}((i-h)\nu t) + \operatorname{cas}((-i+h)\nu t) - \operatorname{cas}((-i-h)\nu t)]$$
(4.24)

al desarrollar (4.24), se puede identificar los coeficientes de la misma armónica de ambos lados de la ecuación, obteniendo las siguientes relaciones: cada coeficiente de ΔY_k es igual a la suma de los siguientes cuatro coeficientes dados por:

Tomando una armónica en particular de (4.21) h=j, expresando (4.24) en forma matricial y haciendo uso de (4.25) queda como: MA DE NUEVO LEON

Agrupando (4.26)

$$\begin{bmatrix} \vdots \\ \Delta Y_{-2} \\ \Delta Y_{-1} \\ \Delta Y_{0} \\ \Delta Y_{1} \\ \Delta Y_{2} \\ \vdots \end{bmatrix} = \begin{bmatrix} \vdots \\ C_{(-2,b)} \\ C_{(-1,b)} \\ C_{(0,b)} \\ C_{(0,b)} \\ C_{(2,b)} \\ \vdots \end{bmatrix}$$

$$(4.27)$$

donde

$$C_{(k,h)} = \frac{1}{2} \Big(C_{k+h} + C_{k-h} + C_{-k+h} - C_{-k-h} \Big)$$
(4.28)

y para todos los términos de h, la expresión (4.27) puede ser representada en forma matricial

y en forma compacta como UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

donde AY=FAX donde (4.30)

- ΔX : vector formado por los coeficientes de la serie dada por (4.21).
- ΔY : vector formado por los coeficientes de la serie dada por (4.22).
- F : matriz formada por coeficientes de la serie dada por (4.23).

De esta manera (4.30) representa a (4.20) en forma linealizada en el plano armónico real. Observando (4.28) y (4.29) se tiene que la matriz F es real y simétrica. Estrictamente F es llena, pero como la cantidad de armónicas a considerar en el estudio es reducido, esto hace que la matriz F no sea llena y puede presentar la siguiente estructura:

Si (4.23) es una función par entonces se tiene que (4.28) se simplifica dado que $C_n=C_{-n}$ así $C_{(k,h)} = C_{-k+h}$:

$$\begin{bmatrix} \vdots \\ \Delta Y_{2} \\ \Delta Y_{1} \\ \Delta Y_{0} \\ \Delta Y_{1} \\ \Delta Y_{2} \\ \vdots \end{bmatrix} = \begin{bmatrix} \ddots & \ddots & \ddots & \vdots \\ C_{0} & C_{1} & C_{2} \\ C_{2} & C_{-1} & C_{0} & C_{1} & C_{2} \\ C_{2} & C_{-1} & C_{0} & C_{1} & \ddots \\ C_{-2} & C_{-1} & C_{0} & C_{1} & \ddots \\ C_{-2} & C_{-1} & C_{0} & \ddots & \ddots \\ C_{-2} & C_{-1} & C_{0} & \ddots & \ddots \\ C_{-2} & C_{-1} & C_{0} & \ddots & \ddots \\ \vdots \end{bmatrix}$$
o bien si (4.23) es una función impar, esto es C_(k,b) = C_{k+b}:

$$\begin{bmatrix} \Delta Y_{2} \\ \Delta Y_{1} \\ \Delta Y_{2} \\ \vdots \end{bmatrix}$$
(4.31)
(4.32)

UNIVERSIDAD AUTONOMA DE NUEVO LEON

. Se puede demostrar que la matriz F de (4.30) se puede obtener de:

DIRECCIÓN GENERAL DE BIBLIOTECAS

$$\mathbf{F} = \frac{1}{2} (\mathbf{U}_{\mathrm{T}} + \mathbf{U}) \mathbf{F}_{\mathrm{par}} + \frac{1}{2} (\mathbf{U} - \mathbf{U}_{\mathrm{T}}) \mathbf{F}_{\mathrm{par}}^{\mathrm{T}}$$
(4.33)

donde F_{par} está dada por la matriz en (4.31), y la matriz U_T :

$$\mathbf{U}_{\mathrm{T}} = \begin{bmatrix} \mathbf{0} & \mathbf{.} & \mathbf{.} \\ & \mathbf{1} \\ & \mathbf{1} \\ \mathbf{.} & \mathbf{0} \end{bmatrix}$$
(4.34)

Retomando la expresión (4.20), la cual fue linealizada alrededor del punto $(x_b(t), y_b(t))$ y donde $\Delta X=X-X_b$ y $\Delta Y=Y-Y_b$, entonces (4.30) está dada por la forma que representa la nueva condición de operación, en términos de una matriz F con un vector valuado en el punto base $(x_b(t), y_b(t))$. Si Y representa una inyección y X es una tensión nodal tal expresión se puede modelar por medio de un equivalente Norton,

donde:

$$D = \begin{bmatrix} 0 & 2v \\ v & v \\ 0 & -v \\ -2v & 0 \\ 0 & -2v & 0 \end{bmatrix}$$
(4.42)

sustituyendo (4.41) en (4.39) y (4.40):

4.7. EJEMPLO NUMERICO

A fin de ilustrar la aplicación de los desarrollos presentados en la sección anterior, usando el espacio armónico complejo [9], y el espacio armónico real (transformada Hartley), se desea linealizar la función i(t), alrededor del punto:

$$\varphi_{\rm b}(t) = \operatorname{sen}(\omega t) \tag{4.46}$$

44

donde

$$i(t) = f(\phi(t)) = \phi(t) + \phi^{3}(t)$$
 (4.47)

Solución:

$$\mathbf{f}(\boldsymbol{\varphi}_{b}(t)) = \boldsymbol{\varphi}_{b}(t) + \boldsymbol{\varphi}_{b}^{3}(t) = \operatorname{sen}(\omega t) + \operatorname{sen}^{3}(\omega t)$$
(4.48)

$$f'(\phi_b(t)) = 1 + 3\phi_b^2(t) = 1 + 3 \operatorname{sen}^2(\omega t)$$
(4.49)

Usando el espacio armónico complejo se requiere la identidad de Euler:

$$f(\phi_{b}(1)) = \frac{1}{8} je^{3jct} - \frac{7}{8} je^{jot} + conjugado \qquad (4.50)$$

$$f'(\phi_{b}(1)) = \frac{5}{2} - \frac{3}{4} e^{2jot} - \frac{3}{4} e^{-2jot} \qquad (4.51)$$
formando I = FAY + I_b con los coeficientes de (4.50) y (4.51) se tiene:

$$\begin{bmatrix} I_{-3} \\ 0 \\ I_{-1} \\ 0 \\ I_{-1} \\ 0 \\ I_{-3} \end{bmatrix} = \begin{bmatrix} \frac{5}{2} & 0 & -\frac{3}{4} & 0 & 0 & 0 & 0 \\ 0 & 5/2 & 0 & -\frac{3}{4} & 0 & 0 & 0 \\ 0 & -\frac{3}{4} & 0 & 5/2 & 0 & -\frac{3}{4} & 0 & 0 \\ 0 & 0 & -\frac{3}{4} & 0 & 5/2 & 0 & -\frac{3}{4} & 0 \\ 0 & 0 & 0 & -\frac{3}{4} & 0 & 5/2 & 0 & -\frac{3}{4} & 0 \\ 0 & 0 & 0 & -\frac{3}{4} & 0 & 5/2 & 0 & -\frac{3}{4} & 0 \\ 0 & 0 & 0 & 0 & -\frac{3}{4} & 0 & 5/2 & 0 & -\frac{3}{4} & 0 \\ 0 & 0 & 0 & 0 & -\frac{3}{4} & 0 & 5/2 & 0 & -\frac{3}{4} & 0 \\ 0 & 0 & 0 & 0 & -\frac{3}{4} & 0 & 5/2 & 0 \\ 0 & 0 & 0 & 0 & -\frac{3}{4} & 0 & 5/2 & 0 \\ 0 & 0 & 0 & 0 & -\frac{3}{4} & 0 & 5/2 & 0 \\ 0 & 0 & 0 & 0 & -\frac{3}{4} & 0 & 5/2 & 0 \\ 0 & 0 & 0 & 0 & -\frac{3}{4} & 0 & 5/2 & 0 \\ 0 & 0 & 0 & 0 & -\frac{3}{4} & 0 & 5/2 & 0 \\ 0 & 0 & 0 & 0 & -\frac{3}{4} & 0 & 5/2 & 0 \\ 0 & 0 & 0 & 0 & -\frac{3}{4} & 0 & 5/2 & 0 \\ 0 & 0 & 0 & 0 & -\frac{3}{4} & 0 & 5/2 & 0 \\ 0 & 0 & 0 & 0 & -\frac{3}{4} & 0 & 5/2 & 0 \\ 0 & 0 & 0 & 0 & -\frac{3}{4} & 0 & 5/2 & 0 \\ 0 & \Delta \Psi_{1} & = \frac{1}{8} sen^{3} (\omega t) = \frac{1}{64} je^{3j\omega t} - \frac{3}{64} je^{j\omega t} + conjugado$$

entonces

×

$$\Delta \Psi = \frac{j}{64} \begin{bmatrix} -1\\0\\3\\0\\-3\\0\\1 \end{bmatrix} \text{ substituyendo en (4.52) se tiene I} = \frac{j}{64} \begin{bmatrix} -12.75\\0\\66.5\\0\\-66.5\\0\\12.75 \end{bmatrix}$$

donde la corriente linealizada es

$$i(t) = I_{-3}e^{-3j\omega t} + I_{-1}e^{-j\omega t} + I_{3}e^{3j\omega t}$$

$$= \frac{1}{32} (66.5 \operatorname{sen}(\omega t) - 12.75 \operatorname{sen}(3\omega t))$$
(4.53)
Usando el espacio armónico real se tiene en términos de la identidad cas(.):
$$f(\phi_{b}(t)) = -\frac{1}{8} \operatorname{cas}(3\omega t) + \frac{1}{8} \operatorname{cas}(-3\omega t) + \frac{7}{8} \operatorname{cas}(\omega t) - \frac{7}{8} \operatorname{cas}(-\omega t)$$
(4.54)
$$f'(\phi_{b}(t)) = \frac{5}{2} - \frac{3}{4} \operatorname{cas}(2\omega t) - \frac{3}{4} \operatorname{cas}(-2\omega t)$$
(4.55)

formando I = $F\Delta\Psi + I_b$ con los coeficientes de (4.54) y (4.55) se tiene: Como f'($\phi_b(t)$) es una

función par, se calcula la matriz F de una manera directa. UNIVERSIDAD AUTONOMA DE NUEVO LEÓN

$$\begin{bmatrix} \mathbf{I}_{-3} \\ 0 \\ \mathbf{I}_{-1} \\ 0 \\ \mathbf{I}_{1} \\ 0 \\ \mathbf{I}_{3} \end{bmatrix} = \begin{bmatrix} 5/2 & 0 & -3/4 & 0 & 0 & 0 \\ 0 & 5/2 & 0 & -3/4 & 0 & 0 & 0 \\ -3/4 & 0 & 5/2 & 0 & -3/4 & 0 & 0 \\ 0 & -3/4 & 0 & 5/2 & 0 & -3/4 & 0 \\ 0 & 0 & -3/4 & 0 & 5/2 & 0 & -3/4 & 0 \\ 0 & 0 & 0 & -3/4 & 0 & 5/2 & 0 & -3/4 \\ 0 & 0 & 0 & 0 & -3/4 & 0 & 5/2 & 0 \\ 0 & 0 & 0 & 0 & -3/4 & 0 & 5/2 & 0 \\ 0 & 0 & 0 & 0 & -3/4 & 0 & 5/2 & 0 \\ 0 & 0 & 0 & 0 & -3/4 & 0 & 5/2 \end{bmatrix} \begin{bmatrix} \Delta \Psi_{-3} \\ 0 \\ \Delta \Psi_{-1} \\ 0 \\ \Delta \Psi_{-1} \\ 0 \\ \Delta \Psi_{1} \\ 0 \\ \Delta \Psi_{1} \\ 0 \\ \Delta \Psi_{3} \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ -7 \\ 0 \\ 1 \end{bmatrix}$$
(4.56)

si
$$\Delta \varphi(t) = \frac{1}{8} \operatorname{sen}^3(\omega t) = \frac{1}{64} \left(-\operatorname{cas}(3\omega t) + \operatorname{cas}(-3\omega t) + 3\operatorname{cas}(\omega t) - 3\operatorname{cas}(-\omega t) \right)$$
, entonces

$$\Delta \Psi = -\frac{1}{64} \begin{bmatrix} -1\\0\\3\\0\\-3\\0\\1 \end{bmatrix} \text{ substituyendo en (4.66) se tiene } I = -\frac{1}{64} \begin{bmatrix} -12.75\\0\\66.5\\0\\-66.5\\0\\12.75 \end{bmatrix}$$

donde la corriente linealizada es

$$i(t) = I_{-3}cas(-3\omega t) + I_{-1}cas(-\omega t) + I_{1}cas(\omega t) + I_{3}cas(3\omega t)$$

$$= \frac{1}{32} (66.5 sen(\omega t) - 12.75 sen(3\omega t))$$
(4.57)

Como se observa se obtiene el mismo resultado al usar las dos metodologías con la diferencia importante de usar números reales en el dominio Hartley en lugar de usar números complejos, lo cual es el caso para el análisis tradicional en el dominio complejo de Fourier.

4.8. RESUMEN

Se mostró la forma de representar a los sistemas monofásicos y trifásicos para estudios armónicos lineales. Se puede observar que las matrices resultantes representan a los elementos lineales y tienen las mismas dimensiones que al usar el análisis en el dominio complejo, la diferiencia estriba en trabajar con números reales solamente al usar el dominio armónico de Hartley.

Se obtuvo un equivalente que representa, en una forma linealizada, a los elementos nolineales. En un caso particular la no-linealidad puede representar el efecto de saturación del núcleo de un elemento inductivo, pudiendo incluirse las pérdidas en el núcleo (Apéndice D). En este modelo se observa el acoplamiento entre armónicas el cual se esperaba debido a la nolinealidad. Este equivalente Norton en el dominio Hartley tiene las mismas dimensiones que al usar el análisis complejo armónico con la diferencia importante de trabajar con números reales.

CAPITULO 5

REPRESENTACION DEL GENERADOR SINCRONO EN EL DOMINIO HARTLEY

5.1. INTRODUCCION

El generador síncrono es un elemento del sistema eléctrico de potencia que contribuye a la aportación de armónicas a la red de dos formas principales⁴:

Por la característica de conversión de frecuencias y

Por la característica no-lineal debido a saturación.

La característica de conversión de frecuencia se presenta cuando se tiene conectado al generador un sistema desbalanceado, este desbalance representa una circulación de corriente de secuencia negativa[•], lo que provoca que en el rotor del generador se induzcan corrientes de doble frecuencia, estas a su vez inducen en la armadura del generador corrientes de triple frecuencia, y así sucesivamente inyectando armónicas al sistema [6]. Las características no-lineales que puede presentar el generador, debido a la saturación del hierro del rotor, provoca también la generación de armónicas.

En este capítulo se analizará la conversión de frecuencias, mientras que los efectos nolineales que presenta el generador se pueden modelar en el espacio de las fases abc [18] por equivalentes Norton como ya se ha descrito en el capítulo anterior.

[•] Despreciendo las armónicas producidos por los devanados y ranuras del rotor y estator.

^{*} Secuencia negativa se refiere al espacio conocido como de secuencias + - y 0.

Existen diferentes modelos del generador síncrono para estudios armónicos, los principales trabajos aparecen en las referencias [15,16,18,31]. En la presente investigación se utilizó la metodología seguida por A. Semlyen, J. F. Eggleston, J. Arrillaga y A. Medina [15,17,18], con la diferencia de que en el presente trabajo se usa el dominio armónico real utilizando las series Hartley; en lugar de usar el dominio armónico complejo que utiliza las series de Fourier.

5.2. CONSIDERACIONES PRELIMINARES

El modelo de la máquina síncrona parte de las siguientes consideraciones:

- Se desprecia la saturación. Se usa superposición de los campos magnéticos, y se asume que las inductancias propias y mutuas son independientes de las corrientes que circulan en los devanados.
- La f.m.m. en el entrehierro y los flujos son representados por la componente fundamental, considerando una distribución simétrica respecto al eje magnético de los devanados.
- Se desprecia el efecto de ranuras. Se considera distribución de los devanados con conductores finamente acomodados y despreciando diámetro de conductores.
- Conmutación ideal. Se desprecian el ancho de las escobillas y de los segmentos del conmutador, la corriente opuesta durante la conmutación se considera instántanea.
- Se considera que el material magnético está libre de corrientes de Eddy y pérdidas por histéresis.

Estas consideraciones se toman en cuenta para poder obtener el equivalente del generador síncrono dado por la ecuación (5.4) [31] la cual será usada para estudios en estado estable.

5.2.1. Operación del generador síncrono bajo condiciones desbalanceadas

Al operar bajo condiciones desbalanceados se tiene que las corrientes $I_{dq0}=PI_{abc}$ tienen dependencia del tiempo y que en un caso general pueden ser representadas por series de Hartley, por lo que $\frac{d}{dt}I_{dq0} \neq 0$, donde P es la transformada de Park dada por:

$$\mathbf{P} = \mathbf{S}^{\mathrm{T}} \mathbf{T} \tag{5.1}$$

donde:

	$\cos\omega_r t - \sin\omega_r t = 0$	
	$S = sen \omega_{t} t cos \omega_{t} t 0$	(5.2)
2		
<u>Š</u>	-1/2	
SS	$T = \sqrt{2/3}$ 0 $\sqrt{3}/2 - \sqrt{3}/2$	(5.3)
E	$1/\sqrt{2}$ $1/\sqrt{2}$ $1/\sqrt{2}$	

En este capítulo se obtendrá el modelo del generador síncrono en el espacio de las fases abc de tal manera que no tenga dependencia del tiempo. Para esto se hace el proceso inverso, o sea que partiendo del modelo dq0 se va hacia el modelo abc. Este proceso de transformación se puede describir como lo muestra la Figura 5.1.

Figura 5.1. Representación de los voltajes y corrientes en diferentes espacios.

Donde Y_{dq0_h} , $C_h^T y T_h$ son reales y no dependen del tiempo, entonces $Y_{\alpha\beta\gamma_h}y Y_{abc_h}$ son reales sin dependencia del tiempo. Este proceso se desarrolla en las siguientes tres secciones.

5.3. OBTENCION DE LA MATRIZ DE ADMITANCIAS DE HARTLEY Ydaou

Debido a que generalmente se conocen los datos de los generadores en el espacio dq0, de aquí se parte para obtener un modelo del generador síncrono en el espacio de las fases abc. Para estudios armónicos se parte del modelo dq0 de la máquina síncrona.

Las ecuaciones que describen a la máquina síncrona están dadas por:

vd	[[R	0 E	0	0	0	0]	Ld	0	0	M _{df}	M _{ds}	٦		Γo	-La	0	0	0	-M _{at}]][i _d]
vq	0	Rq	0	0	0	0		0	$\mathbf{L}_{\mathbf{q}}$	0	0	0	Mqt		Ld	0	0	M _{df}	M _{ds}	0	iq
v0	C	0	R ₀	0	0	0	İ.	0	0	^L 0	0	0	0		0	0	0	0	0	0	, io
v _f	C	0	0	R_{f}	0	0	Γ₽	M_{df}	0	0	L_{f}	M _{fs}	0	τω _Γ	0	0	0	0	0	0	i _f
Vs	i c	LERC	FL O	MAN N	R _s	0		Mds	0	0	M _{fs}	L_{S}	0		0	0	0	0	0	0	lis
vt	([°		A O	0	0	R _t	E	0	M _{qt}	0	0	0	L _t		0	0	0	0	0	0 _	$\left \begin{bmatrix} \mathbf{i} \\ \mathbf{i} \end{bmatrix} \right $
		13	H				2														(5.4)

Donde p=d/dt, y para condiciones en estado estable la velocidad ω_r del rotor es constante y v_s=v_t=0, considerando, además, que el voltaje de campo v_f es completamente de c.d. (sin rizado alguno). Utilizando el modelo (5.4) sólo para estudios armónicos, esto es, omitiendo el modelo para estudios a frecuencia fundamental, dado que este se obtiene en un estudio de flujos convencional; por lo tanto se considera a v_f=0. Así, se tiene que (5.4) en forma compacta se puede representar por:

$$\begin{bmatrix} \mathbf{V}_{dq0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} = \begin{bmatrix} \mathbf{R}_{11} & \mathbf{0} \\ \mathbf{0} & \mathbf{R}_{22} \end{bmatrix} + \mathbf{p} \begin{bmatrix} \mathbf{L}_{11} & \mathbf{L}_{12} \\ \mathbf{L}_{21} & \mathbf{L}_{22} \end{bmatrix} + \mathbf{o}_{r} \begin{bmatrix} \mathbf{J}_{11} & \mathbf{J}_{12} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{I}_{dq0} \\ \mathbf{I}_{fst} \end{bmatrix}$$
(5.5)

o en forma más abreviada:

$$\begin{bmatrix} \mathbf{V}_{\mathsf{dq0}} \\ \mathbf{0} \\ \mathbf{Z}_{21} \\ \mathbf{Z}_{21} \\ \mathbf{Z}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{I}_{\mathsf{dq0}} \\ \mathbf{I}_{\mathsf{fst}} \end{bmatrix}$$
(5.6)

donde:

$$Z_{11} = R_{11} + pL_{11} + \omega_r J_{11} \qquad Z_{12} = pL_{12} + \omega_r J_{12}$$

$$Z_{21} = pL_{21} \qquad Z_{22} = R_{22} + pL_{22}$$
(5.7)

así, se obtiene:

$$I_{dq0} = Y_{dq0} V_{dq0}$$
(5.8)

donde:

$$Y_{dq0} = \{Z_{11} - Z_{12} Z_{22}^{-1} Z_{21}\}^{-1}$$
(5.9)
En el dominio Hartley, (5.9) se representa por:

$$Z_{11} = \begin{bmatrix} R_{11} + \omega_r J_{11} & h\omega L_{11} \\ -h\omega L_{11} & R_{11} + \omega_r J_{11} \end{bmatrix} Z_{12} = \begin{bmatrix} \omega_r J_{12} & h\omega L_{12} \\ -h\omega L_{12} & \omega_r J_{12} \end{bmatrix}$$

$$Z_{21} = \begin{bmatrix} 0 & h\omega L_{21} \\ -h\omega L_{21} & 0 \end{bmatrix} Z_{22} = \begin{bmatrix} R_{22} & h\omega L_{22} \\ -h\omega L_{22} & R_{22} \end{bmatrix}$$
(5.10)

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

así, para una armónica específica n, la matriz de admitancias para dicha armónica tendrá la R siguiente forma: CCIÓN GENERAL DE BIBLIOTECAS

$$Y_{dq0_n} = \begin{bmatrix} G_n & -B_n \\ B_n & G_n \end{bmatrix}$$
(5.11)

G y B son matrices de 3x3, y Y_{dq0} para todo un rango de armónicas tendrá la forma de la matriz (4.10), donde cada elemento es una matriz de 3x3. Además se tiene que $\omega_r = \omega = v =$ cte = 1.0 p.u. Así, se tiene que :

$$I_{dq0_{b}} = Y_{dq0_{b}} V_{dq0_{b}}$$
(5.12)

donde la matriz Y_{dq0_h} es una matriz de admitancia Hartley de dimensiones (2h+1)x(2h+1)correspondientes a las armónicas desde -h a h. Los vectores I_{dq0_h} y V_{dq0_h} están formados por los coeficientes de las series Hartley que representan a I_{dq0} y V_{dq0} respectivamente.

Figura 5.2. Representación de la máquina síncrona, mostrando los ejes dq0, $\alpha\beta\gamma$, y abc.

5.4. OBTENCION DE LA MATRIZ DE ADMITANCIAS DE HARTLEY $Y_{\alpha\beta\gamma_h}$ La transformación del espacio dq0 al espacio $\alpha\beta\gamma$ es la siguiente:

$$\mathbf{V}_{\alpha\beta\gamma} = \mathbf{S}\mathbf{V}_{dq0} \tag{5.13}$$

y cumple con $S^{-1} = S^T$. Bajo condiciones desbalanceadas, y en general bajo condiciones nosinusoidales, los voltajes V_{dq0} están dados por:

$$\mathbf{v}_{d}(t) = \sum_{n=-\infty}^{\infty} V_{d_{n}} \cos(n\nu t)$$
(5.14)

$$\mathbf{v}_{q}(t) = \sum_{m=-\infty}^{\infty} V_{q_{m}} \cos(mvt)$$
(5.15)

$$\mathbf{v}_{0}(t) = \sum_{i=-\infty}^{\infty} \mathbf{V}_{0_{i}} \operatorname{cas}(ivt)$$
(5.16)

entonces

$$\mathbf{v}_{\alpha}(\mathbf{t}) = \sum_{k=-\infty}^{\infty} \mathbf{V}_{\alpha_{k}} \operatorname{cas}(k\mathbf{v}\mathbf{t})$$
(5.17)

$$\mathbf{v}_{\beta}(t) = \sum_{j=-\infty}^{\infty} V_{\beta_j} \operatorname{cas}(jvt)$$
(5.18)

$$\mathbf{v}_{\mathbf{y}}(t) = \sum_{r=-\infty}^{\infty} V_{\mathbf{y}_r} \operatorname{cas}(r v t)$$
(5.19)

igualando $\omega_r = v$ y desarrollando (5.13), mediante una serie de manipulaciones algebraicas se llega a:

$$v_{a}(t) = \frac{1}{2} \sum_{n=-\infty}^{\infty} V_{d_{a}} cas(n+1)vt + \frac{1}{2} \sum_{n=-\infty}^{\infty} V_{d_{a}} cas(n-1)vt + \frac{1}{2} \sum_{m=-\infty}^{\infty} V_{c_{m}} cas(-m-1)vt - \frac{1}{2} \sum_{m=-\infty}^{\infty} V_{q_{m}} cas(-m+1)vt \quad (5.20)$$

$$v_{\beta}(t) = -\frac{1}{2} \sum_{n=-\infty}^{\infty} V_{d_{n}} cas(-n-1)vt + \frac{1}{2} \sum_{n=-\infty}^{\infty} V_{d_{n}} cas(-n+1)vt + \frac{1}{2} \sum_{m=-\infty}^{\infty} V_{q_{m}} cas(m+1)vt + \frac{1}{2} \sum_{m=-\infty}^{\infty} V_{q_{m}} cas(m-1)vt \quad (5.21)$$

$$v_{\gamma}(t) = \sum_{n=-\infty}^{\infty} V_{0} cas(ivt) \quad (5.22)$$

Comparando (5.17), (5.18) y (5.19) con (5.20), (5.21) y (5.22) respectivamente, al desarrollar estas últimas tres ecuaciones, e identificar coeficientes de la misma armónica con el objetivo de no trabajar con los términos cas(.), en forma matricial se tiene:
Matricialmente (5.23), (5.24) y (5.25) resulta en:

Se puede observar que la matriz C_h es singular por lo que no existe su inversa. Pero existe la inversa de la matriz C_h^* , la cual se obtiene de la matriz C_h borrando la primer fila y primera columna o la última fila y última columna; este hecho se refiere a borrar una armónica lo cual equivale a quitar tres filas y tres columnas.

Se tiene además que:

donde:

$$X = \frac{1}{2}W + \frac{1}{2}D$$
 $U = W + \frac{1}{2}D = identidad$ $Y = \frac{1}{2}M$ (5.31)

La ecuación (5.30) será de gran utilidad dado que al trabajar con h+1 armónicas, se tiene que (5.30) se puede truncar en la h-ésima armónica, y así trabajar con una matriz identidad. Con esta suposición se tiene de (5.29) y (5.30) que:

$$\mathbf{C}_{h+1}^{\mathsf{T}}\mathbf{V}_{\alpha\beta\gamma_{h+1}} = \mathbf{C}_{h+1}^{\mathsf{T}}\mathbf{C}_{h+1}\mathbf{V}_{dq^{\mathsf{O}_{h+1}}}$$

si se trunca (5.32) hasta la h-ésima armónica se obtiene:

$V_{dq0_{h}} = C_{h}^{T} V_{\alpha\beta\gamma_{h}}$ (5.33) UNIVERSIDAD AUTÓNOMA DE NUEVO LEON

De la ecuación (5.26), si los voltajes $v_d(t)$ y $v_q(t)$ no contienen armónicas, o sea es que sólo existen sus componentes V_{d_0} y V_{q_0} (componentes de c.d.), esto es equivalente a operación del generador en condiciones balanceadas, y se obtiene que:

$$V_{\alpha_{-1}} = \frac{1}{2} (V_{d_0} + V_{q_0})$$

$$V_{\beta_{-1}} = \frac{1}{2} (-V_{d_0} + V_{q_0})$$

$$V_{\alpha_{1}} = \frac{1}{2} (V_{d_0} - V_{q_0})$$

$$V_{\beta_{1}} = \frac{1}{2} (V_{d_0} + V_{q_0})$$
(5.34)

(5.32)

de donde se obtienen las componentes α y β

$$v_{\alpha}(t) = \frac{1}{2}(V_{d_{0}} + V_{q_{0}})cas(-vt) + \frac{1}{2}(V_{d_{0}} - V_{q_{0}})cas(vt) = V_{d_{0}}cos(vt) - V_{q_{0}}sen(vt)$$

$$v_{\beta}(t) = \frac{1}{2}(-V_{d_{0}} + V_{q_{0}})cas(-vt) + \frac{1}{2}(V_{d_{0}} + V_{q_{0}})cas(vt) = V_{d_{0}}sen(vt) + V_{q_{0}}cos(vt)$$
(5.35)

el cual es un resultado esperado al usar (5.13). De manera similar que la relación (5.33) se cumple que:

Para pasar del espacio $\alpha\beta\gamma$ al espacio de las fases abc, se tiene la siguiente transformación:

$$V_{\alpha\beta\gamma} = TV_{abc}$$

$$I_{\alpha\beta\gamma} = TI_{abc}$$
(5.39)

la cual cumple con $T^{-1} = T^{T}$. Considerando h armónicas se tiene el arreglo matricial T_{h} .

$$\mathbf{T}_{\mathbf{h}} = \begin{bmatrix} \ddots & \mathbf{0} \\ & \mathbf{T} \\ \mathbf{0} & \ddots \end{bmatrix}$$
(5.40)

58

Sustituyendo (5.39) en (5.37) y usando (5.40) para h armónicas, se tiene:

$$T_{h}I_{abc_{h}} = Y_{\alpha\beta\gamma_{h}}T_{h}V_{abc_{h}}$$

$$I_{abc_{h}} = T_{h}^{T}Y_{\alpha\beta\gamma_{h}}T_{h}V_{abc_{h}}$$

$$I_{abc_{h}} = Y_{abc_{h}}V_{abc_{h}}$$
(5.41)

estas matrices de admitancias y de transformación tienen las siguientes estructuras (5.43-5.48) formadas por números reales.

La ecuación (5.45) establece que para una armónica h en particular se tiene que $I_{\alpha\beta\gamma_{h}}$ depende de $V_{\alpha\beta\gamma_{h}}$ y $V_{\alpha\beta\gamma_{hz2}}$ lo cual significa que el voltaje $V_{\alpha\beta\gamma_{h}}$ provoca una corriente $I_{\alpha\beta\gamma_{h}}$ y una corriente $I_{\alpha\beta\gamma_{hz2}}$; lo mismo sucede con (5.47). Estos resultados de conversión de frecuencias coinciden con lo presentado en la literatura [11,16]. Además se observa de (5.45) que los equivalentes y no intervienen en el proceso de conversión de frecuencias.

La ecuación (5.47) tiene por cada armónica h las tres fases abc, y por lo expuesto en el capítulo anterior se hace necesario, antes de incluir el equivalente matricial del generador al sistema, acomodar la información de manera que tenga la forma especificada en el capítulo anterior. Así, la matriz (5.47) toma la forma de (5.48). Por tanto, la matriz de admitancias nodal (5.48) representa al generador síncrono para estudios armónicos incluyendo el efecto de conversión de frecuencia. El efecto de saturación se puede tratar de la manera como se expuso en el capítulo 4.

5.6. INCLUSION DE UNA CARACTERISTICA NO-LINEAL

Figura 5.3. Devanados del generador para estudios armónicos.

DIRECCION GENERAL DE BIBLIOTECAS

Las matrices B son de orden (2h+1)x(2h+1) donde h es el número de armónicas a considerar y representan la parte no-lineal de los devanados del generador y tiene la forma (4.45). En tanto el equivalente lineal está representado por la matriz Y_{abc_h} de la forma (5.48). La matriz que representa el efecto no-lineal está dada por:

$$\mathbf{B}_{abc_{b}} = \begin{bmatrix} \mathbf{B}_{a} & & \\ & \mathbf{B}_{b} & \\ & & \mathbf{B}_{c} \end{bmatrix} \qquad \mathbf{I}_{N} = \begin{bmatrix} \mathbf{I}_{aN} \\ \mathbf{I}_{bN} \\ \mathbf{I}_{cN} \end{bmatrix}$$
(5.49)

60

El sistema de ecuaciones que representa al generador, incluyendo el efecto de conversión de frecuencias y el efecto de saturación, está dado por:

$$\mathbf{I}_{abc_{h}} = (\mathbf{Y}_{abc_{h}} + \mathbf{B}_{abc_{h}})\mathbf{V}_{abc_{h}} + \mathbf{I}_{N}$$
(5.50)

$$o \qquad I_{abc_h} = Y_{eg_h} V_{abc_h} + I_N \tag{5.51}$$

donde $Y_{eq_h} = Y_{abc_h} + B_{abc_h}$ es una matriz de admitancias que contiene dichos efectos.

La matriz de admitancias nodal de (5.51) tiene una estructura como en la Figura 5.4.

Figura 5.4. Forma de la matriz de admitancias Hartley que representa al generador incluyendo el efecto de conversión de frecuencias y el efecto de saturación .

61

5.7. CONEXION DEL GENERADOR AL SISTEMA DE POTENCIA

La matriz de admitancias Hartley Y_{eq_h} de (5.51) incluye el efecto de conversión de frecuencias, está implícito el efecto lineal de los devanados, y el efecto de la saturación. Es importante retornar el concepto de dónde se obtuvo esta matriz de admitancias. Esta matriz de admitancias se obtiene de un equivalente en el espacio dq0, el cual a su vez se obtuvo de un equivalente en el espacio dq0, el cual a su vez se obtuvo de un equivalente en el espacio dq0 por la Figura 5.5, y matemáticamente por el sistema de ecuaciones (5.51) [31].

Figura 5.6. Generador conectado al sistema de potencia. a) Estrella. b) Delta.

En la Figura 5.6 el sistema ve el siguiente equivalente:

$$I_{ABC_{h}} = Y_{ABC_{h}} V_{ABC_{h}} + I_{sN}$$
(5.52)

donde I_{sN} son las inyecciones debido a la saturación del generador. Observando la Figura 5.6.a se tiene que $I_{ABC_h} = I_{abc_h}$, $I_{sN} = I_N$ y $V_{ABC_h} = V_{abc_h}$ por tanto, la matriz de admitancias a conectar al sistema está dada por:

$$\mathbf{Y}_{ABC_{h}} = \mathbf{Y}_{eq_{h}} = \mathbf{Y}_{abc_{h}} + \mathbf{B}_{abc_{h}}$$
(5.53)

Para la conexión delta del generador se tiene el equivalente de la Figura 5.6.b $I_{ABC_{h}} = QI_{abc_{h}}, I_{sN} = QI_{N} \quad y \quad V_{abc_{h}} = Q^{T}V_{ABC_{h}}$ donde $Q = \begin{bmatrix} U & -U & 0 \\ 0 & U & -U \\ -U & 0 & U \end{bmatrix}$ y U es la matriz identidad. premultiplicando (5.51) por Q y sustituyendo $V_{abc_{h}}$, se tiene: $I_{ABC_{h}} = QY_{eq_{h}}Q^{T}V_{ABC_{h}} + I_{sN}$ (5.54)

así, la matriz de admitancias a conectar al sistema está dada por

$$\mathbf{Y}_{\mathsf{ABC}_{\mathbf{b}}} = \mathbf{Q}\mathbf{Y}_{\mathsf{eq}_{\mathbf{b}}}\mathbf{Q}^{\mathsf{T}} = \mathbf{Q}\mathbf{Y}_{\mathsf{abc}_{\mathbf{b}}}\mathbf{Q}^{\mathsf{T}} + \mathbf{Q}\mathbf{B}_{\mathsf{abc}_{\mathbf{b}}}\mathbf{Q}^{\mathsf{T}}$$
(5.55)

Se puede, por tanto, representar al generador como se muestra en la Figura 5.7. Para simplificar la notación se supone una conexión del generador en estrella sólidamente aterrizada donde $Y_g = Y_{ABC_h} = Y_{abc_h}$ y $B_g = B_{ABC_h} = B_{abc_h}$.

Figura 5.7. Equivalente del generador síncrono para estudios armónicos. a) Equivalente Norton. b) Equivalente Thévenin.

El modelo del generador obtenido en este capítulo representa al generador síncrono, y se considera apropiado para estudios trifásicos armónicos en el dominio Hartley. Se mostró en forma detallada la obtención del equivalente, así como el procedimiento para su inclusión al sistema eléctrico de potencia; en conjunto con otros elementos del sistema.

CAPITULO 6

REPRESENTACION DEL TRANSFORMADOR EN EL DOMINIO HARTLEY

6.1. INTRODUCCION

Se han desarrollado en capítulos anteriores los modelos de elementos lineales, nolineales y del generador síncrono para estudios armónicos. La línea de transmisión, como se mostró en el ejemplo del capítulo 4, se puede representar por equivalentes lineales auque con ciertas limitaciones, en realidad la línea de transmisión debe incluir la dependencia de la frecuencia. En el presente capítulo se obtendra un modelo del transformador para estudios armónicos.

Se parte del modelo del transformador monofásico para estudios en estado estable, incluyendo la característica no-lineal [14], y se obtiene el modelo del transformador monofásico para estudios armónicos. A partir del modelo monofásico se forman bancos trifásicos para ser usados en estudios armónicos.

6.2. MODELO DEL TRANSFORMADOR MONOFASICO

Partiendo del modelo del transformador monofásico de dos devanados [32,33] e incluyendo la rama de excitación [14]; se obtiene el modelo del transformador monofásico para estudios armónicos.

Figura 6.1. Modelo del transformador monofásico para estudios armónicos.

De la Figura 6.1 considerando las relaciones de transformación a=1 y b=1 se obtiene el circuito de celosía equivalente de la Figura 6.2, donde la parte no-lineal se modela por el equivalente Norton.

Figura 6.2. Equivalente del transformador monofásico para estudios armónicos. JNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

Las matrices de admitancias Y_L y B son de orden (2h+1)x(2h+1) donde h es el número de armónicas a considerar, y tiene la forma de (4.10) y (4.45), respectivamente. La ecuación de invecciones nodales que representa al equivalente de la Figura 6.2 está dada por:

$$\begin{bmatrix} I_{a} \\ I_{b} \\ I_{c} \\ I_{d} \end{bmatrix} = \begin{bmatrix} Y_{L} + \frac{1}{2}B & -Y_{L} - \frac{1}{2}B & -Y_{L} & Y_{L} \\ -Y_{L} - \frac{1}{2}B & Y_{L} + \frac{1}{2}B & Y_{L} & -Y_{L} \\ -Y_{L} - Y_{L} & Y_{L} & Y_{L} + \frac{1}{2}B & -Y_{L} - \frac{1}{2}B \\ Y_{L} - Y_{L} - Y_{L} & -Y_{L} - \frac{1}{2}B & Y_{L} + \frac{1}{2}B \end{bmatrix} \begin{bmatrix} V_{a} \\ V_{b} \\ V_{c} \\ V_{d} \end{bmatrix} + \begin{bmatrix} \frac{1}{2}I_{N} \\ -\frac{1}{2}I_{N} \\ \frac{1}{2}I_{N} \\ -\frac{1}{2}I_{N} \\ -\frac{1}{2}I_{N} \end{bmatrix}$$
(6.1)

El equivalente de la Figura 6.2 se puede representar por su parte lineal y su parte nolineal por separado, como se muestra en la Figura 6.3 y 6.4.

Figura 6.3. Equivalente de la parte lineal.

Figura 6.4. Equivalente de la parte no-lineal.

6.3. MODELOS DE BANCOS TRIFASICOS

Los bancos de transformadores se forman a partir de conexiones de transformadores monofásicos. Por ejemplo, la conexión delta estrella aterrizada que se muestra en la Figura 6.5, se obtiene de la conexión de los tres devanados monofásicos. La Figura 6.6 presenta el equivalente correspondiente.

Figura 6.5. Conexión de un banco trifásico.

Figura 6.6. Equivalente del banco de la Figura 6.5.

Del circuito de la Figura 6.6 se obtiene la ecuación de inyecciones nodales. Las formas matriciales (6.4) y (6.5) representan las matrices de admitancia nodal armónica para la parte lineal y la no-lineal del circuito, respectivamente.

$$Y_{\text{Lizesly}} = \begin{bmatrix} \frac{2}{3}Y_{L} & -\frac{1}{3}Y_{L} & -\frac{1}{3}Y_{L} & | & -\frac{1}{\sqrt{3}}Y_{L} & | & \frac{1}{\sqrt{3}}Y_{L} & | & \frac{1}{\sqrt{3}}Y_{L} & | & | \\ -\frac{1}{3}Y_{L} & -\frac{1}{3}Y_{L} & -\frac{1}{3}Y_{L} & | & \frac{1}{\sqrt{3}}Y_{L} & -\frac{1}{\sqrt{3}}Y_{L} & | & | \\ -\frac{1}{\sqrt{3}}Y_{L} & -\frac{1}{3}Y_{L} & \frac{2}{3}Y_{L} & | & \frac{1}{\sqrt{3}}Y_{L} & -\frac{1}{\sqrt{3}}Y_{L} & | & -Y_{L} \\ -\frac{1}{\sqrt{3}}Y_{L} & -\frac{1}{\sqrt{3}}Y_{L} & \frac{1}{\sqrt{3}}Y_{L} & | & Y_{L} & | & -Y_{L} \\ -\frac{1}{\sqrt{3}}Y_{L} & -\frac{1}{\sqrt{3}}Y_{L} & \frac{1}{\sqrt{3}}Y_{L} & | & Y_{L} & | & -Y_{L} \\ \frac{1}{\sqrt{3}}Y_{L} & -\frac{1}{\sqrt{3}}Y_{L} & \frac{1}{\sqrt{3}}Y_{L} & | & Y_{L} & | & -Y_{L} \\ \frac{1}{\sqrt{3}}Y_{L} & -\frac{1}{\sqrt{3}}Y_{L} & \frac{1}{\sqrt{3}}Y_{L} & | & Y_{L} & | & -Y_{L} \\ \frac{1}{\sqrt{3}}Y_{L} & -\frac{1}{\sqrt{3}}Y_{L} & | & -Y_{L} & | & -Y_{L} \\ \frac{1}{\sqrt{3}}Y_{L} & -\frac{1}{\sqrt{3}}Y_{L} & | & -Y_{L} & -Y_{L} & | & -Y_{L} \\ \frac{1}{\sqrt{3}}Y_{L} & -\frac{1}{\sqrt{3}}Y_{L} & | & -Y_{L} & -Y_{L} & | & -Y_{L} \\ \frac{1}{\sqrt{3}}Y_{L} & -\frac{1}{\sqrt{3}}Y_{L} & | & -Y_{L} & -Y_{L} & | & -Y_{L} \\ \frac{1}{\sqrt{3}}Y_{L} & -\frac{1}{\sqrt{3}}Y_{L} & | & -Y_{L} & -Y_{L} & | & -Y_{L} \\ \frac{1}{\sqrt{3}}Y_{L} & -\frac{1}{\sqrt{3}}Y_{L} & | & -Y_{L} & -Y_{L} & | & -Y_{L} \\ \frac{1}{\sqrt{3}}Y_{L} & -\frac{1}{\sqrt{3}}Y_{L} & | & -Y_{L} & -Y_{L} & | & -Y_{L} \\ \frac{1}{\sqrt{3}}Y_{L} & -\frac{1}{\sqrt{3}}Y_{L} & | & -Y_{L} & -Y_{L} \\ \frac{1}{\sqrt{3}}Y_{L} & -\frac{1}{\sqrt{3}}Y_{L} & | & -Y_{L} & -Y_{L} & -Y_{L} \\ \frac{1}{\sqrt{3}}Y_{L} & -\frac{1}{\sqrt{3}}Y_{L} & -\frac{1}{\sqrt{3}}Y_{L} \\ \frac{1}{\sqrt{3}}Y_{L} & -\frac{1}{\sqrt{3}}Y_{L} & -\frac{1}{\sqrt{3}}Y_{L} \\ \frac{1}{\sqrt{3}}Y_{L} & -\frac{1}{\sqrt{3}}Y_{L} & -\frac{1}{\sqrt{3}}Y_{L} \\ \frac{1}{\sqrt{3}}Y_{L} & -\frac{1}{\sqrt{3}}Y_{L} \\ \frac{1}{\sqrt{3}}Y_{L} & -\frac{1}{\sqrt{3}}Y_{L} & -\frac{1}{\sqrt{3}}Y_{L} \\ \frac{1}{\sqrt{3}}Y_{L} \\ \frac{1}{\sqrt{3}}Y_{L} & -\frac{1}{\sqrt{3}}Y_{L} \\ \frac{1}{\sqrt{3}}Y_{L} \\ \frac{1}{\sqrt{3}}Y_{L} \\$$

donde:

$$\mathbf{Y}_{ABC,abc,n_{h}} = \mathbf{Y}_{Lineal_{h}} + \mathbf{Y}_{noLineal_{h}}$$
(6.7)

De (6.2) y (6.3) se observa que las invecciones de corriente I_{nL} e I_{nnL} son cero, no asi la invección de corriente I_{nN} de (6.3) la cual es diferente de cero, por lo que no se puede efectuar

una reducción de Kron normal. Si la estrella está sólidamente conectada a tierra se tiene que V_n es cero, por lo que se puede eliminar la última fila y la última columna de Y_{ABC,abc,n_h} .

La matriz Y_{ABC,abc,n_h} para esta conexión delta-estrella aterrizada (sin despreciar resistencia de los devanados) tendrá la forma de la Figura 6.7.

Figura 6.7. Forma de la matriz de admitancias Hartley para la conexión delta-estrella aterrizada, incluyendo el efecto de saturación.

De manera similar se obtienen equivalentes para otras conexiones de transformadores, incluyendo el efecto no-lineal del transformador.

6.4. RESUMEN

El modelo del transformador presentado en este capítulo puede ser usado para estudios trifásicos armónicos, considerando el efecto de saturación. Como se puede apreciar, el efecto de saturación se incluye directamente a la matriz de admitancias nodal de Hartley que representa a la parte lineal del transformador. Además, se puede obtener la matriz de admitancias de Hartley para cualquier banco de transformadores trifásicos, ya sea autotransformador, transformador defasador u otras conexiones especiales [14,32,33]. El modelo será empleado al formar parte de un sistema de potencia con varios elementos en el próximo capítulo.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

CAPITULO 7

REPRESENTACION DEL SISTEMA ELECTRICO DE POTENCIA EN EL DOMINIO HARTLEY

7.1. INTRODUCCION

En este capítulo se muestra un método de solución, así como algunos ejemplos que ilustran el modelado y la aplicación de las técnicas desarrolladas en capítulos anteriores. Partiendo de que una red se puede modelar por su parte lineal más su parte no-lineal la cual es representada por equivalentes Norton en el dominio Hartley. Como lo muestra la Figura 7.1.a, se puede formar un circuito equivalente de la red, Figura 7.1.b. La Figura 7.1.b sugiere el uso de un método iterativo para resolver el problema de armónicos.

Figura 7.1. Representación de la red eléctrica en parte lineal y parte linealizada. a) Red eléctrica. b) Equivalente.

7.2. METODO DE SOLUCION

El método de solución para el equivalente de la Figura 7.1.b, para estudios armónicos, se muestra en el diagrama de flujo de la Figura 7.2. El diagrama se describe a continuación.

- Se obtiene un equivalente Norton de la parte lineal de la red, formado por la matriz de admitancias de Hartley Y_{abc_n}, la cual no presenta acoplamientos entre armónicas; y por el vector de inyecciones de corriente constante de Hartley representadas por I_{sbc_n}. El vector de corrientes sólo presenta valores diferentes de cero para las armónicas ±1 a menos de que se haya considerado alguna fuente constante de inyección de armónicas
- 2. Se inicia un proceso iterativo con los valores de voltaje $v_{abc}(t)$, del nodo que une la parte lineal y no-lineal. Los volltajes son obtenidos de un estudio de flujo de carga a frecuencia fundamental. Se utiliza la transformada rápida de Hartley FHT para obtener su valor correspondiente en la frecuencia V_{abc_b} , o simplemente se trabaja mediante identidades trigonométricas.
- 3. Una vez obtenido V_{abc_b} se calcula el equivalente Norton linealizado de la parte no-lineal representado por B_{abc_b} e $I_{N_{abc_b}}$.
- 4. Se calcula el nuevo voltaje V_{abe,}.
- 5. Se prueba convergencia. Si no cumple la tolerancia especificada se va al paso 3 y si no se pasa al 6.
- 6. Una vez terminado el proceso iterativo se tiene que V_{aben} contiene armónicas y su representación en el tiempo se encuentra mediante la la transformada inversa de Hartley IFHT o mediante sustitución de los coeficientes (armónicas) en la serie de Hartley.

Se puede hacer mención que esta es sólo una forma de plantear el problema, y se puede plantear formas diferentes.

El procedimiento para obtener la matriz B_{abc_b} e $I_{N_{acb}}$ se basa en la sección 4.6. del capitulo 4, el cual se explica a continuación:

1. $\Psi_{abc_h} = D^{-1}V_{abc_h}$

Se obtiene el flujo magnético en el dominio armónico.

2. $\phi_{abc}(t) = IFHT \{\Psi_{abc_{h}}\}$

Se obtiene el flujo magnético en el dominio del tiempo.

3. $i_{nl_{abc}}(t) = f(\phi_{abc}(t))$

Se encuentra la respuesta de la corriente respecto al flujo la cual presenta una característica no-lineal.

4. $I_{nl_{sbeh}} = FHT\{i_{nl_{sbe}}(t)\}$ Se obtiene la corriente en el dominio armónico, aquí la corriente ya presenta armónicas diferentes a los del flujo magnético, lo que explica que existe acoplamientos entre armónicas.

5.
$$f'(\varphi_{abc}(t)) = \frac{i_{nl_{abc}}(t + \Delta t) - i_{nl_{abc}}(t)}{\varphi_{abc}(t + \Delta t) - \varphi_{abc}(t)}$$
 Se obtiene la derivada de la característica no-

lineal en forma numérica en el tiempo si no se conoce en forma exacta.

6.
$$F'(\phi_{abc}(t)) = FHT\{f'(\phi_{abc}(t))\}$$
 Se obtienen las armónicas de la derivada de la

caracteristica no-lineal.

Este procedimiento puede cambiar ligeramente cuando se trate de un elemento nolineal y presente dependencia de otras variables, sin embargo el procedimiento es similar y no debe causar confusión.

7.3. EJEMPLOS NUMERICOS

7.3.1. Ejemplo 1. Carga no-lineal conectada a una fuente. En este primer caso se trata de ilustrar el comportamiento del voltaje nodal cuando la carga es un elemento que puede tener saturación e incluso pérdidas en el núcleo.

Figura 7.3. Carga trifásica.

Fuente: Fuente de corriente trifásica balanceada, $I_{max} = 1.0$ p.u., f = 60 Hz.

Carga: Carga trifásica balanceada, en estrella aterrizada, con reactancia inductiva de 1.0 p.u.

76

Característica de saturación $i(t) = (\phi(t) + \phi^{7}(t)) / 4$.

Pérdidas en el núcleo R=5 p.u.

Aplicando el procedimiento de solución de la Figura 7.2. se tienen los siguientes resultados:

Figura 7.4. Voltaje en la carga. a) Sin considerar saturación. b) Considerando saturación y

pérdidas en el núcleo. ÷F 🗆 fase a D fase a 0.8 fase o 📕 fase t 0.6 🖬 fase ç 0.8 🛛 fase c 0.4 0. 0. p.u. p.u. 7 3 5 -3

a)

Figura 7.5. Magnitud de las armónicas de los voltajes. a) Sin considerar saturación, serie Hartley. b)Sin considerar saturación, serie Coseno⁺. c) Considerando saturación y pérdidas en el núcleo, serie Hartley. d)Considerando saturación y pérdidas en el núcleo, serie Coseno.

Las gráficas anteriores muestran claramente el efecto de la saturación en la generación de armónicas. Se puede apreciar claramente que se generaron armónicas impares⁴ además de ser balanceadas debido a que el sistemas es balanceado.

De aquí en adelante sólo se mostrará la gráfica de las series Coseno con el fin de apreciar mejor los resultados.

7.3.2. Ejemplo 2. Efecto de conversión de frecuencias y saturación en el generador. En el siguiente ejemplo el objetivo es mostrar fenómenos que se presentan en el generador síncrono; los cuales se resuelven separadamente para ilustrar el comportamiento debido a cada uno.

Figura 7.6. Generador-carga desbalanceada.

^{*} Los coeficientes de la serie Coseno se obtienen a partir de los coeficientes de la serie de Hartley como se muestra en el Apéndice A, ecuación (A.24).

Apéndice C.

Generador: Datos en Apéndice E. Conexión estrella sólidamente aterrizada.

Carga: Carga en estrella aterrizada con R de 1 p.u. en la fase a, L de 1 p.u. en la fase b

y C de 1 p.u. en la fase c.

a) Efecto de conversión de frecuencias. Los resultados de este caso, se muestran en las Figuras 7.7 y 7.8, en los cuales se aprecia la conversión de frecuencias. Se inducen en el sistema armónicas de orden h y h±2 lo que concuerda con la teoría. Estos resultados se compararon con los de la referencia [16]; obteniéndose prácticamente los mismos resultados. Por lo anterior se concluye que el modelado y el procedimiento propuesto dan resultados satisfactorios.

Figura 7.8. Magnitud de las armónicas. a) Voltajes. b) Corrientes.

b) Efecto de conversión de frecuencias y saturación. Este ejemplo consiste en incluir al ejemplo anterior el efecto que produce la saturación en el generador. Los resultados que muestran las Figuras 7.9 y 7.10 reflejan claramente que la saturación ayuda a la generación de armónicas. En este resultado la saturación incrementa las magnitudes de las armónicas^{*}.

Figura 7.10. Magnitud de las armónicas. a) Voltajes. b) Corrientes.

79

^{*} Aparecen sólo las armónicas impares debido a la conversión de frecuencia y saturación. Capítulo 5 y Apéndice C.

c) En este ejemplo se combina el efecto de conversión de frecuencias y la saturación, además se incluye una resistencia R de 1.0 p.u. en paralelo en cada fase de la carga. La finalidad de adicionar este elemento es mostrar que al tener cargas más balanceadas existe menos generación de armónicas, debido a la conversión de frecuencias por parte del generador. Los resultados se muestran en las Figuras 7.11 y 7.12.

Figura 7.12. Magnitud de las armónicas. a) Voltajes. b) Corrientes.

80

En general comparando los resultados de las gráficas de 7.10 y 7.12 se observa que mientras se tenga una carga más balanceada se tendrá menos generación de armónicas por parte del generador.

7.3.3. Ejemplo 3. El siguiente ejemplo incluye una red, generador-transformador-carga. El propósito es observar el comportamiento de las armónicas al tener un transformador en el sistema.

a) Efecto de conversión de frecuencias. En este ejemplo solamente se incluye el efecto de conversión de frecuencias en el generador con el propósito de observar el comportamiento del transformador.

Figura 7.15. Magnitud de las armónicas del voltaje . a) Lado delta del transformador. b) Lado estrella del transformador.

b) Efecto de conversión de frecuencias, y saturación en el generador. Se adiciona el problema de saturación en el generador. Los resultados se observan en las Figuras 7.16 y 7.17.

Figura 7.17. Magnitud de las armónicas del voltaje . a) Lado delta del transformador. c) Lado estrella del transformador.

Comparando los resultados de las Figuras 7.10 con 7.17 se observa que el transformador en delta-estrella ayuda a la reducción de la magnitud de las armónicas. Se observa también que las armónicas múltiplos de tres no quedan atrapadas en la delta del transformador debido a que están desbalanceadas.

7.3.4. Ejemplo 4. Transformador estrella-estrella sólidamente aterrizado, en vacio. El objetivo de este ejemplo es observar la generación de armónicas debido a la saturación en un transformador.

Fuente: Fuente balanceada de voltaje de 1.5 p.u. detrás de una reactancia inductiva de 0.08

p.u.

Transformador: Datos en el Apéndice E incluyendo saturación y pérdidas en el núcleo.

Figura 7.19. Magnitud de las armónicas del voltaje del lado de alta del transformador. a) Hasta la séptima armónica. b) Hasta la quinceava armónica.

7.3.5. Ejemplo 5. Transformador en delta-estrella alimentando una carga. El propósito de este ejemplo es observar el papel que juega un transformador con conexión delta-estrella en la eliminación de armónicas.

Fuente: Fuente de corriente balanceada con la componente fundamental de 1.5 p.u.

conteniendo el 3 (13.78%)[•], 5 (5.03%), 7 (2.59%), 9 (1.57%),11 (1.05%),13 (0.75%) y 15 (0.57%) armónica, en paralelo con una reactancia inductiva equivalente de 0.085 p.u. por fase.

Transformador: Datos en el Apéndice E sin incluir saturación ni pérdidas en el núcleo.

Figura 7.21. Formas de onda. a) Fuente de corriente. b) Voltaje en la delta del transformador.c) Voltaje en la estrella del transformador.

^{*} Valor en % de la fundamental de 1.5 p.u.

Figura 7.22. Magnitud de las armónicas del voltaje . a) Lado delta. b) Lado estrella.

b) Carga desbalanceada: Carga en estrella aterrizada con R de 1 p.u. en la fase a, L de 1 p.u. en

Figura 7.24. Magnitud de las armónicas del voltaje. a) Lado delta. b) Lado estrella.

Se observa que las armónicas múltiplos de tres quedan atrapadas completamente en la delta del transformador en ambos casos, debido a que en ambos casos son armónicas balanceadas^{*} en el lado de la delta. El caso b es interesante donde a pesar de que la carga es desbalanceada quedan atrapadas en la delta del transformador las armónicas múltiplos de tres, esto es debido a que la fuente de armónicas es constante y balanceada por lo que las armónicas múltiplos de tres siempre quedarán atrapadas en la delta sín importar la carga. Por otra parte el resto de las armónicas son desbalanceadas, pues éstas interactúan con la carga la cual provoca su desbalance. El ejemplo 3 muestra el caso opuesto en el cual todas las armónicas son desbalanceadas, pues dependen de la carga.

7.3.6. Ejemplo 6. Se toma inicialmente el ejemplo 2, el cual tiene el caso severo de alimentar una carga desbalanceada, considerando además saturación y el efecto de conversión de frecuencias en el generador. El problema muestra el efecto del acoplamiento entre armónicas.

Figura 7.25. Voltajes y corrientes de las fases. a) Fase a. b) Fase b. c) Fase c.

^{*} Las frecuencias múltiplos de tres cuando están balanceadas se les relaciona con la secuencia cero. Ej. si h=3 entonces $v_a = V_m \cos(3\omega t)$, $v_b = V_m \cos(3(\omega t - 120^0)) = v_a$, $v_c = V_m \cos(3(\omega t + 120^0)) = v_a$, por lo que las secuencias se relacionan con las armónicas balanceadas como:

secuencia	÷	-	0	+		0	a.	
armónica	1	2	3	4	5	6	•	H R R

Figura 7.26. Magnitud de las armónicas. a) Voltajes. b) Corrientes.

En este ejemplo se aprecia que para la condición propuesta basta con modelar hasta la séptima armónica, pues se obtienen los mismos resultados que en el ejemplo 2 b.

b) Este caso es igual que el ejemplo anterior con la diferencia de cambiar la reactancia capacitiva de la carga de 1.0 p.u. a 0.5 p.u. Se obtienen los siguientes resultados, mostrados en las Figuras 7.27, 7.28 y 7.29 para diferentes consideraciones de armónicas.

Figura 7.27. Voltajes considerando hasta la séptima armónica. a) Formas de onda. b) Magnitud de las armónicas.

Figura 7.28. Voltajes considerando hasta la quinceava armónica. a) Formas de onda. b)

Magnitud de las armónicas.

Este ejemplo es un caso severo que sirve para ilustrar la interacción que existe entre armónicas, esta interacción se puede comprender al saber que una armónica generada por saturación interviene en el efecto de conversión de frecuencias con el generador provocando la generación de nuevas armónicas, éstas a su vez, generan nuevas armónicas al entrar a la característica de saturación, y así sucesivamente hasta que se llega a un equilibrio en el cual ya no se generan armónicas o se ajustan magnitudes de las existentes.
Del ejemplo se puede observar que cuando la magnitud de la última armónica que se considera en la modelación no es despreciable para el caso no-lineal, se hace necesario incluir más armónicas en el análisis, dado que éstas influyen directamente en la magnitud de las armónicas anteriores. En este ejemplo al considerar sólo hasta la séptima armónica los resultados son erróneos por lo que es recomendable considerar hasta la quinceava armónica, pues sus resultados son iguales que el incluir hasta la trigésima primera armónica.

7.4. RESUMEN

En este capitulo se ilustró con casos especiales y de una forma simple la representación de un sistema de potencia para estudios armónicos trifásicos.

Se presentó una serie de ejemplos con el fin de probar, por medio de simulaciones, los modelos obtenidos en los capítulos anteriores. Los resultados obtenidos de las simulaciones son adecuados para análisis armónico dado que se pudieron observar los siguientes resultados: El efecto de saturación en los elementos inductivos genera armónicas impares que son inyectadas a la red; el efecto de conversión de frecuencias en el generador genera armónicas impares cuando alimenta a una carga desbalanceada y no ocurre este fenómeno cuando la carga es balanceada. La conexión delta de los transformadores disminuye la propagación de armónicas en la red o elimina por completo las armónicas, existe debido a los elementos no-balanceados. El efecto de acoplamiento entre armónicas, existe debido a los elementos no-lineales, esto hace que se requiera considerar en el análisis al menos hasta la quinceava armónica; según se desprende de los casos estudiados en el presente capítulo y de los reportados en [18].

CAPITULO 8 CONCLUSIONES Y TRABAJOS FUTUROS

El análisis armónico complejo, utilizando notación matricial, es considerado como una herramienta elegante y más precisa de análisis y modelación, esto da lugar a que cl análisis armónico real, usando el dominio Hartley, cuenta con éstas dos características además de eliminar redundancia de información existente en el análisis complejo.

En el presente trabajo se abordaron los principales conceptos para el modelado y el análisis de los sistemas eléctricos de potencia en el dominio armónico real usando las series y la transformada de Hartley.

8.1. CONCLUSIONES

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

Las conclusiones que aquí se citan fueron obtenidas en el transcurso de la investigación R así como en la bibliografia especializada, y se pueden dividir de la siguiente manera.

8.1.1. Principales características de la transformada de Hartley

- Utiliza solamente números reales, esto significa que elimina la redundancia que existe en la transformada de Fourier por usar notación con números complejos.
- Presenta las mismas características que la transformada de Fourier, por lo que se puede aplicar donde se usa la transformada de Fourier sin perder información.
- Existe, siempre que exista la transformada de Fourier y viceversa.

- Se puede obtener a partir de la transformada de Fourier y viceversa.
- El uso de la transformada rápida de Hartley requiere de un menor esfuerzo computacional respecto de la transformada rápida de Fourier, mismo que se ve reducido por mitad [34].

8.1.2. Principales resultados del análisis de circuitos eléctricos usando análisis de Hartley

- El análisis de Hartley puede ser usado para la solución de circuitos eléctricos al igual que el análisis con números complejos.
- Toda la teoría de análisis de circuitos eléctricos es aplicable en el dominio de Hartley.

8.1.3. Principales resultados en la modelación para estudios armónicos utilizando análisis de Hartley

Los elementos del sistema de potencia son representados por matrices con las mismas dimensiones a las utilizadas en el espacio armónico complejo pero la diferencia es el trabajar con matrices reales, lo que le da una característica peculiar e interesante a la formulación.

• Las características de elementos no-lineales pueden ser representadas por un equivalente

Norton linealizado.

- El efecto de conversión de frecuencias en los generadores síncronos puede ser modelado. (R)
- Un modelo del transformador fue obtenido. DE BIBLIOTECAS
- El sistema eléctrico de potencia se representa por dos matrices de admitancias Hartley, una que representa la parte lineal y otra la parte no-lineal; así como dos vectores de inyecciones de corriente que representan la parte lineal y la parte no-lineal.

8.2. APORTACIONES

Este trabajo de investigación muestra que es posible hacer la modelación y el análisis de los sistemas de potencia en el dominio de los números reales, haciendo uso de la transformada y series de Hartley. La modelación se hace para estudios en estado estable, considerando que el sistema de potencia opera bajo condiciones desbalanceadas y ante señales no-sinusoidales. Las aportaciones principales de esta tesis son:

En general:

Los resultados mostrados reflejan que no se hace necesario una notación con números complejos para obtener modelos completos de los principales elementos del sistema de potencia.

La representación matricial y el uso del dominio armónico hacen que la modelación sea elegante y fácil de implentar.

En particular:

- Muestra modelos detallados de los elementos lineales y no-lineales en el dominio armónico de Hartley, mostrando el caso particular de saturación en elementos inductivos.
- Obtiene un modelo del generador síncrono para estudios trifásicos armónicos el cual incluye el efecto de conversión de frecuencias y el efecto de saturación.
- Desarrolla una forma de obtener modelos de bancos de transformadores para estudios armónicos.
- Se desarrollaron las rutinas para la transformada rápida de Hartley.

8.3. TRABAJOS FUTUROS

La modelación y el análisis de los sistemas eléctricos en el dominio Hartley es un área de investigación totalmente nueva, por lo que cualquier aplicación es interesante, sin embargo las más apropiadas para realizarse en trabajos posteriores son:

- Modelar otros elementos del sistema eléctrico de potencia en el dominio Hartley, tal como: Líneas de transmisión, CEV's (RCT's, CST's), convertidores CD/CA, hornos eléctricos, etc.
- Aplicar las transformadas rápidas de Hartley para estudios de propagación de armónicas en redes de distribución aprovechando la rapidez de cálculo que ésta presenta.
- Utilizar las series y transformada de Hartley para el análisis de señales y algoritmos de relevadores digitales de protección.
- Extender el estudio de las propiedades de convergencia que se pueden presentar al usar el dominio Hartley para estudios armónicos.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN R DIRECCIÓN GENERAL DE BIBLIOTECAS

REFERENCIAS

- Manuel Madrigal Martínez, Salvador Acha, La Transformada Hartley en el Análisis de Redes Eléctricas, Reporte de investigación DIE-02-95, DIE FIME UANL, Marzo de 1995.
- [2] Manuel Madrigal Martínez, Salvador Acha, La Tranformada Hartley en la Modelación y Análisis de Redes Eléctricas en Condiciones Periódicas No-sinusoidales en Estado Estable, reporte de investigación DIE-04-95, DIE FIME UANL, Agosto de 1995.
- [3] Leszek S. Czarnecki, "Misinterpretations of Some Power Properties of Electric Circuits," *IEEE Trans. on Power Delivery*, vol. 9, no. 4, October 1994, pp. 1760-1769.
- [4] P.S. Filipski, Y. Baghzouz, M.D. Cox,"Discussion of Power Definitions Contained in the IEEE Dictionary," IEEE Trans. on Power Delivery, vol. 9, no. 3, July 1994, pp. 1237-1244.
- [5] Alexander Eigeles Emanuel, "On the Definitions of Power Factor and Apparent Power in Unbalanced Polyphase Circuits with Sinusoidal Voltaje and Currents," *IEEE Trans. on Power Delivery*, vol. 8, no. 3, July 1993, pp. 841-852.
 - [6] Renato Sandelli, Gian Carlo Montanari, "Compensable Power Electrical Systems in Nonsinusoidal Conditions," *IEEE Trans. on Instrumentation and Measurement*, vol. 43, no. 4, August 1994, pp. 592-598.
 - [7] Leszek S. Czarnecki, "Physical Reasons of Currents RMS Value Increase in Power Systems with Nonsinusoidal Voltaje," *IEEE Trans. on Power Delivery*, vol. 8, no. 1, January 1993, pp. 437-447.
 - [8] W. Shepherd & P. Zand, Energy Flow and Power Factor in Nonsinusoidal Circuits, Cambridge University Press, 1979.

REFERENCIAS (continuación)

- [9] A. Domijan, G. T. Heydt, A. P. S. Meliopoulos, "Directions of Research on Electric Power Quality," *IEEE Trans. on Power Delivery*, vol. 8, no. 1, January 1993, pp. 429-436.
- [10] "Power Quality-Two Differents Perspectives", A paper prepared by the IEEE Working Group on Vol.tage Flicker and Service to Critical Load. Daniel J. Ward, Chairman. Contributing Members: J.J. Burke, D.C. Griffith, D.J. Ward. *IEEE Trans. on Power Delivery*, vol. 5, no. 3, July 1990, pp. 1501-1513.
- [11] J. Arrillaga, D. A. Bradly, P.S. Bodger, Power Systems Harmonics, John Wiley & Sons, 1989.
- [12] A. A. Mahmound (Editor), W. M. Grady, M.F. McGranaghan (Co-Editors), Power Systems Harmonics, IEEE Tutorial Course, 1984.
- [13] A. Semlyen, E. Acha, J. Arrillaga, "Newton-Type Algorithms for the Harmonics Phasor Analysis of Non-Linear Power Circuits in Periodical Steady State with Special Reference to Magnetic Non-Linearities," *IEEE Trans. on Power Delivery*, July 1988, pp. 1090-1098.
- [14] Enrique Acha Daza, Modelling of Power Systems Transformers in the Complex Conjugate Harmonic Space, Ph. D. Thesis, University of Canterburry, New Zealand, 1988. ECCIÓN GENERAL DE BIBLIOTECAS
 - [15] A. Semlyen, J. F. Eggleston, J. Arrillaga, "Admitance Matrix Model of a Synchronous Machine for Harmonics Analysis," *IEEE Trans. on Power Systems*, November 1987, pp. 833-840.
 - [16] Wilson W. Xu, Hermann W. Dommel, Jose R. Marti, "A Synchonous Machine Model for Three-Phase Harmonic Analysis and EMTP Initialization," *IEEE Trans. on Power* Systems, November 1991, pp. 1530-1538.
 - [17] A. Medina, J. Arrillaga, "Harmonics Iteration Between Generation and Transmision Systems," IEEE Trans. on Power Delivery, October 1993, pp. 1981-1987.

REFERENCIAS (continuación)

- [18] J. Aurelio Medina Ríos, Power Systems Modelling in the Harmonics Domain, Ph. D. Thesis, University of Canterburry, New Zealand, 1992.
- [19] K. J. Olejniczak, G. T. Heydt, "Scanning the special section on the Hartley Transform," Proc. IEEE, vol. 82, no. 3, March 1994, pp. 372-380.
- [20] G. T. Heydt, K. J. Olejniczack, R. Spark, E. Viscinto, "Application of the Hartley Transform for the Analysis of the Propagation of Nonsinusoidal Waveforms in Power Systems," *IEEE Trans. on Power Delivery*, vol. 6, no. 4, October 1991, pp. 1862-1868.
- [21] G. T. Heydt, J. Olejniczack, "The Hartley Series and its Application to Power Quality Assessment," *IEEE Trans. on Industry Application*, vol. 29 no. 3, May/June 1993, pp. 522-527.
- [22] G. T. Heydt, "System Analysis Using Hartley Impedance," IEEE Trans. on Power Delivery, vol.8, no. 2, April 1993, pp. 518-523.
- [23] G. T. Heydt, Electric Power Quality, Stars in a Circle Publications, 1991.
- [24] R. N. Bracewell, The Fourier Transform and its Application, McGraw-Hill, 1965.
- [25] R. V. L. Hartley, "A More Symmetrical Fourier Analysis Applied to Transmission Problems," Proc. IRE, vol. 30, 1942.
- [26] S. Goldman, Frecuency Analysis Modulation and Noise, McGraw-Hill, 1948.
- [27] R. N. Bracewell, The Hartley Transform, Oxford University Press, 1986.
- [28] R. N. Bracewell, "The Fast Hartley Transform," Proc. IEEE, Vol. 72, 1984.
- [29] G. T. Heydt, "The Fast Hartley Transform used in the Analysis of Electrical Transients in Power System," Proc. IEEE, Int. Symp. on Circuits and Systems, 1990.
- [30] J. Rohan Lucas, Peter G. McLaren, "B-H Loop Representation for Transient Studies," Int. J. Elect. Enging. Educ., Manchester U. P., vol. 28, 1991, pp. 261-270.
- [31] O'Kelly, S. Simmons, Introduction to Generalized Machine Theory, Mc.Graw-Hill, London, 1968.

REFERENCIAS (continuación)

- [32] L. D. Aréchiga, Modelos Generalizados de Unidades de Transformación para el Análisis de Sistemas Eléctricos de Potencia, Tesis de maestría, DIE FIME UANL, 1989.
- [33] Manuel Madrigal Martinez, Modelación Generalizada de Componentes del Sistema Eléctrico de Potencia para Análisis en Estado Estable, Tesis de Licenciatura, Instituto Tecnológico de Morelia, 1993.
- [34] Mark A. O'Nell, "Faster Than Fast Fourier", BYTE, April 1988, pp. 293-299.
- [35] Juan Marcos García Martínez, Formulación Trifásica Multifrecuencias para el Estudio de Redes Eléctricas en Estado Estable, Tesis Doctoral, DIE FIME UANL, 1995.
- [36] N. Balabanian, Bickart, S. Seshu, *Electrical Network Theory*, John Wiley and Sons, 1969.
- [37] W. H. Hayt, Jack E. Kemmerly, Análisis de Circuitos Eléctricos, McGraw-Hill, 1975.
- [38] Desoer, E. Kuh, Basic Circuit Theory, Mc. Graw-Hill, 1969.
- [39] Hwei P. Hsu, Análisis de Fourier, Addison-Wesley Iberoamerica, 1987.
- [40] M.A. Murray-Lasso, "A General Transformation with Applications to Circuit Theory," Journal of the Franklin Institute, vol. 285, no. 2, February 1968
- [41] Daozhi Xia, G. T. Heydt, "Harmonic Power Flow Studies part I- Formulation and Solution," *IEEE Trans. on Power Apparatus and Systems*, vol. 101, no. 6, June 1982, pp. 1257-1265.
- [42] Daozhi Xia, G. T. Heydt, "Harmonic Power Flow Studies part II- Implementation and Practical Application," *IEEE Trans. on Power Apparatus and Systems*, vol. 101, no. 6, June 1982, pp. 1266-1270.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

APENDICE A

OBTENCION DE LAS SERIES Y TRANSFORMADA DE HARTLEY A PARTIR DE LAS SERIES TRIGONOMETRICAS DE FOURIER

La transformada Hartley, como se observo en el capítulo 3, es una forma simétrica de representar a la transformada de Fourier, por lo que todas las características que posee la transformada de Fourier las tiene la transformada Hartley.

A.1. SERIES DE HARTLEY

Partiendo de las series trigonométricas de Fourier donde toda función periódica f(t) con período T que cumpla con la condición de Dirichlet, es decir, que f(t) es continua por tramos e integrable sobre cualquier intervalo, se puede representar mediante una serie de Fourier como:

$$f(t) = \sum_{n=1}^{\infty} (a_n \cos(n\omega t) + b_n \sin(n\omega t))$$
(A.1)
$$a_n = \frac{2}{T} \int_{T/2}^{T/2} f(t) \cos(n\omega t) dt$$
(A.2)
$$b_n = \frac{2}{T} \int_{T/2}^{T/2} f(t) \sin(n\omega t) dt$$
(A.3)

desarrollando la ecuación (A.1), se obtiene:

$$f(t) = \sum_{n=1}^{\infty} \left\{ \frac{1}{2} (a_n + b_n) cas(n\omega t) + \frac{1}{2} (a_n - b_n) cas(-n\omega t) \right\}$$
(A.4)

donde $cas(\theta) = cos(\theta) + sen(\theta)$

Observando (A.2) y (A.3) se tiene que:

$$\mathbf{a}_{-n} = \mathbf{a}_n \tag{A.5}$$

101

 $\mathbf{b}_{-n} = -\mathbf{b}_{n}$

reordenando (A.4) y haciendo uso de (A.5), se obtiene:

$$f(t) = \frac{1}{2} \sum_{n=-\infty}^{\infty} (a_n + b_n) cas(n\omega t)$$
 (A.6)

llamando

 $S_n = \frac{1}{2}(a_n + b_n)$ (A.7)

y sustituyendo (A.7) en (A.6):

$$f(t) = \sum_{n=-\infty}^{\infty} S_n cas(n\omega t)$$
(A.8)

sustituyendo (A.2) y (A.3) en (A.7):

$$\mathbf{S}_{n} = \frac{1}{2} \left\{ \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(n\omega t) dt + \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin(n\omega t) dt \right\} = \frac{1}{T} \int_{-T/2}^{T/2} f(t) \cos(n\omega t) dt$$
(A.9)

Obteniéndose así la serie de Hartley dada por:

$$JNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN
f(t) = \sum_{n=-\infty}^{\infty} S_n cas(n\omega t)$$

$$DIRE^{n=-\infty}CION GENERAL DE BIBLIOTECAS$$

$$S_n = \frac{1}{T} \int_{-T/2}^{T/2} f(t) cas(n\omega t) dt$$
(A.11)

Se puede observar que los coeficientes de las series trigonométricas de Fourier a_n y b_n se pueden obtener a partir de los coeficientes de las series de Hartley, donde:

$$\mathbf{a}_{n} = \mathbf{S}_{-n} + \mathbf{S}_{n} \tag{A.12}$$

$$\mathbf{b}_{\mathbf{n}} = -\mathbf{S}_{-\mathbf{n}} + \mathbf{S}_{\mathbf{n}} \tag{A.13}$$

De la misma manera se obtienen las series de Fourier en forma compleja, donde:

$$f(t) = \sum_{n=-\infty}^{\infty} C_n e^{jntot}$$
(A.14)

$$C_{n} = \frac{1}{T} \int_{-T/2}^{T/2} f(t) e^{-jn\alpha t} dt$$
 (A.15)

$$C_n = \frac{1}{2}(a_n - jb_n)$$
 (A.16)

Los coeficientes a_n y b_n se pueden obtener de la siguiente manera:

Las ecuaciones (A.21), (A.22) y (A.23) son de gran importancia dado que c_n representa la magnitud y ϕ_n el ángulo de la armónica n (fasor). Así se puede obtener dicha magnitud y ángulo usando las series de Hartley o las series de Fourier en forma rectangular.

102

Usando las series de Hartley:

$$c_n = \sqrt{2}\sqrt{S_{-n}^2 + S_n^2}$$
 (A.24)

$$\phi_{n} = \tan^{-1} \left(\frac{-S_{-n} + S_{n}}{S_{-n} + S_{n}} \right)$$
(A.25)

Usando las series de Fourier en forma rectangular:

 $\mathbf{C}_{\mathbf{n}} = \left| \mathbf{C}_{\mathbf{n}} \right| \angle \boldsymbol{\Phi}_{\mathbf{n}} \tag{A.26}$

$$\mathbf{c}_{n} = \sqrt{2} |\mathbf{C}_{n}| \tag{A.27}$$

$$\phi_{n} = \angle \phi_{n}$$
(A.28)

Otra relación importante se puede obtener, donde:

$$C_{n} = \frac{1}{2} (S_{-n} + S_{n}) - j \frac{1}{2} (-S_{-n} + S_{n})$$

$$C_{-n} = \frac{1}{2} (S_{-n} + S_{n}) + j \frac{1}{2} (-S_{-n} + S_{n})$$
(A.29)
(A.30)

A.2. TRANSFORMADA DE HARTLEY

DIRECCION GENERAL DE BIBLIOTECAS

Partiendo de que una función f(t) periódica con periodo T; cuando T se aproxima al infinito, f(t) se convierte en una función no periódica, la cual tendrá su representación en el análisis de Hartley como una integral.

A partir de las series de Hartley se puede obtener la transformada de Hartley, así, sustituyendo (A.11) en (A.10) se tiene:

$$\mathbf{f}(t) = \sum_{n=-\infty}^{\infty} \left[\frac{1}{T} \int_{-T/2}^{T/2} f(x) \cos(n\omega x) dx \right] \cos(n\omega t)$$
(A.31)

haciendo que $T \to \infty$ entonces $n\omega = n\Delta\omega \to \omega$ y como $T = \frac{2\pi}{\omega}$ (A.31) queda como:

$$\mathbf{f}(\mathbf{t}) = \sum_{n=-\infty}^{\infty} \left[\frac{1}{2\pi} \int_{-\infty}^{\infty} \mathbf{f}(\mathbf{x}) \cos(n\Delta\omega \mathbf{x}) d\mathbf{x} \right] \cos(n\Delta\omega \mathbf{t}) \Delta\omega$$
(A.32)

el límite cuando $T \rightarrow \infty, \Delta \omega \rightarrow d\omega$ y la sumatoria se convierte en una integral sobre ω quedando (A.32) como:

UNIVERSIDAD AUTONOMA DE NUEVO LEON

A las ecuaciones (A.34) y (A.35) se les conoce como la transformada Hartley de la función f(t) y la transformada inversa de Hartley respectivamente. OTECAS

Las condiciones para que exista la transformada Hartley de una función f(t) son las mismas que para existir la transformada de Fourier⁴.

•
$$\int_{-\infty}^{\infty} |f(t)| dt < \infty$$
 ó $\int_{-\infty}^{\infty} |f(t)| dt = \infty$ para funciones periódicas.

104

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

APENDICE B

LISTADOS DE LA TRANSFORMADA RAPIDA DE HARTLEY

```
TRANSFORMADA RAPIDA DE
                                                                                                                                                           % PASO 1
HARTLEY
                                                                                                                                                           i=1:
function L=FHT(R);
                                                                                                                                                           for k=1:N/2,
                                                                                                                                                             L(j)=R(j)+R(j+1);
% OBTIENE VALOR DE N Y P
                                                                                                                                                             L(j+1)=R(j)-R(j+1);
                                                                                                                                                            j=2*k+1;
N=size(R):
                                                                                                                                                           end
if N(1) = = 1
                                                                                                                                                           R=L:
 N=N(2);
 else N=N(1);
                                                                                                                                                           % PASO 2
end
                                                                                                                                                           j=1;
P=log2(N);
                                                                                                                                                           for k=1:N/4.
if (round(P)-P)~0
                                                                                                                                                             L(i)=R(i)+R(i+2);
 fprintf('El número de valores a permutar debe ser
                                                                                                                                                             L(j+1)=R(j+1)+R(j+3);
una potencia de 2 ');
                                                                                                                                                             L(i+2)=R(i)-R(i+2);
 break:
                                                                                                                                                             L(j+3)=R(j+1)-R(j+3);
end
                                                                                                                                                             j=4*k+1;
                                                                                                                                                           end
for j=1:N.
                                                                                                                                                            R=L;
 L(j)=0;
end
                                                                                                                                                            % PASO 3.4 ..... P
% PERMUTACION
                                                                                                                                                            for s=3:P.
                                                                                                                                                             m=2^s;
for j=1:(P-1),
                                                                                                                                                             for i=1:m.
  X=N/(2^j);
                                                                                                                                                                C(j) = cos(2*pi*(j-1)/m);
 for k=0:2^(j-1)-1
                                                                                                                                                               S(j)=sin(2*pi*(j-1)/m);
                                                                                                                                                                                                                                                                            EO
   m=1+2*k*X;
                                                                                                                                                              end
    r=m:
                                                                                                                                                              for k=1:N/m.
    for n=0:X-1.
                                                                                                                                                               j=1;
                                                                                                     FENERAI
                                                                                                                                                                                                                                                   CAS
                                                                                                                                                                                                                                           -i (
     L(m)=R(2*m-1-(r-1));
                                                                                                                                                               q=j+(k-1)*m;
      L(X+m)=R(2*m-(r-1));
                                                                                                                                                                L(q)=R(q)+C(j)*R(m/2+q);
      m≈m+l;
                                                                                                                                                                L(m/2+q)=R(q)+C(m/2+j)*R(m/2+q);
    end
                                                                                                                                                                for j=2:m/2,
    R=L:
                                                                                                                                                                 q=j+(k-1)*m;
   end
                                                                                                                                                                 L(q) = R(q) + C(j) + R(m/2+q) + S(j) + R((2+k-1)) + C(j) + R(m/2+q) + S(j) + S(j) + R(m/2+q) + S(j) +
 end
                                                                                                                                                             1)*m+2-q);
                                                                                                                                                            L(m/2+q)=R(q)+C(m/2+j)*R(m/2+q)+S(m/2+j)*
                                                                                                                                                             R((2*k-1)*m+2-q);
                                                                                                                                                                end
                                                                                                                                                               end
                                                                                                                                                              R=L:
                                                                                                                                                             end
                                                                                                                                                             L=L/N;
                                                                                                                                                             end
```

TRANSFORMADA INVERSA RAPIDA DE HARTLEY

function R=IFHT(L)

% función que obtiene la Transformada %Inversa Rapida de Hartley % ver la función FHT

% OBTIENE VALOR DE N Y P ·

N=size(L);if N(1)==1N=N(2);else N=N(1);end

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

APENDICE C

CARACTERISTICA POLINOMIAL DE LA CURVA DE MAGNETIZACION

Existen diferentes formas de representar la característica experimental de magnetización, esta característica es representada por segmentos lineales o combinaciones de líneas con funciones cuadráticas.

Una forma más de representar la característica de magnetización es mediante una ecuación de ajuste polinomial [14], de la forma:

(C.1)

donde los coeficientes a, b y n son determinados de la característica experimental sin pérdidas haciendo uso de los siguientes datos:

Coordenadas de la rodilla de la curva de magnetización.

Coordenadas del máximo punto a considerar.

Pendiente de la parte lineal.

 $i = a\phi + b\phi^n$

Tomando la caracteristica de magnetización experimental de la Figura C.1 se tiene que:

- Coordenada de la rodilla, $\varphi_{nom} = 1.0 \text{ p.u.}$, $i_{nom} = 0.008 \text{ p.u.}$
- Punto máximo a considerar $\varphi_{max} = 1.2 \text{ p.u.}$, $i_{max} = 0.026 \text{ p.u.}$
- Pendiente de la parte lineal M=1700.

sustituyendo los valores máximos con M=1/a en (C 1) y despejando b, se tiene:

$$b = \frac{i_{max} - a\phi_{max}}{\phi_{max}^{n}}$$
(C.2)

en forma iterativa se calcula b para diferentes valores de n

0.014638	0.0160
3 0.014638	0.0152
0.0101165	0.01075
7 0.007059	0.0076
0.00490217	0.0054
	0.0101165 0.007059 0.00490217

La mejor característica se obtiene cuando i_{nom} se aproxima más a su valor real, para este caso sucede con n=7 y b=0.007059, así se tiene que la característica de magnetización se puede representar por:

$$i = \frac{1}{1700}\phi + 0.0079059\phi^7$$

(C.3)

Figura C.1. Característica experimental de un transformador trifásico moderno.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

APENDICE D CARACTERISTICA NO-LINEAL DE LA MAGNETIZACION DE ELEMENTOS INDUCTIVOS

D.1. CARACTERISTICA FLUJO-CORRIENTE

La caracteríctica no-lineal de magnetización que presentan los elementos inductivos se muestran en los siguientes tres casos [30,11].

Figura D.1. Característica de magnetización a) Curva de saturación. b) Formas de onda del flujo y corriente.

Donde :

φ: Simétrico, y en fase con la corriente de magnetización im.

i_m: Simétrica, y contiene solamente armónicas impares (1,3,5,7,9....)*.

^{*} Toda función con simétria de media onda, f(t)=-f(t+T/2), contiene solamente las armónicas impares [39,11].

Caso 2: Considerando el lazo de histéresis.

Figura D.3. Característica de magnetización. a) Ciclo de histéresis. b) Formas de onda del flujo y corriente.

Donde :

φ: Asimétrico, y en desfase con la corriente de magnetización im.

im : Asimétrico, y contiene todas las armónicas (pares e impares: 1,2,3,4,5,7,6,8,9....).

D.2. MODELACION DE LOS CASOS ANTERIORES

La corriente i_{ϕ} puede ser representada por segmentos de rectas o como se mostro en el Apéndice C.

Caso 1:

Figura D.5. Representación del ciclo de histéresis. a) Circuito equivalente. b) Ciclo de histéresis. Variando V_m.

D.3. CARACTERIZACION DE EFECTOS

Caso 1: La curva de flujo-corriente es debido a la magnetización del acero usado en el núcleo de la bobina. Al saturarse el núcleo por exceso de flujo magnético, se tiene que para pocos incrementos de flujo se requerira grandes magnitudes de corriente.

Figura D.7. Esquema de una bobina.

Caso 2: El ciclo de histéresis aparece debido a las pérdídas por corrientes de Eddy. Las corrientes de Eddy son corrientes circulantes que se generan por el paso del flujo por las laminaciones del núcleo, provocando calentamiento del núcleo y por tanto pérdidas.

Figura D.8. Esquema de una bobina.

Caso 3: La asimétria del flujo es provocado por el flujo remanente en el núcleo por magnetizaciones previas. Esta asimétria sólo se presenta durante los primeros ciclos después de ser energizada la bobina, dado que cuando alcanza el estado estable, el flujo tiene simétria. Un ejemplo de este efecto es la energización de un transformador donde la corriente de "inrush" o avalancha alcanza, al momento de energizar, valores muy altos, ésto es debido principalmete al flujo remanente.

DIREC Figura D.9. Energización de un transformador en vacío. CAS

Otra posibilidad de que el flujo magnético sea asimétrico es que la fuente que alimenta al elemento no-lineal contenga una fuente de c.d. Esta componente puede ser producida principalmente por problemas de diseño de rectificadores, como puede ser desbalance en los ángulos de disparo de un rectificador o compensador trifásico.

Con estos resultados es posible modelar no-linealidades de elementos mediante un equivalente Norton como en (4.43), que representa la característica de saturación e incluir el ciclo de histéresis, mediante R representada por (4.6).

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

APENDICE E

DATOS DEL GENERADOR Y TRANSFORMADOR

Los siguientes datos (en p.u.) corresponden al generador usado en los ejemplos de este trabajo de investigación.

Figura E.1. Característica del generador.

Figura E.2. Característica del transformador.

