UNIVERSIDAD AUTONOMA DE NUEVO LEON FACULTAD DE CIENCIAS BIOLOGICAS DIVISION DE ESTUDIOS DE POSTGRADO

C UANTIFICACION DE AMINOACIDOS DE LOS ESTADIOS LARVARIOS DEL CAMARON Penaeus vannamei Y ESTIMACION DE LOS REQUERIMIENTOS DE AMINOACIDOS ESENCIALES

TESIS

Que como requisito parcial para obtener el grado de Maestro en Ciencias con Especialidad en RECURSOS ALIMENTICIOS Y PRODUCCION ACUICOLA

PRESENTA

ING. GERARDO CRUZ REYES

MARZO DE 1997

TM Z5320 FCB 1997 C7

UNIVERSIDAD AUTONOMA DE NUEVO LEON FACULTAD DE CIENCIAS BIOLOGICAS DIVISION DE ESTUDIOS DE POSTGRADO

C UANTIFICACION DE AMINOACIDOS DE LOS ESTADIOS LARVARIOS DEL CAMARON Penaeus vannamei Y ESTIMACION DE LOS REQUERIMIENTOS DE AMINOACIDOS ESENCIALES

TESIS

Que como requisito parcial para obtener el grado de Maestro en Ciencias con Especialidad en RECURSOS ALIMENTICIOS Y PRODUCCION ACUICOLA

PRESENTA

ING. GERARDO CRUZ REYES

JUNIO DE 1997

MT 25320 FCB 1997 C7


CUANTIFICACION DE AMINOACIDOS DE LOS ESTADIOS LARVARIOS DEL CAMARON Penaeus vannamei Y ESTIMACION DE LOS REQUERIMIENTOS DE AMINOACIDOS ESENCIALES

Aprobación del comite de Tesis:

Janu .
Draj L. Elizabeth Cruz Suárez
Presidente
Jose 17º Viada
Dr. Ing. Quim. José Ma. Viader Salvadó
Secretario
Dr. Rahim Foroughbakch
Vocal
Dr. Denis Rique Marie
Vocal
Quiel Deser Des
M.C Graciela García
Vacal

EONDO TESIS

CUANTIFICACION DE AMINOACIDOS DE LOS ESTADIOS LARVARIOS DEL CAMARON Penaeus vannamei Y ESTIMACION DE LOS REQUERIMIENTOS DE AMINOACIDOS ESENCIALES

Aprobación de Tesis:

Dra. L. Elizabeth Cruz Suárez Director Interno

Dr. Ing. Quim. José Ma. Viader Salvadó Director Éxterno

DEDICATORIA

A mis Padres

Sr. Carlos Cruz Ramos y Sra. Irene Reyes Bustamante

Por darme la vida, por enseñarme a tener FE en Dios, por enseñarme a fijarme objetivos y cumplirlos, gracias por darme su cariño y comprensión en todo momento.

Srita. Victoria Ramos Salinas, Sra. Juanita Ramos Salinas y Sr. Javier Ramos Salinas.

Mi agradecimiento de por vida por su ayuda incondicional para poder lograr mis objetivos.

A mi Esposa

Ma. Elena López Durón

Por su amor y comprensión durante el desarrollo de este proyecto, por haber cuidado de mis hijos y apoyarme en todo momento durante mi estancia en Monterrey. Te quiero.

A mis Hijos

Harlen Irene y Emir Gerardo Cruz López

Por su gran cariño y por la felicidad que siempre me proporcionarán.

A mis Hermanos

Irene Virginia, Carlos Eliud, José Antonio y Emmanuel Cruz Reves

Por toda la vida que hemos compartido y que seguiremos compartiendo.

AGRADECIMIENTOS

Mi más sincero agradecimiento a la Dra. L. Elizabeth Cruz Suárez por aceptarme bajo su asesoría. Al Dr. José Maria Viader Salvadó por iniciarme en la disciplina de la Cromatografía de Líquidos de Alta Resolución. Así como al Dr. Rahim Foroughbakch por sus constantes asesorias en Estadística e interpretación de resultados, al Dr. Denis Rique Marie por su dedicación en la múltiples revisiones del manuscrito y M.C Graciela García Díaz por brindarme su asesoría en Química analítica. A todos gracias por brindarme su amistad.

A México que a través del consejo Nacional de Ciencia y Tecnología me otorgó la beca-crédito No. 86245 para realizar mis estudios de Postgrado. Este trabajo forma parte del proyecto 1653P-B9507 apoyado por CONACyT en el año de 1996.

Al estado de Sonora que a través del Instituto de Crédito Educativo del Estado de Sonora, me proporcionó el crédito No. M94 40153 para cubrir parcialmente los gastos de manutención e iniciales de mi investigación.

Al Dr. Hugo Barrera Saldaña Jefe del Departamento de Bioquímica de la Facultad de Medicina por facilitarme la estancia en el Laboratorio de Química Biomolecular. A la Dra. Martha Guerrero Olazarán y al Dr. José María Viader por sus sugerencias durante el desarrollo de la presente investigación.

Al Director General de la empresa El Camarón Dorado S.A de C.V Ing. Juan Carlos López, Ing. Javier Blasco (Actualmente en la empresa Aquasys), Ing. Jesús Reyna Alvarez (Actualmente en la empresa Aqualarva) y al personal técnico por facilitarme su tiempo e intalaciones para realizar la colecta de larvas de *P. vannamei*.

Al Director General de la empresa Tecnología Acuícola del Golfo de Cortéz, Biól. Jesús Herrera, Ing. Israel López Cota por sus sugerencias durante el desarrollo de la investigación, así como al personal técnico del laboratorio y granja por permitirme colaborar en la producción de *P. vannamei* en los inicios de mi carrera como acuacultor. Asimismo mi agradecimiento a la Biol. Hernestina Almada y al Biol. Carlos Flores por sus enseñanzas en la cria larvaria del camarón azul *P. stylirostris* en el laboratorio Biotecmar S.C.L.

Al Instituto Tecnológico del Mar (Unidad Guaymas) por formarme como Ingeniero en Acuicultura. Mi más sincero agradecimiento al Físico Juan A. Dworak Robinson (Ex- Director del ITMAR), Así como a la maestra Quím. Ma. Francisca Rodríguez Marín por su amistad y asesoría sobre nutrición de camarón durante mi estancia en Guaymas, Sonora.

A los compañeros que conformamos las cuatro generaciones de la Maestria en Recursos Alimenticios y Producción Acuícola, gracias por formar parte y engrandecer el programa MARICULTURA. Al Ing. Oscar Manuel Loaiza por facilitarme su equipo de cómputo, Ing. David Montaño, Ing. Beatriz Ponce por su asistencia en la elaboración de diapositivas, así como a la Srita Adriana García secretaria del programa por su atención y amabilidad prestadas durante mi estancia en la Maestría.

Al Instituto Tecnológico y de Estudios Superiores de Monterrey ITESM campus Guaymas, por facilitarme la sala de Informática para establecer ENLACE via INTERNET con mis asesores durante la penúltima fase de revisión en la Facultad de Ciencias Biológicas y la Facultad de Medicina de la U.A.N.L

A las familias Ramos Salinas y Reyes Bustamante y las familias que se han formado a lo largo de 4 generaciones, gracias por su apoyo moral durante todas las etapas de mi vida.

Lista de Abreviaturas

AA Aminoácido Aminoácidos Aminoácidos

AAE Aminoácidos esenciales
AAL Aminoácidos libres
AAP Aminoácidos proteicos
ASB Albúmina sérica bovina
ANOVA Análisis de varianza

Agua MilliQ Agua destilada y desionizada obtenida por el proceso

MilliQ

Asp Acido aspártico

Arg Arginina Alanina

AMS Acido metanosulfónico

AAE/Met Relación de un aminoácido esencial individual respecto

a metionina

ARC Consejo de investigación agrícola

Arg + Treo Pico correpondiente a arginina y treonina cuando no se

resolvieron adecuadamente

CO₂ Dioxido de carbono °C Grados centígrados

CLAR-FR Cromatografia de líquidos de alta resolución en

modalidad de fase reversa

cm Centímetro

C.V. Coeficiente de variación

E.S. Error estándar FR Factor de respuesta

g Gramo

g/100g de AA Gramos por cien gramos de aminoácidos recuperados

Glu Acido glutámico

Gly Glicina ha Hectárea

HCl Acido clorhídrico

Hz Hertz Hys Histidina

IAAE Índice de aminoácidos esenciales

Ile Isoleucina
Kg Kg
Leu Leucina
Lys Lisina
mg Miligramo

mg/l Miligrammo por litro
M-I, M-II, M-III Subestadios misis I, II, III.

Met Metionina

mM Milimolar mm Milimetro

mg/ml Miligramo por mililitro

ml Minuto min Mililitro

m³ Metros cúbicos

N-I, N-II, N-III Subestadios nauplio I, II, III.

N Normal Eq/l
NaOH Hidróxido de sodio
OPA o-phtaldialdehído-tiol

Phe Fenilalanina
PM. Peso Molecular

Pl-I, Pl-II, Pl-VII Subestadios postlarva I, II, VII.

pH Potencial de hidrógeno
psi Libra por pulgada cuadrada
rpm Revoluciones por minuto
R² Coeficiente de determinación
R.F.U Unidades de fluorescencia relativas

Ser Serina

STV Virus del síndrome de Taura

ton Tonelada métrica · THF Tetrahidrofurano

Thr Treonina
Tyr Tirosina
Trp Triptófano

t_R Tiempo de retención

Val Valina

Z-I, Z-II, Z-III Subestadios zoea I, II, III.

λ ex Longitud de onda de excitación

λ em Longitud de onda de emisión

ul Microlitro

μmol/ml
 μg/Org
 Micromol por mililitro
 Microgramo por organismo

μ Micras

Marca registrada

ÍNDICE

Capítu	ılo	•	Página
INTR	ODUC	CCION	1
1.1	Cultiv	vo de camarón en México	1
1.2	Antec	edentes	3
	1.2.1	Descripción de la biología de la larva del camarón	4
	1.2.2	Cultivo larvario de camarones peneidos	9
	1.2.3	Proteínas	10
	1.2.4	Requerimientos nutricionales en proteínas y AAs en crustáceos	11
		1.2.4.1 Requerimientos de proteína cruda	12
		1.2.4.2 Requerimientos cualitativos para AAE	12
		1.2.4.3 Balance de aminoácidos	13
		1.2.4.4 Requerimiento cuantitativo de aminoácidos	16
		1.2.4.5 Concepto de proteina ideal y recomendaciones de contenido de	1.7
		AAE individuales en dietas comerciales para uso en formulación	17
	1.2.5	Nutrición larvaria de crustáceos	18
	1.2.6	Determinación cuantitativa de AAs mediante CLAR-FR	23
		1.2.6.1 Derivatización	25
1.3	Obje	tivo General	26
	1.3.1	Objetivos Particulares	26
	1.3.2	Hipótesis	26
MAT	ERIA	L Y MÉTODOS	27
2.1	T stree	tegia general	27
2.1	Estra	ndarización de la metodología para cuantificación de AAP	
2.2	ESTAI	ante CLAR	2.8
			2.9
	2.2.1	Elección de fases móviles y programa de elución	30
	2.2.2	Programa de la ses moviles y programa de entendares de AAS	32
	2.2.3	Preparación de una solución stock de estándares de AAs	
	2.2.4	Determinación de las condiciones cromatográficas óptimas	34
		2.2.4.1 Derivatización	34
	225	Análisis cualitativo	34
	2.2.3	Determinación de los factores de respuesta para cada AA	34
	2.2.0	Determinación de los factores de respuesta para cada AA	36
	2.2.7	Factores de hidrólisis	30
	2.2.8	Cuantificación de una proteína de composición conocida	
2.3	5 Anái	lisis de la composición de AAP en los estadios larvarios de P.	20
	vann	amei	
	2.3.1	Muestreo y colecta de los diferentes estadios larvarios de Penaeus	20
	.	vannamei	د در
•		Tratamiento de muestras.	
•	2.3.3	Homogeneización.	42
		2 3 3 1 Análisis de proteínas	4 .

		2.3.3.2 Comparación de la variación del contenido de proteína y el	
		crecimiento relativo de cada subestadio analizado.	43
	2.3.4	Precipitación y purificación de proteínas	44
	2.3.5	Hidrólisis del concentrado proteico de larvas de camarones	
		peneidos	43
	2.3.6	Derivatización del hidrolizado proteico de larvas de camarones	45
		peneidos	4 3
	2.3.7	Cuantificación de AAs en embriones y larvas de Penaeus	15
		vannamei	43
2.4	Análi	sis estadístico	40
2.5	Comp	paración del perfil de AAE de los diferentes estadios larvarios atos bibliográficos	46
26	Datar	minación de requerimientos de AAE en función de los	
2.0	Deter	ogramas obtenidos del cuerpo entero de los estadios larvarios de	
	alima	ntación exógena de <i>P. vannamei</i>	46
2.7	Come	paración del requerimiento estimado de AAE de los estadios,	
4.1	Comp	misis y postlarva de P. vannamei y comparación con	
	zuea,	edentes bibliográficos para la misma especie	47
RESU	ILTAI	OOS	48
31	Estan	darización de la metodología para cuantificación de AAP	
J,1	medi	ante CLAR	48
	3 1 1	Análisis cualitativo de AAs a partir de una muesta de estándares	50
	3.1.1	Determinación de los factores de respuesta para cada AA	51
	3.1.2	Determinación de factores de hidrólisis	53
	3.1.3	3.1.3.1 Método de hidrólisis	53
		3.1.3.2 Factores de hidrólisis	53
	314	Cuantificación de una proteína de composición conocida	54
3.2	Análi	isis de proteínas	58
3.3	Varie	ación del contenido de proteína durante la fase embrionaria y	
٠,٠	los de	os primeros estadios larvarios de <i>Penaeus vannamei</i> así como del	
	creci	miento relativo durante el ciclo larvario	61
3.4	Cuar	ntificación de AAs en embriones y larvas del camarón Penaeus	
J. 1	vann	amei	62
	3 4 1	Embriones	64
	3.42	Nauplio	65
	343	Zoea	66
	344	Misis	66
	345	Postlarva	6
3.4	Anál	lisis estadísticos de la composición de AAP en los estadios	
···	larve	arios de Penaeus vannamei	68
3/	Vari	ación de AAE y AANE durante la ontogénesis de Penaeus	
٠.١		acion de AAD y Mille duranto in Ortogonom de Santa	70
,	3 6 1	Variación de AAE y AANE en el estadio nauplio y zoea	7
	3.6.2	Variación de AAE y AANE en el estadio misis	7
	3.6.2	Variación de AAE v AANE en el estadio postlarva	74

3.7	Comparación del perfil de AAE de los diferentes estadios larvarios	_	
	con datos bibliográficos	76	
3.8	8 Estimación de Requerimientos aproximados de AAE en función de		
	los aminogramas obtenidos del cuerpo entero, en los estadios	70	
	larvarios de alimentación exógena en Penaeus vannamei	/9	
	3.8.1 Comparación de requerimientos estimados de AAE de los estadios		
	larvarios de alimentación exógena de P. vannamei (zoea, misis y postlarva) respecto a juveniles y recomendaciones de AAE en		
	formulaciones a nivel comercial de la misma especie	05	
	3.8.2 Correlación de los perfiles de AAE (P< 0.05) en los estadios	63	
	larvarios de alimentación exógena (zoea, misis y postlarva)		
	respecto a juveniles de 105 mg de <i>Penaeus vannamei</i> y		
	recomendaciones de AAE a nivel comercial	95	
DIGO			
	USION		
	Precisión en el análisis cualitativo		
	Exactitud y Precisión del análisis cuantitativo		
	Muestreo y colecta de los diferentes estadios larvarios de P. vannamei		
	Forma de expresión de resultados	99	
4.5	Análisis de proteínas en los estadios embrión, nauplio y zoea de P.		
	vannamei	100	
4.6	Variación del contenido de AAs durante la ontogénesis de Penaeus	102	
	4.6.1 Variación del contenido de AAs durante el estadio misis		
	4.6.1 Variación del contenido de AAs durante el estadio misis		
47	Comparación del patrón AAE (%) de los diferentes estadios	100	
7.7	larvarios, con datos bibliográficos	108	
4.8	Determinación de Requerimientos de AAE en función de los	•••	
•••	aminogramas obtenidos del cuerpo entero, en los estadios larvarios		
	de alimentación exógena en Penaeus vannamei	109	
	4.8.1 Zoea		
	4.8.2 Misis	110	
	4.8.3 Postiarva	111	
4.9	Comparación de requerimientos de AAE de los estadios larvarios de		
	alimentación exógena de P. vannamei (zoea, misis y postlarva)		
	respecto a juveniles y recomendaciones de AAE en formulaciones a		
	nivel comercial de la misma especie	112	
CON	CLUSIONES	113	
BIBL	IOGRAFIA	116	
ANE	voe	120	
44 19 67	A 5 4 7		

LISTA DE TABLAS

	. •	Página
Tabla 1.	Composición de AAs del camarón Penaeus japonicus y P. monodon.	4
Tabla 2.	Desarrollo larvario del camarón <i>Penaeus vannamei</i> en condiciones óptimas de cultivo (27 °C).	5
Tabla 3.	Perfil de AAs de proteínas de referencia para formulación de alimentos empleadas en estudios nutricionales en camarón,	14
Tabla 4.	Requerimiento de AAE reportados para el camarón Penaeus vannamei g/100 g de proteína	18
Tabla 5.	Relación de tallas de los estadios larvarios de Penaeus vannamei	23
Tabla 6.	Programa de elución usado en la separación de AAs mediante CLAR-FR, empleándo OPA como reactivo derivatizante	
Tabla 7.	Preparación de una mezcla de estándares de AAs de 1.25 μmol/ml	
Tabla 8.	Análisis cualitativo de una mezcla de estándares de AAs, la identificación de AAs individuales se realizó por tiempos de	,,,,,
	retención	50
Tabla 9.	Factores de respuesta de AAs individuales calculados a partir de una mezcla de estándares.	52
Tabla 10.	Factores de Hidrólisis utilizados para compensar las pérdidas ocurridas durante el proceso de hidrólisis de proteínas	54
Tabla 11.	Comparación del contenido de AAs de ASB analizada por CLAR-	55
Tabla 12.	Prueba de t de Student del contenido de AAs de ASB analizada por CLAR-FR y su secuencia aminoacídica.	
Tabla 13	Contenido de proteína en las primeras etapas larvarias del camarón Penaeus vannamei. cuantificadas mediante método colorimétrico de	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	Bradford	59
Tabla 14	Perfil de AAs proteicos durante la ontogénesis de Penaeus vannamei.	63
Tabla 15.	Patrón de AAE durante la ontogénesis de P. vannamei expresados como % de AAE*	64
Tabla 16.	Contenido de AAE y AANE (g /100 g de AA) ¹ durante la	71
Tabla 17.	ontogénesis de <i>Penaeus vannamei</i> . ANOVA del contenido de AAE Y AANE (g/100g de AA) durante el estadio Nauplio de <i>P. vannamei</i>	72
Tabla 18.	Contenido AAE (g/100g de AA) l durante el estadio zoea de	
Tabla 19	Penaeus vannamei Contenido de AAE (g./100g. de AA) durante el estadio Misis de	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Tabla 20.	1 endeus vanuamer.	74
1 avia 20.	postlarva de Penaeus vannamei.	75

Tabla 21.	P. vannamei, con P. Japonicus, P. monodon, almeja Tapes y el	75
T-11 00	esturión Acipencer transmontanus.	75
Tabla 22.	Requerimientos estimados de AAE de larvas en los estadios Zoea, Misis y Postlarva de <i>Penaeus vannamei</i> basado en el % de materia seca	80
Tabla 23.	Requerimientos estimados de AAE de larvas en los estadios Zoea,	60
1 auta 23.	Misis y Postlarva de Penaeus vannamei basado en el % de AAE del cuerpo entero	81
Tabla 24.	Requerimientos estimados de AAE de larvas en los subestadios de Zoea de Penaeus vannamei basado en el % de AAE del cuerpo	
Tabla 25.	Requerimientos estimados de AAE de larvas en los subestadios de Zoea de Penaeus vannamei basado en el % de AAE del cuerpo	82
	entero	83
Tabla 26.	Requerimientos estimados de AAE de larvas en los estadios de Postlarva de <i>Penaeus vannamei</i> basado en el % de AAE del cuerpo entero	84
Tabla 27	Requerimientos estimados de AAE de larvas en los estadios de Postlarva de Penaeus vamamei basado en el % de AAE del cuerpo	
T 11 60	entero.	85
Tabla 28.	estadios zoea, misis y postlarva de <i>Penaeus vannamei</i> basado en el contenido total de AAE del cuerpo entero, respecto a las	86
Tabla 29.		80
1 auta 23.	alimentación exógena de P. vannamei.	89
Tabla 30.	Comparación del índice de aminoácidos esenciales (IAAE) para los estadios de alimentación exógena de	90
Tabla 31.	Comparación de la relación AAE/Met para los subestadios zoea de	
	P. vannamei	91
Tabla 32.	Comparación del índice de aminoácidos esenciales (IAAE) para los subestadios zoea de P. vannamei	92
Tabla 33.	Comparación de la relación AAE/Met para los estadios postlarva de P. vannamei	93
Tabla 34.	Comparación del índice de aminoácidos esenciales (IAAE)* para los	
	estadios postlarva de P. vannamei	94
Tabla 35.	Correlación de los perfiles de AAE en los estadios larvarios de alimentación exógena (zoea, misis y postlarva) de Penaeus vannamei respecto a juveniles de 105 mg y recomendaciones de AAE a nivel	
	comercial de Penaeus vannamei.	95

LISTA DE FIGURAS

Capítulo		Página
Figura 1	Nauplio V.	6
Figura 2.	Zoea I.	6
Figura 3.	Zoea II.	7
Figura 4.	Zoea III	7
Figura 5.	Misis I.	8
Figura 6.	Misis II.	8
Figura 7.	Misis III.	8
Figura 8.	Postlarva	9
Figura 9.	Composición de aminoácidos en 8 clases de materiales en relación a	
	16 aminoácidos. Tomado de Shigeno (1980).	15
Figura 10.	Reacción de derivatización de o-phtaldialdehido-tiol (OPA)	25
Figura 11.	Diagrama que muestra la estrategia seguida para estimar los	
	requerimientos de AAE, así como la cuantificación de AANE en	
	diferentes estadios larvarios de P. vannamei	28
Figura 12.	Diagrama del procedimiento de estandarización del método analítico	
	para cuantificar AAP mediante CLAR-FR.	
	Procedimiento de hidrólisis de proteínas,	38
Figura 14.	Diagrama de la secuencia de pasos para la colecta de larvas de	
	camarón P. vannamei	40
Figura 15.	Tratamiento de muestras para homogeneizar y cuantificar proteínas	
	en larvas de P. vannamei.	42
Figura 16.	Procedimiento para la precipitación y purificación de proteínas	
	obtenidas de un homogenado de larvas de P. vannamei	45
Figura 17.	Cromatograma obtenido de una mezcla de estándares de AAs de	
	4.17 nmol/ml empleada para determinar las condiciones de trabajo	
	óptimas en el CLAR.	49
Figura 18.	Aminograma de albúmina sérica bovina en la cual se indican los	
	AAs cuantificados mediante CLAR-FR	55
Figura 19.	Correlación del contenido de AAs de ASB analizados por CLAR-	
	FR y su secuencia aminoacídica.	58
Figura 20.	Variación en el contenido de proteína durante la fase embrionaria y	
	los estadios larvarios nauplio y zoea del camarón Penaeus	
	vannamei.	60
Figura 21.	<u>-</u>	
	embrionaria y los dos primeros estadios larvarios de Penaeus	
	vannamei, la suma total de AAE y el crecimiento relativo* durante	
- -	todo el ciclo larvario.	61
Figura 22.	Perfil de AAs en embriones obtenidos de un grupo Penaeus	
	vannamei colectados en un laboratorio de producción larvaria a	
	escala comercial.	65

Figura 23.	Perfil de AAs en el subestadio nauplio III de <i>Penaeus vannamei</i> colectados en un laboratorio de producción larvaria a escala comercial	65
Figura 24.	Perfil de AAs en el subestadio Z III de Penaeus vannamei colectados en un laboratorio de producción larvaria a escala comercial.	
Figura 25.	Perfil de AAs en el subestadio misis I de <i>Penaeus vannamei</i> colectados en un laboratorio de producción larvaria a escala comercial	67
Figura 26.	Perfil de AAs en el estadio postlarva de <i>Penaeus vannamei</i> colectados en un laboratorio de producción larvaria a escala comercial.	67
Figura 27.	Comparación del perfil de AAP en los cuatro estadios del ciclo larvario de <i>Penaeus vannamei</i> colectados en un laboratorio de producción larvaria a escala comercial.	

RESUMEN

Ing. Gerardo Cruz Reyes

Fecha de Graduación: Junio, 1997

Universidad Autónoma de Nuevo León

Facultad de Ciencias Biológicas

Título del Estudio: CUANTIFICACION DE AMINOACIDOS DE LOS ESTADIOS LARVARIOS DEL CAMARON *Penaeus vannamei* Y ESTIMACION DE LOS REQUERIMIENTOS DE AMINOACIDOS ESENCIALES

Número de páginas:

130

Candidato para el grado de Maestría en Recursos Alimentícios y Producción Acuicola

Area de estudio: Requerimientos nutricionales en larvas de camarones Peneidos

Propósito y Método del Estudio: Para mantener el crecimiento de la industria camaronícola es necesario el suministro constante de postlarvas de excelente calidad producidas en laboratorios, lo cual se logra combinando varios factores como el método de cultivo, nutrición y control de enfermedades durante el desarrollo larvario. Trabajando bajo esta premisa se logró la estándarización de un método de cuantificación de aminoácidos protéicos mediante CLAR-FR, para la estimación de requerimientos nutricionales en los aminoácidos que son esenciales en la nutrición del camarón Penaeus vannamei. El fundamento de esta investigación fue el hecho de que existe una alta correlación entre el contenido de aminoácidos del cuerpo entero y su requerimiento nutricional. Además, al existir un cambio en el nivel trófico en la alimentación durante el desarrollo larvario puede haber un cambio en los requerimientos de de proteína soluble y de aminoácidos esenciales. El contenido de proteína disminuyó a partir de N-III hasta descender a un valor mínimo en el estadio Z-I, iniciandose un incremento en el contenido de proteína a partir de Z-II. Al realizar ANOVA y separación de medías de Tukey de todo el ciclo larvario tomando como replicados a los subestadios de cada estadio, las concentraciones de metionina, valina, fenilalanina, isoleucina y leucina, así como los AANE ácido aspártico, ácido glutámico, serina, alanina y tirosina tuvieron diferencias significativas (P < 0.05).

Contribuciones y conclusiones: Debido a las diferencias observadas en las concentraciones de aminoácidos entre estadios larvarios se justifica establecer un requerimiento diferente para cada uno, por lo que en este trabajo se proponen los requerimientos estimados de AAE para los estadios larvarios de alimentación exógena de *P. vannamei*, zoea, misis y postlarva como % de proteína: zoea (histidina 2.65, arginina 5.60, treonina 2.72, metionina 2.33 triptófano 0.88, valina 3.66, fenilalanina 3.52, isoleucina 2.63, leucina 5.56, lisina 5.45) misis (histidina 3.04, arginina 6.26, treonina 3.03, metionina 3.28 triptófano 1.37, valina 3.07, fenilalanina 3.17, isoleucina 2.32, leucina 4.78, lisina 4.69) y postlarva (histidina 2.79, arginina 2.34, treonina 4.82, metionina 2.34 triptófano 3.07, valina 1.27, fenilalanina 3.11, isoleucina 3.08, leucina 2.67, lísina 4.80).

FIRMA DEL ASESOR: