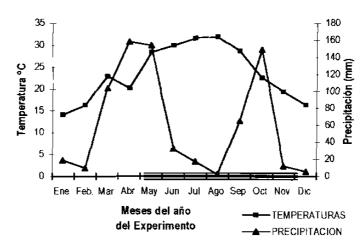
4. RESULTADOS Y DISCUSIONES


En este capítulo se presentan los resultados e interpretaciones de algunas de las características de los factores considerados en el experimento, el análisis individual y comparativo de los parámetros de Indices de calidad de la plántula, que se sustentan con el análisis de varianza factorial y la comparación de medias.

4.1. TEMPERATURA Y PRECIPITACION

Del mes de mayo al mes de noviembre que fue la fase del experimento, es importante observar el comportamiento de la temperatura y las precipitaciones de este año 1997, por que en comparación con los anteriores años anteriores este presenta una discontinuidad extrema de la precipitación entre las fechas del experimento, lo cual podría también hacer variar los resultados.

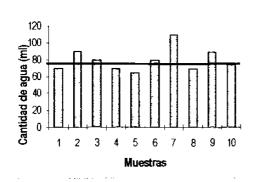
Cuadro 5: y Grafica 1: Temperatura y Precipitación del año 1997 y meses del experimento.

Meses	Temp	Preci.
1	Med.(°C)	(mm)
Ene	14 07	18.8
Feb.	16.33	9.4
Mar.	22.91	103.6
Abr.	20.23	158.9
May. *	28.44	154.5
Jun. *	30.06	32.2
Jui. *	31.62	17
Ago. *	31.93	2.1
Sep. *	28.63	65
Oct. *	22.49	148.5
Nov. *	19.26	11.6
Dic.	16.33	5.6
Total	23.525	727 2

Fuente: Estación Meteorológica Facultad de Ciencias Forestales - U.A.N.L.

Se puede observar en el cuadro 5 y gráfica 1, que el experimento comenzó con el transplante en plena primavera y precipitaciones altas, finalizando sin lluvias y con un descenso de temperatura; sin embargo en la mitad del experimento, en agosto hubo pocas lluvias y altas temperaturas.

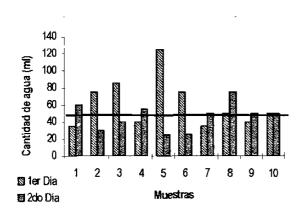
Por lo anterior, muchos autores recomiendan el transplante un poco antes de la primavera, coincidiendo con la última fase de la dormancia fisiológica, sin recibir estrés muy fuerte y activarse nuevamente en la primavera con un buen prendimiento, aunque en un vivero no debería ser necesario por las condiciones que se les da; por esa causa se esperó tres semanas para la reposición de plántulas muertas y en mal estado, que aproximadamente fueron el 20%. Por otro lado las altas temperaturas y la baja precipitación entre julio y agosto pueden causar elevada actividad fotosintética y alto requerimiento de agua, lo que debería ser regulado por los riegos, estas depresiones en la plántula, puede causar una disminución en incremento de su desarrollo. Estos efectos podrán compararse con las gráficas de crecimiento en altura y diámetro.


4.2. CANTIDAD Y DISTRIBUCION DE AGUA DE LOS RIEGOS

Los resultados obtenidos en la estimación de la cantidad y distribución del agua de los dos sistemas de riegos, que fueron instalados en el experimento, son:

Cuadro 6: Estimación de la cantidad y distribución del agua por cada sistema de riego, en ml...

Aspersión	M1	M2	M3	M 4	M 5	M6	M7	M8	M9	M 10	media	L/m2
en 1 hr	70	90	80	70	65	80	110	70	90	75	80	24.6
Tradicional	M1	M 2	M3	M 4	M5	M6	M7	M8	M9	M 10	Media	
1 pasada 1 día	35	75	85	40	125	75	35	50	40	50	61	18.8
1 pasada 2 dia	60	30	40	55	25	25	50	75	50	50	46	14.2
						_	Media d	lel rieac	manua	<u></u>	53.5	16.5


El cuadro 6, muestra la cantidad media de agua del riego por aspersión de 80 ml en una hora, extrapolando la media del área de los recipientes recibidores de agua, da como resultado 24.6 L/m² y para el riego manual con una media de 53.5 ml y 16.5 L/m². Esta última medición y la cantidad por tiempo del riego por aspersión, se tomaron como parámetros para extraer con una regla matemática simple, el tiempo de 40.24 minutos que se regó en el sistema por aspersión; o sea, se tiene la misma cantidad en tiempo que el riego manual.

Grafica 2: Distribución y cantidad media de agua en 1 hr de riego por aspersión.

La distribución del agua en toda la platabanda del riego por aspersión fue estimada, según la distribución de los recipientes recibidores de agua, como muestra el cuadro 6 y la gráfica 2, como este es un riego controlado bajo presión y tiempo estas cantidades distribuidas se consideran constantes. Sin embargo esta puede tener cambios leves, por la evaporación en un día bastante soleado con altas temperaturas, los vientos que pueden desviar

las gotas de agua de un lugar a otro o inclusive hacer que no llegue el agua a la platabanda en este caso mejor no regar; razones que nos hicieron tomar la decisión de regar 40 a 45 minutos, según las condiciones del día, o sea aproximadamente de 16,5 a 19 L/m².

Gráfica 3: Distribución y cantidad media de agua 2 pasadas en dos dias del riego manual.

En el riego manual se observa que hay una variación bastante grande en cuanto a la cantidad y distribución, como muestra la gráfica 3. Las variaciones se ven dentro la platabanda y de un día de riego para otro, las causas posibles que fueron observadas en el vivero se puede decir que son: a) La experiencia de la persona que esta regando. b) La posición y el

estado de ánimo de la persona. c) El cambio de persona en el riego. d) La hora del riego, a esto se incluye las condiciones del clima. Además, de ocupar a una persona por todo un día; la caída del agua al substrato se hace muy pesada existiendo ocasionando la dispersión de las partículas del substrato fuera del contenedor y dejando el cuello de la plántula desnudo, lo que puede ocasionar errores en la medición de este parámetro, la misma causa ocasionó la muerte de algunas plántulas después del transplante, sumándose otra razón más para la espera de tres semanas de reposición de las plántulas; y por último existe una perdida de agua en el arrastre de las mangueras de una platabanda a otra.

4.3. CANTIDAD Y MEZCLAS DE SUBSTRATOS

Los resultados de la estimación de la cantidad de las mezclas y los substratos se presentan en el cuadro 7 siguiente:

Cuadro 7: Cantidad en volumen de las mezclas y substratos utilizados en el experimento.

	Vo	lumé	n (m3)		Total
Materiales	S1	S2	S3	S4	C/material
25% Germinaza	0.185	Ī <u> </u>			0.185
25% Ctza de pino		0.185			0.185
25% Turba			0.185	_	0.185
25% Perlita	0.185	0.185	0.185		0.555
50% Suelo de Mte.	0.370	0.370	0.370	0.740	1.850
Totales Mezcia	0.740	0.740	0.740	0.740	2.960

El cuadro 7, muestra la misma cantidad de todas las mezclas pero con diferente material, esto quiere decir que tienen el mismo número de contenedores. Cada mezcla es un tipo de substrato empleado en el experimento, caracterizándose por el tipo de

material orgánico (Germinaza, Corteza de pino, Turba y Ninguno) que lleva cada uno de estos. En observaciones realizadas macroscópicamente a los materiales orgánicos, se determinaron que el tamaño y homogeneidad de las partículas, son diferentes según el orden descrito a continuación:

Germinaza (± homogéneo) < Turba (heterogéneo) < Corteza de pino (+ heterogéneo)

La corteza de pino presentaba formas planas, circulares, rectangulares y suberosas, con un tamaño variado desde polvo hasta 1 cm por partícula. La turba presentaba formas alargadas, fibrosas de

Cuadro 8: Estimación de la humedad y porosidad de los materiales o substratos.

Descripción	Pe	s o (gr)	Humd	Por.
dei Material	Nor.	Sat	Seco	%	%
Germinaza	311.5	508.8	273.2	86.24	46.31
Ctza pino	252.9	397.3	223.9	77.45	43.64
Turba	134.7	225.9	118.8	90.15	47.41
Suelo de Mte	431.5	625.1	385.5	62.15	38.33

ramas, tallos y hojas, algunas de estas alcanzaban hasta 1 cm pero muy poco y la germinaza es de formas mucho más fibrosas y pequeñas.

Según el cuadro 8, el porcentaje de porosidad y humedad son proporcionales en función de los tipos de substratos

(material), lo que demuestra que los microporos y macroporos del substrato son ocupados por el agua. Al mismo tiempo se puede observar diferentes contenido de humedad en cada material, de los cuales, podemos decir que el requerimiento de agua varia en el siguiente orden:

Por lo tanto, se puede decir que la turba y la germinaza, son los mejores en absorber agua. Para ver cual de los dos tenía mejor retención de agua, se hizo una experiencia colateral y muy ambigua, por lo que no se menciona en metodología, se tomaron dos recipientes con la misma cantidad de agua y se fue incorporando a los substratos hasta terminar toda el agua, donde se observó que la turba drenaba con más rapidez que la germinaza; lo que quiere decir que la germinaza tiene mayor retención de agua que la turba, sin embargo la turba presentaría mejor aireación.

4.4. DETERMINACION DEL pH DE LOS SUBSTRATOS

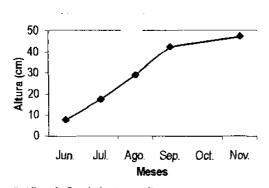
El análisis del pH se realizó en el laboratorio de suelos de la Facultad de Ciencias Forestales UANL.

Las muestras que se entregaron al laboratorio fueron la mezcla de cada uno de los 16 tratamientos de los dos sistemas de riego tomadas al azar. (ver anexo 1).

En el cuadro 9, todas las mezclas de substratos con fertilizantes presentan una moderada alcalinidad en todos los substratos, si se observa en detalle los substratos que contienen el fertilizante osmocote (F1) tiene un ligero descenso en su pH con relación a los otros, por lo que tendrá mayor disponibilidad de nutrientes, los mismos que serán comprobados, en la interacción de estos dos factores, ver Fuente: Laboratorio de suelos de la resultados. La alcalinidad podía ser corregida a un pH 6, si el análisis era hecho antes, en la preparación de las mezclas con

Cuadro 9: Análisis de pH de los substratos y

fertilizant	es.	
Trat.	pН	Clasf.
S1F1	7.4	alcal.
S1F2	7.6	alcal.
S1F3	7. <u>6</u>	alcal.
S1F4	7.6	alcal.
S2F1	7.3	alcal.
S2F2	7.5	alcal.
S 2F 3	7.5	alcal.
S2F4	7.5	alcal.
S3F1	7.4	alcal.
S3F2	7.6	alcal.
S3F3	7.5	alcal.
S3F4	7.6	alcal.
S4F1	7.6	alcal.
S4F2	7.8	alcal.
S4F3	7.6	alçal.
S4F4	7.7	alcal.


Facultad de Ciencias Forestales UANL. (Leyendas ver anexo 1)

la adición de mayor porcentaje de materia orgánica, para tener mayor disponibilidad de nutrientes y mejor CIC. (Carneiro, 1995)

4.5. PARAMETROS MEDIDOS A LA PLANTULA

4.5.1. Altura de la parte aérea (H)

Generalmente el crecimiento es muy relacionado con la altura de las plántulas de la parte aérea, cuando el desarrollo es en un vivero; por lo tanto, cuando más crecimiento tenga mejor será su calidad; es evidente que este único parámetro no basta para poder decir que la plántula sea de calidad ya que pueden presentarse plántulas de buena altura pero de poca rigidez o vigor en el tallo;

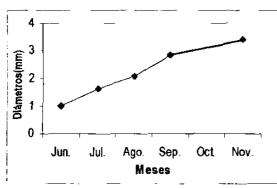
Gráfica 4: Crecimiento en altura por mes.

por lo que se deben asociar otros parámetros Según la gráfica 4, en los primeros cuatro meses la altura de la especie *Celtis Laevigata* Willd. en general, tiene un crecimiento lineal ascendente, disminuyendo los dos últimos meses, por el descenso de temperaturas y precipitaciones (gráfica 1), por lo que, se decidió realizar la última evaluación en este periodo; es decir antes

de que las plántulas pierdan las hojas en el invierno. El cuadro 10 y gráfica 4 muestran que las alturas medias de crecimiento general por medición de la 1^{ra} a la 5^a es de 7.8, 17.5, 29.0, 42.2, y 47.5 cm respectivamente.

En el análisis de varianza y la prueba de Tukey, ver anexo 6 y cuadro 10, presentaron diferencias significativas (DS) en las cinco mediciones, para los factores principales, riegos, substratos y fertilizantes, así también en la interacción aditiva de los substratos con los fertilizantes; a excepción de la primera medición que no presenta DS en los riegos, la causa para esto es que se utilizó en los primeros días, solo el riego manual y en la segunda medición presenta una DS en la interacción de los riegos y fertilizantes, especialmente con el osmocote (F1), por que los fertilizantes del picomódulo y la urea, también fueron aplicados después de la primera medición y no así con F1 que

fue integrado en la mezcla desde un inicio. Así tenemos al sexto mes, como resultados finales de los mejores efectos en el crecimiento en altura a:


- El riego por aspersión (R1) con 49.7 cm, tiene mejor efecto comparado con el testigo o manual
 (R2) con altura promedio de 45.4 cm.
- De los substratos el testigo suelo de monte (S4) 51.3 cm y con germinaza (S1) 49.7 cm causan un mismo y mejor efecto; así como S1 y turba (S3) 47.3 cm tienen efectos iguales, pero S3 se diferencia de S4, y por último la corteza de pino (S2) 41.9 cm se diferencia como el de más bajo efecto que los otros.
- De los fertilizantes el Osmocote (F1) 56.4 cm, fue el de mejor efecto que el resto de los fertilizantes, seguido del Picomódulo (F2) 47.7 cm y la urea (F3) 44.5 cm con un mismo efecto, el de menor efecto es el testigo, suelo de monte (F4) con 41.5 cm.
- De las interacciones el único que tuvo diferencias significativas fue el de los substratos y fertilizantes, de los cuales los mejores efectos aditivos son las combinaciones de S1F1, S4F1, S2F1 y S3F1 con 57.6, 56.5, 56.2 y 55.2 cm respectivamente.

Se puede concluir, que el mejor crecimiento en altura, de los tratamientos son aquellos donde se integren a la mezcla; solo substrato de suelo de monte o con germinaza o turba, con el mismo comportamiento y la combinación del fertilizante osmocote, por que tienen mejores resultados, los cuales son confirmados por la interacción que existen entre ellos (ver cuadro 10). Los valores de estas interacciones muestran que el tipo de fertilizante es un factor determinante para su crecimiento en altura, ya que muestran mayores incrementos en altura para cualquier substrato y con el mismo fertilizante; por lo tanto, el fertilizante osmocote aporta mejor los nutrientes. A esto se le puede añadir el riego por aspersión por su mejor efecto individual, (mismo no tenga una interacción con los otros factores); por lo que el riego por aspersión tendrá mejor distribución y disponibilidad de agua para su crecimiento en altura, se debe considerar que este tipo de riego va a dotar agua en la parte aérea de la plántula, además por las glabras o pubescencia que presentan sus hojas y sus ramas, pueden tener una mejor retención de humedad; lo cual puede favorecer su crecimiento, por lo que se sugiere realizar experiencias en este sentido.

Algunas experiencias, en mediciones en vivero de la altura de las plántulas, diámetro al cuello de la raiz y peso de la parte aérea, correlacionados estos parámetros con el desarrollo en el campo; la altura fue la que tuvo mejor correlación con el desarrollo en campo. Sin embargo, resaltaron que la combinación de la altura con otros parámetros es siempre aconsejable. (Mcgilvray y Barnett, 1981) También comprobaron que plántulas de mayor altura en comparación con las de menor altura sufrieron disminución en el ritmo de crecimiento después de la plantación. (Schmidt-vogt y Gurth, 1969) Así también se constató que la tasa de crecimiento en altura de las plántulas de *Eucalyptus grandis*, después de la plantación en el campo, fue inversamente proporcional a la altura de las plántulas en vivero, siendo que en plántulas más altas y con pequeños diámetros presentaron mayores efectos negativos que las de diámetros mayores. Por lo que, se hace necesario estudiar la altura con otros parámetros de clasificación de calidad.

4.5.2. Diámetro al cuello de la raíz. (DCR) o (D)

El diámetro y la altura son parámetro utilizados comúnmente para clasificar calidad de plantas. Muchos autores han demostrado que el diámetro tiene una fuerte correlación con el porcentaje de

Gráfica 5: Crecimiento en diámetro por mes.

sobrevivencia en las plantaciones, ya que este tiene la premisa de darle una clasificación, en cuanto mayor sea el diámetro, mejor el vigor de la plántula.

En la gráfica 5, el crecimiento de los diámetros en los 6 meses es también lineal, sin embargo existe un pequeño descenso de incremento, entre julio y agosto, épocas de elevadas temperaturas y poca precipitación,

volviendo a aumentar en septiembre cuando hay más lluvias y descenso de temperaturas, para la última medición nuevamente disminuye su crecimiento, seguramente iniciando el invierno. El cuadro 10 y gráfica 5, presentan el crecimiento promedio general de los diámetros para cada medición de, 0.99, 1.61, 2.07, 2.83 y 3.40 mm respectivamente.

Cuadro 10: Análisis de Significancia y Tukey de los parámetros de Indice de Calidad de altura, diámetro y relación entre estos dos indicadores.

Valores de F		Aï	tura	5	Media	s	╗	A	tura ai		Diá	m) e	tros	M	edic) S		Di	amt, al	Cocit. de
Facts, Princi.	é		ero de		edició		┪	e.	oto Mes	Ð	Núm	ег	o de	m e	dició	n/	mes	ķe	bto Mes	چ Equil.
	3	H1	<u>∃</u> #2	Ţ,	= R3	.⊒ H4	┫	31	H5	Tuke	ÐΊ	.21	D2	2	D3	2	D4	阊	DS	⊒ H5/D5
SIGNIF, R		NS	DS**	7	DS**	DS*	7	_	DS***	1	NS		NS		NS		DS [±]	Н	NS	DS***
Ri		7 831	A 18.50	36 A	30.011	A 44.0	28	A	49.664	_	1 0062		1 6266		2 0328	В	2 7672	Т	3 3641	A 15 052
R2		772	B 16749			B 40 44	53	В	45 416		0'9906	_	1 5031		2 1125	A	2.8844	\vdash	3 4437	B 13.327
SIGNIF, S	_	DS***	DS**	*	DS**	DS**	4		DS***		DS***	_	DS**		DS***		DS***		05***	NS
\$1	3	7 972	B 1839	11A	30.491	BA 44	1,4	BA	49.675	В	0 9875	В	1 6719	ΒA	2.1688	Α	2.9375	Α	3,587	13 984
S2 (0	6 325	C 1417	75 E	24 622	C 369	72	C	41 887	В	0 9375	ပ	1 3781	С	1 8125	В	2 525	В	3 009	14 063
S3 F	В	7 619	B 1760	3 A	28.966	B 417	38	В	47 303	В	0 9937	В	1 5969	В	2 0312	Α	2,8281	Α	3.403	14 166
- S4 /	Ą	9.188	A 19.9	₽	31.809	A 45.8	72	Ā	51,294	A	1.075	Α	1.8125	A	2.2/81	Α	3.0125	Α	3.615	14 544
SIGNIF. F		DS***	DS#	*	DS***	D\$**	*		DS***		D\$***		DS***		DS***		DS***		DS***	NS
F1	À	10.063	A 23.20	14 /	34.894	A 49	1.1	Α	56.397	Α	1.1281	Α	1.9562	Α	2.4687	Α	3.2812	A	3.944	14 513
F2	В	6956	B 1643	34 E	3 28 987	B 426	88	В	47 663	В	0 9531	В	1 5375	В	205	В	2 8531	В	3.469	14 059
F3	В	71	CB 1560	90	B 27.25	CB 39.9	97	СВ	44 547	В	0 9687	В	1 5031	СB	1 9406	СВ	2 6625	СВ	3 206	14 213
	8	6 984	C 14	8(24 956	C 37 1	97	С	41 553	В	0 9437	В	1 4625	C	1 8313	U	2 5062	C	2 997	13 9/2
SIGNIF, RS	_	NS	NS	1	NS	NS			NS		NS		NS		NS		NS_		NS	NS
R1S1		8 1125	19.41	9	31 431	4.	4		51 613		0 9875		1 7188		2 1375		2 8813		3 5688	14 619
R1S2		6 4438	15 14	14	26 156	39 1			43.706		0 9563		1 375		_ 18		2 5438		3 0438	14.563
R1S3		7 4188	18 14	- 1	29 238	42 6	69		48 956		0 9938		1 5875		1 9875		2 6875		3 2813	15.244
R1S4		9 35	21 53	6	33 219	48 9	38		54 381		10875		1 825		2 2063		2 9563		3 5625	15 781
R2S1		7 8313	17 36	ß	29 55		3 4		47 738		0 9875		1 625		22		2 9938		3 6063	13 35
R2S2		6 2063	13.20		23 088	34 8			40 069		0 9188		1 3813		1 825		2.5063		2 975	13.563
R2\$3		7 8188	17.00	I	28 69 4	40.8			45 65		0 9938		1 6063		2.075	_	2 9688		3 525	13.088
R2S4		9 025	1834	_	30 4	742 8			48 206		1 0625		1 8		235		3 0688		3 6688	13 306
SIGNIF, RF		NS	DS*		NS	NS			NS	Ш	NS		NS	ļ	NS		NS	_	NS	NS
R1F1		10 188	25.2		36 069	512	_		59 488	L	1 1188		1 9875		2 4438	<u>_</u>	3.2625	ļ.,	3 9125	15 388
R1F2		7 0438	17 63		30 8	45 2			50 425		0 975	L	1 575		2 0625	<u> </u>	2 8313	Ļ.,	3 4875	14.825
R1F3		72	15 9		28	41			46 575		0 9688		1 475		1 875	Ц.	2 5875	<u> </u>	3 1563	15 275
R1F4	_	6 8938	15 4		25 175	37 9			42 169		0 9625		1 4688		175	_	2 3875	L	29	14 719
R2F1		9 9375	21.20		33 319	46 9			53 306		1 1375		1 925		2 4938	<u> </u>	33	<u> </u>	3 975	13 638
R2F2		6.8688	15.23		27 175	40 1	_		44.9		0 9313	! —	15		2 0375	<u> </u>	2 875	ļ.,	3 45	13.294
R2F3 R2F4		7 1175	15 30		26 5 24 738	38 2 36 4			42 519 40 938		0 9688	_	1 5313 1 4563		2 0063 1 9125	 	2 7375. 2 625	<u> </u>	3.2563 3.0938	13 15 13 225
		7 0/5	14 16 DS ⁻¹⁴	_		30 4 DS ²	_		DS***		DS***	┡	DS***	_	DS***	!	DS***	_	NS	NS
SIGNIF, SF		DS*** 10.325	23.6		DS*** 34.813	49.6	_		57.6		1,125	H	1.9875	-	2.5125	┝	3.3375	┝	4 125	13 813
\$1F1 \$1F2		7 0875	17 58	-	34.813	46.5	_		51 288	\vdash	0 925	⊢	1 625		2 175	\vdash	3.3373		37	14 013
S1F3		7 425	16.4		30 075	419	_		46 675	H	0 975	├	1 525		2 0375	├-	2 775	 	3 35	14 413
S1F4		705	15.8		26 075	39.5		_	43 138	\vdash	0 925	\vdash	1 55	_	195	-	2 6125	\vdash	3.175	137
S2F1		9.1125	23.0		35,313	49			56.188		1.0875	\vdash	1.95	_	2.5	⊢	3.3	\vdash	3.173	15 025
S2F2		5 2875	12.23		23 538	36 0			40 175	-	0.8875	\vdash	1 2375		17	⊢	2 4625	├—	$\frac{33}{29}$	13 988
S2F3		5 3625	11.90		22 813	35 2		-	39 863	\vdash	0.007.0	├	1 2375		17125	\vdash	2 3625	 	$-\frac{29}{29}$	13.863
S2F4	_	5.5375	9 43	_	16 825	267			31 325	\vdash	0 875	⊢	1 0875		1 3375	-	1 975	Η-	2 3375	13.375
S3F1		11.1	24.6		34.95	47.9			55.25	-	1.2125	\vdash	1.9875	_	2.4125	┢	3.275	\vdash	3 8625	14 513
S3F2		6 4625			29 438	42.8			48 175		0 9125		1 475		1 975		2 825		3 4875	
S3F3		6 4125	15	_	25 7		37		43 288	_	0 9375		1 475		1 8625	\vdash	265	\vdash	3 1875	
\$3F4		65			25 775	37 4		_	425		0 9125	\vdash	1 45		1 875	\vdash	2 5625	 	3 075	13.988
S4F1		9.7125			33.7	49.0		_	56.55	\vdash	1.0875	⊢	1.9		2.45	\vdash	3.2125	 	3 8875	14.7
54F2		8 9875			31 975	45.2			51 013		1 0875	 	1 8125		2 35	┝	31	\vdash	3 7875	13 963
\$4F3	_	92	18 8		30 413	L			48 363		1 0625	\vdash	1775		2 15	\vdash	2 8625	-	3 3875	14 688
S4F4		8 85	18 9	_	31 15) I		49 25	Н	1 0625	\vdash	1 7625		2 1625	┢	28/5	Ι	3 4	14.825

Continua

Cuadro 10: Análisis de Significancia y Tukey de los parámetros de Índice de Calidad de altura, diámetro y relación entre estos dos indicadores. (continuación)

Valores de F	ΑI	turas	Media	1 \$	Altura al		metros	Medic) Ş	Diámt. af	
Facts, Princi.	§ Nún	iero de	medició	n/mes	Sto Mes	2 Núm	ero de	medició		6 6to Mes	g Equil.
Interacciones	<u>.</u> ⊒ H1	2 H2	,⊒ H3	⊒ H4			,= D2	'⊒l na l	,3 D4		
SIGNIF, RSF	NS	His	N5	MS	NS	NS	NS	NS	NS	NS	NS
RISIFI	10 675			50 05	61 425	11	2 05	25	3 325		14 675
R1S1F2	7 15			48 675	53 05	0 925	17	2 15	2 875		14 425
R1S1F3	775			44.4	50 075	1	1 525	2 075	2 775		15 525
R1S1F4	6 875	L		38 475	41 9	0 925	16	1 825	2 55	1	13 85
R1S2F1	9 25			52.7	58 825	11	1 95	2.475	3 325		15 525
R1S2F2	5 225			37 2	41 075	0 925	1 225	1 675	2 425		142
R1S2F3	56		1	37 375	41 55	0.9	12	17	2 375		146
R1S2F4	57	10	1	29 15	33 375	0.9	1 125		205		13 925
R1S3F1	10 95		1	48 55		12	2	2 35	3 125		15 575
R1S3F2	6 425			46 4	52.975	0 925	1 525	2 075	2 85		157
R153F3	62		1.	38 775	439	0 925	1 45		2 475		15 075
R1S3F4	61	1		36 95	41 75	0 925	1 375	175	23		14 625
R1S4F1	9 875	I -					195	2 45	3 275		15 775
R1S4F2	9 375			48.775	54 6	1 125	1 85	2 35	3 175	i :	14 975
R1S4F3	9 25			46 25	50 775	1.05	1 725	195	2 725	3 325	15 9
R1S4F4	89	1	<u> </u>	47 175	51 65	11	1 775		2 65	11	16 475
R2S1F1	9 975			49 175	53 775	1 15	1.925	2525	3 35	1	12.95
R2S2F2	7 025			44 45	49 525	0 925	1 55		3 175		13 6
R2S1F3	71	1	1	39 425	43 275	0.95	1 525		2 775 2 675		13 3
R2S1F4	7 225			40 55	44 375	0 925 1 075	15				13 55
R2S2F1	8.975	1	<u> </u>	46 9 34 975	53 55 39 275	0.85	195 1,25	2 525 1 725	3 275	-	14 525 13,775
R2S2F2 R2S2F3	5 35			34 9/5	39 275	0.00	1.20	1725	25 235		13.775
R2S2F4	5 125 5 375	L		24 275	29 275	0.9	105	1 325	∠ 30 19		12 825
R2S3F1	11 25			473	53.3	1 225	1 975	2 475	3 425		13 45
R2S3F1	65			39 325	43.375	0.9	1 425	1 875	28		12.85
R253F3	6 625			38 625	42 675	0.95	15	195	2 825	3 375	12.7
R253F4	69			37 975		0.50	1 525	1 30	2 825	3 275	13 35
R253F4 R254F1	955			44 575	52 6	11	1 85	2 45	3 15		13.625
R2S4F2	86			417	47 425	105	1775	2 35	3 025		12.025
R2S4F3	9 15	1_		41 925	45 95	1 075	1 825	235	3 023		13 475
R2S4F4	88			43 025	46 85	1 025	1 /5		31	355	13 1/5
Med Geral	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			42 245	47 54	U 9984	16148		2 8238		14 189
mou. Gerai.	1 1130	1, 302	20 31 2	72 240	41.04	0.300-	1 (0:90	F.0. E1.	1 0200	0 -1000	17 103

Donde:

DS*** = Existe Diferencia Significativa alta

DS** = Existe Diferencia Significativa media DS* = Existe Diferencia Significativa baja

NS = No Existe Diferencia Significativa

En el anexo 7 y cuadro 10; el análisis de varianza y de Tukey para las cinco mediciones dan DS en dos factores principales, substratos y fertilizantes; la interacción substrato fertilizante tiene una DS de 0.057 al último mes, a los cuales la prueba de Tukey no les encuentra DS, sin embargo observando detalladamente de la medición 1 a la 4, la combinación de substratos con fertilizantes, presentan DS con una disminución gradual hasta la 5ª medición donde no hay significancia.

De tal manera que los resultados finales de los mejores efectos del crecimiento en diámetro, son:

Los substratos S4, S1 y S3 con diámetros medios de 3.6, 3.6 y 3.4 mm respectivamente tienen los mismos efectos, no existiendo entre estos DS, pero el S2 con 3.0 mm es el efecto más bajo diferenciándose con los demás substratos. De los fertilizantes el F1 es el que presenta mejores efectos de crecimiento en diámetro con 3.9 mm, seguido de F2 y F3 que tienen los mismos efectos con 3.4 y 3.2 cm y por último el de más bajo es el testigo con 2.99 cm, pero con el mismo efecto que F3.

Por lo anterior se puede concluir, que para los efectos del crecimiento en diámetro, las mezclas de los substratos pueden componer también, suelo de monte o germinaza o turba; con la combinación del fertilizante de mejores resultados significativos, el osmocote. El tipo de riego no es un factor individual ni interactivo, que determine el crecimiento del diámetro, pero sí los substratos y los fertilizantes mencionados, con sus combinaciones, más que todo el fertilizante, aún que no exista una diferencia significativa alta en su interacción del último mes.

Se observa que a medida que crece la altura habrá un crecimiento en diámetro (ver gráficas 4 y 5), por lo que existe entonces una relación entre ellos; pero, observando las mismas gráficas, la altura tiene mayor velocidad en incremento que el diámetro; confirmándose entonces, la influencia del agua en la altura, especialmente del R1 que tienen mayor disponibilidad de agua, no ocurriendo lo mismo con el diámetro, ya que no presentan significancia entre estos dos tipos de riego.

Los mismos substratos que tienen un efecto en la altura, tienen también efectos en el diámetro. Al utilizar materia orgánica en las mezclas se debería mejorar la calidad de estos, sin embargo no es así; la causa puede ser la alcalinidad, ya que casi todas las mezclas llevan las mismas concentraciones de H+ (ver cuadro 9), esto quiere decir que tienen la misma capacidad cationica (CIC). Para mejorar las mezclas, se debe realizar un aumento de la concentración de materia orgánica, en este caso germinaza o turba, para reducir las concentraciones alcalinas y volverlos 1020123767

ligeramente ácidos pH 6; entonces tendremos mayor CIC, o sea mayor asimilación de nutrientes; no ocurre lo mismo con la corteza, por que cuando esta es fresca tiene alta fitotoxicidad y también eran de particulas mucho más grandes que las otras, desfavoreciendo de esta manera el crecimiento de la plántula.

En lo que se refiere a los fertilizantes, sin duda el que más aporta es el osmocote, por que este se encuentra distribuido en todo el substrato del contenedor, facilitando la absorción en la raíz.

En algunos trabajos muchos autores llagaron a la conclusión de que existe estrecha relación entre los diámetros y sobrevivencia, sobretodo, con el ritmo de crecimiento de las plántulas después de la plantación. (Schimidt-vogt, 1970) También se confirmaron que hay una superioridad de plántulas de diámetros más gruesos, comparadas a las de menor grosor. Esta fue más clara aún cuando se trato con plántulas de mayores alturas de la parte aérea. Llegando a la conclusión de que las plantas más altas, con menores diámetros, tuvieron menor desempeño de crecimiento, tres años después de la plantación. (Schmidt-vogt y Gurth, 1977)

4.5.3. Relación altura de la parte aérea y diámetro en el cuello de la raíz H/DCR o H/D

Es la conjugación de dos parámetros altura y diámetro, llamado relación H/D que da como resultado un valor absoluto o cociente de equilibrio del desarrollo de las plántulas en el vivero. Por tanto, cuando más próximo se encuentre al valor 1, mejor será la relación y mayor la calidad de la plántula. Según el anexo 8 y el cuadro 8, en el análisis de varianza y Tukey , la relación H/D al sexto mes, solo tiene DS en los dos tipos de riego, a pesar que la interacción entre riego y substrato demuestran una diferencia al 0.08 % de error. Los resultados son:

 R2 con un valor medio de 13.33 es el que presenta mejor efecto para el cociente de equilibrio de estos parámetros, en comparación con 15.05 de R1.

Prácticamente, para R1 hay mayor influencia de crecimiento en altura que en diámetro, haciendo a la plántula menos vigorosa; esto hace que R2 presente mejor cociente de equilibrio, comprobando de esta manera los análisis realizados de las alturas y los diámetros; se afirma una vez más que la distribución y cantidad de agua es un factor determinante en la altura; pero, por ende en la relación con el diámetro, es muy afectado; no obteniendo una plántula de calidad. Por tanto, si R1 tuviera una mejor regulación en la dotación de agua, podríamos obtener mejores resultados.

En un experimento con *Pinus taeda*, para plántulas de 11 a 8 meses, cuyas medias de altura fueron 29 y 15 cm y los diámetros de 3.7 a 2.3 mm respectivamente, se constató que la mayor sobrevivencia de 76 %, fue de las plántulas más viejas, diámetros superiores a la media y alturas inferiores a la media. Y la menor sobrevivencia 26 % fue verificada para plántulas más jóvenes con diámetros inferiores a la media y alturas superiores a la media. De esta manera la relación H/D en cualquier fase del periodo de producción de plántulas debe estar entre los límites de 5.4 hasta 8.1, en una faja de altura de 20-30 cm y diámetros de 3.7 mm. Si las alturas fueran 36 cm la media, la media del diámetro debe estar entre 4.4 y 6.7 mm (Carneiro, 1976) Es evidente que cualquier metodología debe priorizar las plántulas de mayor diámetro.

4.5.4. Peso verde de las plántulas(PV)

El peso verde llamado también peso fresco al sexto mes, del presente estudio, para la calidad de las plántulas, se determinaron tres parámetros: a) Peso verde de la parte aérea, b) Peso verde de la parte radicular y c) Peso verde total de la plántula.

4.5.4.1. Peso verde de la parte aérea (PVA)

Tiene la característica de clasificación de calidad del vigor de la plántula, donde será el mejor aquella que tenga mayor peso verde de la parte aérea.

El análisis de varianza y la prueba de Tukey en el anexo 9 y cuadro 11, se demuestra que existen DS entre los factores principales de los substratos y fertilizantes; pero no, en los riegos y las interacciones de estos. De los cuales se extraen los siguientes resultados:

- Los substratos S4, S1 y S3 presentan las mejores medias de 7.6, 7.4 y 6.8 g respectivamente sin efecto diferenciado, es decir estos tres substratos tiene el mismo y mejor efecto en el peso verde de la parte aérea de la plántula. El substrato S2 presenta el de menor efecto con 5.8 g y con la misma influencia de S3.
- Entre los fertilizantes, el F1 con 9.3 g, presenta un mejor efecto que los otros, seguido de F2 y
 F3 también con un mismo efecto de 6.6 g para ambos y el de menor efecto con 5 g fue F4.

Cuadro 11: Análisis de significancia y Tukey de los parámetros de Indice de Calidad de los pesos verdes y secos de la plántula.

Valores de F		Pes			des		sos Se	
Facts. Princi.	9	Aéreo	ě	Raiz	g Total	& Aereo	g Raiz	g Total
Interacciones	[3]	PVĀ		PVR	.≅ PVI	,≘ PSA	₹ PSR	हिंग्डा
SIGNIF. R	7	NS	_	DS**	NS	NS	DS**	NS
R1		6 847	В	11 28	18 127	3 047	B 5 808	8 855
R2		6 95	A	13.033	19 983	2 9/3	A 6.825	9 798
SIGNIF. S		DS***		NS	NS	NS	NS	NS
\$1	Ā	7.384		12 663	20 047	3 244	6.266	9 51
\$2	В	5 784		11 278	17 (62	2 597	5 766	8 363
S3	ΒA	6.797		13 453	20 25	2 853	68	9 653
54	A	7.628		11 231	18 859	3 347	6 434	9 /81
SIGNIF. F		DS***		DS**	DS***		DS**	DS***
F1	A	9.291		13.753				
F2	اھا	6 641		12.397				
F3	œ l	6 619		12.141				
F4	ادا	5 044	R	10 334				
SIGNIF. RS		NS		NS	NS	NS	NS	NS
R1S1	L	6 825		11 844	18 669	2 9813		8 7688
R1S2		5 9563		10 363	16.319	2 875	5 1563	
R1S3		6 5625		11 869	18 431	2 7375	L	
R1S4		8 0438		11 044	19 088	3 5938	6.2188	9 8125
R2S1		7 9438		13 481	21 425	3 5063	67438	
R2S2		5 6125		12 194	17 806	2 3188	6 375	8 6938
R2S3		7 0313		15 038	22 069	2 9688 3 1	7 5313 6 65	10.5
R254		/ 2125		11 419	18 631	NS	NS	9 /5
SIGNIF. RF		NS A ACCO		NS	NS	4 0 188	6 0375	NS 40.056
R1F1	Ш	8 8313		11 506	20 338	3 3563	6 03/3	10 056 9 8563
R1F2		6 8688		13.119	19 988	2 93 13	<u> </u>	
R1F3	_	6 8188		10 694	17 513 14 669	18813		8 6063
R1F4	_	4 8688 9 75		98	25.75	4 4313	8 4313	6 9 12 863
R2F1	<u> </u>	6 4125		16 11 675	18 088	2 675	6 5 9 3 8	
R2F2 R2F3	<u> </u>	6 4188		13.588	20 006	2 7063	6.7188	9 425
R2F4	_	5 2188		10.869	16 088	2 0813	5 5563	7 6375
SIGNIF. SF	_	NS		NS	NS	NS	NS	NS
S1F1		10 225		13.2	23 425	4 8375	6 725	11 563
S1F2	_	6 925	<u> </u>	12 725	19 65	3.025	6 5375	9 5625
S1F3	<u> </u>	7 1375		13 388	20 525	3 025	6 375	9 4
S1F4	-	5 25		11 338	16 588	2 0875	5 425	7 5125
\$2F1	_	9 075		15 175	24 25	4 075	8 325	12 4
\$2F2		47375		12.225	16 963	2 6125	5 6625	8 275
S2F3		5 9875	_	11 4	17 388	25	5.8625	8 3625
S2F4	_	3 3375		63125	9 65	12	3 2125	4 4125
\$3F1	<u> </u>	87		14.288	22 988	3 8625	6 8125	10 675
S3F2		6 95	_	14 4	21 35	2 95		10 538
S3F3		5 9625	_	12813		2 475	6 7375	9 2125
S3F4		5 575	_	12313	17 888	2 125	6 0625	8 1875
S4F1		9 1625	_	12 35	21 513	4 125	7 075	112
S4F2	1	7 95		10 238	18 188	3 475	64	9 875
S4F3		7 3875		10 963	18 35	3 275	5 8125	9 0875
S4F4		6 0125		11 3/5	17 388	2 5125	6 45	8.9625

Continua

Cuadro 11: Análisis de significancia y Tukey de los parámetros de Indice de Calidad de los pesos verdes y secos de la plántula.(contin.)

Valores de F	Pes	os Ver	des		sos Se	
Facts. Princi.			o Jotal			
Interacciones	Aéreo PVA	Tuke Kapa	<u>2</u> ₽V1	Aereo PSA	Raiz PSR	Total PST
SIGNIF. RSF	NS	NS	NS	NS	NS	NS
R151F1	9 25	11 15	20 4	4 25	5 925	10 175
R1\$1F2	6 475	15 025	21 5	2 925	6 65	9 575
R1S1F3	7.1		1	3 05	5 925	8 975
R1S1F4	4 475		14 4	17	4 65	6 35
R1S2F1	8 625		18 725	3 975	56	9 575
R1S2F2	495		17 975	3 475	5 325	88
R1S2F3	6 575		,,,,	2 775	5 625	8 4
R1S2F4	3 675			1.275	4 0/5	5.35
R1S3F1	8 45			37	6 475	10 175
R1S3F2	6 925			3	6.475	9 475
R1\$3F3	5 75	1		2.4	5.875	8 275
R1S3F4	5 125	,		1 85	5 45	73
R1S4F1	Ş			4 15	6 15	10 3
R1S4F2	9 125		22	4 025	7 55	11 575
R1S4F3	7.85			35	5 275	8 775
R1S4F4	62		16 475	27	59	86
R2S1F1	11 2		26 45	5 425	7 525	12 95
R2S2F2	7 375		17.8	3 125	6 425	9.55
R2S1F3	7 175		22 675	31	6 825	9 825
R2S1F4	6 025		18 775	2 475	62	8 675
R2S2F1	9 525		29.775	4 175	11.05	15 225 7 75
R2S2F2	4 525		15 95	175	6	
R2S2F3 R2S2F4	5.4	12 35		2 225	61 235	8 325 3 475
R2S3F1	8.95		7 75 23 7	4 025	7 15	11 175
R2S3F2	6 975		24 225	29	8.7	11.6
R253F2 R253F3	6 175		24 225	255 255	76	10 15
R2S3F3	6 025	1.	19 525	2 4	675	9,075
R2S4F1	9 325	1	23 075	41	8	12.1
R2S4F2	6 7 7 5		14 375	2 925	5 25	8 175
R2S4F3	6 925		18 775	3 05	635	9.4
R2S4F4	5 825	_	183	2 325	- 030	9 325
Med. Geral.	6 8984			3 0102	6 3164	9.3266
med. Geral.	0 0304	12 100	15.000	30102	0.0104	5 32.00

Donde: DS*** = Existe Diferencia Significativa alta

DS** = Existe Diferencia Significativa media
DS* = Existe Diferencia Significativa baja
NS = No Existe Diferencia Significativa

Se puede concluir, que independientemente de los riegos y sus interacciones, el suelo de monte o la germinaza o la turba y la aplicación del fertilizante osmocote presentaron mejores efectos en los pesos verdes de la parte aérea de la plántula, al igual que en la altura (H), diámetro (D) y la relación de estos dos H/D, confirmando lo dicho anteriormente.

Los resultados obtenidos comprueban, que cuando hay crecimiento en altura y diámetro hay aumento de peso verde de la parte aérea de la plántula. Sin embargo, en los tipos de riego, no se observa esta lógica, por no presentar diferencia significativa (NS), a pesar que hay un mayor crecimiento en H con R1; esto se puede atribuir a que en R2, hay una ligera ganancia en el D, aunque en la 5ª medición de este parámetro es NS, pero se puede sustentar en la cuarta medición, donde sí se muestra DS, como también en la afirmación de la relación H/D; por lo que en peso se llegarian a compensar, así no tienen efectos diferenciados entre los riegos. Por lo que, la cantidad y distribución de agua no llega hacer un factor determinante en el PVA.

4.5.4.2. Peso verde de la raíz (PVR)

El peso verde de las raíces es considerado generalmente, como un parámetro de calidad, en la capacidad de enraizamiento de la plántula, por lo que existirá una relación estrecha con el crecimiento y el incremento en peso de la raíz, donde los mayores pesos, son los mejores indicadores de calidad de la plántula.

En el análisis de varianza y la prueba de Tukey del anexo 10 y cuadro 11, se observa que existe diferencia significativa entre los riegos y los fertilizantes, pero no ocurre lo mismo con los substratos y las interacciones, a excepción de la interacción de riego y fertilizante, que se encuentran a una significancia de 0.07 % de error. Se debe considerar en este parámetro que los valores de peso de las raíces son pequeños si lo trabajamos individualmente, entonces, los pelos absorbentes son un cúmulo de valores despreciados; por lo que, el propio modelo nos expresa poca diferencia significativa. Se obtuvieron los siguientes resultados:

 El R2 presenta mejor efecto con 13 g de peso verde de la raíz, en comparación con 11.3 g de peso del sistema R1.

56

 Entre los fertilizantes, F1, F2 y F3 con 13.7, 12.4 y 12.1 g, tienen un traslape de medias comparadas, es decir con un mismo efecto; al mismo tiempo F2 y F3 comparados con 10.3 g de F4 constituyen un mismo efecto en peso, pero este último tiene DS con F1.

Por lo tanto, se puede concluir que el sistema de riego manual y la aplicación de cualquiera de los fertilizantes osmocote, picomódulo o urea pueden ser usados para obtener buenos resultados en el crecimiento de la raíz y la plántula con relación al testigo; independientemente del uso de cualquier substrato; pero en las interacciones de riego y fertilizante, favorecen a incrementar los valores medios de los pesos verdes de la raíz, el osmocote con R2, aun que son NS al 0.07 % de error; por las mismas razones explicadas de la presentación y distribución del fertilizante en el contenedor, pero F2 y F3, también son alternativas para conseguir los mismos resultados en PVR; sin embargo, puede haber la diferencia de que con F1 haya menos desarrollo radicular, pero mayor absorción de nutrientes por superficie de raíz, por lo tanto con mas vigor que F2 y F3 que tienen que buscar mayor superficie para absorber nutrientes, pero menos calidad de vigor, por que estos fertilizantes no se encuentran distribuidos en todo el substrato y demoran más tiempo en difundirse en el contenedor, por que la raíz busca mayor área de absorción; esto sucederá peor aún con F4. Entonces, los pesos de los tres fertilizantes se compensarían, presentando así NS entre ellos. Para ser probada esta afirmación, deberá tener los mismos resultados en el peso seco de la raíz; además deberá ser reafirmada con el indicador de porcentaje de raíz.

Estos resultados también, nos llevan a la interpretación que estos mismos efectos reflejan en los riegos, con el sistema R1 tenemos mayor disponibilidad de agua, por lo que en la solubilidad con los nutrientes de los fertilizantes, estos se puedan perder en el drenaje, entonces existirá mayor absorción de agua que nutrientes; lo que no ocurre con R2, es decir que con R2 también hay un crecimiento en longitud de la raíz y/o en el número de ellas, entonces se tendrá mayor asimilación de nutrientes por superficie en R2; la cual también deberá ser sustentado con el peso seco de la raíz.

El aumento del número y/o la longitud de las raíces en R2, de hecho aumentarán su vigor en D y como R1 tiene mayor altura, es claro que existirá una compensación de peso PVA y PSA entre estos dos sistemas. Por esta afirmación y la del párrafo anterior se sustenta entonces, que la cantidad de agua no es determinante en el peso de la raíz, sino para el incremento de su longitud o número de raíces, aumentando así el peso con R2.

4.5.4.3. Peso verde total (PVT)

Este parámetro morfológico de calidad, tiene también un atributo de clasificación de vigor de la plántula, que considera la constitución y la humedad en peso dentro de ella; por lo tanto, cuando mayor sea el peso mejor será el vigor de la plántula.

En el anexo 11 y cuadro 11 del experimento, son demostrados los análisis de varianza y Tukey, donde el fertilizante es el único que muestra diferencias significativas entre sus medias de peso total; a pesar que entre los riegos también presentan una significancia a 0.085 % de error, pero los substratos y las interacciones no presentan DS. Obteniendo los siguientes resultados:

 Entre los fertilizantes, F1 tiene mejor efecto en peso verde total con 23 g, comparado con los fertilizantes F2, F3 y F4 de sus valores 19, 18.8 y 15.4 g respectivamente, estos últimos tienen sus medias traslapadas, por lo que, sus efectos son los mismos.

Sin olvidar que para PVT los valores de PVA y PVR son quienes determinaran los efectos de la planta en su totalidad. Concluimos entonces, que independientemente de las interacciones y los substratos; con la aplicación del fertilizante osmocote, tendremos mejor efecto en incremento del peso total de las plántulas, y por la poca DS que existe entre los riegos, el riego manual es el mejor, pero sabemos que el incremento de peso es mucho más influenciado por la raíz que por la parte aérea, por el número y/o longitud de las raíces, es claro que este será confirmado por el índice de equilibrio de las dos partes y el porcentaje de raíces, comprobando las afirmaciones vertidas en los pesos de las dos partes.

Sin duda que la dotación de fertilizantes a los substratos es otro factor determinante para el PVT. De los fertilizantes utilizados, el F1 seguido del F2 tienen mejor comportamiento que los demás fertilizantes, esto podemos atribuir a la dotación más efectiva de nutrientes a la plántula, confirmando también las aseveraciones hechas en el análisis de las dos partes, los cuates van a determinar la calidad de la planta en su totalidad. Lo que concluye que el fertilizante es un factor determinante en el peso verde de la plántula.

4.5.5. Pesos seco de las plántulas (PS)

Para clasificar las plántulas con el peso seco, también se determinaron tres parámetros de calidad, que son: a) Peso seco de la parte aérea, b) Peso seco radicular y c) Peso seco total de la plántula.

4.5.5.1. Peso seco de la parte aérea (PSA)

Este parámetro de calidad, es generalmente usado como indicador de la capacidad de resistencia y vigor de la plántula.

Por el análisis de varianza y Tukey, del anexo 12 y cuadro 11, los fertilizantes son los únicos que muestran DS; y no así con los riegos y las interacciones, a pesar que los substratos tienen una significancia al 0.06 % de error. Los resultados que se expresan son:

 De los fertilizantes analizados, el F1 tiene mejor efecto en peso seco con 4.2 g diferenciándose seguidamente de F2 y F3 con un mismo efecto de 3 y 2.8 g, comparados con 2 g de F4, que presenta significancia con los demás.

Por lo que se puede concluir, independientemente de los riegos; también la aplicación del fertilizante osmocote resulta ser el que presenta mejor peso seco de la parte aérea y a pesar que los substratos no presentan diferencia entre ellos al 0.05 % de error, el suelo de monte y la germinaza tienen los mayores valores combinados con el osmocote.

Prácticamente, estos resultados confirman las aseveraciones hechas anteriormente en PVA, no presentando DS entre riegos, confirma que la cantidad de agua no es un factor determinante en el peso para la parte aérea; así también el fertilizante osmocote se confirma como el de mejores efectos de dotación de nutrientes en comparación con los otros fertilizantes, el cual quiere decir que se afirma que la dotación de fertilizantes es un factor determinante en el desarrollo aéreo de la plántula.

En los substratos a pesar de presentar baja DS, este también nos confirma los efectos explicados en PVA.

4.5.5.2. Peso seco de la raíz (PSR)

Otro parámetro de calidad con atributos de capacidad de enraizamiento. Generalmente este parámetro es utilizado en combinación con otros, por los valores despreciados a los pelos absorbentes en el peso, que sin duda estos son muy utilizados por los parámetros fisiológicos en la asimilación de nutrientes. Sin embargo se debe tomar en cuenta también este indicador, en la resistencia del anclado de la raíz al suelo. Por lo que, a mayor peso mejor será su calidad.

Existen diferencias estadísticas en el análisis de varianza y Tukey del peso seco de la raíz entre los sistemas de riego y los tipos de fertilizantes, que son presentados en el anexo 13 y cuadro 11. En los substratos y las interacciones no presentan DS. De los cuales se extrae los siguientes resultados:

- El sistema R2 con una media general de 6.8 g es de mayor efecto en peso, comparado con 5,8 g del R1.
- Los valores 7.2, 6.5 y 6.2 g de los fertilizantes F1, F2 y F3 presentan los mejores valores medios y un mismo efecto, a la vez F3 con 5.3 g tiene el mismo efecto que F2 y F3, pero diferenciado de F1.

Sin considerar los substratos y las interacciones, se puede concluir otra vez, que con el sistema de riego manual y la aplicación de los fertilizantes osmocote, picomódulo o urea, se presentan mejores efectos en el mayor peso seco de la raíz. Lo que confirma la explicación dada en PVR, lo que determina, que la raíz tiene, una mayor absorción de nutrientes con R2, por el crecimiento en longitud y/o número de raíces. Los tipos de fertilizantes F1, F2, y F3, en la forma de dotar nutrientes tienen los mismos efectos con la diferencia también en el crecimiento de la raíz, también confirma la versión hecha para PVR

4.5.5.3. Peso seco total (PST)

El peso seco de la plántula constituida por la materia orgánica, es un parámetro de calidad utilizado en el vigor y resistencia de la plántula, por lo que, cuando más peso se tenga mejor su calidad.

El anexo 14 y el cuadro 11 del análisis de varianza y Tukey, lanzan resultados con diferencias significativas entre los fertilizantes, y con una significancia de 0.088 % de error, para los sistemas de riego. En cuanto a los substratos y las interacciones no existe DS. Los resultados que presentan son:

El fertilizante F1 y F2 tienen los mejores y mismos efectos en peso seco de 11.5 y 9.6 g
 diferenciado de F3 y F4 con 9 y 7.3 g, pero también presentan un mismo efecto F2 y F3.

Se concluye que la aplicación del fertilizante osmocote o picomódulo en cualquiera de los substratos tienen los mejores pesos secos totales, y por su poca DS en los riegos, el R2 también arroja mejores valores de peso. Estos resultados ayudan a determinar y confirmar que la cantidad de agua aplicada

en el experimento no llegó a ser un factor determinante de la planta, pero el fertilizante osmocote o picomódulo tienen mejor efecto en la dotación de nutrientes, aclarando así la versión descrita en PVT. Donde la dotación de los nutrientes o la fertilización a la planta es un factor determinante en el desarrollo de los pesos de la plántula.

4.5.6. Relación parte aérea y raíz en peso PA/PR

La relación en peso de la parte aérea y la parte radical, son parámetros que generalmente dan la clasificación de vigor a la plántula, donde el balance de ambas partes deben aproximarse a 1; a pesar que existen muchos autores que expresan que el valor extraído, debe ser cuando más bajo sea mejor el índice, para lo cual ya no se denominaría cociente de equilibrio, por la simple razón de estar favoreciendo a la raíz. Para nuestro estudio hemos considerado esta relación en peso verde y peso seco, como cociente de equilibrio.

4.5.6.1. Relación parte aérea y raíz en peso verde PVA/PVR

Según el anexo 15 y el cuadro 12, el análisis de varianza y Tukey, nos determinan que existen DS solamente en los tipos de substratos, que nos expresan los siguientes resultados:

 El S4 y S1 presentan mejor efecto de balance entre las dos partes de la plántula con 0.8 y 0.7 de cociente próximo al uno, seguido de S2 y S3 con valores de 0.5 para ambos.

Llegando a la conclusión que independientemente de los riegos y los substratos, con la aplicación del suelo de monte o la germinaza se obtiene mejor equilibrio en peso de ambas partes de la plántula.

Esta muy claro que según todos los valores que se presentan en este análisis, existe una mayor influencia del crecimiento radicular que aéreo y peor aún con los substratos de mayor aereación, lo que prueba la afirmación hecha en el análisis de H y D, entonces se puede decir que un substrato se puede mejorar regulando la porosidad con el tamaño de partículas o una mezcla adecuada aumentando la cantidad de materia orgánica, para estimular mejor su desarrollo de la plántula, en este caso para la turba y la corteza deben ser reducidos la cantidad de perlita en las mezclas, ya que la finalidad de estos es dar mayor cantidad de macroporos.

Cuadro 12: Análisis de significancia y Tukey de los parámetros de Indice de Calidad de los cosientes de equilibrio, de reducción y los porcentaje de la raiz

	de la raiz.						Dickson et a
Valores de ⊁	Cosiente de	equilibrio		de reducció	n, PV a PS	% de Raiz	PST
Facts. Princi.	<u>e</u> PVA	PSA PSR	PVA PSA	PVR PSR	PVI PST	PSRX%	§ H+PSA
Interacciones	⊋ PVR	,⊇ PSR	₽ PSA	_⊇ PSR	PST	_2 PST _	⊒ D <i>P</i> SR
SIGNIF. R	NS	NS	NS	NS	NS	DS**	DS**
R1	0 662	0 5906	2 4291	2 028		B 65.805	
R2	0.6497	0 4645	2 4469	1 938	2.08		
SIGNIF, S	DS**	NS	NS	NS	NS	D\$*	DS*
St	BA 0.886	0 5891	2 355	2 075	2 1537	A 65 163	BA 0.852
\$2	B 0544	0 5247	2 5844	2 081	2 1128	A 70.375	B 0 642
23	B 0.54	0 4466	2 4431	2 002	2 1206	A 69.962	BA 0.835
\$4	A 0.853	0.55	2 3694	17/5	1 9/22	A 65303	A 0.921
SIGNIF. F	NS	NS	DS***	NS	DS**	DS***	DS*
F1	0.734	0 6444	B 2.2397	1 925	B 2.0241	B 62 625	A 0.982
F2	0.736	0 5544	B 2.3806	2 011	B 2.0131	BA 68.272	BA 0.806
F3	0 595	0 4813	B 2.3981	1 976	BA 2.1066	BA 68.206	BA 0.795
F4	0 558	0.4303	A 2/334	2 022	A 22156	A 71.7	B 0.008
SIGNIF. RS	NS	NS	NS	NS	NS	NS	NS
R1S1	0 6656	0.6006	2 3656	2 1388	2 1956	64 356	07719
R1S2	0 6006	0 67	2 5956	2 2119	2 1213	67 588	0.5488
R1S3	0 6031	0 49	2 4606	1 9831	2 1131	68 231	0 6888
R1S4	0 7788	0.6019	2 2944	178	1 9688	63 044	0 9081
R2S1	0 7063	0 5775	2 3444	2 0119	2 1119	65 969	0 9319
R2S2	0 4869	0 3794	2 5731	195	2 1044	73 163	0.7356
R2S3	0 4775	0 4031	2 4256	2.0213	2 1281	71 694	0.9813
R2S4	0 9281	0 4981	2 4444	1 7706	1 9/56	67 563	0 9338
SIGNIF. RF	NS	NS	NS	NS	NS	NS	NS
R1F1	0.7981	0 6913	2 2219	1 9288	2.0306	60 025	0 8594
R1F2	0.5881	0 6781	2.2863	2 2575	2 0675	65 675	0 7644
R1F3	0 6638	0.5325	2 3856	1.8944	2 0531	66 006	0 7019
R1F4	0 5981	0.4606	2 8225	2 0331	2 2475	71 513	0 5919
R2F1	0 6706	0 5975	2 25/5	1 9206	2 0175	65 225	1 1038
R2F2	0 8838	0 4306	2 475	1765	1 9588	70 869	0.8475
R2F3	0 5256	0.43	2 4106	2 0575	2 16	70 406	0 8875
R2F4	0.5188	0.4	2 6444	2 0106	2 1838	71 888	0 7438
SIGNIF. SF	NS	NS NS	116				NS
S1F1	,,,,	N-O	NS	- NS	NS	- NS	140
3161	0.92	0 8725	2 1488	1 9588	NS 2 025	56 963	0 9713
S1F2							
	0 92	0 8725	2 1488	1 9588	2 025	56 963	0 9713
S1F2	0 92 0 6525	0 8725 0 5013	2 1488 2 3188	1 9588 2 0413	2 025 2 0938	56 963 67 45	0 9713 0 7813
S1F2 S1F3	0 92 0 6525 0 62	0 8725 0 5013 0 5038	2 1488 2 3188 2 4075	1 9588 2 0413 2 1313	2 025 2 0938 2 2238	56 963 67 45 66 95	0 9713 0 7813 0 8288
S1F2 S1F3 S1F4	0 92 0 6525 0 62 0 5513	0 8725 0 5013 0 5038 0 4788	2 1488 2 3188 2 4075 2 545	1 9588 2 0413 2 1313 2 17	2 025 2 0938 2 2238 2 2725	56 963 67 45 66 95 69 288	0 9713 0 7813 0 8288 0 8263
S1F2 S1F3 S1F4 S2F1	0 92 0 6525 0 62 0 5513 0 65	0 8725 0 5013 0 5038 0 4788 0 5325	2 1488 2 3188 2 4075 2 545 2 285	1 9588 2 0413 2 1313 2 17 1 8463	2 025 2 0938 2 2238 2 2725 1 9863	56 963 67 45 66 95 69 288 66 05	0 9713 0 7813 0 8288 0 8263 0 8763
\$1F2 \$1F3 \$1F4 \$2F1 \$2F2	0 92 0 6525 0 62 0 5513 0 65 0 4438 0 55	0 8725 0 5013 0 5038 0 4788 0 5325 0 7538 0 4425	2 1488 2 3188 2 4075 2 545 2 285 2 4188 2 4488	1 9588 2 0413 2 1313 2 17 1 8463 2 5263 1 9538	2 025 2 0938 2 2238 2 2725 1 9863 2 0763 2 095	56 963 67 45 66 95 69 288 66 05 69 35 70 125	0 9713 0 7813 0 8288 0 8263 0 8763 0 6363 0 7338
\$1F2 \$1F3 \$1F4 \$2F1 \$2F2 \$2F2	0 92 0 6525 0 62 0 5513 0 65 0 4438 0 55 0 5313	0 8725 0 5013 0 5038 0 4788 0 5325 0 7538 0 4425 0 37	2 1488 2 3188 2 4075 2 545 2 24188 2 4488 3 185	1 9588 2 0413 2 1313 2 17 1 8463 2 5263 1 9538 1 9975	2 025 2 0938 2 2238 2 2725 1 9863 2 0763 2 095	56 963 67 45 66 95 69 288 66 05 69 35 70 125	0 9713 0 7813 0 8288 0 8263 0 8763 0 6363 0 7338 0 3225
\$1F2 \$1F3 \$1F4 \$2F1 \$2F2 \$2F3 \$2F4 \$3F1	0 92 0 6525 0 62 0 5513 0 65 0 4438 0 55 0 5313 0 6188	0 8725 0 5013 0 5038 0 4788 0 5325 0 7538 0 4425 0 5775	2 1488 2 3188 2 4075 2 545 2 285 2 4188 2 4488 3 185 2 275	1 9588 2 0413 2 1313 2 17 1 8463 2 5263 1 9538 1 9975 2 1125	2 025 2 0938 2 2238 2 2725 1 9863 2 0763 2 095 2 2938 2 135	56 963 67 45 66 95 69 288 66 05 69 35 70 125 75 975 64 1	0 9713 0 7813 0 8288 0 8263 0 8763 0 6363 0 7338 0 3225 0 9788
\$1F2 \$1F3 \$1F4 \$2F1 \$2F2 \$2F3 \$2F4	0 92 0 6525 0 62 0 5513 0 65 0 4438 0 55 0 5313 0 6188 0 5063	0 8725 0 5013 0 5038 0 4788 0 5325 0 7538 0 4425 0 37 0 5775 0 3975	2 1488 2 3188 2 4075 2 545 2 285 2 4188 2 4488 3 185 2 275 2 3888	1 9588 2 0413 2 1313 2 17 1 8463 2 5263 1 9538 1 9975 2 1125 1 8913	2 025 2 0938 2 22238 2 2725 1 9863 2 0763 2 095 2 2938	56 963 67 45 66 95 69 288 66 05 69 35 70 125 75 975 64 1 71 738	0 9713 0 7813 0 8288 0 8263 0 8763 0 6363 0 7338
\$1F2 \$1F3 \$1F4 \$2F1 \$2F2 \$2F3 \$2F4 \$3F1 \$3F2 \$3F3	0 92 0 6525 0 62 0 5513 0 65 0 4438 0 55 0 5313 0 6188 0 5063 0 4863	0 8725 0 5013 0 5038 0 4788 0 5325 0 7538 0 4425 0 37 0 5775 0 3975	2 1488 2 3188 2 4075 2 545 2 285 2 4188 2 4488 3 185 2 275 2 3888 2 4425	1 9588 2 0413 2 1313 2 177 1 8463 2 5263 1 9538 1 9975 2 1125 1 8913 1 935	2 025 2 0938 2 2238 2 2725 1 9863 2 0763 2 2938 2 135 2 0338 2 075	56 963 67 45 66 95 69 288 66 05 69 35 70 125 75 975 64 1 71 738 72 488	0 9713 0 7813 0 8288 0 8263 0 8763 0 6363 0 7338 0 3225 0 9788 0 9675
\$1F2 \$1F3 \$1F4 \$2F1 \$2F2 \$2F3 \$2F4 \$3F1 \$3F2 \$3F3 \$3F4	0 92 0 6525 0 62 0 5513 0 65 0 4438 0 55 0 6188 0 5063 0 4863	0 8725 0 5013 0 5038 0 4788 0 5325 0 7538 0 4425 0 37 0 5775 0 3975 0 3825 0 4288	2 1488 2 3188 2 4075 2 545 2 285 2 4188 2 4488 3 185 2 275 2 3888 2 4425 2 6663	1 9588 2 0413 2 1313 2 17 1 8463 2 5263 1 9538 1 9975 2 1125 1 8913 1 935	2 025 2 0938 2 2238 2 2725 1 9863 2 0763 2 095 2 2938 2 135 2 0338 2 075 2 2388	56 963 67 45 66 95 69 288 66 05 69 35 70 125 75 975 64 1 71 738 72 488 71 525	0 9713 0 7813 0 8288 0 8263 0 8763 0 7338 0 3225 0 9788 0 9675 0 7463 0 6475
\$1F2 \$1F3 \$1F4 \$2F1 \$2F2 \$2F3 \$2F4 \$3F1 \$3F2 \$3F3 \$3F4 \$4F1	0 92 0 6525 0 62 0 5513 0 65 0 4438 0 55 0 6188 0 5063 0 4863 0 7488	0 8725 0 5013 0 5038 0 4788 0 5325 0 7538 0 4425 0 377 0 5775 0 3975 0 4288 0 595	2 1488 2 3188 2 4075 2 545 2 285 2 4188 2 4488 3 185 2 275 2 3888 2 4425 2 6863 2 25	1 9588 2 0413 2 1313 2 177 1 8463 2 5263 1 9538 1 9975 2 1125 1 8913 1 935 2 07 1 7813	2 025 2 0938 2 22238 2 2725 1 9863 2 0763 2 095 2 2938 2 135 2 0338 2 075 2 2388	56 963 67 45 66 95 69 288 66 05 69 35 70 125 75 975 64 1 71 738 72 488 71 525 63 388	0 9713 0 7813 0 8288 0 8263 0 8763 0 6363 0 7338 0 3225 0 9788 0 9675 0 7463
\$1F2 \$1F3 \$1F4 \$2F1 \$2F2 \$2F3 \$2F4 \$3F1 \$3F2 \$3F3 \$3F4	0 92 0 6525 0 62 0 5513 0 65 0 4438 0 55 0 6188 0 5063 0 4863	0 8725 0 5013 0 5038 0 4788 0 5325 0 7538 0 4425 0 37 0 5775 0 3975 0 3825 0 4288	2 1488 2 3188 2 4075 2 545 2 285 2 4188 2 4488 3 185 2 275 2 3888 2 4425 2 6663	1 9588 2 0413 2 1313 2 17 1 8463 2 5263 1 9538 1 9975 2 1125 1 8913 1 935	2 025 2 0938 2 2238 2 2725 1 9863 2 0763 2 095 2 2938 2 135 2 0338 2 075 2 2388	56 963 67 45 66 95 69 288 66 05 69 35 70 125 75 975 64 1 71 738 72 488 71 525	0 9713 0 7813 0 8288 0 8263 0 8763 0 6363 0 7338 0 3225 0 9788 0 9675 0 7463 0 6475

Continua.

Cuadro 12: Análisis de significancia y Tukey de los parámetros de Indice de

Calidad de los cosientes de equilibrio, de reducción y los porcentaje

de la raíz.(continuación)

Dickson et al.

		.(conunuat					Dickson et a
Valores de F		e equilibrio		de reducció		% de Raiz	<u> </u>
Facts. Princi.	Tuke PVA PVA	PSA PSR	<u> PVA</u> PSA	PVR PSR	Tukey 154	PSRx% PST	D PSR
Interacciones		P L	_	<u>. </u>			₽ D PSR
SIGNIF. RSF	_ NS_	NS	NS	NS	NS	NS	NS_
R1S1F1	0.94		2 1675	1 87	1 9925	56 15	0 885
R1S1F2	0 4675		2 24	2 415	2 29	67 975	0.73
R1S1F3	0 6525	1	2 38	1 965	2 105	65 375	0.6925
R1S1F4	0 6025		2 675	2 305	2 395	67 925	0.78
R1S2F1	0.8275		2 22	1.8425	1 9925	59 35	0 5875
R1S2F2	0 4975		2 165	3 135	2 0725	60 725	0 565
R1S2F3	0 6325		2.4725	1 8725	2 05	67 925	0.75
R1S2F4	0 445		3 525	1 9975	2 37	82 35	0.2925
R1S3F1	0.6175		2.285	2 195	2.17	63 725	0 845
R1S3F2	0.6025		2.3625	1 8075	1 9825	68 625	0 7725
R1S3F3	0.54		24	1.8375	2	71 05	0.6025
R1S3F4	0 6525		2 795	2 0925	23	69 525	0 535
R1S4F1	0.8075		2 215	1 8075	1 9675	60 875	1 12
R1S4F2	0.785		2 3775	1 6725	1 925	65 375	0.99
R1S4F3	0.83		2 29	1 9025	2 05/5	59 675	0.7625
R1S4F4	0 6925		2 295	1 7375	1 925	66.25	0 76
R2S1F1	0.9		2 13	2 0475	2 0575	57 775	1 0575
R2S2F2	0 8375		2 3975	1 6675	1 8975	66 925	0 8325
R2S1F3	0 5875		2 435	2 2975	2 3425	68 525	0 965
R2S1F4	0.5		2 415	2 035		70 65	0 8725
R2S2F1	0.4725		2 35	185		72 75	1 165
R2S2F2	0.39		2 6725	1 9175			0.7075
R2S2F3	0 4675		2 425	2 035		72 325	0 7175
R2S2F4	0.6175		2 845	1 9975		696	0 3525
R2S3F1	0.62		2.265	2 03		64 475	1 1125
R2S3F2	0 41		2 415	1 975		74 85	1.1625
R2\$3F3	0 4325		2 485	2 0325		73 925	0 89
R2S3F4	0 4475	1	2 53/5	2 0475	2 1775	73 525	0.76
R2S4F1	0.69		2 285	1 755		65.9	1 08
R2S4F2	1 8975	1	2 415	15	17725	63 725	0 6875
R2S4F3	0 618		2 2975	1 865	2 0075	66 85	0.9775
R254F4	0.51		2 /8	1 9625	219	73 775	0.39
Med. Geral.	0 6559	0 52/6	2 438	1.9834	2 0898	6/ /01	0.8125

Donde: DS*** = Existe Diferencia Significativa alta

DS** = Existe Diferencia Significativa media
DS* = Existe Diferencia Significativa baja
NS = No Existe Diferencia Significativa

4.5.6.2. Relación parte aérea y raíz en peso seco PSA/PSR

Es un parámetro que no presenta diferencia significativa en ninguno de los factores principales y sus interacciones. Sin embargo, los riegos tienen una diferencia de 0.06, donde R1 es el que presenta un valor más balanceado entre ambas partes, por su estimulación en el crecimiento de la altura. Según el análisis de varianza y Tukey, cuadro 12 y anexo 16.

Observando los datos generales para todos los factores dan valores que favorecen al crecimiento radicular, sin embargo, entre ellos tienen el mismo efecto.

No existen DS, lo que quiere decir que la simetría de los efectos de distribución entre ambas partes para cualquiera de los factores que se estudiaron son iguales, pero no así, en la cantidad individualizada de cada parámetro para cada factor, aúnque en algunos si, los cuales han sido analizados anteriormente.

4.5.7. Reducción de peso verde a peso seco PV/PS

Es otro de los parámetros que se han incluido en la clasificación de calidad de plántulas, para la resistencia a la sequía en la plantación, este también es representado en porcentajes. Por lo que, si el cociente de reducción es menor, mucho mejor será la calidad de la plántula en cuanto a la resistencia de sequía, por requerir menos agua. Para este trabajo se considero el cociente de reducción en peso para la parte aérea, radicular y total.

4.5.7.1. Reducción de peso verde aéreo a peso seco aéreo PVA/PSA

El análisis de varianza y Tukey representados en el anexo 17 y cuadro 12, demuestran la única diferencia entre los tipos de fertilizantes utilizados y no así, con los riegos, interacciones y substratos a pesar que estos últimos tienen una diferencia significativa de 0.086 % de error. Los cuales dan los siguientes resultados:

 Los fertilizantes F1, F2 y F3 con 2.2, 2.4 y 2.4 presentan mejores valores de reducción con los mismos efectos a comparación con 2.7 de F4.

Se puede concluir que la aplicación de cualquiera de los fertilizantes, osmocote, picomódulo o urea, pueden ser aplicados independientemente de los tipos de substratos, riegos y las interacciones; a pesar de no existir DS entre los substratos al 0.05 % de error, la germinaza y el atribuir que los

substratos turba y corteza de pino por su alta aereación existente son generadores de crecimiento radicular los cuales van a requerir mayor cantidad de agua entonces menos resistencia a la sequía, y entre los fertilizantes se puede usar cualquiera de ellos, por que F1 y F2 son de liberación controlada, entonces estos van a poder dotar nutrientes según la disponibilidad de agua, ya sea poca o abundante y la urea por la dotación mensual. Para los riegos cualquiera de ellos serviria para sobrevivir en la sequía; podríamos decir entonces que, si bien la distribución y cantidad del agua no es un factor determinante para definir cual de ellos tiene mejor peso, lo es en la sobrevivencia de ella, para efecto se recomienda realizar un estudio al respecto.

4.5.7.2. Reducción de peso verde de raíz a peso seco de raíz PVR/PSR

Según el anexo 18 y el cuadro 12, el análisis de varianza y Tukey, concluyen que no existen diferencias entre los riegos, substratos, fertilizantes y sus interacciones, teniendo así un mismo efecto de reducción en la raíz.

4.5.7.3. Reducción de peso verde total y peso seco total PVT/PST

Considerando siempre el anexo 19 y el cuadro 12, el análisis de varianza y Tukey arroja, que existen diferencias significativas entre los fertilizantes, y no así, en los tipos de riego y las interacciones, pero para los substratos existe una DS al 0.059 % de error, al cual no lo identifica Tukey al 0.05 %. Los resultados son como sigue:

 El F1 y F2 con valores de 2, presentan los mejores cocientes de reducción y un mismo efecto, seguido de F3 y F4 con 2.1 y 2.2 respectivamente con un mismo efecto.

Se concluye que cualquiera de los fertilizantes osmocote o picomódulo pueden ser usados para la producción de plántulas con mayor resistentes a la sequía, es muy claro que la planta con una mayor vigorosidad de nutrientes tendrá mayor resistencia, que aquella que no ha recibido estos nutrientes, independientemente del sistema de riego y los substratos, por lo que se demuestra una vez más que la fertilización en el suelo es determinante en su desarrollo general de plántula.

4.5.8. Porcentaje de raíz en seco PSR/PSTx100

Este es un parámetro de calidad muy utilizado en la capacidad de enraizamiento de la plántula, para la absorción de nutrientes y anclado de la raíz al suelo, especialmente en los lugares con fines de protección contra la erosión. Por lo que a mayor porcentaje de raíz mejor será la calidad de la planta. El anexo 20 y el cuadro 12, ofrecen los resultados del análisis de varianza y Tukey, donde las DS presentan los tipos de riego, substratos y fertilizantes, a pesar que Tukey no diferencia entre los substratos en un 0.04 % de error. Por lo que tenemos los siguientes resultados:

- Entre los riegos R2 presenta un mayor porcentaje de raíces con 69.6 % contra 65.8 % de R1
- Entre los substratos S2 y S3 presentaron mejores porcentajes con 70.4 y 70 %, seguidos de S4 y S1 con 65.3 y 65.2 %, de capacidad de enraizamiento, aún que Tukey no hace diferencia para estos.
- Entre los fertilizantes F4, F2 y F3 presentaron mejores efectos de enraizamiento con porcentajes medios trasladados de 71.7, 68.3 y 68.2 %, F1 con 62.6 % tienen los mismos efectos con F2 y F3, pero diferenciado de F4.

En conclusión, el riego manual y la utilización de los substratos con corteza de pino o turba, con aplicación o no de fertilizantes de picomódulo o urea darán mejores resultados en el aumento del porcentaje de raíces en la plántula,

Se puede decir que el alto porcentaje de aereación en los substratos, estimulan el crecimiento de la raiz y no ocurre así con la germinaza y el suelo de monte ya que estos presentan partículas más pequeñas reduciendo los espacios, y en cuanto a los fertilizantes se puede atribuir también a la aplicación y localización de los mismos, y de los riegos por la menor agua disponible en el substrato también estimulan el crecimiento radicular en longitud y número de raíces. Confirmando de esta manera las afirmaciones y comprobaciones realizadas en PVR y PSR para el tipo de fertilizante y los riegos; como también para los substratos en PVA.

4.5.9. Indice de calidad de Dickson et al.

Este es otro indicador de calidad, donde relaciona conjuntamente otros parámetros; peso seco total entre el coeficiente de equilibrio altura/diámetro más el coeficiente de equilibrio en peso seco de la

parte aérea/radicular. Por lo que, este índice es otro coeficiente de equilibrio, entonces cuando más se acerque al valor de 1, mejor será el coeficiente balanceado.

El anexo 21 y cuadro 12, muestran en el análisis de varianza y Tukey, que existe diferencias significativas en los riegos y los fertilizantes, así también en los substratos, pero con un 0.059 % de error; sin embargo Tukey, da DS entre estos; lo que no ocurre con las interacciones. Los resultados que nos presentan son:

- El R2 presenta mejor balance con un coeficiente de 0.9 contra 0.7 del R1.
- Entre los substratos S4, S1 y S3 tienen los mismos efectos de equilibrio en la planta con coeficientes de 0.9, 0.8 y 0.8 respectivamente; seguido de S2 con 0.6, pero con un mismos efecto que S1 y S3.
- De la misma manera, entre los fertilizantes F1, F2 y F3, tienen los mismos efectos con 1, 0.8 y 0.8 respectivamente contra 0.7 de F4, sin embargo este último tiene las medias traslapadas con F2 y F3.

Se puede concluir, que con el uso del riego manual y cualquiera de los substratos suelo de monte, germinaza o turba y los fertilizantes osmocote o picomódulo y urea se obtendrán buenos resultados en el coeficiente de equilibrio de la plántula. Este índice de calidad nada mas confirma todas las aseveraciones hechas para cada uno de los indicadores que utiliza en la fórmula. Así por ejemplo, como para el tipo de riego es influenciado por la relación H/D y no por el equilibrio entre los pesos secos por que no presentaron DS, entonces la relación anterior es determinante para este caso. Ya en los fertilizantes sucede al contrario, donde la relación determinante será entre los pesos y en los substratos serán las dos relaciones paramétricas. Por lo que llegarían a demostrar las afirmaciones hechas para cada una de estas.

4.6. DISCUCION GENERAL

4.6.1. Riegos

Según el cuadro general del anexo 22 se puede decir, que para los tipos de riego por aspersión o controlado (R1), más uniformes en la distribución de la platabanda con una cantidad constante por día de riego y la disponibilidad de agua es relativamente mayor que el riego manual o el testigo (R2). El resultado de las alturas es más influenciado por el sistema R1 que en el sistema R2; en los diámetros no hay diferencia significativa (DS), aún que en la cuarta medición existe DS favoreciendo a R2; por lo que en la relación de estos dos parámetros H/D el riego R2 es el mejor.

Sin embargo en los valores de PVA y PSA no tienen DS, por lo que se puede interpretar que estos dos parámetros se compensan en su peso para cada uno de los riegos; esto no ocurre con los valores de PVR y PSR que presentan DS favoreciendo a R2, por que este sistema de riego no tienen una mayor disponibilidad de agua, entonces las raíces tienden a buscar mayor área de absorción, los cuales se diferencian en su peso por el incremento de longitud y/o el número de

Cuadro 13: Resultados del número de parámetros con y sin efecto para los riegos.

Efect	0		DF	NS
		R1	R2	
		Н	H/D	D
			PVR	PVA
	8		PSR	PVT
Parámetros de	Indice de calidad	_	Dickson	PSA
netro	de c		% de raíz	PST
arán	dice	_	_	PVA/PVR
ш.	=		_	PSA/PSR
				PVA/PSA
		-	_	PVR//PSR
			-	PVT/PST
Tota	Total		5	10

raíces, esto es confirmado con el índice de porcentaje de raíces y los valores de las relaciones entre los pesos de ambas partes de la plántula a pesar que no muestran DS. El incremento en peso de la raiz hace también que se fortifique el D a la altura del cuello de la raíz, pero no tiene mucha influencia en los pesos totales de la planta por lo que no existe DS entre ellos. En la relación de Dickson et prácticamente confirma todo lo al. dicho anteriormente, el cual es muy influenciado por la relación H/D ya que en los demás parámetros que considera no hay DS. Por último los dos tipos de riego tienen el mismo efecto para la resistencia a la seguía.

De los 16 parámetros de índice de calidad utilizados y analizados al 5to mes en el presente estudio (ver cuadro 13), se observa que los efectos en los riegos son, 1 solo parámetro positivo para el riego por aspersión (R1), 5 para el riego manual o testigo (R2) y 10 son sin efecto, por tanto se puede sacar como conclusión dos versiones: a) que el riego manual presentó mejores resultados, por el mayor número de parámetros que el riego por aspersión y b) por el número de parámetros que no tuvieron efectos entre los tipos de riego considerados, lo que quiere decir que cualquiera de los dos puede ser utilizados en la producción de mayor calidad de las plántulas. Sin embargo, con un mejor regulado de la cantidad de agua disponible del riego por aspersión, se podría obtener tal vez mejores resultados que el manual, para lo cual es necesario realizar más estudios sobre el tema.

4.6.2. Substratos

Según el cuadro general del anexo 22, considerando el factor substrato, se puede decir, que para la altura y el diámetro el suelo de monte, la germinaza o la turba tienen un mismo y mejor efecto en contra de la corteza de pino, los cuales son confirmados por el PVA y la relación PVA/PVR de la plántula, este efecto se atribuye a la corteza fresca, lo que hace que tenga mayores concentraciones de fitotoxinas, perjudicando el desarrollo de la plántula, también eran, de partículas mayores y más la incorporación de la perlita a la mezcla se introdujo mucho porcentaje de macrporos, provocando mayor desarrollo radicular en la búsqueda de nutrientes y el agua retenida, a esto se incluye también la turba, por ser el segundo substrato con partículas más grandes; los cuales son confirmados por el indicador de % de raíces y los valores de las relaciones entre los pesos, donde hay mayor influencia de la raíz que de la parte aérea en peso; al mismo tiempo el índice de Dickson también reafirma lo explicado anteriormente. Relacionan con el pH de las mezclas, observamos que todas los substratos son ligeramente alcalinos, por lo que tienen el mismo efecto que el testigo, para esto se sugiere que se aumente mayor porcentaje de materia orgánica y reducir la perlita para los substratos de mayor tamaño de partículas.

Cuadro 14: Resultados del número de parámetros con y sin efecto para los substratos.

	รนบรแสเบร.)F		1
Efecto		NS			
Parâmetros de Índice de calidad	S1	S2	S 3	\$4	
	Н	% de raiz	D	Н	H/D
	D	_	PVA	D	PVR
	PVA		% de raíz	PVA	PVT
	PVA/PVR		Dickson	PVA/PVR	PSA
	Dickson			Dickson	PSR
	~-				PST
			_		PSA/PSR
	_				PVA/PSA
					PVR//PSR
		_			PVT/PST
Total	5	1	4	5	10

Del cuadro 14 se puede concluir con dos versiones: a) los mejores substratos, con mayor número de parámetros son el suelo de monte (S4) y la germinaza (S1) 5, СОП seguidos por la turba (S3) con 4 y por último la corteza (S2) con 1, y b) por el mayor número de parámetros que quedaron sin efectos 10 (NS), puede concluir que cualquier substrato puede ser usado en la producción de

plántulas, sin embargo se sabe la importancia del pH en estos, por lo que es necesario continuar con la investigación, con nuevos porcentajes de mezcla, para regular las concentraciones de H⁺, convirtiendo al substrato ligeramente ácido pH 6, para tener así mayor asimilación de nutrientes, es decir mejor CIC.

4.6.3. Fertilizantes

Según el cuadro general del anexo 22, entre los cuatro tipos de fertilizantes que se usaron, sin duda se observa que el osmocote (F1) es el mejor de todos los fertilizantes utilizados, la principal razón que se le puede dar es que este fertilizante se integra juntamente al substrato, para que de esta manera quedar totalmente distribuido en todo el contenedor, en comparación del picomódulo (F2) que su presentación es en forma de tableta, localizándose en un sector del contenedor, por lo que necesitaría primero entrar en contacto con el agua y después difundirse, al igual que la urea (F3) localizada en la superficie del substrato y aplicada cada mes, de tal manera surten menos efectos, sin embargo cabe racalcar que el productos del picomódulo tienen también fertilizantes que se pueden integrar al substrato, por lo que se convertiría en otro importante fertilizante, ya que este

también en algunos parámetros muestra los mismos efectos que el osmocote. Se puede observar que el fertilizante es un factor determinante en el desarrollo de la plántula ya que en la aplicación de estos se obtienen mejor crecimiento y grosor, por lo tanto más vigor lo que le hace mayor peso verde y seco, por consecuencia resistente a la sequía.

Cuadro 15: Resultados del número de parámetros con y sin efecto para los substratos.

Efecto	fecto DF					
Parámetros de indice de calidad	F1	F2	F3	F4		
	н	PVR	PVR	% de raiz	H/D	
	D	PSR	PSR		PVA/PVR	
	PVA	PST	PVA/PSA	_	PSA/PSR	
	PVR	PVA/PSA	PVT/PST		PVR/PSR	
	PVT	PVT/PST	%de raiz			
	PSA	% de raiz	Dickson		_	
	PSR	Dickson				
	PST			-		
	PVA/PSA		_	_		
	PVT/PST		_			
	Dickson	_			_	
Total	11	7	6	1	4	

Observando el cuadro 15, se confirma lo descrito arriba donde el mejor fertilizante es el osmocote (F1) con 11 mejores desarrollados. parámetros seguido del picomódulo (F2) con 7, la urea (F3) con 6 y el testigo (F4) con uno, aquí se puede observar que hubo efectos diferenciados, por lo significativos que los no quedaron con 4 solamente.

5. CONCLUSIONES.

Las siguientes conclusiones se derivaron a partir de los objetivos propuestos en el capítulo de introducción, los cuales fueron cubiertos por los resultados obtenidos; cumpliendo satisfactoriamente la presente investigación.

- 1. De los 16 parámetros morfológicos utilizados en el análisis de calidad de las plántulas, para los factores de riegos, substratos, fertilizantes y sus interacciones, se obtuvo lo síguiente:
 - Diez indicadores no presentaron diferencias significativas para los dos tipos de riego, o sea sin efectos entre estos, lo que nos lleva a concluir que no existe diferencia entre el riego por aspersión y el riego manual.
 - También diez índices no presentaron diferencias significativas en los cuatro tipos de substratos comparados; lo que nos lleva a concluir, que no existen efectos diferenciados entre los cuatro substratos.
 - Para los fertilizantes, solo 4 no presentaron diferencias significativas para los cuatro tipos de fertilizantes utilizados, lo que lleva a concluir, que si existe efectos diferentes entre los fertilizantes.
- 2. Con respecto a la comparación de los tipos de riegos utilizados en el experimento, el sistema de riego manual o testigo presentó mejores parámetros morfológicos de calidad de plántulas, que el sistema de riego por aspersión, estas son:
 - Menores cocientes de equilibrio de la relación altura y diámetro.
 - Mayores valores en el peso verde de la raíz.
 - Mayores valores en el peso seco de la raiz.
 - Mayores valores en el porcentaje de raíz en seco.
 - Mejores coeficientes de equilibrio de Dickson et al.

5. CONCLUSIONES 73

3. Con referencia a los substratos, con solo suelo de monte (S4), la mezcla 25% de germinaza + 25% de perlita + 50% de suelo de monte (S1) y la combinación 25% de turba + 25% de perlita + 50% de suelo de monte (S3), presentaron los mismos efectos y mejores parámetros morfológicos de calidad de plántulas en la producción en vívero, estos son:

- Mayores valores en las alturas.
- Mayores valores de los diámetros.
- Mayores valores en el peso verde de la parte aérea de la plántula.
- Mejores coeficientes de equilibrio en la relación peso verde aéreo y peso verde radicular.
- Mejores coeficientes de equilibrio de Dickson et al.
- 4. La corteza de pino en estado fresco y partículas grandes, provocan un menor desarrollo de la parte aérea de las plántulas y mayor desarrollo de la raíz, seguramente por la presencia de fitotoxinas y mucha aereación, y según los parámetros utilizados es el que presenta menores resultados en la producción de plántulas de calidad.
- 5. Los porcentajes de materia orgánica en las mezclas de los substratos no fueron suficientes para regular los pH de los substratos, o sea la alcalinidad de estos, según experiencias explicadas por Carneiro, 1995.
- 6. En la comparación de los diferentes fertilizantes en el experimento, el osmocote arrojó mejores resultados en los parámetros morfológicos de calidad de plántulas, estos son:
 - Mayores valores en la altura.
 - Mayores valores en el diámetro.
 - Mayores valores en el peso verde de la parte aérea.
 - Mayores valores en el peso verde la parte radicular.
 - Mayores valores en el peso verde total de la plántula.
 - Mayores valores en el peso seco de la parte aérea.
 - Mayores valores en el peso seco de la parte radicular.
 - Mejores cocientes de reducción de peso verde a peso seco aéreo.

- Mejores cocientes de reducción de peso verde a peso seco total.
- Mejor cociente de equilibrio de Dickson et al.
- 7. La fertilización en los substratos es un factor determinante para mejorar la producción de plántulas de calidad en el vivero.
- 8. Los índices de calidad, basados en aspectos morfológicos deberán estar sustentados por los parámetros fisiológicos de la planta, para asegurar la sobrevivencia en la plantación definitiva.

6. RECOMENDACIONES.

Se recomienda dar seguimiento al estudio en los próximos años en la fase de vivero y en la plantación definitiva, para comparar los análisis de vivero y campo, obteniendo así seguridad en las evaluaciones y resultados de los diferentes Indices de Calidad.

Se recomienda establecer un nuevo experimento, con la utilización de diferente porcentajes de mezcla en los substratos, considerando especialmente la materia orgánica y el tamaño de partículas, para poder obtener mejores resultados de calidad de las plántulas.

Para lo anterior, también se recomienda realizar un análisis de pH de las diferentes mezclas antes del repicado o la siembra, para regular la alcalinidad de los substratos.

Es aconsejable probar nuevamente la comparación de los sistemas de riego con diferentes cantidades de agua disponible para la planta.

Es también muy recomendable realizar paralelamente un análisis económico de cada uno de los sistemas investigados.

7. BIBLIOGRAFIA

- A.A. 1992. La Promesa del Riego Moderno. Revista de suscripción: Agricultura de las Américas, pp. 6-14
- ABETZ, P. 1969. Waldbauliche Versuche Mit Verschiedenen Pflanzensortimenten bei der Fichtenbestandsbegrundung in Oberschwaben-versuchsprogramm und Erste Ergebnisse. Allg. Forst-u. Jagtztg. Frankfurt, v.146. pp. 197-205.
- ALANIS, F.G.J. 1991. El Matorral del Noreste de México, como un Recurso Forrajero Potencial para el Ganado Caprino. Reporte científico, No esp. 8, Facultad de Ciencias Forestales UANL, Linares, N.L., México. pp. 23.
- ALARCON, B.M.. 1992. Influencia del Sustrato y la Fertilización sobre el Desarrollo de <u>Pinus</u> <u>durangensis</u> <u>Mtz., en Invernadero</u>. Revista Ciencia Forestal en México. Vol 17. Nro. 71. INIFAP- Instituto Nacional de Investigaciones Forestales y Agropecuarias. División Forestal. D.F., México. Pp 27-61.
- ALDHOUS, J.R., 1975. Nursy Practice. For. Comm. Bull., London, n.43, pp. 1-184.
- ANSTEY, C. 1971. Survival and Growth of 1/0 Radiata Pine Seedlings. New Zealand J. For., Wellington, v.16. pp. 77-81.
- AÑEZ, B.; TAVIRA, E., y FIGUEREDO, C., 1995. Producción de Plántulas de Parchita Maracúya en Substratos de Diferente Composición. Revista Forestal Venezolana. Mérida, Venezuela. 39-2: pp. 9-18.
- CARNEIRO, A.J.G. 1976. Determinacao do Padrao de Qualidade de Mudas de <u>Pinus taeda</u> L. Para plantio definitivo. Curutiba70 f. (Mestrado em Engenharia Florestal). Setor de Ciencias Agrárias, Universidade Federal do Raraná.
- CARNEIRO, A.J.G. 1991. Efeitos de Tipos de Recipientes e Substratos no Desenvolvimento de <u>Pinus taeda</u> en Viveiros. In: Simpósio Internacional del desafio das florestas neotropicais. Universidad Federal do Paraná. Curitba, P.R., Brasil. pp. 101-106.
- CARNEIRO, A.J.G. 1995. Producao e Controle de Qualilade de Mudas Florestais. Universidade Federal do Paraná (UFPR), Universidade Estatal do Norte Fluminense (UENF) e Fundacao de Pesquisas Florestais do Paraná (FUPEF). Curitiva, P.R., Brasil.

AWANSON, B.T., 1989. Critical Physical Properties of Container Media. American Nurseryman. 169(11), pp. 59-63.

- BARROS, N.F.; BRANDIS, R.M. e REIS, M.S. 1978. Efeitos de Recipientes na Sobrevivencia e no cresimento de Eucalyptus spp. Revista Arvore. Vicosa, v.2 n.2 pp 141-151.
- BAULE, H., s/a. Más: Supervivencia, Crecimiento, Vigor, Floración y Producción; con Módulos Fertilizante. Química Foliar, S.A. de C.V./QF. Parque Industrial Naucalpan, Edo. De México. pp. 30-63.
- BELLE, S. e KAMPF, A.N. 1993. Producao de mudas de Maracuyá Amarelo en Substratos a Base de Turbfa. Pesquisa Agropecuaria. Brasilia, Brasil. 28: pp. 385-390.
- BENSON, L. and DARROW, R.A..1981. Trees and Shurubs of the Southwestern Deserts. The University of Arizona Press, Arizona, USA. pp. 154,155.
- CAMACHO, C.O.; DEL VALLE, P.D.H. y RUELAS, A.G.A. 1992. Statistical Analysis System. Capítulo 7. Jalisco, Guadalajara, México. pp. 115-154.
- CARLSON, L.W.. 1983. Guidelines for Rearing Containerized Conifer seedling in the Prairie Provinces. Inf. Rep. NOR-X-214E. Edmonton, Alberta: Canadian Forestry Service, Northern Forest research Centre. pp. 64.
- DAVIDSON, H. And OLNEY, A. 1964. Clonal and Sexual Differences in the Propagation of Taxus. Proc. Inter. Plant Propagation Soc. 14:1 pp. 56-62.
- DEICHMANN, Vollrat von. 1967. Nocoes sobre Sementes e Viveiros Florestais. Universidade Federal do Paraná. Curitiva, P:R:, Brasil. 196 pp..
- DICKSON, A.; LEAF, A.L. and HOSNER, J.F. 1960. Seedling Quality-Soil Fertility Relationship of White Spruce and Red and White Pine in Nurseries. For. Chron., Ontario, v.36. pp. 237-241.
- DICKSON, A., LEAF, A.L. and HOSNER, J.F. 1960. Quality Appraisal of White Spruce and White Pine Seedling Stock in Nurseries. Forestry Chron., Ontario, v.36. pp. 10-13.
- DRIESSCHE, R. Van den. 1984. Soil Fertility in Forest Nurseries. In: DURYEA, M.L.; LANDIS, T.D. (Eds.). Forest Nursery Manual: Production of Bareroot Seedling. Corvallis: Nursery Technology Cooperative/USDA. For Serv.. pp. 63-74.
- ELAM, W.W.; HODGES, J.D. and MOORHEAD, D.J.. 1981. Production of Containerized Southern red Oaks and their Performance after Outplanting. In: Southern Containerized Forest Tree Seedlings Conferense. Savannah, Georgia, and New Orleans, Southern Forest Experiment Station, 1982. Pp. 115,116. (USA For. Serv. Gen. Tech. Rep. SO-37).

- EVISON, R. J. 1977. Propagation clematis. Proc. Inter. Plant Prop. Soc. 27:436-40.
- FOREST SERVICE.1961. Handbook on Soils. Washington, D.C., USA. 296 pp...
- FOROUGHBAKHCH, R.P. y PEÑALOSA, R.W. 1988. Introducción de 10 Especies Forestales en el Matorral del Noreste de México. Reporte Científico Nro. 8. Facultad de Ciencias Forestales UANL, Linares, N.L., México, pp.33.
- GERMINAZA, s/a. *Material para Siembra en Invernadero*. Tríptico de: GERMINAZA, S.A. de C.V. Colima, Jalisco, Guadalajara, México.
- GOODWIN, O.C.; BRENNEMAN, D.L. and BOYETTE, W.G.. Container sedling survival and growth:

 Pine and Hardwood. In: Southern Containerized Forest Tree Seedlings Conference.

 Savannah, Georgia, and New Orleans, Southern Forest Experiment Station, 1982. Pp. 125131. (USA For, Serv. Gen. Tech. Rep. SO-37).
- GRACE and SIERRA. 1992. Sierra: controlled Release Fertilizer. Osmocote, Fertilizante de Liberación Controlada: Major and Minors in One. Tríptico de: Grace-Sierra Horticultural Products Company. USA.
- HANDRECK, K.A. and BLACK, N.D. 1984. Growing Media for Ornamental Plants and Turf. Kensington, NSW, Australia: New South Wales University Press. Pp. 401.
- HARLASS, S., 1984. *Uncover answers to Media Guessing game.* Geenhouse Manager, 3(5): pp. 102-107. USA.
- HARTMANN, H.T. y KESTER, D.E.. 1995. *Propagación de Plantas. Principios y Prácticas*. Editorial Continental, S.A. de CV. Cuarta reimpresión. D.f., México.
- HEISEKE, D. y FOROUGHBAKHCH, R. 1985. *El Matorral como Recurso Forestal*. Reporte científico Nro.1. Facultad de Ciencias Forestales, UANL, Linares, N.L., México. pp. 31.
- HESSAYON, D.G. 1994. Césped. Manual de Cultivos y Concervación. Editorial Blume, S.A. Traducida al español. Barcelona, España. pp. 35.
- HFF. 1997. *Producción de Plántulas en Invernadero*. Revista, Hortalizas, Frutas y Flores, Rev. Mensual de Mayo. Editorial Año Dos Mil, S.A. México. pp. 8-14.
- IGLESIAS, G.L. y ALARCON, B.M.. 1994. Preparación de Substratos Artificiales para la Producción de Plántulas en Vivero. Instituto Nacional de Investigaciones Forestales y Agropecuarias INFAP. Tema Didáctico Nro 1. Cuauhtémoc, Chihuahua, México.

IGLESIAS, G.L. y ALARCON, B.M.. 1997. Substratos Artificiales para Invernaderos. Para Producción de Plantas para Hortalizas. Revista, Hortalizas, Frutas y Flores. Mensual de mayo. Editorial Año Dos Mil, S.A. México. pp. 26-31.

- JOHNSON, J.D. and CLINE, M.L. 1991. Seedling Quality of Southern Pines. In: Duryes, M.L. & Dougherty, P.M. Dougherty (eds), Forest Regeneration Manual. Kluwer Academic Publishers. Printed in the Netherlands. pp. 143-159.
- JOINER, J.N. y CONOVER, C.A.. 1965. Characteristics Afeecting Desirability of Varius Media Components for Production of Container-Grown Plants. Proceedings of the Soil and Crop Science Society of Florida, USA. 25: pp. 320-328.
- LANDIS, D.L.. 1995. Notas Sobre Viveros Forestales. Mejorando el Cultivo en Bolsas de Polietileno para viveros redituables. Traducido al español por Guerrero, V. P. Centro de Forestación de Las Américas CEFORA en la Universidad Estatal de Nuevo México, USA. pp. 5-7.
- LIMSTROM, G.A. 1963. Forest Planting Practice in the Central States. Agriculture Handbook, Washington, D.C., USDA, For. Serv., n.247, pp.1-69.
- LOCATELLI, M. co et al. 1984. Efeitos de Formas de Nitrogenio sobre o crecimento e composicao mineral de mudas de eucalipto. Revista Arvore, v.8, n.1. Vicosa, Brasil. pp. 53-69.
- LOFTUS JR., N.S. 1975. Response of yellow-poplar seedlings to simulated drought.. Res. Note. SO. USDA. For. Serv. New Orleans, n.194. pp. 1-3.
- LOPEZ, A.R., 1997. Apuntes del Curso de Silvicultura. Facultad de Ciencias Forestales. Universidad Autónoma de Nuevo León. Linares, N.L., México.
- LOPEZ, A.R. 1992. Recreación Areas Protegidas y Fauna Silvestre. Quinta Conferencia de los Estados Fronterizos México/EUA Septiembre 17-19. Las Cruces, Nuevo México, EUA. pp.78.
- LOPEZ, R.J. y LOPEZ, M.J.. 1985. El Diagnostico de Suelos y Plantas. Métodos de Campo y Laboratorio. 4ta edición. Ediciones Mundi.Prensa. Madrid, España.
- MANZANO, M.G.F.. 1997. Procesos de Desertificación Asociados a Sobrepastoreo por Caprinos en el Matorral Espinoso de Linares, N.L. Tesis de Maestría. Facultad de Ciencias Forestales UANL. México.
- McGILVRAY, J.M. and BARNETT, J.P. 1981. Relating Seedling Morphology to Field Performance of Containerized Southern Pines. Separata de: Souuuthern Containerized Forest Tree Seed Conference, Savannah, 1981. Proceedings. New Orleans: USDA, For. Serv. Forest Experiment Station. pp. 39-46.

- MARQUES, L.C. e YARED, J.A.G. 1984. Crecimento de Mudas de <u>Didymopanax morototoni</u> (Aublet.) Done (morototó) em Viveiros e Diferentes Misturas de Solo. In: Simpósio Internacional, Métodos de Producao e Controle de Qualidade de Sementes e Mudas Florestais (Curitiva, 1984). Métodos de Producao e Controle de Qualidade de Sementes e Mudas Florestais. Universidade Federal do Paraná/FUPEF, Curitiba, P.R., Brasil. pp. 149-163.
- MAY, J.T., 1984. *Basic Concepts of Soils Management*. In: Southern Pine Nursery Handbook. (S.1): USDA. For. Serv., Southern Reigion. Cap. 1, pp. 1-25.
- MAYER, H. 1977. Waldbau: Aufsoziologish-oekologische Grundlage. Stuttgart: Gustav Fischer. pp.482.
- MILKS,R.R.; FONTENO, W.C. and LARSON, R.A.. 1989. *Hidrology of Horticultural substrates: III:*Predicting Air and Water Content of Limited-Volumen Plung Cells. Journal of the American Society for Horticultural Science. USA. 114(1), pp. 57-61.
- NAVAR, CH.J.J. 1996. Apuntes de: Métodos Estadísticos y Experimentación Forestal. Curso modular de: Estadística, Probabilidad, Métodos Estadísticos y Experimentación Forestal. Facultad de Ciencias Forestales, Universidad Autónoma de Nuevo León. Linares, N.L., México.
- NAVAR, J. 1986. Aspectos Hidrológicos Importantes del Terreno Universitario de Linares, N.L. Trabajo de investigación, Facultad de Ciencias Forestales, UANL, Linares, N.L., México.
- OBREZA, A.A.. 1992. El agua en el suelo. Como las características físicas del suelo determinan el comportamiento del agua en el mismo. Revista de suscripción: Agricultura de la Américas, Nro 5, pp. 16-18.
- ORTIZ, V.B. y ORTIZ, S.C.A. 1984. *Edafología*. 4ta edición. Universidad Autónoma de Chapingo. Suelos. Chapingo, México.
- PAWSEY, C. K. 1972. Survival and Early development of <u>Pinus radiata</u> as influenced by size of planting stock.. Aust. For. Res., Camberra, East Melbourne, v.5. pp. 13-24.
- PRITCHETT, W.L.. 1986. Suelos Forestales. Propiedades, Conservación y Mejoramiento. Editorial Limusa, S.A. de C.V.. Primera edición. D.F., México. pp. 129-148.
- PUSTJARVI, V. and ROBERTSON, R.A. 1975. *Physical and Chemical Properties.* In: Peat in Horticulture. London: Academic Press. Pp. 170.

- Q.F.. s/a. Módulos Fertilizantes de Liberación Controlada. Mayor supervivencia, Crecimiento, Vigor, Floración y Producción. Triptico de: Química Foliar, S.A. de C.V. Parque Industrial Naucalpan. Edo. de México.
- RICHTER, J. 1971. Das Umsetzen von Douglasien in Kulturstadium. Allg. Forst.-u. Jagdztg., Frankfurt, v.142. pp. 63-69.
- RODRIGUEZ, S.; GONZALEZ, F.M. y MARTINEZ, G.J.A.. 1988. Arboles y Arbustos del Municipio de Marin. Temas Didácticos Nro. 2. Facultad de Agronomía, Universidad Autónoma de Nuevo León. Marin, N.L., México. pp. 22, 23.
- SCHMIDT-VOGT, H. 1970. Rationalisierung der Forstkultur Durch Verwendung von Grosspflanzen. Allg. Forstzeitschrift., Munique, v.10, pp. 195-200.
- SCHMIDT-VOGT, H. and GURTH, P. 1969. Eigenschaften von Forstpflanzen und Kulturerfolg-II. Mitteilung: Auspflanzumgsvesuche mit Fichten-und Kieferpflanzen Verchideber Grossen und Durchmesser. Allg. Forst-u. Jagdztg., Frankfurt, v.140, n.6. pp. 132-142.
- SCHMIDT-VOGT, H. and GURTH, P. 1977. Eigenschaften von Forstpflanzen und Kulturerfolg-I.

 Mitteilung: Auspflanzumgsvesuche mit Fichten-und Kieferpflanzen Verchideber Grossen und Durchmesser. Allg. Forst-u. Jagdztg., Frankfurt, v.148. pp. 145-157.
- SCHMIDT-VOGT, H. 1966. Wachstum und Qualitaet von Forstpflanzen. 2 ed. Munique: Bayerischer Landwirtschaftverlag. pp. 210.
- SIMOES, J.W.. 1968. *Métodos de Producao de Mudas de Eucalipto*. Tese de Doutorado. Escola Superior de Agricultura "Luiz de Queiroz", Universidade de Sao Paulo. Piracicaba, S.P., Brasil.
- SNEDECOR, G.W. y COCHRAM, W.G. 1982. *Métodos Estdisticos*. Editorial Continental, S.A. de C.V.. Novena Impresión. D.F. México. pp. 419-467.
- SOUTH, D.B.; ZWOLINSKI, J.B. and DONALD, D.G.M. 1993. Interactions Among Seedling Diameter Grade, Weed Control and Soil Cultivation for <u>Pinus radiata</u> in South Africa. Can. J. For. Res. Ottawa, v.23. pp. 179-192.
- SPP-INEGI. 1986. Síntesis Geográfica del Estado de Nuevo León. México. pp. 170.
- STURION, J.A.. 1980. Influencia do Recipiente e do Método de Semeadura na Formacao de Mudas de <u>Schizolobium scabrella</u> (Vellozo) Blake-Fase de Viveiro. Boletin de Pesquisa EMBRAPA/URPFCS, n.1. Brasil. pp. 89-100.

SUN GRO. s/a. Shunshine. Profesional Peat Moss. Sphagnum Select Canadian. Triptico de: SUN GRO HORTICULTURE INC. Bellevue, Canada.

- TERMOLITA. s/a. Hortiperl. Ayuda a sus plantas a crecer frondosas, sanas y fuertes (Perlita). Tríptico de: TERMOLITA, S.A. Monetrrey, Nuevo León, México.
- TISDALE, S.L. y NELSON, W.L. 1982. Fertilidad de los Suelos y Fertilizantes. Editorial Hispanp Americana, S.A. de C.V.. Primera edición en español. D.F., México.
- VINES, R.A., 1980. Trees of East Texas. University of Texas Press, Austin. Texas, USA, pp. 121-124.
- VINES, R.A.. 1984. Trees, Shrubs, and Woody Vines of the Southwest. University of Texas Press, Austin. Texas, USA. pp. 203, 204.
- WAKELEY, P.C., 1954. *Planting the Southern Pines*. Agriculture Monograph, Washington, D.C., USA.n.18, pp. 1-233.
- WALPOLE, R. E. Y MYERS, R.H. 1992. *Probabilidad y Estadística*. Tercera edición en español. Editores McGraw.Hill/Interamericana de México, S.A. de C.V. D.F., México. pp. 578-587.
- WARKENTIN, B.P. 1984. Physical Properties of Forest-Nursery Soils: Relation Seedling Growth. In: DURYEA, M.; LANDIS, T.L. (Eds.). Forest Nursery Manual: Production of Bareroot Seedlins. Corvallis: Nursery Thohnology Cooperative/USAD. For Serv., pp. 53-61.
- ZIMMERMAN, J.D. 1981. *El riego*. Sexta impresión. Editorial Continental, S.A. D.F., México. pp. 183-203.

ANEXOS

LISTA DE ANEXOS

An	exos	Páginas
1.	Combinación de los diferentes factores y número de individuos	84
2.	Modelo estadístico de tres factores y su distribución espacial	85
3.	Diseño en el vivero. Experimento factorial de tres factores 4 x 4 x 2 en bloques complet	a-
	mente aleatorios.	86
4.	Planilla de levantamiento de datos de la altura y diámetro	87
5.	Planilla de levantamiento de datos para los pesos de las plántulas	88
6.	ANVA de las alturas	89
7.	ANVA de los diámetros	90
8.	ANVA de la relación altura y diámetro	91
9.	ANVA del peso verde aéreo	92
10.	ANVA del peso verde de la raíz	92
11.	ANVA del peso verde total	92
12.	ANVA del peso seco aéreo	93
13.	ANVA del peso seco de la raíz	93
14.	ANVA del peso seco total	93
15.	ANVA de la relación de peso verde aéreo y peso verde de la raíz	94
16.	ANVA de la relación de peso seco aéreo y peso seco de la raíz	94
17.	ANVA de reducción de peso verde aéreo a peso seco aéreo	95
18.	ANVA de reducción de peso verde de la raíz a peso seco de la raíz	95
19.	ANVA de reducción de peso verde total a peso seco total	95
20.	ANVA del porcentaje de raíz	96
21.	ANVA del Indice de Calidad de Dickson et al.	96
22.	Cuadro general del Análisis de Varianza y prueba de Tukey de los parámetros de	
	Indice de Calidad del experimento	97

Anexo 1: Combinación de los diferentes factores y número de individuos.

RIE	MEZCLA DE	FERTILIZANTES	COMBINACIO.	REPETI.1	SUB				
GO	SUSTRATO	RADICULARES	TRATAMIEN.	RxT RxB	TOTAL				
R1	S1	F1 = OSMOCOTE	T1 = R1S1F1	X 10 X 4	40 INDIV.				
	SUELO DE MONTE	F2 = PICOMODULOS	T2 = R1S1F2	X 10 X 4	40 INDIV.				
	GERMINAZA	F3 = UREA	T3 = R1S1F3	X 10 X 4	40 INDIV.				
Α	PERLITA	F4 =SIN FERTILIZANTE(T)	T4 = R1S1F4	X 10 X 4	40 INDIV.				
s	S2	F1 = OSMOCOTE	T5 = R1S2F1	X 10 X 4	40 INDIV.				
Р	SUELO DE MONTE	F2 = PICOMODULOS	T6 = R1S2F2	X 10 X 4	40 INDIV.				
Ε	CORTEZA DE PINO	F3 = UREA	T7 = R1S2F3	X 10 X 4	40 INDIV.				
R	PERLITA	F4 =SIN FERTILIZANTE(T)	T8 = R1S2F4	X 10 X 4	40 INDIV.				
s	S3	F1 = OSMOCOTE	T9 = R1S3F1	X 10 X 4	40 INDIV.				
h [SUELO DE MONTE	F2 = PICOMODULOS	T10 = R1S3F2	X 10 X 4	40 INDIV.				
0	TURBA	F3 = UREA	T11 = R1S3F3	X 10 X 4	40 INDIV.				
N	PERLITA	F4 =SIN FERTILIZANTE(T)	T12 = R1S3F4	X 10 X 4	40 INDIV.				
{	S 4	F1 = OSMOCOTE	T13 = R1S4F1	X 10 X 4	40 INDIV.				
	SUELO DE MONTE	F2 = PICOMODULOS	T14 = R1S4F2	X 10 X 4	40 INDIV.				
	(TESTIGO)	F3 = UREA	T15 = R1S4F3	X 10 X 4	40 INDIV.				
		F4 =SIN FERTILIZANTE(T)	T16 = R1S4F4	X 10 X 4	40 INDIV.				
R2	S1	F1 = OSMOCOTE	T17 = R2S1F1_	X 10 X 4	40 INDIV.				
	SUELO DE MONTE	F2 = PICOMODULOS	T18 = R2S1F2	X 10 X 4	40 INDIV.				
M	GERMINAZA	F3 = UREA	T19 = R2S1F3	X 10 X 4	40 INDIV.				
	PERLITA	F4 =SIN FERTILIZANTE(T)	T20 = R2S1F4	X 10 X 4	40 INDIV.				
Α	S2	F1 = OSMOCOTE	T21 = R2S2F1	X 10 X 4	40 INDIV.				
	SUELO DE MONTE	F2 = PICOMODULOS	T22 = R2S2F2	X 10 X 4	40 INDIV.				
N	CORTEZA DE PINO	F3 = UREA	T23 = R2S2F3	X 10 X 4	40 INDIV.				
	PERLITA	F4 =SIN FERTILIZANTE(T)	T24 = R2S2F4	X 10 X 4	40 INDIV.				
U	S3	F1 = OSMOCOTE	T25 = R2S3F1	X 10 X 4	40 INDIV.				
	SUELO DE MONTE	F2 = PICOMODULOS	T26 = R2S3F2	X 10 X 4	40 INDIV.				
Α	TURBA	F3 = UREA	T27 = R2S3F3	X 10 X 4	40 INDIV.				
	PERLITA	F4 =SIN FERTILIZANTE(T)	T28 = R2S3F4	X 10 X 4	40 INDIV.				
L	S4	F1 = OSMOCOTE	T29 = R2S4F1	X 10 X 4	40 INDIV.				
	SUELO DE MONTE	F2 = PICOMODULOS	T30 = R2S4F2	X 10 X 4	40 INDIV.				
(T)	(TESTIGO)	F3 = UREA	T31 = R2S4F3	X 10 X 4	40 INDIV.				
		F4 =SIN FERTILIZANTE(T)	T32 = R2S4F4	X 10 X 4	40 INDIV.				
	TOTAL 1280 IND.								

¹ Repeticiones por tratamiento y por bloques.

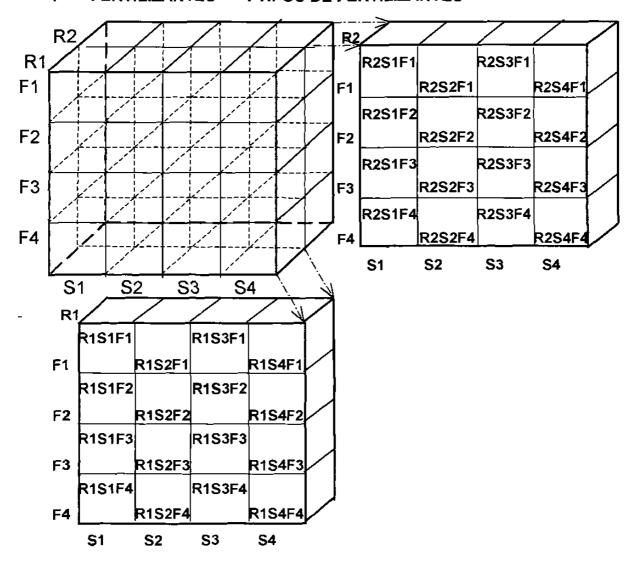
Anexo 2: Modelo estadístico de tres factores y su distribución espacial

MODELO FACTORIAL:

Yijkl=u+Ri+Sj+Fk+(RS)ij+(RF)ik+(SF)jk+(RSF)ijk+Eijkl

R, S, F = EFECTOS PRINCIPALES

RS, RF, SF = EFECTOS DE INTERACCION DE DOS FACTORES

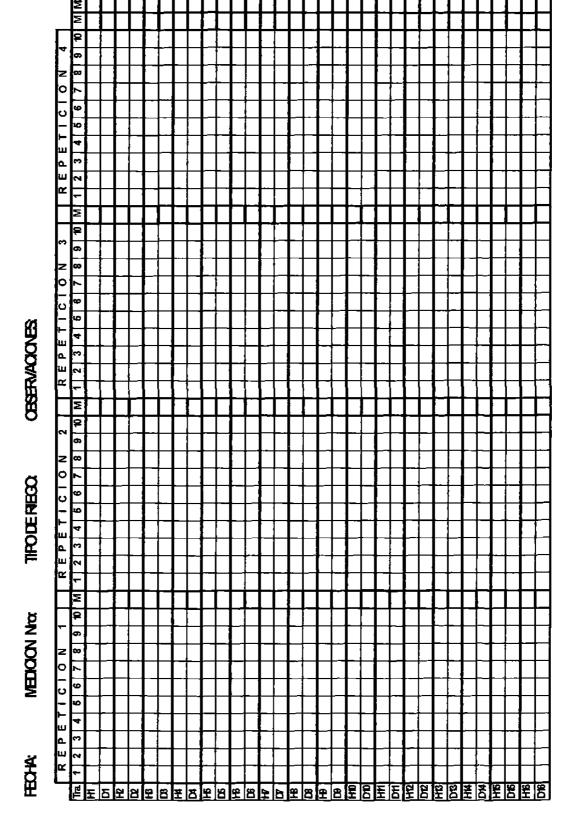

RSF = EFECTOS DE INTERACCION DE TRES FACTORES

PARA:

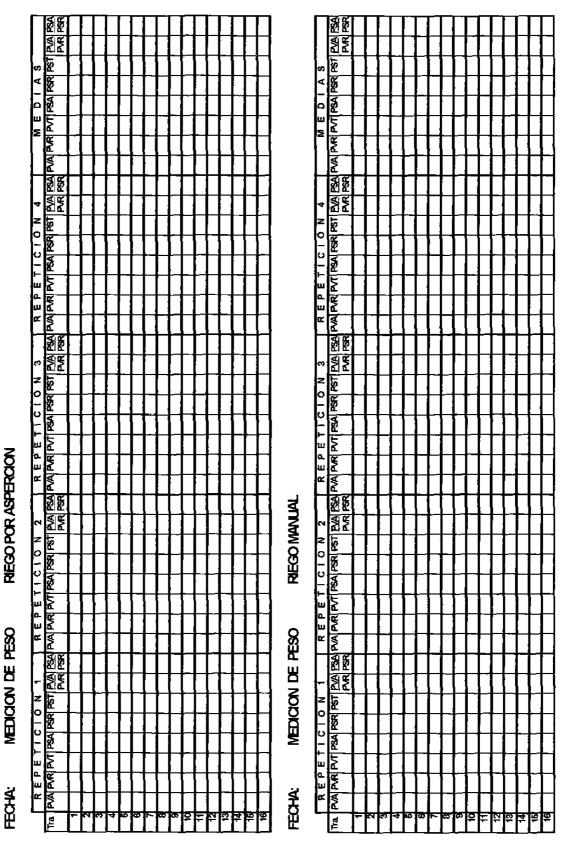
R = RIEGOS = 2 SISTEMAS DE RIEGO

S = SUSTRATOS = 4 TIPOS DE SUSTRATOS

F = FERTILIZANTES = 4 TIPOS DE FERTILIZANTES



87 8. ANEXOS


Anexo 3: Diseño en el vivero. Experimento Factorial de tres Factores 4x4x2 en Bloques Completamente Aleatorios

1280 INDIVIDUOS TOTAL TRATAMIENTOS X 10 œ ALEATORIOS FRATAMIENTOS ø ĸ TR11=S3F3 FR12=S3F4 TR16=S4F4 TR10=S3F2 R14=S4F2 TR15-S4F3 FR13=S4F1 FR8=S2F4 FR7=\$2F3 R2=S1F2 [R3=S1F3 FR4=S1F4 FR6=S2F2 [R5=S2F1 rR9≈S3F1 [R1=S1F1 DONDE: DISEÑO EXPERIMENTAL EN CAMPO-BLOQUES COMPLETAMENTE TR14.4 **TR12.3** TR12.4 TR7.4 TR11.4 TR10.4 TR10.3 TR5.4 TR6.4 **TR15.4 TR13.4 TR16,4** TR4.3 TR13.3 FR14.3 TR16.3 TR11.3 **TR15.3** TR8.3 **TR3.3** TR9.3 **TR5.3 TR7.3 TR2.4** TR1.4 TR8.4 **TR4.4 TR9.4** TR3.4 **TR6.3** TR1,3 640 INDIVIDUOS/BLOQUE 2 RIEGO 2 = BLOQUE 2 REPETI, 3 NDV. 160 INDV REPET! 160 **TR14.1 TR11.2 TR14.2 TR10.2 TR12.2** TR3.2 TR16.2 **IR15.2 TR13.2** TR12.1 TR13.1 TR9.2 TR5.2 **TR11.1** TR5.1 TR15.1 **TR2.2** TR8.2 **TR1.2 TR7.2** TR6.2 **TR4.2** IR10.1 **TR16.1** TRY TR4.1 TR1.1 TR2.1 TR3.1 TR6.1 REPETI. 2 REPETI. 1 160 INDV. 160 INDV. TR12.4 TR8.4 TR3.4 TR8.3 TR15.3 TR9.3 TR13.4 TR14.4 TR10.3 **TR14.3** TR12.3 TR3.3 **TR15.4** TR11.4 FR16.3 TR10.4 TR11.3 FR1.3 TR13,3 TR5.4 TR2.4 TR1.4 TR16.4 TR4.4 TR9.4 TR7.4 TR4.3 **TR5.3** TR2.3 TR7.3 **TR6.4** TR6.3 640 INDIVIDUOS/BLOQUE 1 RIEGO 1 = BLOQUE REPETI. 4 160 INDV. 160 INDV REPETI. TR4.2 TR14.2 TR10.2 **TR11.2** TR11.1 **IR15.2** TR16.2 TR12.2 TR13.1 TR15.1 **TR1.2** TR9.2 TR13.2 TR10.1 R14.1 **TR7.1** R16.1 **IR12.1 TR8.2** TR6.2 **TR5.2 TR2.2 TR7.2** TR4.1 TR1.1 TR9.1 **TR5.1** TR6.1 TR3.1 **TR8.1** TR3.2 TR2.1 REPETI. 1 REPETI. 2 160 INDV. 160 INDV.

Anexo 4: Planilla de levantamiento de datos, altura y diámetro

Anexo 5: Planilla de levantamiento de datos para los pesos de las plántulas

ANEX0 6

Analisis de Varianzas de alturas

	Anexo 6a:ANVA de altura, medición 1								
Fuente	G	SQ	QM	Fcal.	₽r⊳F				
R	_1	0.393828		0.42	0.518				
S	3	133.1465	44.38216	47.44	0.0001				
F	3	223.479	74.49299	79.63	0.0001				
R*S	3	2.815234	0.938412	1	0.395				
R*F	3	0.933984	0.311328	0.33	0.8016				
S*F	9	52.1507	5.794523	6.19	0.0001				
R*S*F	9	2.088203	0.232023	0.25	0.9861				

/	Anexo 6b: ANVA de altura, medición 2								
Fuente	GI	SQ	QM	Fcal.	Pr⊳F				
R	1	136.7445	136.7445	28.95	0.0001				
S	3	572.9246	190.9749	40.43	0.0001				
F	3	1454.557	484.8524	102.6	0.0001				
R*S	3	18.06523	6.021745	1.27	0.2874				
R*F	3	52.64148	17. 54 716	3.71	0.0141				
S*F	9	313.5507	34.83897	7.38	0.0001				
R*S*F	9	22.30758	2.47862	0.52	0.8534				

<i>F</i>	Anexo 6c:ANVA de altura, medición 3							
Fuente	GI	SQ	QM	Fcal.	Pr⊳F			
R	1		138.1953		0.0124			
\$_	3	936.9775	312.3258	14.68	0.0001			
F	3	1658.566	552.8554	25.99	0.0001			
R*S	3	31.38344	10.46115	0.49	0.6888			
R*F	3	46.96094	15.65365	0.74	0.5332			
S*F	9	589.4875	65.49861	3.08	0.0028			
R*S*F	9	143.7128	15.96809	0.75	0.6618			

A	Anexo 6d :ANVA de altura, medición 4							
Fuente	G	SQ	QM	Fcal.	Pr>F			
R	1		406.8378	15.41	0.0002			
S	3	1467.573	489,1909	18.53	0.0001			
F			829.0609	31.41	0.0001			
R*S		99.42906		1.26	0.2941			
R*F		58.52031		0.74	0.5313			
S*F		846.9916		3.57	0.0007			
R*S*F	9	128.5828	14.28698	0.54	0.841			

A	Anexo 6d :ANVA de altura, medición 5								
Fuente	Gi	SQ	QM	Feal.	Pr⊳F				
R	1	577.5751)	21.19					
S	3	1620.983	540.3278	19.82	0.0001				
F	3	3944.343	1314.781	48.23	0.0001				
R*S	3	40.89648	13.63216	0.5	0.6831				
R*F	1	116.0459		1.42	0.242				
S*F	9	726.2095		2.96	0.0038				
R*S*F	9	173.3063	19.25626	0.71	0.7017				

ANEX0 7

Analisis de Varianzas de diámetros

Anexo 7a: ANVA de diametro, medición 1								
Fuente	GI	SQ	QM	Fcal.	Pr>F			
R	1	0.00781	0.00781	1.02	0.315			
S	3	0.31094	0.10365		0.0001			
F	_ 3	0.72781	0.2426	31.69	0.0001			
R*S	3	0.00844		0.37	0.7767			
R*F	3	0.02156	0.00719	0.94	0.4251			
S*F	9	0.24844	0.0276	3.61	0.0007			
R*S*F	9	0.01969	0.00219	0.29	0.9772			

An	Anexo 7a:ANVA de diámetro, medición 2							
Fuente	G	SQ	QM	Fcal.	Pr>F			
R	1	0.01758		0.71	0.4021			
S	3	3.15773	1.05258		0.0001			
F	3	5.06336	1.68779	68.01	0.0001			
R*S	3,	0.06086	0.02029	0.82	0.4873			
R*F	3	0.08523	0.02841	1.14	0.3351			
S*F	9	1.37445	0.15272	6.15	0.0001			
R*S*F	9	80080.0	0.0089	0.36	0.9518			

An	Anexo 7a:ANVA de diámetro, medición 3								
Fuente	G	SQ	QM	Fcal.	Pr>F				
R	1	0.2032	0.2032	2.5	0.1174				
S	3	3.86711	1.28904	15.84	0.0001				
F	3	7.45961	2.48654	30.55	0.0001				
R*S	3	0.05961	0.01987	0.24	0.8653				
R*F	3	0.17086	0.05695	0.7	0.5544				
S*F	9	1.90133	0.21126	2.6	0.01				
R*\$*F	9	0.40008	0.04445	0.55	0.8372				

Anexo 7a:ANVA de diámetro, medición 4								
Fuente	GI	\$Q	QM	Fcal.	Pr>F			
R	1	0.43945	0.43945	3.98	0.0488			
S	3	4.41023	1.47008	13.32	0.0001			
F	3	10.7827	3.59424	32.57	0.0001			
R*S	3	0.40711	0.1357	1.23	0.3031			
R*F	3	0.21836	0.07279	0.66	0.5789			
S*F	9	2.2107	0.24563	2.23	0.0266			
R*S*F	9	0.82383	0.09154	0.83	0.5905			

Anexo 7a:ANVA de diametro, medición 5								
Fuente	GI	SQ	QM	Fcal.	Pr>F			
R	1	0.2032	0.2032	1.19	0.278			
S	3	7.49398	2.49799		0.0001			
F	3	16.0121	5.33737	31.27	0.0001			
R*S	3	0.41148	0.13716	0.8	0.4949			
R*F	3	0.21961	0.0732	0.43	0.7328			
S*F	9	2.9557	0.32841	1.92	0.0574			
R*S*F	9	0 40445	0.04494	0.26	0.9828			

ANEX08

Analisis de Varianzas de relación altura/diámetro (coeficiente de equilibrio)

Anexo 8: ANVA de H/D								
Fuente	GI	SQ	QM	Fcal.	Pr>F			
R	1	0.34031	0.34031	0.07	0.7932			
S	3	64.6409	21.547	4.37	0.0062			
F	3	297.828		20.15	0.0001			
R*S	3	17.9034		1.21	0.3098			
R*F	3	10.3378	3.44594	0.7	0.5546			
S*F	9	36.6509	4.07233	0.83	0.5932			
R*S*F	9	6.84844	0.76094	0.15	0.9976			

ANEXO 9

Analisis de Varianzas de peso verde aéreo

	Anexo 9: ANVA de PVA							
Fuente	GI	SQ	QM	Fcal.	Pr>F			
R	1	0.34031	0.34031	0.07	0.7932			
S	3	64.6409	21.547	4.37	0.0062			
F	3	297.828	99.2759	20.15	0.0001			
R*S	3	17.9034	5.96781	1.21	0.3098			
R*F	3	10.3378	3.44594	0.7	0.5546			
S*F	9	36,6509	4.07233	0.83	0.5932			
R*S*F	9	6.84844	0.76094	0.15	0.9976			

ANEXO 10

Analisis de Varianzas de peso verde de raíz

	Anexo 10: ANVA de PVR								
Fuente	GI	SQ	QM	Fcal.	Pr>F				
R	1	98.3503	98.3503	4.62	0.034				
S	3	114.077	38.0256	1.79	0.1546				
F	3	189.676	63.2254	2.97	0.0355				
R*S	3	31.3816	10.4605	0.49	0.6887				
R*F	3	156.003	52.0011	2.45	0.0686				
S*F	9	202.042	22.4491	1.06	0.4026				
R*S*F	9.	272.08	30.2311	1.42	0.1896				

ANEX0 11

Analisis de Varianzas de peso verde total

Anexo 11: ANVA de PVT								
Fuente	ente GI SQ QM Fcal. Pr>							
R	1	109.15	109.15	3.02	0.0853			
S	3	198.717	66.239	1.83	0.1461			
F	3	958.236	319.412	8.84	0.0001			
R*S	_ 3	70.9828	23.6609	0.66	0.5816			
R*F	3	215.374	71.7914	1.99	0.1209			
S'F	9	315.27	35.03	0.97	0.4697			
R*S*F	9	329.37	36.5967	1.01	0.4349			

ANEXO 12

Analisis de Varianzas de peso seco aéreo

	Anexo12: ANVA de PSA								
Fuente	GI	SQ	QM	Fcal.	Pr>F				
R	1	0.17258	0.17258	0.11	0.7376				
S	3	11.629	3.87633	2.54	0.0613				
F	3	82.2771	27.4257	17.94	0.0001				
R*S	_ 3	6.88586	2.29529	1.5	0.2191				
R⁴F	_ 3	5.62648	1.87549	1.23	0.3043				
S*F	9	6.86695	0.76299	0.5	0.8718				
R*S*F	9	2.03633	0.22626	0.15	0.998				

ANEXO 13

Analisis de Varianzas de peso seco de raíz

Anexo 13: ANVA de PSR								
Fuente	GI	SQ	QM	Fcal.	Pr>F			
R	_1	33.1095	33.1095	5.25	0.0241			
S	3	17.719	5.90633	0.94	0.4259			
F	3	62.999	20.9997	3.33	0.0227			
R*S	3	4.68773	1.56258	0.25	0.8626			
R'F	3	23.8277	7.94258	1.26	0.2925			
S*F	9	65.4738	7.27487	1.15	0.3332			
R*S*F	9	58.6613	6.51793	1.03	0.4189			

ANEX0 14

Analisis de Varianzas de peso seco total

	Anexo 14: ANVA de PST								
Fuente	e GI SQ QM Fcal. Pr>								
R	1	29.5488	29.5488	2.97	0.0879				
S	3	41.2227	13.7409	1.38	0.2528				
F	3	281.233	93.7442	9.43	0.0001				
R*S	3	14.9771	4.99237	0.5	0,6816				
R*F	3	47.3071	15.769	1.59	0.1977				
S*F	9	94.8063	10.534	1.06	0.3995				
R*S*F	9	65.8907	7.32119	0.74	0.6745				

ANEXO 15

Analisis de Varianzas de relación de peso verde aéreo/peso verde de raíz (Coeficiente de equilibrio)

	Anexo15: ANVA de PVA/PVR								
Fuente	G	SQ	QM	Fcal.	Pr>F				
R	1	0.00488	0.00488	0.02	0.8806				
S	3	2.10756	0,70252	3.27	0.0245				
F	3	0.82593	0.27531	1.28	0.2851				
R*S	3	0.4166	0.13887	0.65	0.587				
R*F	_ 3	1.02736	0.34245	1.59	0.1958				
S*F	9	2.69303	0.29923	1.39	0.2019				
R'S'F	9	2.09003	0.23223	1.08	0.3837				

ANEXO 16

Analisis de Varianzas de relación de peso seco aéreo/peso seco de raíz

(Coeficiente de equilibrio)

Anexo 16: ANVA de PSR/PSR								
Fuente	GI	SQ	QM	Fcal.	Pr>F			
Ř	1	0.50879	0.50879	3 .57	0.062			
S	3	0.34736	0.11579	0.81	0.4904			
F_	3	0.83093	0.27698	1.94	0.128			
R*S	3	0.31768	0.10589	0.74	0.5293			
R*F	3	0.16503	0.05501	0.39	0.7636			
S*F	9	1.01195	0.11244	0.79	0.6277			
R*S*F	9	1.36444	0.1516	1.06	0.3972			

ANEXO 17

Analisis de Varianzas de reducción de peso verde aéreo/peso seco aéreo (Coeficiente de reducción)

Anexo17: ANVA de PVA/PSA								
Fuente	GI	SQ	QM	Fcal.	Pr>F			
R	1	0.01015	0.01015	0.06	0.7993			
S	3	1.05761	0.35254	2.26	0.0868			
F	3	4.20778	1.40259	8.98	0.0001			
R*S	3	0.18731	0.06244	0.4	0.7536			
R*F	3	0.54384	0.18128	1.16	0.3291			
S*F	9	1.46323	0.16258	1.04	0.414			
R*S*F	9	1.56715	0.17413	1.11	0.3602			

ANEXO 18

Analisis de Varianzas de reducción de peso verde raíz/peso seco raíz (Coeficiente de reducción)

Anexo 18: ANVA de PVR/PSR								
Fuente	G	SQ	QM	Fcal.	Pr>F			
R	1	0.2592	0.2592	0.79	0.3765			
S	3	1.97168	0.65723	2	0.1189			
F	3	0.18428	0.06143	0.19	0.905			
R*S	3	0.43054	0.14351	0.44	0.727			
R*F	3	1.89871	0.6329	1.93	0.1303			
S*F	9	2.93626	0.32625	0.99	0.4507			
R*S*F	9	2.33628	0.25959	0.79	0.6257			

ANEXO 19

Analisis de Varianzas de reducción de peso verde total/peso seco total

(Coeficiente de reducción)

	Anexo 19: ANVA de PVT/PST								
Fuente	G	SQ	QM	Fcal.	Pr>F				
R	1	0.0124	0.0124	0.15	0.6957				
S	3	0.62087	0.20696	2.57	0.0588				
F	3	0.84203	0 28068	_3.48	0.0188				
R*S	3	0.04817	0.01606	02	0.8966				
R*F	3	0.20748	0.06916	0.86	0.4655				
S*F	9	0.27815	0.03091	0.38	0.9404				
R*S*F	9	0.64475	0.07164	0.89	0.538				

ANEXO 20

Analisis de Varianzas del porcentaje de raíz

Anexo 20: ANVA de PVR/PSTx100												
Fuente	GI.	SQ	QM	Fcal.	Pr>F							
R	1	0.88445	0.88445	4.95	0.0285							
S	3	1.37029	0.45676	2.56	0.0598							
F	3	1.59606	0.53202	2.98	0.0354							
R*S	3	0.28943	0.09648	0.54	0.6562							
R*F	3	0.10876	0.03625	0.2	0.8942							
S*F	9	0.88882	0.09876	0.55	0.8324							
R*S*F	9	0.77878	0.08653	0.48	0.8821							

ANEXO 21

Analisis de Varianzas del índice de calidad de Dickson et all.

(Coeficiente de equilibrio)

Anexo 21: ANVA de PST/(H/D+PSA/PSR)												
Fuente	GI	SQ	QM	Fcal.	Pr>F							
R			0.8845									
S	3		0.4568	2.56	0.06							
F	3	1.5961	0.532	2.98	0.035							
R*S	3	0.2894	0.0965	0.54	0.656							
R*F			0.0363		•							
S*F	9		0.0988									
R*S*F	9	0.7788	0.0865	0.48	0.882							

																								Dickson et all
Valores de F		uras	Medi		Altura al	Dián	etros	Medlo		Diámt. al			ot Verd					Cosiente de	e equilibrio	Coclente	de reducck	on, PV a PS	% de Raiz	The real Property lies and the least lies and the lies and the lies and the least lies and the least lies and the lies and t
Facts. Princi.	-		medició		S Oto Me		-	medición		5 Oto Mes	Equil.	Aèreo	Raiz S	PVI	1×1	Fraiz	F Total	E PYA	S PSA	E PYA	S PYK	E BAT	5 PSRXX	1.21
Interacciones	2 m 3	HZ	5 KB	2 H4	E HO			5 m.		E 00	F IMIN	P PVA	PVK P	- De	P PSA	≥ PSK	P PSI	PVR	PSR	PSA	PSR	PST PST	2 PST	2 DPSR
SIGNIF. R	7.831 A	18.566	A 30.011	A 44.02	8 A 49.664	1.0062	1.626	2.0328	3 2.76/2	3.3641	A 15.052	6.847	B 1128	18.127	3.047	B 5.808	8.85	0.662	0.5906	2.4291	2.028	2.0997	DS.	DS
R2	7.72 B	16.498					1.603			3.4437	B 13.32/	6.95		19.983			9.79		0.4645		1.938		B 65.805 A 69.597	
SIGNIF. S	DS***	DS	DS	DS**		DS-	DS*	DS***	DS-	DS***	NS	DS	NS	NS	NS	NS	NS	DS*	NS	NS	NS	NS	DS*	DS*
\$1	B 7.9/2 B	18.391	A 30.491	BA 44	4 BA 49.675	B 0.9875	1.671		2.9375	A 3.587	13.984	A 7.384	12.663	20.047	3.244	6.266		BA 0.686	0.5891	2.355	2.075		A 65.163	
\$2	C 6.325 C	14.175			2 C 41.887	B 0.9375	1.378	1 C 1.8125			14.063		11.278	17.062		5.766	8.36	B 0.544	0.5247	2.5844	2.081	2.1128	A 70.375	B 0.642
\$3	B 7.619 B	17.603				1	1.596		2.8281	A 3,403			13.453	20.25	E	6.8			0.4466		2.002	2.1206		
54	A 9.188 A	19.959 DS-44	A 31.809				-	DS	3.0125 DS-11	A 3.516	14.544	A 7.528	11.231 DS=	18.859 DS	3.34/	6.434			0.56	2.3694	1.7/5	The second second second		
SIGNIF. F	A 10.063 A	23.284	DS***A 34.694	DS**	1 A 56.397	A 1.1281	1.956	-	3.2812		NS 14.513		A 13.753 A	23.044		DS ²² A 7.234	A 11,45	0.734	0.6444	DS 2.2397	NS 1.925	B 2.0241	B 62.625	DS*
F2 ·	B 6.966 B	16.434					1.537			B 3.469	14.059			19.038				0.736	0.5544		2.011	B 2.0131		
F3	B 7.1 CE	15.609			7 CB 44.547		1.503				14.213						BC 9.016	0.595			1.976			
F4	B 6.984 C	14.8	C 24.956		1	B 0.943/E	1.462	1.8313	2.5062	C 2.997	13.972	C 5.044	B 10:334 B	15.378			C 726	0.558	0.4303	A 2.7334	2.022	the second second second second second		
SIGNIF. RS	NS	NS	NS	NS	MS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
RIST	8.1125	19.419	31.431	45		0.9875	1.718		2.8813	3.5688	14.619	6.825	11.844	18.669	2.9813	5.7875	8.768	0.6656	0.6006	2.3656	2.1388	. 2.1956	64.356	
R1S2	7.4188	15.144	26.156 29.238				1.37		2.5438	3.0438 3.2813	14.563	5.9563 6.5625	10.363	16.319	2.875	5.1563 6.0688	8.0313	0.6006	0.67	2.5956 2.4606	2.2119 1.9831	2.1213	67.588	0.5488
R1S3 R1S4	9.35	21.556	33.219	48.93		1.0875	1.82		2.9563	3.5625	15.781	8.0438	11.044	19.088		6.2188		0.7788	0.6019	2.2944	1.78	2.1131 1.9688	68.231	0.6888
R2S1	7.8313	17.363	29.55			1	1.62		2.9938	3,6063	13.35	7.9438	13.481	21.425		6.7438			0.5775	2.3444	2.0119	2.1119	65.969	0.9319
R2S2	6.2063	13.206	23.088	34.83	8 40.069	0.9188	1.381	1.825	2.5063	2.975	13.563	5.6125	12.194	17.806	2.3188	6.375	8.693	0.4869	0.3794	2.5731	1.95	2.1044	73.163	0.7356
R2S3	7.8188	17.063	28.694				1.606		2.9688	3.525	13.088	7.0313	15.038	22.069	2.9688	7.5313	10.3		0.4031	2.4256	2.0213	2.1281	71.694	0.9813
RZS4	9.025	18.363	30.4				1.0		3.0688	3.6688	13:306	7.2125	11.419	18.631	3.1	6.60			0.4981	2.4444	1.7706		67.563	
SIGNIF. RF	NS 10.100	72.304	NS 36 08	NS 512	MS 50 499	NS 1 1 1 1 DO	1 007	NS 24/38	NS 3.2625	NS 3.9125	NS 15.388	NS 8.8313	MS 11.506	NS 20.338	NS 4.0188	6.0375	NS 10.052	NS 0.7001	NS 0.60(3)	7 2210	NS 1 0200	NS 2 0206	NS 60.00	NS O DEO/
R1F1 R1F2	7.0438	25.291 17.631	36.069				1.987		2.8313	3.4875	14.825	6.8688	13.119	19.988	3.3563	6.5	9.856	0.7981	0.6913	2.2219	1.9288 2.2575	2.0306 2.0675	60.025 65.675	0.8594
R1F3	7.0400	15.913	28			0.9688	1.47		2.5875	3.1563	15.275	6.8188	10.694	17.513	2.9313	5.675	8.606	0.6638	0.5325	2.3856	1.8944	2.0531	66.006	0.7019
R1F4	6.8938	15.438	25.175			0.9625	1.468	1.75	2.3875	2.9	14.719	4.8688	9.8	14.669	1.8813	5.0188	6.9	0.5981	0.4606	2.8225	2.0331	2.2475	71.513	0.5919
R2F1	9.9375	21.288	33.319			1.1375	1.92		3.3	3.975	13.638	9.75	16	25.75	4.4313	8.4313	12.86	0.6706	0.5975	2.2575	1.9206	2.0175	65.225	1.1038
R2F2	6.8688	15.238	27.175	40.1	3 4.9	0.9313	1.	2.0375	2.875	3.45		6.4125		18.088		6.5938			0.4306	2.475	1.765	1.9588	70.869	0.8475
R2F3	7	15.306	26.5				1.531	1	2.7375	3.2563	13.15	6.4188	13.588	20.006		6.7188	9.42	0.5256	0.43	2.4106	2.0575	2.16	70.406	0.8875
RZF4	7.075	14.163	24.73			1 1	1.456	1	2.625	3.0938	13.225	5.2188	10.869	16.088		5.5563			0.4	2.6444	2.0106	2.1838	71.888	
SKINIF. SF	AS	AS	AS	AS		AS	AS		3.3375	NS 4.125	13.813	NS 10.225	13.2	23.425	NS 4.8375	NS 6.725	NS 11.56	NS 0.92	NS 0.8725	NS 2.1488	1.9588	NS 2.025	NS 56.963	0.9713
S1F1 S1F2	10.325 7.0875	23.675 17.588	34.813	46.5		1.125 0.925	1.987	1	3.025	3.7	14.013	6.925	12.725	19.65		6.5375			0.5013	2.3188	2.0413	2.0938	67.45	
\$1F2 \$1F3	7.425	16.45	30.07				1.52		2.775	3.35		7.1375	13.388	30.525		6.375		0.62	0.5038	2.4075	2 1313	2.2238	66.95	
S1F4	7.05	15.85	26.07				1.5		2.6125	3.175		5.25		- 16.58	2.0875	5.425			0.4788	2.545	2.17	2.2725	69.288	
S2F1	9.1125	23.05	35.31				1.9		3.3	39	15.025		15.175	24.25	-	8.325			0.5325		1.8463		56.05	
\$2F2	5.2875	12.225	23.53		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1.237		2.4625	29	13.988			16.96		5.6625			0.7538		2 5263	2.0763	69.35	
S2F3	5.3625	11.988	22.81				1.237		2.3625	29		5.9875		17.38		5.862					1.9538	2.095	70.125	
52F4	5.5375	9.4375	16.82				1.087		1.975					9.6		3.212			0.423	3.185	1.9975	2.2938	75.975	
53F1	11.1	24.675	34.9	5 47.9			1.987		3.275	3.8625			14.288	22.98		6.812					2.1125	2.135	64.1	0.9788
\$3F2	6.4625	15.638				0.9125	1.47	5 1.975	2.825	3.4875	14.275	6.95	144	. 21.3	2.95	7.587	10.53	0.5063	0.3975		1.8913	2.0338	71.738	
S3F3	6.4125	15.15	25.				1.47		2.65				12.813	18.775	2.475	6.7375	9.212	0.4863	0.3825	2.4425	1.935		72.488	
53F4	6.5	14.95					1.4		2.5625			1		17.888		6.062					2.07	2.2388	71.525	
SAF1	9.7125 8.9875	21.738	33. 31.97				1.812		3.2125 3.1	3.8875	13.963			21.513		7.07							63.388	
S4F3	9.2	18.85	30.41			1	1.77		2.8625	1				18.18		5.812					1.5863		64.55	
S4F4	8.85	18.963	31.1				1./62		2.8/5	1	1			17:388		6.4					1.8838		63.263	The second secon
SIGNIF. RSF	NS	NS	NS	NS	NS	NS	NS		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS NS	NS	70.013 NS	0.875
R1S1F1	10.675	25.075				8	2.0		3.325			9.25	11.15	20.4		5.925					1.87		56.15	
R1S1F2	7.15	18.8					1.		2.875					21.5		6.63	9.57	0.4675	0.4975	2.24	2.415		67.975	
R151F3 R1S1F4	7.75 6.875	17.25					1.52		2.775					18.375	8	5.925			100000		1.965		65.375	0.6925
R1S2F1	9.25	25.525	37.92				1.9		2.56 3.325		X	2		14.4		4.63					2.305		67.925	
R1S2F2	5.225	12.575				1	122		2.425					17.97		5.325					1.8425		59.35	
R1S2F3	5.6	12.475					1.		2.375					17.02		5.625					3.135 1.8725		60.725 67.925	
R1S2F4	5.7	10	18.07				1.12		2.05	2.4	13.925	3.675	7.8/5	11.52		4.075					1.9975		82.35	
R1S3F1	10.95	26.025						2 2.35	3.125					22.275		6.475	10.17				2.195		63.725	
R1S3F2 R1S3F3	6.425	17.15					1.52		2.85					18.475		6.475					1.8075		68.625	
R1S3F4	6.1	14.65					1.4		2.475		15.075			16.72		5.875				2.4	1.8375		71.05	
R1S4F1	9.875	24.5					1.37		3.275				11.125	16.2		5.48 6.15		-			2.0925		69.525	
R1S4F2	9.375	-22					1.8		3.275					19.5		7.55					1.8075		60.875	
R1S4F3	9.25	19.275	30:	3 46.	S 50.77	1.05	1.72	5 1.96	2.725	3.325	15.9			17.92		5.275					1.6725	1.925 2.05/5	65.375 59.675	
R1S4F4	8.9	20.45	A STATE OF THE PARTY OF THE PAR	The second second	The state of the s		1.77		266	And a second of			The second second	16.475	27	5.9	8	XP3.0			1.7375	1.325	35.073 30 23	
RZS1F1	9.9/5	10 275					1.52		3.30					26.4		7.52			The second second second	2.13			57.775	
R2S2F2 R2S1F3	7.025	16.375				5	1.52		3.175	1				17.8	N	6.42					1.6675		66.925	
R2S1F4	7225	15.15					1.52		2.775 2.675					18.775		6.82				2.436	2.2975		68.525	
B364**	2075	20.575	20.12		X		1.5		J.215					29.715	Annual Contract of	11.05				2.415	2.035		70.65	
R2S2F2	5.36	11.875					12		25					15.95		11.00				2.35 2.6725	1.85	1.98	72.75	0.7075
R2S2F3	5.125	11.5					1.27	5 1.725	2.35	2.925	13.125	5.4	12.35	17.75	2.225	6.1	8.32			2.425	2.035	2.14	72.325	0.7075
R2S2F4	5.375	8.875			Total Control of the		1.0		1.9				4.75	7.75		23	3.47		0.46		1.9975	2.2175	69.6	0.3525
R2S3F1	11.25	23.325			Calle Street Control of the Control		1.97		3.425		13.45			23.7		7.15			5 S. T. St. St. Co. Co. Co. Co. Co. Co. Co. Co. Co. Co	2.265	2.03	21	64.475	1.1125
R2S3F2 R2S3F3	6.625	15.65					1.42		2.8 2.825					24.22	2	8.7			0.335	2.415	1.975	2.085	74.85	1.1625
R2S3F4	6.9	15.15					1.52		2.825					20.825 19.525		6.675	1		0.355	2.485	2.0325	2.15	73.925	0.89
R2SAF1	9.56	18.975					1.8		3.15				13.75	23.075		0.075		0.4475	0.36 0.53	2.5375	2.0475	1.9325	73.525 65.9	1.08
R2S4F2	8.6	18.575					1.77	5 2.36	3.025				7.6	14.375		5.2			0.55	2.415	1.750	1.7725	63.725	0.6875
R2S4F3	9.15	18.425			- I		1.82		3	3.45			11.85	18.775	3.05	6.35		0.615	0.5	2.29/5	1.865	2.0075	66.85	0.9775
RZS4F4	8.8	17.4/5					1.7		3.1					18.3		- 1	9.32		0.3625	2.78	1.9625	2.19	73.775	0.99
Med. Geral.	7.7758	17.532	28.97	2 422	5 47.54	0.9984	1.614	8 2.0727	2.8258	3.4039	14.189	6.8984	12 156	19.05	3.0102	6.3164	9.3260	0.6559	0.52/6	2.438	1.9834	2.0898	67.701	0.8125

