UNIVERSIDAD AUTONOMA DE NUEVO LEON FACULTAD DE INGENERIA MECANICA Y ELECTRICA DIVISION DE ESTUDIOS DE POST-GRADO

REDISERIO DE ESLABONES EN EL MECANISMO DE ABRIR Y GERRAR MOLDES DE LA MAQUINA FORMADORA DE ENVASES DE VIDRIO

PRESENTA: ING. JUAN CARLOS CONTRERAS HERMANDEZ

EN OPCION AL GRADO DE MAESTRO EN CIENCIAS DE LA INGENIERIA MECANICA CON ESPECIALIDAD EN DISEÑO MECANICO

SAN NICOLAS DE LOS GARZA, N. L., DICHEMBRE DEL 2001

1020147043

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

٠

3

UNIVERSIDAD AUTONOMA DE NUEVO LEON FACULTAD DE INGENIERÍA MECANICA Y ELECTRICA DIVISION DE ESTUDIOS DE POST-GRADO

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN EN OPCION AL GRADO DE MAESTRO EN DIRECIENCIAS DE LARINGENIERIABMECANICA S CON ESPECIALIDAD EN DISEÑO MECANICO

SAN NICOLAS DE LOS GARZA, N. L., DICIEMBRE DEL 2001

١

TH Z.S.853 .Ha FIHE 2001 ICC USANIC

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA

DIVISIÓN DE ESTUDIOS DE POST-GRADO

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

ING. JUAN CARLOS CONTRERAS HERNÁNDEZ

EN OPCIÓN AL GRADO DE MAESTRO EN CIENCIAS DE LA INGENIERÍA MECÁNICA CON ESPECIALIDAD EN DISEÑO MECÁNICO

SAN NICOLÁS DE LOS GARZA, N.L., DICIEMBRE DEL 2001

Universidad Autónoma de Nuevo León Facultad de Ingeniería Mecánica y Eléctrica División de Estudio de Post-grado

Los miembros del comité de tesis recomendamos que la tesis **"Rediseño de Eslabones en el Mecanismo de Abrir y Cerrar Moldes de la Máquina Formadora de Envases de Vidrio"** realizada por el alumno Ing. JUAN CARLOS CONTRERAS HERNÁNDEZ, matricula 1034242 sea aceptada para su defensa como opción al grado de Maestro en Ciencias de la Ingeniería Mecánica, con Especialidad en Diseño Mecánico.

El Comité de Tesis Aseson M.C. Daniel Ramírez Villarreal Coasesor M.C. Raúl Escamilla Garza M.C. Roberto Villarreal Garza

Vo.Bo.

M.C. Roberto Villarreal Garza División de Estudios de Post-grado

San Nicolás de los Garza, N.L., Noviembre del 2001

DEDICATORIAS

Agradezco muy sinceramente a mi esposa Noemí Aracely Cantú Salinas y a mis hijas, Noemí Malenie y Karen Denisse el haberme permitido robarles el tiempo que les correspondía para poder realizar este trabajo tan preciado, para un servidor.

Que la presente sirva como ejemplo para mis hijas en su venidera educación.

Así mismo agradezco a mi asesor, M. en C. Daniel Ramírez Villarreal el tiempo que tan desinteresadamente me ha dedicado para poder llevar a término esta tesis.

Muy especialmente agradezco a todos mis compañeros del Grupo Vitro por su apoyo sin quienes no hubiese podido recabar la información necesaria para poder realizar este trabajo. AL DE BIBLIOTECAS

A todos mis familiares y amigos que me apoyaron moralmente para no claudicar en la realización de esta tesis.

PRÓLOGO.

La presente tesis tiene por objeto rediseñar los eslabones del mecanismo de abrir y cerrar moldes pertenecientes a la máquina formadora de envases de vidrio.

Este mecanismo es importante para la operación de la máquina porque es quien da movimiento al porta molde y al molde, que a su vez contienen la preforma y forma final del envase de vidrio; Por lo tanto, se consideró necesario analizar, desde el punto de vista mecánico, el comportamiento del elemento al estar sometido a las fuerzas que origina la acción de formar el envase de vidrio.

Para analizar los eslabones y corroborar los esfuerzos que se originan en la operación del mismo se utilizaron "software" matemático llamado UN "mecanical desktop" y Diseño de Máquinas, entre otras.

DIRECCIÓN GENERAL DE BIBLIOTECAS El estudio de este problema contribuirá a eliminar por completo los

tiempos muertos por esta causa en la operación de la máquina. Cabe mencionar que con el diseño original de este mecanismo, esta trabajando sin problemas, pero sin embargo, trabaja al 60 % de su vida útil.

ÍNDICE GENERAL

e e	Página
- Síntesis	1
1 Introducción	
1.1 Descripción del problema a resolver	3
1.2 Objetivo de la tesis	5
1.3 Hipótesis	5
1.4 Límites del estudio	6
1.5 Justificación del trabajo de tesis	7
1.6 Metodología	8
1.7 Revisión bibliográfica	9
2 Descripción de una máquina formadora de envases de vidrio.	
2.1 Introducción	10
2.2 Descripción del mecanismo de abrir y cerrar moldes	
UNIVER de la máquina formadora de envases de vidrio UEVO	LHÍN
2.2.1 Operación del eslabonamiento	16
2.3 Características generales del material	S 22
2.3.1 Composición química para un acero	
AISI-1020	22
2.3.2 Características y aplicaciones para un acero	
AISI-1020	22
2.3.3 Coeficiente de expansión térmica lineal para	
un acero AISI-1020	23
2.3.4 Aceros equivalentes al AISI-1020	23

Página

	2.3.5 Puntos críticos aproximados para un acero	
	AISI-1020	24
	2.3.6 Temperaturas térmicas para tratamientos	
	para un acero AISI-1020	24
	2.3.7 Propiedades de tensión y maquinabilidad	
	para un acero AISI-1020	25
TONOM	2.3.8 Propiedades mecánicas sobre efecto masa	
TALERE FLAMMAN	de un acero AISI-1020	26
VERITATIS	2.3.9 Propiedades de impacto para un	
S S	acero AISI-1020	27
3 Análisis de	l rediseño de los eslabones del mecanismo de	
abrir y cerrar vidrio	moldes de la máquina formadora de envases de	
3.1 An	tecedente del diseño de los eslabones	28
UNIVER32Ca	lculo y análisis de fuerzas A DE NUEVO L	29 N
DIRECC	3.2.1 Cálculo de la fuerza interna en el IONERAL DE BIBLIOTECAS estabón L10	32
	3.2.2 Cálculo de la fuerza interna en el	
	eslabón L17	35
	3.2.3 Cálculo de la fuerza interna en el	
	eslabón L16	37
	3.2.4 Cálculo de la fuerza interna en el	
	eslabón L16	39

Página

3.3 Cálculo de esfuerzos	41
3.3.1 Historia de las fallas por fatiga	41
3.3.2 Mecanismo de las fallas por fatiga	41
3.3.3 Modelos de falla por fatiga	42
3.3.4 Criterios de medición de las fallas por fatiga	43
3.3.5 Criterios de falla por fatiga	44
3.3.6 Cálculo de esfuerzos en cada eslabón	45
3.3.6.1 Cálculo de esfuerzos en el eslabón L10	46
3.3,6.2 Cálculo de esfuerzos en el eslabón L10	51
3.3.6.3 Cálculo de esfuerzos en el eslabón L10	57
3.3.6.4 Cálculo de esfuerzos en el eslabón L14	63
3.3.6.5 Cálculo de esfuerzos en el eslabón L15	68
3.3.6.6 Cálculo de esfuerzos en el eslabón L16	73
3.3.6.7 Cálculo de esfuerzos en el eslabón L16	78
UNIVERSIDA 3.3.6.8 Cálculo de esfuerzos en el eslabón L16	8 3 N
3.3.6.9 Cálculo de esfuerzos en el eslabón L16	88
3.4 Características generales del material seleccionado	93
3.4.1 Composición química para un	
acero AISI-4140	93
3.4.2 Características y aplicaciones para un	
acero AISI-4140	93
3.4.3 Coeficiente de expansión térmica lineal	
para un acero AISI-4140	94
3.4.4 Aceros equivalentes al AISI-4140	94

	3.4.5 Puntos críticos aproximados para un	
	acero AISI-4140	95
	3.4.6 Temperaturas térmicas para tratamientos	
	para un acero AISI-4140	95
	3.4.7 Promedio aparente de calor específico para	
	un acero AISI-4140	96
\overline{M}	3.4.8 Resistencia eléctrica y conductividad	
	térmica para un acero AISI-4140	96
	3.4.9 Dureza y maquinabilidad para un	
6	acero AISI-4140	97
3	3.4.10 Limite final de endurecimiento para un	
	acero AISI-4140	97
	3.4.11 Propiedades de tensión y maquinabilidad	
	para un acero AISI-4140	99

VERITATIS	3.4.9 Dureza y maquinabilic
	acero AISI-4140
E ZSS	3.4.10 Limite final de endur
E S	acero AISI-4140
	3.4.11 Propiedades de tensi
	para un acero AISI-4140

UNI 4 Resultados AD AUTÓNOMA DE NUEVO LI	EÓN
4.1 Resultados nodales de fuerzas y momentos	100
DIR 4.2 Resultados de fuerzas internas en cada eslabón CAS	102
4.3 Resultados de análisis cinematico de velocidades y	111
aceleraciones en cada eslabón	
4.4 Resultados de esfuerzos de trabajo en cada eslabón	117
4.4.1 Resultados de esfuerzos de trabajo en cada	
eslabón por la teoría de "Von Mises"	123
5 Conclusiones	
5.1 Generalidades	128

Página

5.2 En cuanto a esfuerzos de trabajo	128
5.3 En cuanto a factor de seguridad	129
6 Recomendaciones	
6.1 Cambio de material	130
6.2 Cambio de sección	130
Bibliografia	131
Listado de tablas	132
Listado de figuras	133
Apéndice	136
Resumen autobiográfico	139
UAN	

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

SÍNTESIS

El contenido principal de la presente tesis es el rediseño del mecanismo de abrir y cerrar moldes. Este análisis es necesario ya que los eslabones se empezaron a fracturar sin motivo aparente. El hecho de que se fracturen ocasiona pérdidas en la producción, y por lo tanto en la productividad, arrastrando una pérdida económica para la empresa. Para resolver el problema lo único que se hacía después de ocurrida la falla, era cambiar las piezas fracturadas por otras nuevas. Esto, además de las pérdidas mencionadas anteriormente, hacía que se incrementaran los costos de producción por el hecho de estar usando piezas nuevas con mayor frecuencia; lógicamente la vida útil de las piezas no se estaba aprovechando al cien por ciento.

Para eliminar la falla se encargó al autor el análisis del problema, para lo cual se siguieron los siguientes pasos: lo primero fue investigar con el usuario los antecedentes de trabajo de la pieza, lográndose obtener información valiosa para el análisis. De aquí se desprendió principalmente que el mecanismo solo estaba durando aproximadamente un 60 % de su vida útil pronosticada. Posteriormente se consultó al fabricante local para conocer como fabricaba el mecanismo viéndose que los métodos seguidos por este eran los correctos. Dado que la máquina a la cual pertenece el mecanismo de abrir y cerrar moldes es de tecnología americana se procedió a investigar con esta empresa datos del diseño de la pieza. Examinando los dibujos mecánicos de dicha tecnología, no se pudo obtener la información deseada ya que solo venían datos muy generales del diseño; estos fueron solo presiones y fuerzas muy generales a las que esta sometido el mecanismo a la hora de operar, así como arreglos generales de dicho mecanismo.

Datos importantes para la realización de dibujos mecánicos fueron encontrados; con esto se pudo realizar los arreglos en dibujo de la pieza a conveniencia. Con estos arreglos y con información proporcionada por el departamento de ingeniería de la empresa se pudo analizar a detalle y obtener las cargas de trabajo a las cuales estaba sometido el mecanismo.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

CAPITULO 1

INTRODUCCIÓN.

1.1 Descripción del problema.

Vidriera Monterrey S.A. de C.V. localizada en Magallanes 517 Ote. Col. Treviño en el Municipio de Monterrey N.L., es la empresa donde el sustentante de la presente propuesta de tesis presta sus servicios, y la cual esta dedicada a la fabricación de envases de vidrio. El problema que la empresa Vidriera Monterrey S.A. de C.V. enfrenta en la actualidad es la que el diseño de los mecanismos de la máquina formadora de envases de vidrio, fueron hechos por otra compañía externa y uno de estos mecanismos, el eslabonamiento del mecanismo de abrir y cerrar moldes de la máquina formadora de envases de vidrio tiende a fracturarse en un tiempo no programado de vida y a su vez no se cuenta con los cálculos de esfuerzos a los que esta trabajando dichos eslabones. Esto trae como consecuencia pérdidas en la producción y la productividad, así como incremento en los costos de la misma, entre otras cosas. Normalmente el mecanismo de abrir y cerrar moldes de la máquina formadora de envases de vidrio tiene una vida útil de tres años; en este caso la fractura se presenta aproximadamente a un 60 % de esa vida; por lo tanto se considera que no se aprovecha el 100 %.

El departamento de mantenimiento de la empresa reemplaza los elementos por otro juego nuevo dejando en el olvido el anterior sin analizar las causas

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

1.2 Objetivo de la tesis.

Encontrar la solución al problema de rompimiento de los eslabones en el mecanismo de abrir y cerrar moldes, de la máquina formadora de envases de vidrio para determinar las causas por las cuales se esta presentando la falla o fractura.

H1.- Mi supuesto es que los eslabones del mecanismo de abrir y cerrar moldes de la máquina formadora de envases de vidrio pueden presentar tres tipos de fallas que son la de fatiga a tensión, compresión y torsión.

H2.- La falla de los eslabones del mecanismo de abrir y cerrar moldes de la máquina formadora de envases de vidrio es por incremento de la fuerza de entrada aplicada de aproximadamente a 1395.26 libras. 1.4 Limites del estudio.

El presente estudio se limita a realizar el rediseño del elemento desde el punto de vista mecánico, donde se desarrollaran análisis teóricos de fuerzas y esfuerzos, para la posición de trabajo en el mecanismo.

El alcance de la presente propuesta solamente considera a los eslabones del mecanismo de abrir y cerrar moldes de la máquina formadora de envases de vidrio, 8 secciones tipo "F" doble cavidad 6 ¼ de pulgada de distancia entre centros de moldes. Considerando la información cuantitativa de las fuerzas y momentos en los eslabones del mecanismo, a la entrada y salida.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

1.5 Justificación del trabajo.

Siendo de vital importancia el eslabonamiento del mecanismo de abrir y cerrar moldes de la máquina formadora de envases de vidrio para la correcta operación de la máquina. Y por el hecho de presentar fallas, tales como la fractura, en eslabones del mecanismo. Es necesario analizar, los esfuerzos a los que está sometido el eslabonamiento del mecanismo de abrir y cerrar moldes de la máquina para poder determinar el porqué de la falla que se esta presentando en un tiempo no programado al estar operando. Una solución inmediata que se dio al momento de presentar la fractura en el eslabonamiento del mecanismo de material. Esto se hizo sin ningún análisis de esfuerzos en los eslabones para obtener opciones en materiales. De aquí que se desprenda la necesidad de analizar el mecanismo a través de las teorías de fallas en el diseño.

El eliminar por completo la falla en el mecanismo mencionado contribuirá directamente a eliminar los tiempos muertos en la máquina formadora de envases de vidrio por esta causa.

1.6 Metodología.

a).- Se analizarán las características actuales de funcionamiento del eslabonamiento del mecanismo de abrir y cerrar moldes de la máquina para poder determinar los antecedentes del diseño. Con esto se quiere determinar bajo que condiciones particulares o generales se realizó el diseño del mecanismo.

b).- Se obtendrá la información dimensional de cada uno de los eslabones,
al igual que el del mecanismo completo. Usando el software de autocad
2000i, para la presentación de planos.

c).- Se obtendrá la caracterización mecánica del material empleado para la fabricación de las partes del mecanismo.

d).- El rediseño de los eslabones del mecanismo de abrir y cerrar moldes, se hará aplicando las teorías de criterio de fallas para los materiales seleccionados.

e).- se hará un programa en "software", del calculo del sistema mecánico a rediseñar para iterar posibles soluciones.

1.7 Revisión bibliografía.

Como apoyo a la realización de este trabajo se consultó literatura relacionada con el diseño mecánico. Se tomó de los textos criterios para analizar las fuerzas y los esfuerzos a los que están sometidos los elementos, como son las fuerzas nodales e internas de cada unión del eslabón a través de los conceptos de equilibrio, como también los esfuerzos nodales a los que esta sometido cada unión de eslabón.

El cálculo de las fuerzas fue realizado en "working model"que es un "software" matemático donde se define el tipo de material de las piezas que influye para las inercias y las reacciones en los amarres, como también trabaja con la gravedad para definir el eje a trabajar

El cálculo de los esfuerzos fue realizado tomando las teorías de falla de "von mises" DIRECCIÓN GENERAL DE BIBLIOTECAS

CAPITULO 2

DESCRIPCIÓN DE UNA MÁQUINA FORMADORA DE ENVASES DE VIDRIO.

2.1 Introducción.

De acuerdo a la sala de vidrio Muscum, la primera máquina formadora de envases de vidrio fue inventada en la década de 1820. Durante esos días un operador acarreaba los envases de vidrio desde un horno hasta la prensa de vidrio. Un segundo operador cortaba el vidrio requerido para el artículo deseado y lo colocaba sobre la máquina forzando a un émbolo dentro del molde para formar el producto final. El arte de automatizar la producción de vidrio fue desarrollada primero en Estados Unidos de Norteamérica. Uno de los primeros experimentadores fue Philip Arbogast quien desarrolló y patentó "la clave para la mecanización de la botella" en la década de 1880. El desarrollo de la producción automática de envases de vidrio proporcionó dos adaptaciones clave: 1) los moldes fueron colocados sobre una mesa rotatoria y 2) el aire se usó para soplar el vidrio. El paso más radical en el soplado de botellas ocurrió alrededor de 1904, cuando el proceso Owens fue inventado y vino a usarse rápidamente. En los siguientes años la máquina formadora de envases de vidrio fue sufriendo transformaciones para hacerla más productiva. En la tabla 2-1 se aprecia la transformación que ha sufrido dicha máquina, es decir, su incremento de capacidad, a través de los años:

Tabla 2-1Transformación de la máquina formadora de
envases de vidrio a través de los años

3	Año de fabricación	Tamaño de la Máquina	Producción (BPM)
	1925	3 y 4 secciones (SG)	40
. (1939	4 secciones (DG)	75
	1950	5 secciones	115
	1953	6 secciones	135
	1970	8 secciones	180
	1972	10 secciones (TG)	245

- SG Simple Goat (Cavidad Sencilla)
- DGREDouble Goat (Doble Cavidad) DE BIBLIOTECAS
- TG Triple Goat (Triple Cavidad)
- BPM Botellas Por Minuto

Estas máquinas actualmente dominan el mercado mundial en la fabricación del envase de vidrio por su versatilidad y productividad, pudiéndose encontrar máquinas de hasta 12 secciones, cuádruplo cavidad, máquinas en Tandem desde 6 secciones hasta 10 secciones (ver figura 2.1).

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN R DIRECCIÓN GENERAL DE BIBLIOTECAS

2.2 Descripción del mecanismo de abrir y cerrar moldes.

Uno de los mecanismos mas importantes con que cuenta la máquina formadora de envases de vidrio, es el mecanismo de abrir y cerrar moldes. Enseguida se describen las partes principales del mecanismo. Y un plano donde se muestran dichas partes desmontadas (ver figura 2.2).

INDICE

DESCRIPCIÓN

- 32 TAPON SOCKET 1/8 27 HS
- 33 EMPAQUE DE FIELTRO SKF # F1-110
- 34 BALERO DE BOLAS MRC # 5205-F
- 35 SEPARADOR
- 36 ANILLO O PARKER # 2-236
- 37 TAPA DE PALANCA
- 38 CODO MACHO 3/8 X 1/4
- 39 TUBO DE ACERO COBRIZADO 3/8 DIAM
- 40 COPLE 1/8 DIAM
- 41 NIPLE 1/8 X 4 LGO.
- 42 NIPLE 1/8 X 2 LGO.
- 43 TE 1/8 DIAM
- 44 ANILLO O PARKER # 2-115
- 45 TAPON
- 46 ANILLO O PARKER # 2-218
- 47 ANILLO O PARKER # 2-210

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

DIRECCIÓN GENERAL DE BIBLIOTECAS

Figura 2.2 Partes Desmontadas del Mecanismo de Abrir y Cerrar Molde.

2.2.1 Operación del eslabonamiento.

El mecanismo de abrir y cerrar moldes, esta compuesto por dos cilindros de aire; palancas y eslabones, conectados entre si, por medio de pernos móviles y fijos (ver figura 2.3).

Los cilindros son de doble vástago, para absorber el empuje lateral sobre el pistón, evitando así que los cilindros se lleguen a ovalar, así como garantizar menor desgaste en las tapas (ver figura 2.4).

El eslabonamiento consta de una manivela montada sobre un poste central y eslabones que transforman el movimiento rectilíneo del pistón en movimiento giratorio de las dos manivelas, que tienen una cavidad con estriado interior. Las manivelas con estriado interior, reciben a las flechas estriadas, que por medio de las palancas y pernos colocados en el extremo superior de las mismas, se conectan con las bisagras y trabajando conjuntamente con el soporte de bisagra, efectúa la acción de abrir y cerrar la moldura; Y al mismo tiempo, multiplica la fuerza que proporciona el cilindro para obtener la fuerza de cierre requerida.

La acción de bombillo abierto esta amortiguada por una combinación de válvula check y agujeros de escape en el cilindro de aire, los cuales sirven para cortar el aire de escape cerca del final de la carrera del pistón. La válvula de aguja que esta colocada en la parte trasera del bastidor, arriba del block de válvulas, controla el aire de escape para regular la amortiguación del cilindro (ver figura 2.5).

No hay amortiguamiento para el movimiento de bombillo cerrado, puesto que el pistón de los cilindros de abrir y cerrar moldes, tiene sobre-carrera al final del movimiento de cerrar, y esto proporciona un cierre positivo en la posición cerrada, lo que compensa el desgaste normal del eslabonamiento, evitando la perdida de la fuerza de cierre (ver figura 2.6).

El molde es cerrado por la presión de aire regulado de un múltiple, a través de una válvula de carrete, la cual es operada desde el block de válvulas. Cuando el block de válvulas corta el aire piloto, la válvula de carrete regresa por resorte y dirige el aire de múltiple al lado opuesto del cilindro para abrir el molde, existen válvulas de control de velocidades asociadas con el flujo del aire de escape del cilindro, localizadas en las

válvulas de carrete. VERSIDAD AUTÓNOMA DE NUEVO LEÓN

El amortiguamiento del molde abierto es similar al del bombillo abierto; la válvula de aguja esta en la parte trasera del bastidor, arriba del block de válvulas.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

Figura 2.4 Cilindro de Doble Vástago.

Figura 2.5 Posición cuando el Bombillo esta Abierto.

Figura 2.6 Posición cuando el Bombillo esta Cerrado.

2.3 Características generales del material.

El material empleado en las partes del mecanismo en estudio es de un acero AISI 1020 cuyas características se obtuvieron del handbook de la ASM 2da. edición, siendo las que se presentan enseguida.

2.3.1 Composición química para un acero AISI 1020 :

S	AISI (grado)	% C	% Mn	% P max	% S max
	1020	0.18-0.23	0.30-0.60	0.040	0.050

2.3.2 Características y aplicaciones para un acero AISI 1020 :

El grado AISI 1020 es mas fuerte y menos fácil de trabajar que el grado 1018. Responde bien al trabajo en frío y tratamientos de calor. Para minimizar los puntos débiles en este caso y para endurecerlo, se puede pedir un acero normal y el grado de soldabilidad es aceptable. Es adecuado para partes en el caso de condición de endurecimiento donde la fuerza en el núcleo no es crítica. Y para flechas de secciones grandes donde no es altamente esforzado.
Propiedades físicas.

2.3.3 Coeficiente de expansión térmica lineal (∞) para un

acero AISI 1020 :

	Rango de	temperatura	oc							
	°C	٩F	μm/m [K]	µin/in [°F]						
	20-100	68-212	11.7	6.5						
	20-200	68-390	12.1	6.7						
	20-300	68-570	12.8	7.1						
<u>S</u>	20-400	68-750	13.3	7.4						
IVER	20-500	68-930	13.9	7.7						
	20-600	68-1110	14.4	8.0						
K	20-700	68-1290	14.8	8.2						

2.3.4 Aceros equivalentes al AISI-1020 : UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

Normas Americanas : GENERAL DE BIBLIOTECAS UNS G10200; AMS 5032, 5045; MIL SPEC MIL-S-11310 (CS1020) ASTM A29, A108, A510, A519, A544, A575, A576, A659; SAE J403, J412, J414.

Normas Europeas : Alemania : DIN 1.0402. Francia : AFNOR CC 20. Suecia : SS14 1450.

Inglaterra : B.S. 040 A 20, 070 M 20.

2.3.5 Puntos críticos aproximados para un acero AISI 1020 :

Punto de	Rango de te	emperatura
transformación	°C	°F
Acı	725	1335
Aca	845	1555
Ar ₃ Veritatis	815	1500
Ar	680	1260
236 Temperaturas térm	icas para tratamiento	e nara un
2.5.0 Temperaturas term		s para un
acero A151 1020 :		

UNIVERSIDAD AUTÓNOM Rango de temperatura) LEÓN

Tratamiento DIRECCIÓN GENERAL Forjado	℃ DF RIBLIO 1260-760	F 2300-1400
Templado	870-900	1600-1650
Proceso de templado	540-730	1000-1350
Normalizado	900-955	1650-1750
Carburizado	900-925	1650-1700
Enfriado para temple	870-915	1600-1675

Propiedades mecánicas.

UN

2.3.7 Propiedades de tensión y maquinabilidad para un acero AISI 1020 :

		C	51		/	MMA TIS		- 1917 - 19	
Condición o	tamaño	resiste	encia	resistenci	a a	alargamiento	reducción de	dureza	valoración en promedio
tratamiento	redondo	maxi	ma M	La ceden	cia				de maquinabilidad (b)
	mm in	Mpa	ksi	Mpa	ksi.	(a) %	area, %	HB	
rolado en caliente	19-32 0.75-1.25	380	55	205	30	25	50	н	
rolado en frió	19-32 0.75-1.25	420 Z	917	350	51	15	40	121	65
rolado en caliente,		ER	Ó						
vaciado y colado		RA	N					ļ	and the second se
0.2% compensación	19-32 0.75-1.25	475	69	275	40	38	62	163	52
como rolado		450 C	65	330	48	36	59	143	
normalizado a 870 °C		E	A						
(1600 °F)		440 BI	64	345	50	36	88	131	
templado a 870 °C		BI	E						
(1600 °F)		505	EL	360	52	36	68	Ш	
					and a second second				

(a) dentro de 50 mm (2 in), (b) basada sobre el acero AISI 1212 al 100% de maquinabilidad.

V

ECAS

LEÓN

25

		vacto													40	80	98	97	
		gia de imp	i	Ħ												•	~	0	
	-	ener	9				-								55	ÌI	132	13	
	1	dureza		田	137					H	131	131	126	121	255	179	156	143	
MSI 1020.		reducción de		área, %	66.5					66	69.1	67.9	65.5	66.6	29.4	64.2	67.9	67.6	
In acero		alargamiento		(a) %	32		TEVOI			36.5	39.3	35.8	35.5	36.0	11.4	23	31.3	33	
masa de l		ttencia a la	edencia	ksi	55.75	NC N	T			42.75	50.25	50.25	46.25	40.75	72	54	43.75	42	
scto		resis	0	Mpa	384					295	346	346	319	281	495	370	302	290	
bre efe	IV]	ncia EK	r R R	ksi	68.5	D	A	U	T	57.25	64.5	64	63.5	%	129	87	75.5	71.25	EVO LEÓN ®
cas sol	D	resister	Máxir	Mpa	472	PN	G	E	NI	395	445	440	438	415	889	B009	521	49 IC	ECAS
iecáni		ño	ldo	'n	Ī					-	0.5	1	2	4	0.5	H	2	4	G
ades m		tama	redor	uuu	25					25	13	25	50	100	13	25	50	100	mm (2 i
2.3.8 Propied		Condición o	tratamiento		rolado en frió	templado a 870 °C	(1600 °F), colado en	horno, 17 °C o 30 °F	por hora a 700°C o	1290 %	normalizado a 925 °C	(1700 °F), enfriado en	aite		carburizado a 915 °C	(1675 °F) nor 8 hrs.	Calentado a 775°C o	1700°F	(a) dentro de 50

2.3.9 Propiedades de impacto para un acero AISI 1020 :

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

CAPITULO 3

ANÁLISIS DEL DISEÑO DE LOS ESLABONES DEL MECANISMO DE ABRIR Y CERRAR MOLDES.

3.1 Antecedente del diseño de los eslabones.

En cuanto al antecedente de las partes de este mecanismo se indagó en archivos de ingeniería de la empresa, algún cálculo de fuerzas, esfuerzos y deformaciones. Y no se encontró, por ser tecnología fuera del alcance de la empresa y realizada por compañías extranjeras, siendo esto uno de los objetivos para el desarrollo de este estudio.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

3.2 Cálculo y análisis de fuerzas.

El cálculo de las fuerzas fue realizado en "working model"que es un "software" matemático donde se define el tipo de material de las piezas que influye para las inercias y las reacciones en los amarres, como también trabaja con la gravedad para definir el eje a trabajar, que en este caso fue el de (-y).

Posteriormente, con todos estos datos, se empieza a trabajar en tres dimensiones con otro "software" matemático llamado "mecanical desktop" donde se piden como datos de entrada, el tiempo de trabajo, la distancia de desplazamiento, los grados a desplazarse, entre otros puntos.

Después se empieza a dar propiedades a los amarres de : tiempo – velocidad, tiempo – aceleración, tiempo – desplazamiento, etc.

Enseguida se presenta el cálculo de las fuerzas nodales y las fuerzas ® internas en cada eslabón como se muestra en la figura 3.2.

Siguiendo la identificación de cada unión y eslabón a través de los conceptos de equilibrio como son :

$$\Sigma Fx = 0$$
, $\Sigma Fy = 0$, $\Sigma Fz = 0$, $\Sigma M = 0$,

abrir y cerrar moldes.

3.2.1 Cálculo de la fuerza interna en el eslabón L10.

Diagrama de fuerzas del eslabón L10.

(la fuerza F109 se representó mas abierta que su posición original).

F109 = 1395.26 / 0.999

 $F_{109} = 1395.49$ Lb.

$$F_{109X} = 1395.26$$
 Lb.

 $F_{109y} = F_{109} (SEN 1.04146)$

 $F_{109y} = 1395.26(0.018)$

UNI F72 (1.9373) = F74 (1.7722) NOMA DE NUEVO LEON F72 = (1.772/1.9372) F74 RAL DE BIBLIOTECAS F72 = 0.915 F74

 $M_{109} = M_{72} + M_{74}$

 $6583.922 = F_{72}(2.3411) + F_{74}(2.1722)$

 $6583.922 = 0.915 F_{74} (2.3411) + F_{74} (2.1722)$

 $6583.922 = F_{74}(2.142) + F_{74}(2.1722)$

6583.922 = 4.3142 F74

F74 = 6583.922 / 4.3142

F₇₄ = 1526.11 Lb.

 $M_{74} = F_{74} (DL)$

UNI F74y = F74 (SEN 19.59439) NOMA DE NUEVO LEÓN F74y = 1526.11 (0.335) DIRECCIÓN GENERAL DE BIBLIOTECAS F74y = 511.79 Lb.

3.2.2 Cálculo de la fuerza interna en el eslabón L14.

Diagrama de fuerzas del eslabón L14.

DIRECCIÓN GENERAL DE BIBLIOTECAS

3.2.3 Cálculo de la fuerza interna en el eslabón L16.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

3.2.4 Cálculo de la fuerza interna en el eslabón L16.

Diagrama de fuerzas del eslabón L16.

 $F_{82} = F_{74} = 1526.11$ lb.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

3.3 Cálculo de esfuerzos.

Introducción.

En su mayoría las fallas en las máquinas se deben a cargas que varían con el tiempo y no a cargas estáticas. Estas fallas suelen ocurrir a niveles de esfuerzo muy por debajo del limite elástico de los materiales.

3.3.1 Historia de las fallas por fatiga.

Este fenómeno se observó por primera vez en los años 1800, cuando empezaron a fallar los ejes de los carros del ferrocarril después de solo poco tiempo de servicio. Estaban fabricados de acero dúctil, pero mostraban falla súbita de tipo frágil. En 1843 Rankine publicó un estudio sobre las causas de la ruptura inesperada de los rodamientos de los ejes de ferrocarril, en el cual postulo que el material se había "cristalizado" y hecho frágil debido a los esfuerzos fluctuantes

3.3.2 Mecanismo de las fallas por fatiga.

Las fallas por fatiga siempre empiezan en una grieta. La grieta pudiera haber estado presente en el material desde su manufactura o haberse presentado a lo largo del tiempo, por causa de las deformaciones cíclicas cerca de las concentraciones de esfuerzos. Hay tres etapas de fallas por fatiga, :

- a) La iniciación de la grieta.
- b) La propagación de la grieta.
- c) La fractura súbita causada por el crecimiento inestable de la grieta.

La primera etapa puede ser de corta duración, la segunda etapa implica la mayor parte de la vida de la pieza y la tercera etapa es instantánea.

En la fractura la grieta continuara creciendo en tanto estén presentes esfuerzos cíclicos a tensión y/o factores de corrosión de suficiente severidad.

3.3.3 Modelos de falla por fatiga.

Actualmente hay en uso tres modelos de falla por fatiga, y cada uno de ellos tiene su sitio y objetivo : el procedimiento esfuerzo - vida, el procedimiento deformación - vida y el procedimiento de mecánica de fracturas elásticas lineales.

El procedimiento esfuerzo - vida : se trata del mas antiguo de los tres modelos y es el que mas se utiliza para aplicaciones de fatiga de alto ciclaje.

El procedimiento deformación – vida : dado que la iniciación de una grieta implica fluencia, un procedimiento con base en esfuerzo no puede modelar de manera adecuada esta etapa de proceso. Un modelo basado en deformación de una imagen razonablemente exacta de la etapa de iniciación

de grietas. También puede tomarse en consideración el daño acumulado por variaciones en la carga cíclica a lo largo de la vida útil de la pieza.

El procedimiento de la mecánica de fracturas elásticas lineales : la teoría de la mecánica de fracturas proporciona el mejor modelo de la etapa de propagación de grietas del proceso. Este modelo se aplica a problemas de fatiga de bajo ciclaje de vida infinita, donde se sabe que los esfuerzos cíclicos son lo bastante elevados para causar la formación de grietas y es muy útil para predecir la vida restante de piezas agrietadas, ya en servicio.

La elección de modelos de falla por fatiga para fines de diseño de máquinas depende del tipo de maquinaria que se este diseñando y cual es su uso pretendido. Las numerosas máquinas rotativas (estacionarias o móviles) quedan bien servidas con el modelo esfuerzo – vida porque normalmente, la vida requerida entra dentro del rango de fatiga de alto ciclaje.

UNIVERSIDAD AUTONOMA DE NUEVO LEON 3.3.4 Criterios de medición de fallas por fatiga. DIRECCIÓN GENERAL DE BIBLIOTECAS

Ahora hay varias técnicas de prueba distintas con el objeto de medir la respuesta de los materiales a esfuerzos y deformaciones que varían con el tiempo. El procedimiento mas antiguo es el de cargar una viga en voladizo girando a flexión para conseguir variaciones en esfuerzos a lo largo del tiempo y otra de las pruebas es la de los esfuerzos totalmente alternantes donde se puede conseguir esta situación de carga mediante pruebas a la fatiga de flexión rotativa, fatiga axial, flexión en voladizo o fatiga a torsión, dependiendo del tipo de carga deseada.

3.3.5 Criterios de fallas por fatiga.

La mejor información sobre la resistencia a la fatiga de un material a una cierta vida finita, o su limite de resistencia a la fatiga a una vida infinita, proviene de pruebas de ensambles reales o de prototipos del diseño. Si esto no resulta práctico o posible, la siguiente mejor información proviene de pruebas a la fatiga de especimenes tomados del material particular, como son fabricados para la pieza (es decir como se vacían, se forjan, se maquinan, etcétera).

Los factores de corrección aplicables a la resistencia a la fatiga o al limite de resistencia a la fatiga teóricos, dicen que en la resistencia a la fatiga o los límites de resistencia a la fatiga que se obtienen de especimenes de prueba a la fatiga estándar, o a partir de estimulaciones basadas en pruebas estáticas donde deben de modificarse para tomar en consideración las diferencias fisicas entre el espécimen de prueba y la pieza real que se esta diseñando. Y que deben tomarse en consideración las diferencias del entorno y las diferencias de temperatura entre las condiciones de prueba y las condiciones reales.

Por lo común las pruebas a la fatiga se hacen a la temperatura ambiente. A bajas temperaturas la tenacidad a la fatiga se reduce, y a temperaturas moderadamente altas (hasta aproximadamente 350 °C) se incrementan.

3.3.6 Cálculo de esfuerzos en cada eslabón.

Calculadas Las fuerzas internas en cada eslabón. Se procederá a calcular los esfuerzos y su estado.

Enseguida se presentan los pasos a seguir para el cálculo de los esfuerzos nodales en cada eslabón :

a.- Se desarrolla para cada eslabón su diagrama de cuerpo libre identificándose los puntos a analizar.

b.- Se calculan los factores de concentración de esfuerzos por cambio de sección y por fatiga. En este caso se considera que en los puntos A y C el elemento se tomo como curvo para la obtención de su esfuerzo debido a la

carga. UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

c.- Se calcula el esfuerzo estático equivalente de trabajo a través de la teoría de falla de "Von Mises".

3.3.6.1 Cálculo de esfuerzos en el eslabón L10.

Diagrama de esfuerzos del eslabón L10.

Tabla 3.1 Factor de concentración de esfuerzos para una barra plana.

Datos conocidos :

W = 1.500 in d = 0.750 in espesor (h) = 0.875 in A = 0.375 (0.875) = 0.328125 in² Sut = 172 Ksi Syp = 161 Ksi Kt = 2.14

Cálculo de la sensibilidad de la muesca.

$$q = 1/1 + (\sqrt{a} / \sqrt{r})$$

 $q = 1/1 + (0.062 / \sqrt{0.375})$
 $q = 0.91$

Kf = 2.04

UNIS = 1395.49 / 0.32815 (2.04) OMA DE NUEVO LEÓN

Smax=2084.61 lb/in²NERAL DE BIBLIOTECAS

Sr = Sav = Smax / 2 = 2084.61 / 2

Sr = Sav = 1042.305 lb / in2

Resistencia a la fatiga (Se') sin corregir.

Se' = 0.5 Sut = 0.5 (172)

Se' = 86 Ksi

Cálculo del límite de resistencia a la fatiga corregido.

Se = (Ccarga) (Ctam) (Csuperf) (Ctemp) (Cconfiab) (Se')

Sm = 0.75 (Sut) (por ser carga axial)

Sm = 0.75 (172)

Sm = 129

Cconfiab = 0.659 (129)

Cconfiab = 85.011

Se = (Ccarga) (Ctam) (Csuperf) (Ctemp) (Cconfiab) (Se')

$$Se = (0.70)(0.835)(0.357)(0.478)(85.011)(86)$$

Se = 729.21 Ksi

Cálculo del esfuerzo estatico equivalente de trabajo por la teoría de falla de "von mises".

S von mises = Sav + (Syp / Se) (Sr)

S von mises = 1042.305+ (161 / 729.21) (1042.305)

S von mises = 1272.43 Psi

Cálculo del factor de seguridad basado en la cedencia.

UNIVERSIDAD ALTÓNOMA DE NUEVO LEÓN S von mises = Syp / F.S.

FS = Syp / S von mises ERAL DE BIBLIOTECAS

F.S. = 161000 / 1272.43

F.S. = 126.53

3.3.6.2 Cálculo de esfuerzos en el eslabón L10.

Diagrama de esfuerzos del eslabón L10.

Tabla 3.2 Factor de concentración de esfuerzos para una barra plana.

D = 1.500 in d = 1.25 in D / d = 1.2 in r = 0.125 in espesor (h) = 0.6875 in A = 1.03510 in² Sut = 100 Ksi Syp = 161 ksi

Cálculo de los factores de concentración de esfuerzos.

 $Kt = A (r/d)^{b} = 1.03510 (0.125/1.25)^{-0.25084}$

Kt = 1.84

Cálculo de la sensibilidad de la muesca.

$$q = 1/1 + (\sqrt{a} / \sqrt{r})$$

 $q = 1/1 + (0.062 / \sqrt{0.125})$
 $q = 0.85$

$$Kf = 1 + q(Kt - 1) = 1 + 0.85(1.84 - 1)$$

Figura 3.6 Ciclo de esfuerzo debido a la carga.

Cálculo de los esfuerzos axiales.

 $S = F_{109} / A (Kf) = S max$

S = 1395.49 / 1.03125 (1.714)

Smax = 2319.389 lb / in²

Sr = Sav = Smax / 2 = 2319.389 / 2

Sr = Sav = 1159.6945 lb / in²

Resistencia a la fatiga (Se') sin corregir.

Se' = 0.5 Sut = 0.5 (172)

Se' = 86 Ksi

Cálculo del límite de resistencia a la fatiga corregido.

Se = (Ccarga) (Ctam) (Csuperf) (Ctemp) (Cconfiab) (Se')

Ccarga = 0.70 (por ser carga axial)

Ctam = 0.869 d^{-0.097}

Ctam = 0.869 (1.500) -0.097

Ctam = 0.835 UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

Csuperf = Ao (Sut)^b DIRECCION GENERAL DE BIBLIOTECAS

Csuperf = $(14.4)(172)^{-0.718}$

Csuperf = 0.357

Ctemp = 1 - 0.0058 (t - 450) por estar a temp. de 540°C

Ctemp = 1 - 0.0058 (540 - 450)

Ctemp = 0.478

Cconfiab = 0.659 por dar el 99.999% de confiabilidad por el Sm Sm = 0.75 (Sut) (por ser carga axial) Sm = 0.75 (172) Sm = 129 Cconfiab = 0.659 (129) Cconfiab = 85.011 Se = (Ccarga) (Ctam) (Csuperf) (Ctemp) (Cconfiab) (Se') Se = (0.70) (0.835) (0.357) (0.478) (85.011) (86) Se = 729.21 Ksi

Cálculo del esfuerzo estatico equivalente de trabajo por la teoría de falla de "von mises".

S von mises = Sav + (Syp / Se) (Sr)

S von mises = 1159.6945 + (161 / 729.21) (1159.6945)

S von mises = 1415.74 Psi

Cálculo del factor de seguridad basado en la cedencia.

S von mises = Syp / F.S.

F.S. = Syp / S von mises

F.S. = 161000 / 1415.74

F.S. = 113.72

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

3.3.6.3 Cálculo de esfuerzos en el eslabón L10,

Diagrama de esfuerzos del eslabón L10.

Tabla 3.3 Factor de concentración de esfuerzos para una barra plana.

Datos conocidos :

W = 1.250 in d = 1.000 in espesor (h) = 0.500 in A = 0.125 (0.500) = 0.0625 in ² Sut = 100 ksi Syp = 161 ksi

Cálculo de los factores de concentración de esfuerzos. se considero el Kt como el Ki y se obtuvo con la relación R / C.

Cálculo de la sensibilidad de la muesca.

UN $q=1/1+(0\sqrt{a})$ AUVÓNOMA DE NUEVO LEÓN $q=1/1+(0.062 / \sqrt{0.500})$ DIRECCIÓN GENERAL DE BIBLIOTECAS q=0.92

Kf = 1 + q (Kt - 1) = 1 + 0.92 (1.08 - 1)

Kf = 1.070

59

UNISr = Sav = Smax / 2 = 23890.789 / 2 A DE NUEVO LEON

Sn=|Sav = 11945.394 lb / in? AL DE BIBLIOTECAS

Resistencia a la fatiga (Se') sin corregir.

Se' = 0.5 Sut = 0.5 (172)

Se' = 86 Ksi

Cálculo del límite de resistencia a la fatiga corregido

Se = (Ccarga) (Ctam) (Csuperf) (Ctemp) (Cconfiab) (Se')

Sm = 129

Cconfiab = 0.659 (129)

Cconfiab = 85.011

Se = (Ccarga) (Ctam) (Csuperf) (Ctemp) (Cconfiab) (Se')

$$Se = (0.70)(0.835)(0.357)(0.478)(85.011)(86)$$

Se = 729.21 Ksi

Cálculo del esfuerzo estatico equivalente de trabajo por la teoría de falla de "von mises".

S von mises = 11945.394 + (161 / 729.21) (11945.394)

Cálculo del factor de seguridad basado en la cedencia.

UNIVERSIDAD ALTÓNOMA DE NUEVO LEÓN S von mises = Syp / F.S.

F.S. = Syp/S von mises ERAL DE BIBLIOTECAS

F.S. = 161000 / 14582.78

F.S. = 11.04

3.3.6.4 Cálculo de esfuerzos en el eslabón L14.

Diagrama de esfuerzos del eslabón L14. girado a 90°

Tabla 3.4 Factor de concentración de esfuerzos para una barra plana.

Datos conocidos :

W = 1.375 in d = 0.750 in espesor (h) = 0.875 in A = 0.3125 (0.875) = 0.270 in ² Sut = 172 Ksi Syp = 161 Ksi Kt = 2.12

Cálculo de la sensibilidad de la muesca.

 $q = 1/1 + (\sqrt{a} / \sqrt{r})$ $q = 1/1 + (0.062 / \sqrt{0.375})$ q = 0.91 Kf = 2.02

DIRECCIÓN GENERAL DE BIBLIOTECAS

Sr = Sav = Smax / 2 = 2798.15 / 2

Sr = Sav = 1399.075 lb / in²

Resistencia a la fatiga (Se') sin corregir.

Se' = 0.5 Sut = 0.5 (172)

Se' = 86 Ksi

Cálculo del límite de resistencia a la fatiga corregido.

Se = (Ccarga) (Ctam) (Csuperf) (Ctemp) (Cconfiab) (Se')

Cconfiab = 0.659 (129)

Cconfiab = 85.011

Se = (Ccarga) (Ctam) (Csuperf) (Ctemp) (Cconfiab) (Se')

Se = (0.70)(0.835)(0.357)(0.478)(85.011)(86)

Se = 729.21 Ksi

Cálculo del esfuerzo estatico equivalente de trabajo por la teoría de falla de "von mises".

S von mises = Sav + (Syp / Se) (Sr)

S von mises = 1399.075 + (161 / 729.21) (1399.075)

S von mises = 1707.97 Psi

Cálculo del factor de seguridad basado en la cedencia.

UNIS von mises = Syp / F.S.TONOMA DE NUEVO LEON

F.S. = Syp/S von mises ERAL DE BIBLIOTECAS

F.S. = 161000 / 1707.97

F.S. ≈ 94.26

3.3.6.5 Cálculo de esfuerzos en el eslabón L15.

Diagrama de esfuerzos del eslabón L15. girado a 90°

Tabla 3.5 Factor de concentración de esfuerzos para una barra plana.

Datos conocidos :

Cálculo de la sensibilidad de la muesca.

$$q = 1/1 + (\sqrt{a} / \sqrt{r})$$

 $q = 1/1 + (0.062 / \sqrt{0.375})$
 $q = 0.91$

$$Kf = 1 + q(Kt - 1) = 1 + 0.91(2.12 - 1)$$

Kf = 2.02

Resistencia a la fatiga (Se') sin corregir.

Se' = 0.5 Sut = 0.5 (172)

Se' = 86 Ksi

Cálculo del límite de resistencia a la fatiga corregido.

Sm = 129

Cconfiab = 0.659 (129)

Cconfiab = 85.011

Se = (Ccarga) (Ctam) (Csuperf) (Ctemp) (Cconfiab) (Se')

Se = (0.70)(0.835)(0.357)(0.478)(85.011)(86)

Se = 729.21 Ksi

Cálculo del esfuerzo estatico equivalente de trabajo por la teoría de falla de "von mises". S von mises = Sav + (Syp / Se) (Sr) S von mises = 1279.235 + (161 / 729.21) (1279.235) S von mises = 1561.67

Cálculo del factor de seguridad basado en la cedencia.

UNIS von mises = Syp / F.S.ONOMA DE NUEVO LEÓN

F.S. = Syp / S von misesERAL DE BIBLIOTECAS

F.S. = 161000 / 1561.67

F.S. = 103.09

3.3.6.6 Cálculo de esfuerzos en el eslabón L16.

Diagrama de esfuerzos del eslabón L16.

Tabla 3.6 Factor de concentración de esfuerzos para una barra plana.

Datos conocidos :

W = 2.125 in d = 1.215 in espesor (h) = 0.594 in A = 0.445 (0.594) = 0.270 in ² Sut = 172 Ksi Syp = 161 ksi Kt = 2.13

Cálculo de la sensibilidad de la muesca.

$$q = 1/1 + (\sqrt{a} / \sqrt{r})$$

 $q = 1/1 + (0.062 / \sqrt{0.6075})$
 $q = 0.93$

Kf = 2.05

Sr = Sav = Smax / 2 = 2522.84 / 2

 $Sr = Sav = 1261.42 \text{ lb} / \text{in}^2$

Resistencia a la fatiga (Se') sin corregir.

Se' = 0.5 Sut = 0.5 (172)

Se' = 86 Ksi

Cálculo del límite de resistencia a la fatiga corregido.

Cconfiab = 85.011

Se = (Ccarga) (Ctam) (Csuperf) (Ctemp) (Cconfiab) (Se') Se = (0.70) (0.835) (0.357) (0.478) (85.011) (86) Se = 729.21 Ksi

Cálculo del esfuerzo estatico equivalente de trabajo por la teoría de falla de "von mises".

S von mises = Sav + (Syp / Se) (Sr)

S von mises = 1261.42 + (161 / 729.21) (1261.42)

S von mises = 1539.92 psi

Cálculo del factor de seguridad basado en la cedencia.

S von mises = Syp / F.S.

UNIVERSIDAD AUTONOMA DE NUEVO LEON F.S. = Syp / S von mises

F.S.= 161000/1539.92/ERAL DE BIBLIOTECAS

F.S. = 104.55

3.3.6.7 Cálculo de esfuerzos en el eslabón L16.

Diagrama de esfuerzos del eslabón L16.

Tabla 3.7 Factor de concentración de esfuerzos para una barra plana.

W = 1.625 in
d = 1.000 in
espesor (h) = 0.594 in
A = 0.3125 (
$$0.594$$
) = 0.19 in ²
Sut = 172 Ksi
Syp = 161 ksi
Kt = 2.10

Cálculo de la sensibilidad de la muesca.

$$q = 1/1 + (\sqrt{a} / \sqrt{r})$$

 $q = 1/1 + (0.062 / \sqrt{0.500})$
 $q = 0.92$

Kf = 2.01

Sr = Sav = 1828.21 lb / in²

Resistencia a la fatiga (Se') sin corregir.

Se' = 0.5 Sut = 0.5 (172)

Se' = 86 Ksi

Cálculo del límite de resistencia a la fatiga corregido.

Sm = 129

Cconfiab = 0.659 (129)

Cconfiab = 85.011

Se = (Ccarga) (Ctam) (Csuperf) (Ctemp) (Cconfiab) (Se')

Se = (0.70)(0.835)(0.357)(0.478)(85.011)(86)

Se = 729.21 Ksi

Cálculo del esfuerzo estatico equivalente de trabajo por la teoría de falla de "von mises". S von mises = Sav + (Syp / Se) (Sr) S von mises = 1828.21 + (161 / 729.21) (1828.21) S von mises = 2231.85 Psi

Cálculo del factor de seguridad basado en la cedencia. UNIVERSIDAD AUTONOMA DE NUEVO LEÓN S von mises = Syp / F.S. DIRECCIÓN GENERAL DE BIBLIOTECAS F.S. = Syp / S von mises

F.S. = 161000 / 2231.85

F.S. = 72.14

3.3.6.8 Cálculo de esfuerzos en el eslabón L16.

Diagrama de esfuerzos del eslabón L16.

Tabla 3.8 Factor de concentración de esfuerzos para una barra plana.

Datos conocidos :

W = 2.125 in d = 1.215 in espesor (h) = 0.594 in A = 0.445 (0.594) = 0.270 in ² Sut = 172 Ksi Syp = 161 ksi Kt = 2.11

Cálculo de la sensibilidad de la muesca.

$$q = 1/1 + (\sqrt{a} / \sqrt{r})$$

 $q = 1/1 + (0.062 / \sqrt{0.6075})$
 $q = 0.93$

Kf = 2.03

Sr = Sav = 1392.18 lb / in²

Resistencia a la fatiga (Se') sin corregir.

Se' = 0.5 Sut = 0.5 (172)

Se' = 86 Ksi

Cálculo del límite de resistencia a la fatiga corregido.


```
Ccarga = 0.70 (por ser carga axial)
               -0.097
Ctam = 0.869 d
                      -0.097
Ctam = 0.869 (1.500)
Ctam = 0.835
Csuperf = Ao (Sut)
Csuperf = (14.4) (172) -0.718
Csuperf = 0.357
Ctemp = 1 - 0.0058 (t - 450) por estar a temp. de 540°C
Ctemp = 1 - 0.0058 (540 - 450)
                                                  ECAS
                        ERA
Ctemp = 0.478
Cconfiab = 0.659 por dar el 99.999% de confiabilidad
           por el Sm
```

Sm = 0.75 (Sut) (por ser carga axial)

Sm = 0.75 (172)

Sm = 129

Cconfiab = 0.659 (129)

Cconfiab = 85.011

Se = (Ccarga) (Ctam) (Csuperf) (Ctemp) (Cconfiab) (Se')

Se = (0.70)(0.835)(0.357)(0.478)(85.011)(86)

Se = 729.21 Ksi

Cálculo del esfuerzo estatico equivalente de trabajo por la teoría de falla de "von mises".

S von mises = Sav + (Syp / Se) (Sr)

S von mises = 1392.18 + (161 / 729.21) (1392.18)

S von mises = 1699.56 Psi

Cálculo del factor de seguridad basado en la cedencia.

UNIS von mises = Syp / F.S. ONOMA DE NUEVO LEON

F.S. = Syp/S von mises ERAL DE BIBLIOTECAS

F.S. = 161000 / 1699.56

F.S. = 94.73

3.3.6.9 Cálculo de esfuerzos en el eslabón L16.

Diagrama de esfuerzos del eslabón L16.

Tabla 3.9 Factor de concentración de esfuerzos para una barra plana.

Datos conocidos :

W = 1.625 in d = 1.000 in espesor (h) = 0.594 in A = 0.3125 (0.594) = 0.19 in ² Sut = 172 Ksi Syp = 161 ksi Kt = 2.10

Cálculo de la sensibilidad de la muesca.

$$q = 1/1 + (\sqrt{a} / \sqrt{r})$$
$$q = 1/1 + (0.062 / \sqrt{0.500})$$
$$q = 0.92$$

Kf = 2.01

Sr = Sav = 1998.05 lb / in2

Resistencia a la fatiga (Se') sin corregir.

Se' = 0.5 Sut = 0.5 (172)

Se' = 86 Ksi

Cálculo del límite de resistencia a la fatiga corregido.

Sm = 129

Cconfiab = 0.659 (129)

Cconfiab = 85.011

Se = (Ccarga) (Ctam) (Csuperf) (Ctemp) (Cconfiab) (Se')

Se = 729.21 Ksi

Cálculo del esfuerzo estatico equivalente de trabajo por la teoría de falla de "von mises".

S von mises = Sav + (Syp / Se) (Sr)

S von mises = 1998.05 + (161 / 729.21) (1998.05)

S von mises = 2439.19 Psi

Cálculo del factor de seguridad basado en la cedencia. UNIVERSIDAD AUTONOMA DE NUEVO LEÓN S von mises = Syp / F.S. F.S. = Syp / S von mises

F.S. = 161000 / 2439.19

F.S. = 66.01

3.4 Características generales del material seleccionado.

El material a seleccionar en las partes del mecanismo en estudio es de un acero AISI 4140 cuyas características se obtuvieron del handbook de la ASM 2da. edición, siendo las que se presentan enseguida.

3.4.1 Composición química para un acero AISI 4140 :

AISI % P max % S max % C % Mn Si Cr Mo 4140 0.38-0.43 0.75-1.10 0.035 0.040 0.15-0.25 0.15-030 0.80-1.10 3.4.2 Características y aplicaciones para un acero AISI 4140 :

Son aceros de cromo molibdeno, medio carbón con alta dureza, buena resistencia a la fatiga, abrasión y al impacto. Estos aceros se pueden someter a nitruración para darle una máxima resistencia al desgaste y a la fatiga. Se pueden endurecer para aleaciones adecuadas para un trabajo duro que se caracteriza por fatiga, abrasión, impacto, esfuerzos por altas temperaturas o combinaciones de esfuerzos semejantes en las pequeñas como en las grandes secciones.

Cuando son completamente endurecidos estos aceros, demuestran sus propiedades sobresalientes que son relativamente fuertes al impacto y con alta dureza y fuerza de tensión. Este material es usado para pequeños engranes, levas, piñones, tornillos, casquillos, eslabones, etc. Posteriormente son tratados en calor para su dureza.

Propiedades físicas.

3.4.3 Coeficiente de expansión térmica lineal (∞) para un

UNI 3.4.4 Aceros equivalentes al AISI-4140 : NUEVO LEON

DIRECCIÓN GENERAL DE BIBLIOTECAS Normas Americanas : UNS G41400; AMS 6381, 6382, 6390, 6395; ASTM A322, A331, A505, A519, A547, A646; MIL SPEC MIL-S-16974; SAE J404, J412, J770.

Normas Europeas : Alemania : DIN 1.7225. Francia : AFNOR 40 CD 4, 42 CD 4. Italia : UNI 40 CRM0 4, G 40 CRM0 4, 38 CRM0 4 KB.
Japón : JIS SCM 4 H, SCM 4.

Suecia: SS 2244.

Inglaterra : B.S. 708 A 42, 708 M 40, 709 M 40.

3.4.5 Puntos críticos aproximados para un acero AISI 4140 :

3.4.6 Temperaturas térmicas para tratamientos para un

acero AISI 4140 :

DIRECCIÓN GENERAL DE BIBLIOTECAS

	Rango de temperatura								
Tratamiento	°C	°F							
Forjado	1205-980	2200-1800							
Templado (a)	815-870	1500-1600							
Normalizado (b)	845-900	1550-1650							
Endurecido	830-855	1525-1650							
Colado	(c)	(c)							

(a) máxima dureza de 197 HB.

(b) dureza aproximadamente de 311 HB.

(c) dureza deseada.

3.4.7 Promedio aparente de calor especifico para un acero AISI 4140 :

	Rango de	temperatura	Calor especifico									
6		P	μm/m [K]	µin/in [°F]								
<u>S</u>	150-200	300-390	473	0.113								
RS	350-400	660-750	519	0.124								
H	550-600	1020-1110	561	0.134								
E	J d											

3.4.8 Resistencia eléctrica y conductibilidad térmica para

un acero AISI 4140 : UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

Range	o de	Resi	stencia DE R	Conductividad						
Temp	eratura	eléc	rrica	térmica						
°C	°F	μΩ(m)	W/m(K)	Btu/ft(h) °F						
100	212	0.263	42.6	24.6						
200	390	0.326	42.2	24.4						
400	750	0.475	37.7	21.8						
600	1110	0.646	33.0	19.1						

3.4.9 Dureza y maquinabilidad para un acero AISI 4140 :

Condición	Rango de dureza (HB)	Promedio de maquinabilidad (a)
Templado a f	rió	
Prolongado	187-229	65

(a) Basado sobre el acero AISI 1212 al 100% promedio de maquinabilidad.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

3.4.11 Propiedac	les de te	DIB O ISO	VERSI	inabilid	ad pa	ALERS FLAMMAN	ro AISI 414	:0	
Condición o	tamaño	resist	encia	resistenci	aa	alargamiento	reducción de	dureza	valoración en promedio
tratamiento	redondo	max	Dami	La cedenc	213				de maquinabilidad (b)
	E Li	Mpa	ksi	Mpa	ks	(a) %	area, %	HB	
templado a 815°C 52	2	665	95	415	60	25.7	56.9	197	
13	3 0.5	1020	148	675	98	17.8	48.2	302	1
normalizado a 870°C 25	5 1	1020	148	655	95	17.7	46.8	302	
50). 2	972	Ŧ	635	92	16.5	48.1	285	
001	1 4	814	118 8	485	70	22.2	57.4	241	
normalizado en 13	1 0.5	1185	172	1110	191	15.4	55.7	341	
aceite a temp. 540°C 100	4	883	128	685	66	19.2	60.4	277	
normalizado en 13	1 0.5	1090	158	1025	149	I8.1	59.4	321	
aceite a temp. 595°C 100	4	807	117	600	87	21.5	62.1	235	
normalizado en 13	1 0.5	938	136	889	129	19.9	62.3	277	
aceite a temp. 650°C 100	4	772]17	580	84	23.2	64.9	229	
(a) dentro de 50 mm	1 (2 in).	ECAS	VO LEÓN					-	

CAPITULO 4

RESULTADOS.

4.1 Resultados nodales de fuerzas y momentos en cada eslabón del mecanismo, en posición cerrada.

Enseguida se mostrará un diagrama esquemático de los resultados generales de las fuerzas y momentos en cada una de las uniones de los eslabones, al estar en posición cerrada el mecanismo de abrir y cerrar moldes.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

Figura 4.1 Ilustración esquemática de fuerzas y momentos en los eslabones.

4.2 Resultados de fuerzas internas en cada eslabón.

Enseguida se mostrará un diagrama esquemático de los resultados generales de las fuerzas internas en cada una de las uniones de los eslabones, al estar en posición cerrada el mecanismo de abrir y cerrar moldes.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

	(deg/sec)	21.4	28.2	32.1	35.2	37.8	40.1	42.1	43.9	45.5	46.8	48	49	49.9	50.7	51.3	51.8	52.2	52.5	52.8	53.1	53.4	53.6	53.9	54.2	54.7	55.2	56	26.9	58.2	29.8	54.7).6seg	
_	(deg/s [W]	-27.4	-28.2	-32.1	-35.2	-37.8	40.1	-42.1	-43.9	-45.5	-46.8	-48	49	-49.9	-50.7	-51.3	-51.8	-52.2	-52.5	-52.8	-53.1	-53.4	-53.6	-53.9	-54.2	-54.7	-55.2	-56	-56.9	-58.2	-59.8	-54.7			° en t=(
AGRA_LB2_1	ly (deg/s Wz	2.54E-14	5.87E-15	8.17E-15	1.11E-14	1.07E-14	2.19E-14	3.34E-15	1.24E-15	5.10E-15	1.03E-14	7.95E-15	6.83E-15	4.05E-15	1.89E-15	4.12E-15	7.49E-15	5.85E-15	1.35E-15	1.45E-14	3.39E-15	2.53E-15	2.44E-14	3.11E-15	1.82E-15	5.76E-15	3.03E-15	6.79E-15	1.28E-14	2.45E-15	1.03E-14	5.83E-15			a de 29'	
ocity of BIS/	WX (deg/s W	5.34E-15	1.28E-14	4.80E-14	3.67E-14	1.31E-14	5.04E-14	2.16E-14 -	2 50E-14	5.04E-14	4.36E-14	3.68E-14	6.95E-14	1.28E-14 -	5.32E-14 -	4.07E-14	4.17E-14	5.32E-14	2.62E-14 -	-1.60E-14 -	8.98E-14 -	5.42E-14	1.77E-14	4.09E-14	6.60E-14 -	8.92E-14	1.61E-14	2.76E-14	3.92E-14 -	4.69E-14 -	4.11E-14 -	5.18E-14 -			apertur	
ingular Vel	(sec) /	0	0.02	0.04	0.06	0.08	0.1	0.12	14	0.16	0.18	0.2	0.22	0.24	0.26	0.28	0.3	0.32	0.34	0.36	0.38	0.4	0.42	0.44	0.46	0.48	0.5	0.52	0.54	0.56	0.58	0.6			gra en	
٩	z (deg) t	-180	179	179	178	4		I SK F	FL/			172	171	021	169	168	167	166	165	164	163	162	161	160	159	158	156	155	154	153	152	151			le bisa	
A LB2 1	N (deg) R	0	9 72F-17	1 96F-17	1 36F-16	3.30E-16	E 67E-16	0.715-16 0.73E-16	O TOF.16	9 90F-16	1/135-15	1 20F-15	d 10F-15	9.06E-16	6.61E-16	5 48F-16	3.45E-16	2.24E-16	1.75E-17	1.09E-16	5.16E-16	8.29E-16	1.18E-15	1.65E-15	2.16E-15	2.72E-15	3.02E-15	3.00E-15	3.08E-15	3.71E-15	4.06E-15	4.55E-15			igular (
of BISAGR	tx (deg) F	0	8 27E-17	2 50E-16	1 12E.15	0 11E-15	2 ENE 15	0 075 15	A FUE AE	A DAE-15	A MELLE	7 185-15	7 66F-16	R 05E-15	8 48F-15 -	0.28E-15	1 04F-14 -	1 16F-14	1 265-14	1.27E-14	1.31E-14	1.40E-14	1 50F-14	1 48E-14	1 52F-14	1.59E-14	1 67E-14	1.67E-14	1 67F-14	1.80E-14	1 86F-14	1,90E-14			idad ar	
Drientation o	(sec) F	0	000	0.04	- 40.0	000	00.0			4 4 0	- a - o		0	- VC U	1.96.0	86.0		- 05.0	0.34	0.36 -	0.38	04-	. 42 0	1044	0.46.	0.48 -	- 50	0.62 -	0.54	0.56 -	0.58	0.6 -			*Veloc	
					_		4						_	_				_	~	\sim	¥						L	-							*	
	L			1		/]	E	R		5			A				4	×	Ĵ	Γ	C)]				N	1	A				E.	N		E ←	
					Ι	$\mathbf{)}$	Π	R	E	\mathbf{X})(\mathbb{C}	[()	Ņ	1	G	E	E	V	Đ	R		4	L	Ι	$\mathbf{)}$	E		B		B	LI	0	TI	-

0.6 \Box_{l} 0.5 0.4 - 50 - 63 + F WX Wy W/ [W] (Jug/see) vs. 1 (sec) Ð - 10 1 T 0 8 8 4 20 --20 -- 8 - 04 10 -101--20 -- 09 30 -5

4.3 Resultados de análisis cinemático de velocidades y aceleraciones en cada eslabón.

Enseguida se mostrará un diagrama esquemático de los resultados generales de las velocidades y aceleraciones en cada una de las uniones de los eslabones, al estar en posición cerrada el mecanismo de abrir y cerrar moldes.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

4.4 Resultados de los esfuerzos de trabajo en cada eslabón por la teoría de "Von Mises".

Enseguida se mostrará un diagrama esquemático de los resultados generales de los esfuerzos en cada una de las uniones de los eslabones, al estar en posición cerrada el mecanismo de abrir y cerrar moldes.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

Resultado de esfuerzos en el eslabón L10.

En el punto C S von mises = 14582.78 Psi F.S. = 11.04 Resultado de esfuerzos en el eslabón L14.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

Resultado de esfuerzos en el eslabón L15.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

Resultado de esfuerzos en el eslabón L16,

DIRECCIÓN GENERAL DE BIBLIOTECAS

En el punto B

S von mises = 2231.85 Psi

F.S. = 72.14

Resultado de esfuerzos en el eslabón L16.

En el punto B

S von mises = 2439.19 Psi

F.S. = 66.01

4.4.1 Resultados de los esfuerzos de trabajo en cada eslabón por la teoría de "Von Mises".

Enseguida se mostrará un diagrama esquemático de los resultados generales de los esfuerzos en los eslabones, al estar en posición cerrada el mecanismo de abrir y cerrar moldes y con carga estática.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

CAPITULO 5

CONCLUSIONES.

5.1 Generalidades.

En este estudio, una vez hechos los análisis de esfuerzos y de factores de seguridad en cada uno de los eslabones del mecanismo, se concluyó que estos están predispuestos a la falla por fatiga a tensión, siempre y cuando los esfuerzos de trabajo estático equivalentes excedan a la cedencia del material de acero AISI-4140, el cual fué propuesto como sustitución del acero AISI-1020. Para este acero AISI-4140 no se tiene el estudio que se está proponiendo, en cuanto al comportamiento de esfuerzos de trabajo y factores de seguridad de cada uno de los eslabones del mecanismo.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN 5,2 En cuanto a esfuerzos de trabajo. IBLIOTECAS

En este estudio realizado una vez obtenido los esfuerzos de trabajo sobre el material acero AISI-4140, se tiene que el eslabón mas esforzado es el eslabón L10 y el menos esforzado, es el eslabón L16

5.3 En cuanto a factor de seguridad.

Se comprobó que a través de este estudio el elemento menos seguro, es el eslabón L10, comprobándose que es el punto mas critico el cambio de sección del punto C (ver página 112). Encontrándose el porqué de la falla de este eslabón en esta zona de cambio de sección en el punto C, cuando se tenía el material de acero AISI-1020 y debido a su factor de seguridad resultó ser menor que el mínimo recomendado (FS < 1.5) y su esfuerzo de trabajo estático equivalente resultó menor que la resistencia a la cedencia de este acero AISI-1020.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

CAPITULO 6

RECOMENDACIONES.

6.1 Cambio de material.

En el análisis del cálculo de esfuerzos de trabajo y factores de seguridad para un acero AISI-4140, se programó en una hoja de cálculo para encontrar otras opciones de tratamientos de este material que pudieran ser recomendados para este mecanismo siendo estos los siguientes :

a.- Normalizado a 870°C

b.- Templado a 815°C

c.- Normalizado en aceite a 650°C

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN 6.2 Cambio por sección R AL DE BIBLIOTECAS

No se consideró su estudio por las limitaciones que implica, en cuanto a rediseñar todo el mecanismo completo y lo cual se recomienda hacer su estudio correspondiente, considerando todos sus factores en su rediseño geométrico.
BIBLIOGRAFÍA.

	Autor	American Society for Metals
	Nombre	Engineering Properties of Steel
	Editorial	
	Fecha de edición	1982
	Autor	Roque Calero Pérez
	TONOMAD	José Antonio Carta González
T	Nombre	Fundamentos de Mecanismos y Maquinas para Ingeniería
SI	Editorial	Mc Graw Hill
ER	Fecha de edición	1999
E		
UNI	Autor	Robert L. Norton
	Nombre	Diseño de Maquinas
	Editorial	Prentice Hall
	Fecha de edición	1999
	DIRECCIÓ	N GENERAL DE BIBLIOTECAS

LISTADO DE TABLAS.

NERSIDA

Página

2-1	Transformación de la máquina formadora de envases a	11
	través de los años.	
3-1	Factor de concentración de esfuerzos para una barra plana	46
3-2	Factor de concentración de esfuerzos para una barra plana	51
3-3	Factor de concentración de esfuerzos para una barra plana	57
3-4	Factor de concentración de esfuerzos para una barra plana	63
3-5	Factor de concentración de esfuerzos para una barra plana	68
3-6	Factor de concentración de esfuerzos para una barra plana	73
3-7	Factor de concentración de esfuerzos para una barra plana	78
3-8	Factor de concentración de esfuerzos para una barra plana	83
3-9	Factor de concentración de esfuerzos para una barra plana	88

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

LISTADO DE FIGURAS

	2.1	Máquina formadora de envases de vidrio.	12	
	2.2	Partes desmontadas del mecanismo de abrir y cerrar moldes.	15	
	2.3	Mecanismo de abrir y cerrar molde.	18	
	2.4	Cilindro de doble vástago.	19	
	2.5	Posición cuando el bombillo esta abierto.	20	
/	2.6	Posición cuando el bombillo esta cerrado.	21	
R	3.1 LE	Ilustración del eslabonamiento del mecanismo de		
<u>S</u>		abrir y cerrar molde.	30	
ER	3.2	Ilustración de las fuerzas nodales y fuerzas internas		
		en cada unión y eslabón.	31	
	3.3	Diagrama de cuerpo libre del eslabón.	46	
	3.4	Ciclo de esfuerzo debido a la carga.	48	
	3.5	Diagrama de cuerpo libre del eslabón.	51	
UN	3.6	Ciclo de esfuerzo debido a la carga.	53	í
	3.7	Diagrama de cuerpo libre del eslabón. BIBLIOTECAS	57	1
	3.8	Ciclo de esfuerzo debido a la carga.	60	
	3.9	Diagrama de cuerpo libre del eslabón.	63	
	3.10) Ciclo de esfuerzo debido a la carga.	65	
	3.11	Diagrama de cuerpo libre del eslabón.	68	
	3.12	2 Ciclo de esfuerzo debido a la carga.	70	
	3.13	B Diagrama de cuerpo libre del eslabón.	73	
	3.14	4 Ciclo de esfuerzo debido a la carga.	75	

Página

	3.15 Diagrama de cuerpo libre del eslabón.	78
	3.16 Ciclo de esfuerzo debido a la carga.	80
	3.17 Diagrama de cuerpo libre del eslabón.	83
	3.18 Ciclo de esfuerzo debido a la carga.	85
	3.19 Diagrama de cuerpo libre del eslabón.	88
	3.20 Ciclo de esfuerzo debido a la carga.	90
	4.1 Ilustración esquemática de fuerzas y momentos	101
	en los eslabones.	102
<u>S</u>	4.2 Calculos en unión 74.	103
ERS	4.5 Calculos en unión 78.	104
E	4.4 Calculos en union 82.	105
K	4.5 Calculos en unión 86.	106
	4.6 Cálculos en unión 88.	107
	4.7 Cálculos en unión 97.	108
UNI	4.8 Cálculos en unión 109 ONOMA DE NUEVO LE	109
	4.9 Cálculos en bisagra.	110
	4.10 Grafica de velocidad y aceleración para un ciclo de abrir y	112
	cerrar molde en unión 74.	
	4.11 Grafica de velocidad y aceleración para un ciclo de abrir y	113
	cerrar molde en unión 78.	
	4.12 Grafica de velocidad y aceleración para un ciclo de abrir y	114
	cerrar molde en unión 86.	
	4.13 Grafica de velocidad y aceleración para un ciclo de abrir y	
	cerrar molde en unión 97.	115

4.14	Grafica de velocidad y aceleración para un ciclo de abrir y	
	cerrar molde en unión 109.	116
4.15	Cálculos de esfuerzos en el estabón L10.	124
4.16	Cálculos de esfuerzos en avión.	125
4.17	Cálculos de esfuerzos en el eslabón L14.	126
4 18	Cálculos de esfuerzos en el estabón U16	127

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN R DIRECCIÓN GENERAL DE BIBLIOTECAS

Página

APÉNDICE.

Glosario de términos:

	1. - S .G.	Simple Goat.
	2 D.G.	Double Goat.
	3 T.G.	Triple Goat.
	4 B.P.M.	Botellas por Minuto.
6	5 °C	Grados Celsius (Centígrados).
E	6 FIAMMAN	Grados
SSI	7 AISI	American Institute of Standard International.
E	8 SAE	Society of Automotive Engineer.
E	9 ASTM	American Standard Testing of Materials.
	10 ASM	American Standard of Materials.
	11 UNS	Sistema de Numeración Unificado.
IIN	12UNI	Unificación Nacional Italiano de estándares para acero.
UI	13 AMS	American Materials Specifications.
	14.PcsCCIÓI	Cool Steel RAL DE BIBLIOTECAS
	15 ЛІЅ	Japan Industries Standards.
	16 DIN	Deutsuhe Industries Norms.
	17 AFNOR	Normas Francesas de Estandarización de Materiales
	18 SS	Sweden Standards.
	19 BS	British Standards.
	20 C	Carbono.
	21 - Mn	Manganeso.

	22 Mo	Molibdeno.
	23 P	Fósforo.
	24 S	Azufre.
	25 Si	Silicio.
	26 Cr	Cromo.
	27 Acı	Puntos de Transformación Critica Superior.
	28 Ac ₃	Puntos de Transformación Critica Inferior.
	29 Arı	Puntos de Transformación.
	30 Ar3	Puntos de Transformación.
	31 Ms	Puntos de Transformación.
<u>S</u>	32 HB	Hard Rockwell "B".
ER	33 HRC	Hard Rockwell "C".
E	34∝	Coeficiente de Expansión Térmica Lineal.
(A	35 mm	Milímetros.
	36 Mpa	Mega Pascales.
	37 - in	Pulgadas.
UN	VERSIDAI 38 in ²	Pulgadas cuadradas.
	39,-Lb	Libras VERAL DE BIBLIOTECAS
	40 Lb-in	Libras Pulgada.
	41 Lb-in ²	Libras pulgada cuadrada.
	42 Psi	Libras pulgada cuadrada.
	43 ft-lb	Pie Libra.
	44. - J	Joules.
	45 μm/m [°K]	Miu-Metro sobre Metro (unidades de expansión lineal).
	46 μin/in	Miu-Pulgada sobre Pulgada.
	47 μΩ(m)	Unidad de expansión lineal.

- 48.- W/m(°K) Watts sobre Metro (unidades de conductividad térmica).
- Mega Pascales. 49 - Mpa
- 50 Btu/ft(hr)British Thermal Unit sobre pie.
- 51.- ksi Kilogramo por segundo por pulgada.
- 52.- DL Distancia lineal.

56.- A

57.- Ki

58.-Kt

59.-Kf

60.- Sut

61.- Se

62.- Syp

63.- q

- 53.-W Ancho del eslabón.
- 54.- d Diámetro del agujero.
- 55.-h Espesor del eslabón.
 - Área.
 - Factor de concentración de esfuerzo para la fibra interior.
 - Factor de concentración de esfuerzo teórico.
 - Factor de concentración de esfuerzo a la fatiga.
 - Resistencia máxima a tensión.
 - Limite de resistencia a la fatiga.
 - Resistencia a la cedencia.
 - Sensibilidad de la muesca.
- 64.- Sr Esfuerzo de rango. 65.- Sav Esfuerzo promedio. TECAS 66.- Smax Esfuerzo máximo a la fatiga. 67.-r radio de la muesca.
- 68.-a Constante de neuber.
- factor de seguridad. 69.- FS
- Coefficiente para factor superficial. 70 - Ao
- 71.-b Coeficiente para factor superficial.

EO

RESUMEN AUTOBIOGRÁFICO.

Oriundo de la ciudad de Monterrey, Nuevo León. Con fecha de nacimiento 07 de Diciembre de 1962, y después de haber concluido la preparatoria, ingreso a la Facultad de Ingeniería y Ciencias Exactas del C.E.U. obteniendo el título de Ingeniero Mecánico en el año de 1989. Terminados mis estudios profesionales ingreso a prestar mis servicios al Grupo Vitro en la Unidad de Negocio Envases, ubicado en la ciudad de Monterrey, N.L., en el año de 1991 al puesto de Ingeniero de Proyectos Mecánicos, en el cual permanezco a la fecha, teniendo como principal responsabilidad el desarrollo y mejoras a los equipos de la máquina formadora de envases de vidrio.

Buscando el incrementar mis conocimientos en el área de ingeniería mecánica ingreso a la escuela de Post-grado de la F.I.M.E. - U.A.N.L. para obtener el grado de Maestro en Ciencias de la Ingeniería Mecánica con Especialidad en Diseño Mecánico. Después de años de estudio presento a consideración de la escuela de post-grado el título de tesis "Rediseño de Eslabones en el Mecanismo de Abrir y Cerrar Moldes de la Máquina Formadora de Envases de Vidrio." Para poder obtener el grado mencionado anteriormente.

Sabiendo de antemano que mis padres, Julio Contreras Méndez y Josefina Hernández López, estarán orgullosos del grado que pretendo obtener, les agradezco la oportunidad que me dieron de estudiar una carrera profesional así como yo se las daré a mis descendientes si ese es su deseo.

