
UNIVERSIDAD AUTONOMA DE NUEVO LEON

FACULTAD DE INGENIERIA MECANICA Y ELECTRICA

DIVISION DE ESTUDIOS DE POST-GRADO

ESTUDIO TERMODINAMICO DE LA FORMACION DE DIOXINAS (PCDD/Fs) EN LA ETAPA DE SINTERIZACION DEL PROCESO HY-RECOVERY

TESIS

QUE PARA OBTENER EL GRADO DE MAESTRO EN CIENCIAS DE LA INGENIERIA MECANICA CON ESPECIALIDAD EN MATERIALES

PRESENTAL MARIA DE LOURDES ESPINO ZURIGA

CIUDAD UNIVERSITARIA MAYO DE 2002

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

UNIVERSIDAD AUTONOMA DE NUEVO LEUN

FACULTAD DE INGENIERIA MECANICA Y ELECTRICA

DIVISION DE ESTUDIOS DE POST-GRADO

DIRECCIÓN GENERAISCESBIBLIOTECAS

QUE PARA OBTENER EL GRADO DE MAESTRO EN CIENCIAS DE LA INGENIERIA MECANICA CON ESPECIALIDAD EN MATERIALES

> PRESENTA: MARIA DE LOURDES ESPINO ZUNIGA

CHIDAD UNIVERSITARIA MAYO DE 2002

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

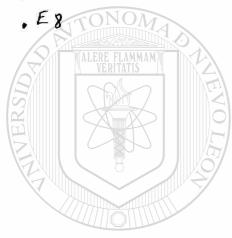
FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA DIVISION DE ESTUDIOS DE POST-GRADO

ESTUDIO TERMODINÁMICO DE LA FORMACIÓN DE DIOXINAS (PCDD/Fs) EN LA ETAPA DE SINTERIZACIÓN DEL PROCESO HY-RECOVERY

TESIS

QUE PARA OBTENER EL GRADO DE MAESTRO EN CIENCIAS DE LA INGENIERÍA MECÁNICA CON ESPECIALIDAD EN MATERIALES

PRESENTA:


DIRECCIÓN GENERAL DE BIBLIOTECAS

MARIA DE LOURDES ESPINO ZÚÑIGA

CIUDAD UNIVERSITARIA

MAYO DE 2002

TH 25853 •Md FIME 2000

UANL

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA DIVISION DE ESTUDIOS DE POST-GRADO

ESTUDIO TERMODINÁMICO DE LA FORMACIÓN DE DIOXINAS (PCDD/Fs) EN LA ETAPA DE SINTERIZACIÓN DEL PROCESO HY-RECOVERY

TESIS

QUE PARA OBTENER EL GRADO DE MAESTRO EN CIENCIAS DE LA INGENIERÍA MECÁNICA CON ESPECIALIDAD EN MATERIALES

PRESENTA:

MARIA DE LOURDES ESPINO ZÚÑIGA

CIUDAD UNIVERSITARIA

UNIVERSIDAD AUTO

UNIVERSIDAD AUTONOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA DIVISIÓN DE ESTUDIOS DE POST-GRADO

Los miembros del comité de tesis recomendamos que la tesis "Estudio termodinámico de la formación de dioxinas (PCDD/Fs) en la etapa de sinterización del proceso HY-RECOVERY", realizada por la alumna Maria de Lourdes Espino Zúñiga, matrícula 0792042, sea aceptada para su defensa como opción al grado de Maestro en Ciencias de la Ingeniería Mecánica con especialidad en Materiales.

El Comité de Tesis

Keies U.

Asesor

Dr. Alberto J. Pérez Unzueta

Coasesor

un alun

Dr. Ignacio Álvarez Elcoro

Coasesor

AMGUAman

Dra. Ana María Guzmán

Hernández

Vo.Bo.

M.C. Roberto Villarreal Garza
División de Estudios de Post-grado

Dedico esta Tesis a:

Mónica Zúñiga Torres

Mi madre, que a lo largo de mi vida ha iluminado no sólo los buenos momentos, sino también los de tristeza y me ha enseñado que hay veces en que los problemas te hacen caer, pero lo más importante es tener la fé, la fuerza y el valor para levantarse.

Ana Bertha Espino Zúñiga

A mi hermana, a la cual le agradezco su apoyo en los momentos difíciles de este trabajo, ya que siempre has confiado en mi y en mi capacidad, hasta en momentos en los que yo no lo he hecho. Además de tus consejos y enseñarme a ser paciente, ya que has sabido llevar tus problemas con mucha fé.

Ma. Yolanda Espino Zúñiga

Mi hermana, a la que le agradezco su apoyo y solidadridad, ya que siempre me has apoyado en mis desiciones. Además de compartir responsabilidades que solo con el apoyo mutuo hemos podido sacar adelante y que con ayuda de Dios continuaremos haciendolo.

Mis hermanos: Jorge, Fernando, Javier y a mi padre. TECAS

Mis cuñadas: Sandra y Leticia, gracias por ser como son: sencillas, sinceras y sobre todo por hacer feliz a mis hermanos.

Mis sobrinos: Ana Carolina y Aldahir, los cuales son la alegría de la casa y que me hacen recordar momentos de mi niñez.

A la vida que me ha permitido conocer la felicidad, que me ha hecho caer y también me ha dejado levantar, para continuar aprendiendo a vivir mejor.

AGRADECIMIENTOS

Primeramente a Dios:

Por haberme permitido llegar hasta esta etapa de mi vida. Además de ayudarme y darme la fe y fortaleza para poder superar los problemas que se presentaron, tanto en este trabajo, como en mi vida personal.

Al Programa Doctoral en Ingeniería de Materiales (PDIM) de la Facultad de Ingeniería Mecánica y Eléctrica (UANL):

Por haberme abierto las puertas y mi reconocimiento por la labor que realizan en la formación de tantos jóvenes que son el futuro de nuestro país.

A la empresa HYLSA.SA. de C.V.:

Especialmente a su departamento de investigación. Al Dr. Raúl Quintero, Ing. Ricardo Viramontes, por permitir que este trabajo se llevara acabo. Dentro de la misma al M.C. Juan Antonio Villarreal. Al Ing. Alberto Soriano, por su apoyo, consejos y recomendaciones. Al Ing. Jorge N. Cháveznava por su gran ayuda con el paquete ASPEN PLUSTM y por sus recomendaciones.

Al Consejo Nacional de Ciencia y Tecnología (CONACYT)

Por su apoyo, ya que sin su ayuda no hubiera sido posíble que continuara mis estudios

TONOMA DE NUEVO I

Al Dr. Alberto J. Pérez Unzueta

Quien no estimando tiempo, tuvo la paciencia de asesorar el presente estudio.

Al Dr. Ignacio Álvarez Elcoro ENERAL DE BIBLIOTECAS Por sus vallosos comentarios, los cuales enriquecen el presente trabajo.

A mis maestros del PDIM, por compartir con nosotros sus conocimientos.

A mis amigos y compañeros del PDIM, especialmente a mis compañeros de generación(Fernando Morales, Fernando Mtz. Gilberto, Vicente, Jaime), Marsella, Laura, Jesús (gracias por tu ayuda), Edén, Lalo, José Luis, Román, Erwin. Gracias por su apoyo y amistad que espero continúe por siempre.

Muy especialmente a la Dra. Ana María Guzmán por su ayuda, apoyo y recomendaciones a lo largo de este trabajo. Pero principalmente por su amistad, ya que es una de las personas más sencillas y nobles que he conocido y de la cual he aprendido mucho, tanto, en lo profesional, como en lo personal.

PRÓLOGO

El ser humano se ha distinguido por una constante búsqueda en mejorar su condición de vida. Así, desde tiempos remotos, se inició un proceso por conquistar a la naturaleza, para obtener los materiales que permitan la construcción de utensilios y herramientas que facilitaran las tareas diarias. El acero es quizá, uno de los materiales que más ha impactado el desarrollo industrial y tecnológico en los últimos dos siglos. Con la fabricación de hierro y acero a escala industrial, inicia la Revolución Industrial del siglo XIX. Hoy en día, continuamos con esa búsqueda por satisfacer la necesidad humana de progreso. Día a día nos encontramos con más y mejores productos. La industria del acero, no es la excepción a este reto. La empresa HYLSA, S.A. de C.V. líder mundial en tecnología siderúrgica, busca continuamente mantener su liderazgo con ambiciosos programas de Investigación y Desarrollo Tecnológico. Conscientes del impacto ambiental de los procesos siderúrgicos y en particular de los procesos patentados por HYLSA, S.A. de C.V., se han iniciado exitosamente una serie de investigaciones en este campo. Es en este marco, donde el presente trabajo hace una notable contribución en nuestra búsqueda por ser de los mejores en el mundo en la fabricación de aceros. El impacto ambiental de los procesos industriales, a cobrado mayor importancia en los últimos años. Al iniciar este proyecto, sentíamos un casi total vacío de información y conocimiento a nivel mundial sobre los compuestos denominados "dioxinas" (PCDD/Fs). A pesar de esta incertidumbre, nos fue grato contar con la entusiasta participación de la Ing. María de Lourdes Espino Zúñiga, autora del presente trabajo, quien tomó el reto de incursionar en un área tan nueva, que apenas hoy, con los resultados de su tesis, se empieza a formar un cuerpo sólido conocimientos.

El objetivo de la empresa es crear más riqueza para beneficio de todos. El objetivo de la Universidad es la generación de nuevo conocimiento y la formación de personas con un alto nivel de preparación. El presente trabajo es un buen ejemplo del trabajo en conjunto Empresa-Universidad, donde se cumplen los objetivos primarios y se cumplen con creces las metas esperadas.

La Ing. Espino Zúñiga ha tratado el presente tema con una notable claridad. Traduciendo la escasa y difusa información en un solo cuerpo sistemáticamente ordenado. Los modelos predictivos, basados en la información existente de las propiedades termodinámicas de los productos clorados bajo estudio, así como de las condiciones reales de operación de una planta piloto, permiten conocer con mayor certidumbre la fenomenología de las moléculas policloradas. Además, la importancia de los propios resultados de la Ing. Espino Zúñiga sin lugar a duda son, una valuable contribución científica, no solamente a nuestra empresa, sino al conocimiento general de la humanidad.

RESÚMEN

La empresa Hylsa, S.A de C.V., líder mundial en desarrollo tecnológico en siderurgia, visualizando de antemano las fuertes restricciones ecológicas tanto nacionales como internacionales, ha iniciado una serie de desarrollos tecnológicos que les permita competir a nivel mundial. Este es el caso del proceso HY-RECOVERY®, proceso único en el mundo. Este proceso permite reciclar los desechos de la planta siderúrgica con el fin de obtener unidades metálicas. Una de las grandes ventajas de este proceso es la facilidad que permite tratar los residuos dentro de la planta siderúrgica. Requisito actual para procesos "cero emisiones". Sin embargo, y a pesar de las ventajas ecológicas que este proceso ya de por sí ofrece, aún falta evaluar y certificar, en base a métodos internacionales, la emisión de gases.

En esta parte de la investigación se demostró termodinámicamente que no existe la factibilidad de formación de las dioxinas (PCDD/Fs) en el proceso HY-RECOVERY® en su etapa de sinterización, bajo las consideraciones realizadas en el presente trabajo.

Para lo cual, se realizaron mediciones en planta piloto, tanto de las concentraciones de algunos precursores de dioxinas y cloro total, (debido a la imposibilidad por causa económica de hacer la medición directa de las dioxinas), lo cual no fue factible, haciéndose aún más evidente la necesidad de disponer, en nuestro país, de equipo de Cromatografía de Gases con Detector de Masas (CG/DM) con una mayor resolución.

Posteriormente, se procedió a alimentar las propiedades termodinámicas de las dioxinas (PCDD/Fs), además de las concentraciones de Carbono, gas Cloro, Hidrógeno y el flujo de aire al ASPEN PLUSTM, para realizar las simulaciones de formación de dichos compuestos. Primeramente a las condiciones de la planta y posteriormente variando el flujo de aire y gas cloro en el sistema.

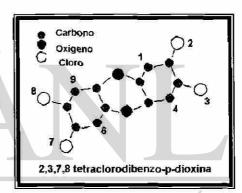
INDICE

	Página
RESÚMEN	i
CAPÍTULO 1. INTRODUCCIÓN	1
CAPÍTULO 2. ANTECEDENTES	
2.1 Aspectos generales	6
ONO 2.1.1 Características de las dioxinas	7
2.1.2 Medios en los que se encuentran las dioxinas VERITATIS (PCDD/Fs)	7
2,1.3 Cantidad de toxicidad equivalente internacional (I-	8
2,2 Simulaciones de la formación de dioxinas anteriormente realizadas	10
2.3 Mediciones de dioxinas en el proceso de producción del	11
acero UNIVERSI2.3.1 Etapa de sinterización MA DE NUEVO I	LEÓN
2,3.2 Etapa de reducción del material sinterizado	12 E
2.3.3 Etapa de aceración en el horno eléctrico de arco	13
2.4 Teorías de formación de los compuestos tipo dioxina	13
durante la combustión	
2.4.1- Material alimentado contaminado con dioxinas	14
2.4.2,- Formación a partir de precursores	14
2.4.3 Formación a partir de compuestos orgánicos y	15
donadores de cloro	
2.4.4 "De novo síntesis"	16

CAPÍTULO 3 PROCESO HY-RECOVERY	
3.1 Colección de los residuos del proceso de producción de	18
acero	
3.2 Mezclado de residuos	19
3.3 Sinterización de los residuos en el proceso HY-RECOVERY	20
3.4 Reducción Directa del sinter producido	23
3.5 Aceración en Horno Eléctrico de Arco del sinter reducido	24
CAPÍTULO 4 CONDICIONES TERMODINÁMICAS PARA LA FORMACIÓN	
DE LAS DIOXINAS	
4.1 Propiedades termodinámicas de las dioxinas (PCDD/Fs)	27
4.2 Equilibrio	29
4.2.1 Importancia del cálculo del equilibrio en reacciones	29
químicas en la industria	
4.2.2 Aplicación de los criterios de equilibrio a las	30
reacciones químicas	
4,3 Cálculos considerados	31
4.3.1 Constantes críticas	33
UNIVERS 4.3.2 Gases reales ONA DE NUEVO I 4.3.2.1 Cálculo del factor acéntrico	34 34
DIR FOLIA.3.2.2 Cálculo del factor de compresibilidad (Z)	35
4.3.3 Coordenada de reacción	35
4.3.4 Multiplicadores indeterminados de Lagrange	37
4.4 Aire teórico y aire en exceso	41
CAPÍTULO 5 ASPEN PLUS TM	
5.1 Diagrama de flujo	42
5.2 Componentes químicos	43
5.2.1 Reactantes	43
5.2.2 Productos	43

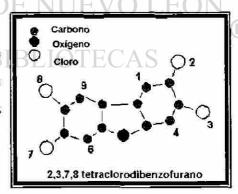
5.2.3 Estructuras moleculares	44
5.3 Condiciones de operación	44
5.4 RGIBBS	45
5.5 Otras funciones de ASPEN PLUS TM	46
CAPÍTULO 6 EXPERIMENTACIÓN	
6.1 Procedimiento para hacer el muestreo de materia prima	48
6.2 Pruebas realizadas en planta piloto	48
6.3 Información alimentada al programa Aspen Plus™	56
6.3.1 Compuestos considerados en el presente trabajo	56
ONO 6.3.2 Descripción de la estructura de las moléculas de	57
dioxinas (PCDD/Fs) en Aspen Plus™	
6.3.3 Información calculada con ayuda de Aspen Plus™	59
para gases reales	
6.3.4 Diagrama de flujo del proceso	60
6.4 Obtención de la cantidad en kmol de los elementos del	61
sistema analizado (C, H, O, CI), de la cantidad de materia	
utilizada en el proceso a escala industrial	
6.5 Simulaciones efectuadas en el programa Aspen Plus™	66
INITATE DE LA LATÓNIOMA DE MILEVO I	EÓI

CAPÍTULO 7.- RESULTADOS Y DISCUSIÓN 7.1 Resultados de los análisis por Cromatografía de gases con 68 detector de masas 7.2 Perfil de temperatura del proceso 72 7.3 Resultados de la parte de simulación de formación de 77 Dioxinas (PCDD/Fs) en Aspen PlusTM 7.3.1 Efecto de los diferentes flujos de aire 79 7,3.2 Efecto de la variación de la cantidad 97 en kmol/hr de Cloro


	CAPÍTULO 8. CONCLUSIONES Y RECOMENDACIONES	
	8.1 Conclusiones	106
	8.2 Recomendaciones	107
	REFERENCIAS BIBLIOGRAFICAS	109
	LISTA DE TABLAS	114
	LISTA DE FIGURAS	116
	ANEXO A Propiedades termodinámicas para dioxinas (PCDDs y	121
	PCDFs) determinadas por el método de diferencias por Olga	
	V.Dorofeeva	
	ANEXO B Peso molecular, entalpía de evaporación, temperatura de	132
2	fusión y de evaporación de las dioxinas (PCDDs y PCDFs), utilizados en	
	el presente trabajo	
	ANEXO C Valores obtenidos del factor acéntrico, la temperatura y	133
	presión crítica y el factor de compresibilidad	
	ANEXO D Resultados obtenidos de las simulaciones en ASPEN PLUS™	134
JV.	con diferente flujos de aire y gas cloro	
	ANEXO E Cálculo del porcentaje de exceso de aire en el sistema	146
	analizado	
Ţ	GLOSARIO IDAD AUTÓNOMA DE NUEVO I	147
1 -	RESÚMEN AUTOBIOGRAFICO	148

DIRECCIÓN GENERAL DE BIBLIOTECAS

CAPÍTULO 1


INTRODUCCIÓN

Las "Dioxinas" son un grupo de 75 compuestos, constan de dos anillos bencénicos unidos con dos átomos de oxígeno y con al menos un átomo de cloro.

UNIVERSIDAD AUTÓNOMA I

Los "Furanos" son un grupo de 135 compuestos que constan de dos anillos bencénicos unidos con un átomo de oxígeno y uno o más átomos de cloro.

A estos compuestos bencénicos clorados, con uno o dos átomos de oxígeno, se les llama genéricamente Dioxinas o bien PCDD/Fs (Dibenzodioxinas/furanos policloradas), y forman parte de una familia química más amplia: los organoclorados⁽¹⁾.

Los organoclorados son las sustancias que resultan de la unión de uno o más átomos de cloro a un compuesto orgánico (estos últimos, constituyen la base de la materia viva y están formados por átomos de carbono e hidrógeno fundamentalmente). Aunque esta unión puede ocurrir de forma natural, la inmensa mayoría de estas sustancias se forma artificialmente. Estas sustancias son nocivas para los seres vivos. En el ser humano pueden causar alteraciones en los sistemas inmunitario, reproductor y endocrino, además de causar cáncer⁽¹⁾.

Las dioxinas pueden ser producidas en muy diversos procesos industriales o en la combustión de desechos⁽²⁾. Las principales fuentes de emisión son los incineradores de desechos municipales, incineradores de desechos de los hospitales, la producción de papel, la producción de productos químicos, tales como, los insecticidas y fumigantes, así como en la producción de artículos de PVC, la producción de aluminio y acero. En esta última, se presenta principalmente cuando se utiliza chatarra como materia prima y durante la recuperación de finos por medio de sinterizado⁽³⁻⁶⁾.

La industria siderúrgica es una industria con un alto impacto ambiental. Un gran esfuerzo se ha hecho y se continua haciendo para minimizar este impacto. Uno de los principales problemas actuales es la captación y confinamiento de los productos residuales de difícil transformación, siendo estos los polvos de aceración de horno eléctrico de arco (HEA), entre otros. Debido a que son residuos de difícil transformación actualmente se confinan en depósitos subterráneos ecológicos. Sin embargo esta no es una solución definitiva, ya que estos depósitos son cada vez más escasos y en algunos países ya no se permiten más depósitos de este tipo. En el caso de los polvos de horno eléctrico de arco (HEA), estos contienen partículas con compuestos de Fe, Zn, Cu, Cd, Sn y otros metales y no metales considerados tóxicos.

Actualmente no existen suficientes procesos tecnológicos que permitan la recuperación integral de estos metales, motivo por el cual un método general es

el confinamiento de estos residuos en depósitos subterráneos, comúnmente denominadas celdas, con el consabido impacto ecológico que esto representa. Ante esta problemática, la empresa siderúrgica HYLSA, S.A. de C.V., ha iniciado un ambicioso programa de disminución del impacto ambiental de sus operaciones. En este sentido se ha desarrollado una tecnología llamada HY-RECOVERY[®](7). Esta tecnología procesa los residuos de acería con el objetivo de recuperar las unidades metálicas de Fe, para re-integrarlo en los procesos de obtención de acero y para acondicionar las unidades metálicas no ferrosas (Zn, Sn, Cu, Cd, etc.) para ser empleadas como materia prima por la industria metalúrgica no ferrosa.

Uno de los pasos en esta tecnología HY-RECOVERY es la sinterización de polvos provenientes del HEA, escama de molino y finos de mineral de hierro. Aunado a que en el HEA se utiliza chatarra la cual comúnmente está contaminada con metales no terrosos (Cu, Zn, Sn, etc.) y con productos orgánicos clorados (aceites, grasas, pinturas, plásticos, etc.). Por este motivo, existe la preocupación en la empresa HYLSA, S.A. de C.V. que en este proceso se dé la formación de compuestos como las dioxinas (PCDD/Fs).

Objetivo e hipótesis.-

El objetivo del presente trabajo es diseñar una metodología, en base a las propiedades termodinámicas y consideraciones practicas, para determinar si en el proceso de sinterizado del proceso HY-RECOVERY, se cumplen las condiciones termodinámicas para la formación de dioxinas. El programa a utilizar es un paquete termodinámico llamado ASPEN PLUS TM.

Siendo la hipótesis propuesta que en el proceso HY-RECOVERY se tienen los elementos necesarios (C, Cl, H y O) y la temperatura necesaria para la formación de dioxinas. Además que la formación de las mismas estará en función de que se cumplan las condiciones termodinámicas para la formación de dichos compuestos clorados.

Metodología.-

En el presente trabajo, se tomarán muestras de las materias primas a utilizar en la fabricación del sinter y el sinter producido, las cuales serán analizadas por cromatografía de gases con detector de masas, esto con el fin de cuantificar si hay precursores presentes en la misma antes de llevarse a cabo el proceso y hacer un estimado apropiado al proceso específico.

Posteriormente se tomarán lecturas de las temperaturas del proceso en diferentes posiciones, esto con la finalidad de cuantificarla.

Después se alimentarán al programa ASPEN las propiedades termodinámicas de las dioxinas, tales como su entalpía de formación y de vaporización estándar, energía libre de Gibbs estándar, capacidad calorífica a diferentes temperaturas, además de las temperaturas de vaporización y de fusión, peso molecular, su estructura. Lo anterior, con la finalidad de determinar la factibilidad de formación de las dioxinas en el proceso HY-RECOVERY, en su etapa de sinterización, a través de la minimización de la energía libre de Gibbs.

Considerando que toda la materia está mezclada (no hay capas). El flujo de aire y la concentración de los elementos es constante en cada simulación (C, H, O, Cl). Es decir, para cada temperatura analizada se tiene la misma cantidad de dichos elementos. Además de que se alcanza el equilibrio en las reacciones de formación de los compuestos a analizar.

Limitaciones.-

La principal limitación en el presente trabajo es el alto costo del análisis de dioxinas (cotizado a 6,000 U,S. Dólares en el año 2,000). Además de que es un número muy reducido de Laboratorios en el mundo que tienen la infraestructura y metodología para realizar dichos análisis. Lo anterior, se debe a las bajas concentraciones de dichas sustancias (en el orden de partes por cuatrillón, ppq).

Esta es la razón de la propuesta de modelar la posibilidad de formación de dioxinas, utilizando un paquete termodinámico, en un proceso industrial novedoso como el HY-RECOVERY.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

R

CAPÍTULO 2

ANTECEDENTES

2.1 ASPECTOS GENERALES

Esta clase de compuestos ha causado gran preocupación entre la opinión pública, además de un fuerte interés por parte de la comunidad científica. Gran parte de la preocupación de la opinión pública se relaciona con la caracterización de estos compuestos entre las sustancias más tóxicas producidas por el hombre que se han estudiado; pues estos compuestos han producido una gran variedad de efectos tóxicos en animales de laboratorio⁽⁸⁾, con concentraciones cientos o miles de veces menores a las de la mayoría de los compuestos considerados como contaminantes ambientales.

Actualmente se tienen limites de emisión permisibles para las dioxinas en diversos países, tales como: Alemania⁽⁵²⁾, en el cual se tiene un límite de emisión de 1 ng I-TEQ/Nm³ (para una definición de I-TEQ/Nm³ ver la sección 2.1.3) y en Japón se tiene un límite de emisión de 1 ng I-TEQ/Nm³ para las industrias ya instaladas y 0.1 ng I-TEQ/Nm³ para las nuevas fabricas que producen acero ^(5 9).

2.1.1 CARACTERÍSTICAS DE LAS DIOXINAS

- Son muy estables. Permanecen en el aire, el agua y el suelo cientos de años, resistiendo los procesos de degradación físicos o químicos.
- Los seres vivos no han desarrollado métodos para metabolizarlos y destoxificarlos. Resisten por tanto la degradación biológica.

Las dioxinas y muchos otros compuestos tóxicos, se forman como resultado de una combustión incompleta de cualquier material orgánico, habiendo la presencia de oxígeno y cloro. Esto ocurre principalmente cuando la temperatura de combustión es demasiado baja, concretamente entre 200°C y 700°C⁽²⁾.

En los sistemas de incineración de desechos municipales, cuando existe aire suficiente para la combustión, la temperatura es superior a 950°C y el tiempo de permanencia es suficientemente largo (el cual depende de los materiales que se estén quemando), toda la dioxina y el resto de substancias se destruyen de forma eficaz, siendo necesario un entriamiento rápido para evitar nuevamente la formación de este tipo de compuestos⁽¹¹⁻¹⁵⁾.

2.1.2 MEDIOS EN LOS QUE SE ENCUENTRAN LAS DIOXINAS (PCDD/Fs)

Las dioxinas se encuentran en todo el mundo^[16], en prácticamente todos los medios, incluyendo el aire, la tierra, el agua, sedimentos, productos agrícolas, lácteos y carne ⁽¹⁷⁾.

Altos niveles de estos compuestos son encontrados en la tierra y sedimentos marinos; y muy bajos niveles se encuentran en el agua y el aire.

Las dioxinas entran a la atmósfera directamente a través de la emisión al aire o indirectamente, por ejemplo, a través de la volatilización de tierra o agua, o la resuspensión de partículas. La depositación puede ocurrir directamente en la tierra o sobre la superficie de las plantas⁽¹⁸⁾.

En el suelo, sedimento y agua, las dioxinas están asociadas primeramente a partículas y materia orgánica, debido a su alta afinidad a las grasas y baja solubilidad en el agua. Además, exhiben un potencial de volatilización pequeño cuando están unidos a las partículas. Las evidencias disponibles indican que las dioxinas, particularmente los tetra congéneres o más clorados, son compuestos extremadamente estables bajo condiciones ambientales⁽¹⁷⁾.

2.1.3 CANTIDAD DE TOXICIDAD EQUIVALENTE INTERNACIONAL (I-TEQ)

Como ya se había mencionado, el término "dioxina" (como se usa en evaluaciones medio ambientales y de salud) no hace referencia a solo un compuesto químico, realmente representa 210 compuestos diferentes (75 dibenzo p-dioxinas cloradas y 135 dibenzofuranos clorados). Cada uno de estos compuestos tiene una toxicidad diferente, que varía de 0 a niveles mucho más altos. Por esto, los científicos y los comunicadores de riesgo han empezado a discutir las emisiones de dioxinas en términos de "equivalentes tóxicos" en lugar de un total de emisiones de dioxinas.

Varios esquemas para determinar los equivalentes tóxicos han sido propuestos. En 1989, se alcanzó el consenso internacional científico en un conjunto de Equivalentes Tóxicos Internacionales que han sido adoptados por la Agencia de Protección Medio Ambiental de los Estados Unidos y la mayor parte de los países europeos. Las Dioxinas expresadas en esta forma son frecuentemente anotadas como I-TEQ⁽¹⁷⁾.

El cálculo de la equivalencia tóxica (I-TEQ) de una mezcla consiste en multiplicar la concentración de los congéneres individuales por su TEF (factor de toxicidad equivalente) correspondiente. La suma de dicha multiplicación de los congéneres individuales por su TEF, es igual a Cantidad de Toxicidad Equivalente Internacional (I-TEQ) de la mezcla.

1-TEQ =∑ C, X TEF

donde C_i es la concentración de la dioxina detectada TEF es el factor de toxicidad equivalente (ver Tabla 2.1)

Dicho TEF fue determinado por las Agencias de Protección del Medio Ambiente (Estados Unidos, Canadá), teniendo como base la dioxina 2,3,7,8 tetraclorodibenzo-p-dioxina (TCDD). Este compuesto en particular fue escogido debido a que ha sido uno de los más estudiados, y por ser el más tóxico encontrado hasta ahora⁽²⁸⁾, ver Tabla 2.1.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

R)

Tabla 2.1 Factores de toxicidad equivalente para las dioxinas, según USEPA(1)

	COMPUESTO	ı TEF	
	2,3,7,8-TCDD	1.00	
	1,2,3,7,8 Penta-CDD	0.50	
	1,2,3,6,7,8-Hexa-CDD	0.10	
	1,2,3,7,8,9 Hexa-CDD	0,10	
	1,2,3,4,7,8 Hexa-CDD	0.10	
	1,2,3,4,6,7,8 Hepta-CDD	0.01	
	1,2,3,4,5,6,7,8-OCDD	0.001	
ONO	2,3,7,8 TCDF	0.1	
TONOA	1,2,3,7,8- Penta-CDF	0.05	
ALERE FLAMMA VERITATIS	2,3,4,7,8- Penta-CDF	0.5	
ALERE FLAMMA VERITATIS	1,2,3,6,7,8-Hexa-CDF	0.1	
K K	1,2,3,7,8,9- Hexa-CDF	0.1	
	1,2,3,4,7,8- Hexa-CDF	0.1	
	2,3,4,6,7,8- Hexa-CDF	0.1	
	1,2,3,4,6,7,8- Hepta-CDF	0.01	,
	1,2,3,4,7,8,9- Hepta-CDF	0.01	
UNIVERSI	1,2,3,4,5,6,7,8-OCDF	0.001 1A DE NUEV	O LEÓN

2.2 SIMULACIONES PREVIAS DE FORMACIÓN DE DIOXINAS

En 1992 Spencer y Neuschutz⁽¹⁹⁾, realizaron algunas simulaciones, en una de las cuales se utiliza la base de dátos THERDAS en conjunción con el programa ChemSage⁽¹⁹⁾, utilizando los datos de las propiedades termodinámicas obtenidas por Shaub⁽²⁰⁾. Posteriormente, en el año 2,000, fue determinado que este método no es confiable para este tipo de compuestos clorados según Nagahiro⁽²¹⁾.

Eriksson y Spencer⁽²²⁾, en 1997, utilizaron datos termodinámicos en conjunción con programas como el CHEMSAGE y el CHEMAPP empleados para simular la formación de dioxinas en los gases de salida de una planta de sinterizado.

Otra simulación más, fue la realizada por A. K. Zaytsev⁽²³⁾ en 1998, en la cual utilizan el programa IVTANTHERMO e información de las propiedades termodinámicas determinadas por Gurvich⁽²⁴⁾ y analizaron el sistema C+1.5H+0.5Cl, la cual es la composición típica del PVC. En ese trabajo se concluye que la formación de furanos (PCDFs) excede notablemente la formación de PCDDs.

Otra simulación fue realizada en 1994 por D.Thompson⁽²⁵⁾, en esta utiliza las propiedades reportadas por Benson⁽²⁶⁾ y Sahub⁽²⁷⁾. En ese trabajo también se concluye que los PCDFs se forman preferentemente que los PCDDs a altas temperaturas.

2.3 MEDICIONES REPORTADAS DE DIOXINAS EN PROCESOS DE PRODUCCIÓN DE ACERO

Existe muy poca información de estudios realizados acerca de la formación de dioxinas en la producción siderúrgica.

2.3.1 ETAPA DE SINTERIZACIÓN

FONUM

En el año 2001, E. Kasay⁽⁵⁾ realizó un estudio en el proceso de sinterización del mineral de hierro. Determinó que la concentración total de los PCDF es más grande que la de las PCDD por más de 10 veces. Otra etapa de dicha investigación⁽²⁸⁾, fue determinar el efecto del contenido de cloro en la materia prima en las emisiones, concluyendo que tanto la concentración y la toxicidad de los PCDD/Fs se incrementan con el incremento en la concentración del cloro,

lo cual sugiere que el cloro en la materia prima afecta la emisión de dioxinas en la cama de sinter.

Después de haber realizado dicha investigación E. Kasay y colaboradores, sugieren que el incremento en la cantidad de PCDD/Fs no es necesariamente grande durante el proceso, debido a que la cama de sinterizado puede actuar como un proceso de descomposición de PCDD/Fs dependiendo de las condiciones de operación.

Otra investigación realizada por Buekens⁽²⁹⁾, fue llevada a cabo en una planta de sinterizado de lecho móvil. En esta se concluye que la formación de las dioxinas depende de las condiciones de operación y que la distribución de PCDD/Fs es probablemente controlada por la termodinámica y en segundo lugar por los factores catalíticos. Lo cual es también propuesto por Pirard⁽³⁰⁾ en el año 2001, debido a que en sus estudios sobre la "de novo síntesis" la distribución de los isómeros es independiente del tiempo de reacción.

2.3.2 ETAPA DE REDUCCIÓN DEL MATERIAL SINTERIZADO

Información referente a la formación de dioxinas durante el proceso de reducción directa no se ha reportado. Únicamente se tiene el conocimiento de la información proporcionada por HYLSA⁽⁸¹⁾, en la cual se desarrolló un modelo de simulación del comportamiento termodinámico de las dioxinas presentes en el polvo de horno eléctrico de arco alimentado al proceso de reducción. En el cual, no se determinó la factibilidad de formación de dioxinas, ya que el ambiente es reductor y las dioxinas presentes debieran descomponerse. En éste, las propiedades termodinámicas de las dioxinas se estimaron a partir de métodos de contribución de grupos.

2.3.3 ETAPA DE ACERACIÓN EN EL HORNO ELÉCTRICO DE ARCO

Tysklind^{32]} en 1989, estudió la formación y emisión de PCDD/Fs, en un horno piloto de 10 toneladas en Suecia. Se cargaron en el horno materiales ferrosos con diversos contenidos de materiales clorados, bajo diferentes condiciones de operación (alimentación continua, carga por lotes al horno abierto, carga por lotes con el horno cubierto). Las mayores emisiones sucedieron durante la carga por lotes (0.3 ng TEQ/Nm³ seco o 1.7 ng TEQ/kg de material alimentado) cuando se cargó chatarra metálica con plásticos de PVC. Un menor nivel de emisión (0.1 ng TEQ/Nm³ seco o 0.6 ng TEQ/kg de material alimentado) se detectó en el caso del procesamiento de chatarra metálica con aceites de corte que contenían aditivos clorados (0.4 g de cloro por kg de material alimentado).

Para todos los tipos de material procesado los perfiles de congéneres en las muestras del flujo de gas, permitió determinar que se generaban PCDFs principalmente, en lugar de PCDDs, en el proceso.

En Alemania se han realizado algunas mediciones en chimeneas para diferentes hornos⁽³³⁾.

2.4 TEORÍAS DE FORMACIÓN DE LOS COMPUESTOS TIPO DIOXINA DURANTE LA COMBUSTIÓN

DIRECCIÓN GENERAL DE BIBLIOTECAS

La emisión de dioxinas al ambiente en el proceso de combustión puede ser explicado por medio de cuatro teorías^[34-36], las cuales no pueden ser consideradas como mutuamente exclusivas:

- 1.-Material alimentado contaminado con Dioxinas
- 2.-Formación a partir de precursores
- Formación a partir de compuestos orgánicos y donadores de cloro
- 4.-Formación "de novo síntesis"

2.4.1 - MATERIAL ALIMENTADO CONTAMINADO CON DIOXINAS

El material alimentado contiene dioxinas y alguna porción sobrevive al esfuerzo térmico impuesto por el calor en el proceso de combustión, y son subsecuentemente emitidas, ver Figura 2.1.

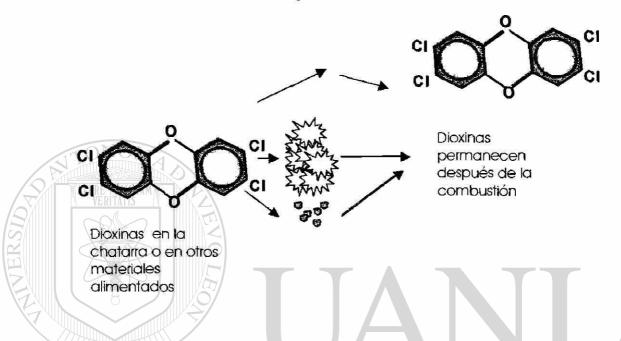


Figura 2.1 Presencia de dioxinas en materias primas y después del proceso de transformación

2.4.2 FORMACIÓN A PARTIR DE PRECURSORES

Los PCDD/Fs se forman por rearreglos moleculares de fragmentos de la descomposición térmica de los compuestos precursores⁽³⁷⁻³⁸⁾, que son compuestos orgánicos clorados que poseen semejanza parcial estructural a las moléculas de PCDD/Fs. Entre los precursores se han identificado a los bifenilos policiorados, fenoles clorados y bencenos clorados, ver Figura 2.2.

Se cree que la formación de PCDD/Fs ocurre después de que el precursor se condensa y se adsorbe sobre la superficie de una partícula de carbón amorfo, en el cual, los sitios activos de estas partículas promueven las reacciones que

forman los PCDD/Fs. Se ha observado que estas reacciones se catalizan por los cloruros inorgánicos adsorbidos a las partículas⁽³⁹⁾.

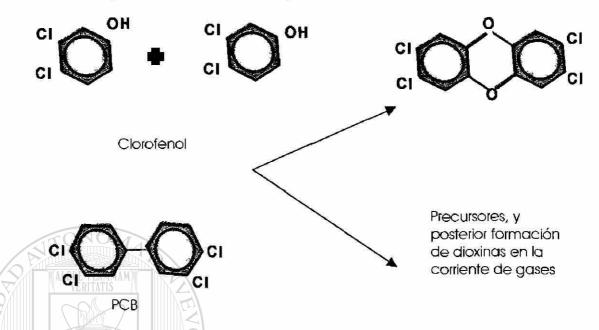


Figura 2.2 Formación de dioxinas a partir de precursores clorados

2.4.3.- FORMACIÓN A PARTIR DE COMPUESTOS ORGÁNICOS Y DONADORES DE CLORO

Las dioxinas son sintetizadas en la misma región de combustión como en el anterior. En esta teoría, los compuestos tipo dioxinas son formados a partir de no precursores, los cuales incluyen productos del petróleo, celulosa, lignina, coque, carbón, y gas de ácido clorhídrico⁽³⁴⁾.

En esta teoría la formación de dioxinas requiere la presencia de un donador de cloro, la formación y cloración de un compuesto químico intermedio que es un precursor.

La primera diferencia entre la teoría 2 y 3, es que la teoría 2 requiere la presencia de un compuesto precursor en el material alimentado y la teoría 3 comienza con la combustión de diversas sustancias que no son definidas como

precursores, los cuales eventualmente reaccionan formando un precursor⁽³⁹⁾ y posteriormente la molécula tipo dioxina.

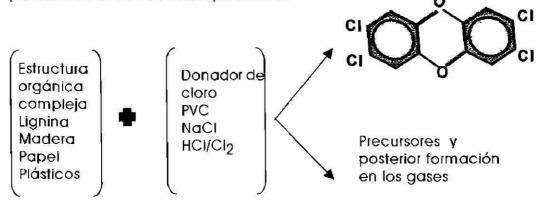


Figura 2,3 Formación de Dioxinas y/o precursores a partir de compuestos organicos y donadores de cloro

2.4.4.- "DE NOVO SÍNTESIS" (APROX. 250 °C)

De acuerdo a las investigaciones de Hagenmeier y Vogg³⁴, las dioxinas pueden formarse sin que necesariamente se parta de moléculas orgánicas precursoras. Es suficiente que el cloro este presente en forma de sal de ciertos metales, para que la formación de la dioxina se acelere a temperaturas de aproximadamente 250 °C en presencia de oxígeno y carbón. La acción decisiva de inicio de la reacción es la formación de cloruro de cobre o de otros metales catalíticos como el hierro.

-La ceniza es fuente de carbón, catalizadores y cloro (40-42)

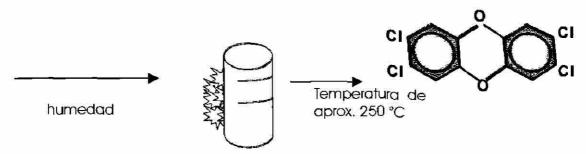


Figura 2.4 Formación de dioxinas por "de novo síntesis"

Varios óxidos metálicos catalizan la oxidación, incluyendo los de cobre y fierro. Esta reacción forma algunas estructuras cíclicas, incluyendo el benceno, fenol, bifenilo, dibenzodioxinas y furanos. Estas últimas tres se pueden formar por acoplamiento de las estructuras cíclicas elementales, como las primeras dos, por una reacción llamada la reacción de acoplamiento de Ullman. De manera alternativa, las estructuras de PCDD/Fs se generan directamente por oxidación de capas de carbón y la subsiguiente degradación de los anillos carbónicos excedentes.

Simultáneamente ocurre la cloración de estas estructuras cíclicas elementales y condensadas, o directamente en la capa de carbón. La cloración es catalizada fuertemente por las sales metálicas, especialmente las de cobre.

DIRECCIÓN GENERAL DE BIBLIOTECAS

El cobre cataliza las rutas de reacción que conducen a la formación de PCDD/Fs. El Fierro tiene un fuerte efecto catalítico sobre las reacciones de oxidación, pero su efecto es más débil en las reacciones de cloración.

CAPÍTULO 3

PROCESO HY-RECOVERY

En este capítulo se analizará el proceso HY-RECOVERY, en lo referente a la formación de dioxinas, en su etapa de sinterización.

Para lo cual, se mencionará en forma general cada una de las etapas de que consta dicho proceso.

3,1 COLECCIÓN DE LOS RESIDUOS DEL PROCESO DE PRODUCCIÓN DE ACERO QUE SERÁN UTLIZADOS COMO MATERIA PRIMA EN EL PROCESO HY-RECOVERY

Los finos de mineral de hierro, polvos del horno eléctrico de arco y escama de molino son colectados (ver Figura 3.1) y almacenados para su posterior uso en este proceso⁽⁴³⁾.

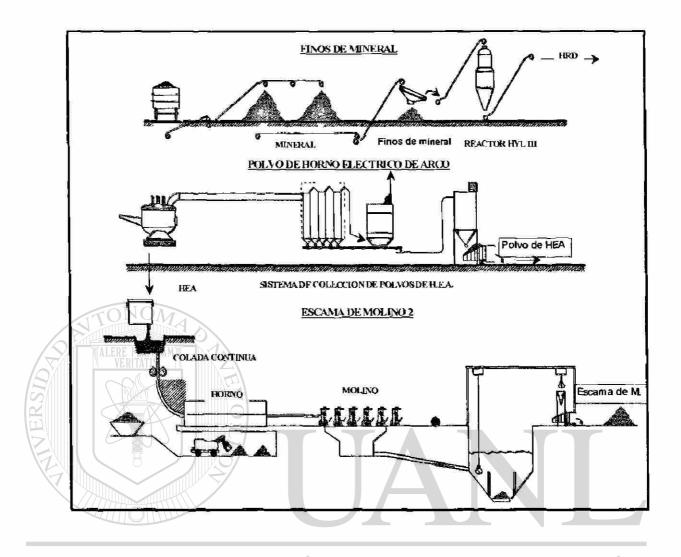


Figura 3.1 Colección de finos de mineral, polvo de horno eléctrico de arco (HEA) y escama de molino

DIRECCIÓN GENERAL DE BIBLIOTECAS

3.2 MEZCLADO DE RESIDUOS METÁLICOS

Se mezclan los polvos del horno eléctrico de arco con aglutinante, coque y agua (ver Figura 3.2). Posteriormente esta mezcla se peletiza y se le agregan la escama de molino, el polvo de decapado y los finos de mineral de hierro, después se vuelve a mezclar y se envía a la siguiente etapa (sinterización) de este proceso.

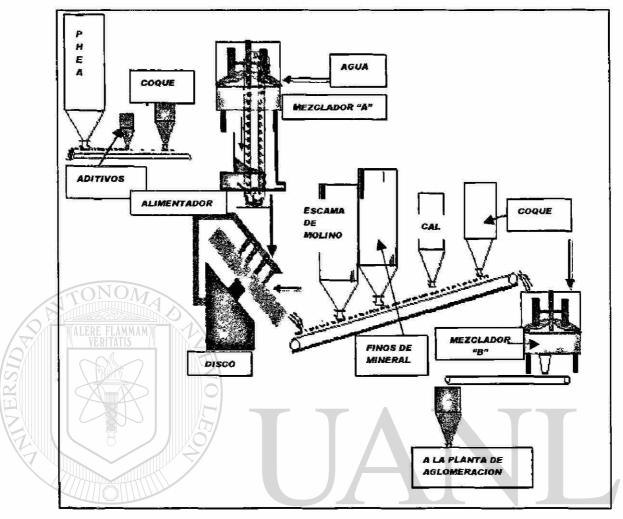


Figura 3.2 Obtención de la mezcla de polvos de horno eléctrico, escama de molino y finos de mineral de hierro

3.3 SINTERIZACIÓN DE RESIDUOS EN PROCESO HY-RECOVERY

La mezcla obtenida en la etapa anterior es sinterizada, para lo cual se prepara la cama a sinterizar, primeramente se coloca una cama de material ya sinterizado. Posteriormente se colocan camas de la mezcla obtenida en la etapa anterior (punto 3.2).

Para iniciar la combustión se utiliza el gas natural y el frente de sinterización avanza de arriba hacia abajo. En la etapa de sinterización los gases de combustión son extraídos por una serie de extractores que aspiran aire a través

de la carga. Por tanto, tiene lugar una combustión gradual de la cama desde la superficie hasta el fondo, hasta que todo el coque se consume. El aire caliente que mantiene la combustión, seca y precalienta las capas, preparándolas para una sinterización posterior, en la Figura 3.3 se muestra el diagrama de una planta. Siendo la ignición y su progreso gobernadas por las materias primas, incluyendo el coque y sus características físicas: humedad, tipo, porosidad, tamaño, etc.

Después que todo el material es sinterizado y la cama de sinter se enfría, el producto se quiebra y se pasa por mallas para medir su tamaño de partícula, según lo cual una parte es utilizada en la etapa siguiente de reducción directa y la otra como base para la siguiente cama de sinterizado a producir.

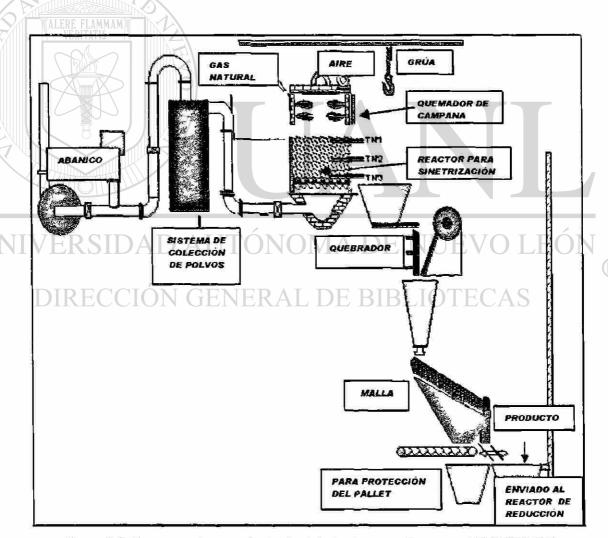


Figura 3.3 Diagrama de una planta de sinterizado para el proceso HY- RECOVERY

En lo referente a los gases extraídos que son los que precalientan las capas inferiores, éstos después de que salen de la cama de sinterizado son transportados a un sistema colector de polvos metálicos y finalmente a la chimenea donde estos gases son emitidos al ambiente.

Este proceso de sinterizado es una parte muy importante para la contribución a una operación económica y ecológica de la industria siderúrgica. Aún más, con este nuevo proceso, el cual ya de inicio tiene el objetivo de hacer la recuperación de unidades metálica a partir de los residuos de este tipo de industria.

3.4 REDUCCIÓN DIRECTA DEL SINTER PRODUCIDO

TONOM

En esta etapa se alimenta el sinter producido anteriormente (punto 3.3) al reactor de reducción directa y se aplica gas natural, teniendo como subproducto agua y otros compuestos.

Posteriormente, se obtienen las unidades metálicas y se efectúa la remoción de metales pesados a través de esta etapa del proceso HY-RECOVERY, Figura

UNI^{3,4}ERSIDAD AUTÓNOMA DE NUEVO LEÓN

DIRECCIÓN GENERAL DE BIBLIOTECAS

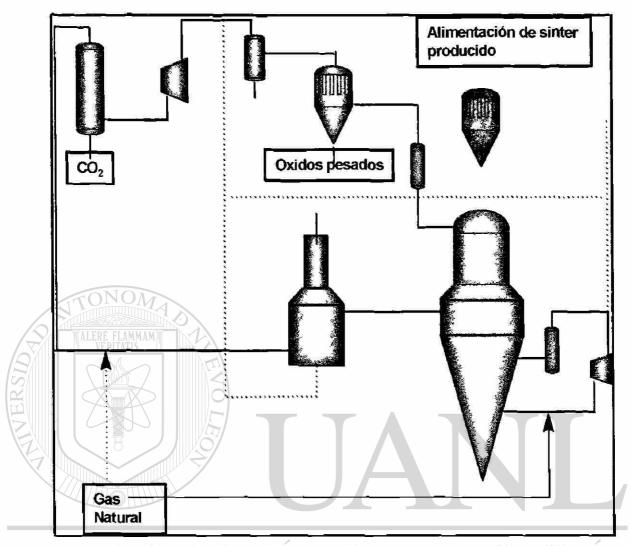
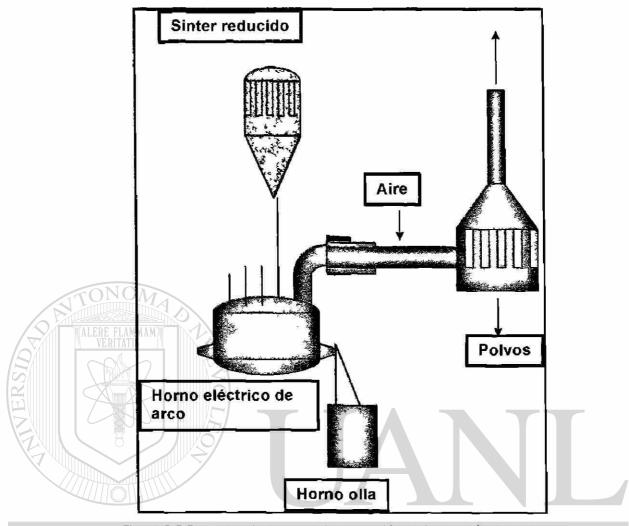


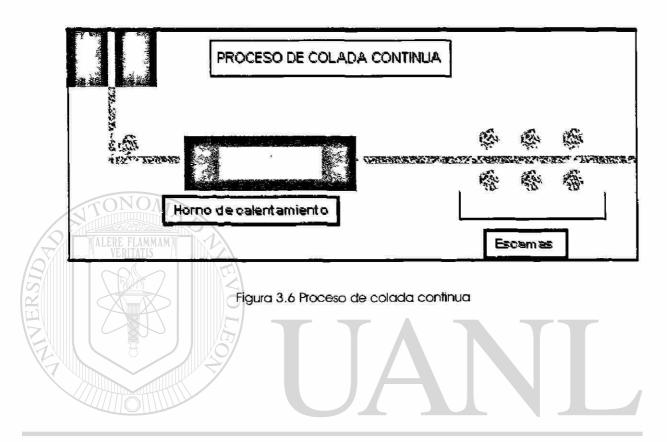
Figura 3.4 Reducción del sinter y remoción de metales pesados (Zn, Pb, Cd).

3.5 ACERACIÓN EN HORNO ELÉCTRICO DE ARCO DE SINTER REDUCIDO

Después de tener el sinter reducido se sigue el proceso normal de aceración, en el cual se alimenta la carga de sinter reducido, (Figura 3.5).

El horno eléctrico de arco consta de una cuba con electrodos para cerrar un circuito eléctrico que permita el paso de la corriente a través de la carga y provocar el calentamiento.




Figura 3.5 Esquema de proceso de aceración en horno eléctrico de arco

TONOMA DE NUEVO LEO

Los materiales que se alimentan al horno eléctrico de arco son: el sinter reducido, coque ó grafito como fuente de carbono, piedra caliza, la chatarra de acero, pelets de fierro, los cuales forman la carga metálica que va fundiendo hasta terminar con la refinación del acero.

El calor necesario para este proceso es suministrado a la carga en forma de radiación térmica proveniente de los arcos eléctricos formados entre los electrodos y la carga metálica, así como también el calor de resistencia eléctrica generado en la misma carga metálica.

Posteriormente el acero líquido se vacía en la alla y se continúa añadiendo los elementos de aleación, después se lleva a cabo el proceso de colada continua (Figura 3.6).

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

CAPÍTULO 4

CONDICIONES TERMODINÁMICAS PARA LA FORMACIÓN DE LAS DIOXINAS

A partir de las leyes de la termodinámica y de ciertas propiedades termodinámicas de los compuestos, puede calcularse la conversión máxima a la que puede llegar una reacción química.

Los cálculos termodinámicos resultan en valores máximos para la conversión de una reacción química, pues solo son correctos para condiciones de equilibrio, esto es, condiciones para las cuales no hay tendencia posterior de cambio con respecto al tiempo. De esto se deduce que la velocidad neta de una reacción química debe ser cero en el punto de equilibrio.

La predicción de la conversión de equilibrio requiere de los cambios de energía libre de los compuestos involucrados. En esta base se desarrollará este estudio, es decir a través de la minimización de la energía libre de Gibbs, considerando las leyes fundamentales de la termodinámica para deducir

conclusiones basadas en las relaciones de energía que ligan las etapas iniciales y finales del proceso.

4.1 PROPIEDADES TERMODINÁMICAS DE LAS DIOXINAS (PCDD/Fs)

Para todas las dioxinas ya se ha estimado la entalpía de formación (ΔH_{1}) a temperatura y presión estándares, es decir, 298 °K y 1 atmósfera de presión, los cuales se obtuvieron por el método de diferencias por O.V. Dorofeeva^[44], en 1999. En dicha investigación se asume que la diferencia entre los PCDD/Fs y el dibenzo-p-dioxina (ó Dibenzofuran) es la misma diferencia que entre los bencenos clorados y el benceno, y que la cloración de cada anillo en los PCDD/Fs no tiene influencia en los otros anillos bencénicos.

Por ejemplo:

La derivación de la entalpía de formación del 2,3,7,8 TCDD y 1,2,6,8 TCDF (en kJ/mol), se muestra a continuación:

Los datos publicados de dicha investigación son los que se utilizarán en la simulación del presente trabajo y se muestran en el Anexo A.

La conversión de una sustancia de líquido a gas, así como de sólido a líquido, requiere de un incremento en la entalpía o contenido calorífico de la sustancia, el cual es llamado calor de vaporización de la sustancia⁽⁴⁵⁾. Para las dioxinas se obtuvieron de información publicada por Berchtold en 1989 ⁴⁶⁾. Dicha información fue obtenida por el método de correlación de presión de vapor el cual previamente había sido desarrollado.

Los procesos naturales o espontáneos pasan del estado ordenado al Resordenado e incrementan su entropía⁽⁴⁵⁾. Dicha propiedad termodinámica ya ha sido estimada para las dioxinas ⁴⁴⁾ por Dorofeeva, ver Anexo A.

Otra propiedad termodinámica es la capacidad calorífica, la cual, es una propiedad extensiva y depende de la estructura molecular y la fase en la que esta, la cual también ha sido reportada por Dorofeeva^{'44}, ver Anexo A.

4.2 EQUILIBRIO

Todos los cambios de la naturaleza se deben a la tendencia de los sistemas para alcanzar una condición de máxima estabilidad, esto es, el equilibrio. En este punto desaparece la propensión a otro cambio posterior y se dice que el sistema está estable. Conforme nos alejamos de la condición de estabilidad, la tendencia hacia el equilibrio, es tanto mayor en cuanto lo es la separación del sistema de dicho estado estable.

Un sistema en equilibrio¹⁴⁵¹ representa un balance de las fuerzas impulsoras y de oposición, es decir, una condición de reversibilidad. Además, no se obtiene ningún trabajo de un sistema en este estado. Siendo la entropia un máximo y la energía libre de Gibbs un mínimo en el estado de equilibrio.

4.2.1 IMPORTANCIA DEL CÁLCULO DEL EQUILIBRIO EN REACCIONES QUÍMICAS EN LA INDUSTRIA

La rapidez de conversión de una reacción química, así como su conversion máxima posible (o de equilibrio), son de mayor importancia para su desarrollo comercial y ambas dependen de la temperatura, presión y composición de los reactivos.

DIRECCIÓN GENERAL DE BIBLIOTECAS

Muchas reacciones industriales no llegan al equilibrio; en estas circunstancias, el diseño del reactor se basa en la rapidez de reaccion. Sin embargo, las consideraciones sobre el equilibrio influyen en la elección de las condiciones de operación.

4.2.2 APLICACIÓN DE LOS CRITERIOS DE EQUILIBRIO A LAS REACCIONES QUÍMICAS

Como ya se había mencionado las condiciones de equilibrio se alcanzan cuando la energía libre de Gibbs alcanza un mínimo, es decir, $(dG^t)_{TP} = 0$. Por lo tanto, si una mezcla de componentes químicos no está en equilibrio quimico, cualquier reacción que ocurra será irreversible y, si el sistema se mantienen a T y P constantes, la energía libre de Gibbs Total del sistema deberá disminuir, to cual se muestra en la Figura 4.1 para una sola reacción química en un diagrama G^t en función de ε (coordenada de reacción). Como ε es la única variable que caracteriza el progreso de la reacción y por consiguiente la composición del sistema, la energia total de Gibbs a T y P constantes, se determina por ε . Las flechas marcadas en la Figura 4.1 indican la dirección de los cambios en $(dG^t)_{TP}$, que son posibles considerando la reacción, teniendo la coordenada de reacción su valor de equilibrio, $\varepsilon_{\varepsilon}$, en el mínimo de la curva y por consiguiente la composición de los sistemas en equilibrio químico.

El procedimiento para los estados de equilibrio del sistema donde tienen lugar dos o más reacciones químicas simultáneas consiste en escribir una expresión para la energía libre de Gibbs total del sistema y determinar la composición que minimiza G' para T y P dadas, sujetas a las restricciones de material. Una vez que el equilibrio se ha alcanzado, no se presentan cambios posteriores.

Figura 4.1 Energia total de Gibbs en relación con la coordenada de reaccion.

4.3 CÁLCULOS CONSIDERADOS

Del cálculo de la constante de equilibrio para una reacción dada a cualquier temperatura T, (se obtiene a través de la ec.4. 4, la cual se obtiene a partir de la ec.4.1 a ec.4.3) para lo cual se requiere el conocimiento de los datos de capacidad calorífica (Anexo A) y suficiente información para evaluar las constantes de integración, J e I. La constante J (ó J/R) se encuentra aplicando la ec. 4.1, a una temperatura donde se conozca el valor del calor de reacción estandar (ΔH), generalmente a 298.15°K. De igual forma la constante I se encuentra aplicando la ecuaciones 4.4 ó 4.5 a una temperatura tal que la constante de equilibrio (K) ó bien la energía libre de Gibbs estándar (G°) sea conocida, usualmente a 298.15°K (a través de la S° se obtuvo la G°, ver Anexo A).

$$\Delta H = J + \int \Delta C_p dT \tag{4.1}$$

donde J es una constante de integración, sustituyendo la ecuación de la capacidad calorífica (C_p), (en el presente trabajo se alimentaron los valores del C_p , determinados para los PCDD/Fs por O.Dorofeeva ⁴⁴⁾), se obtiene:

$$\frac{\Delta H}{R} = \frac{J}{R} + (\Delta A)T + \frac{\Delta B}{2}T^2 + \frac{\Delta C}{3}T^3 - \frac{\Delta D}{T}$$
 (4.2)

donde A, B, C, y D son constantes determinadas para cada compuesto para el cálculo de C_P ; sustituyendo esta en la ecuación en la que se muestra el efecto de la temperatura (T) se obtienen las siguientes ecuaciones:

$$LnK = \int \frac{\Delta H}{RT^2} dT + I \tag{4.3}$$

$$LnK = \frac{-J}{R} + (\Delta A)LnT + \frac{\Delta B}{2}T + \frac{\Delta C}{6}T^2 + \frac{\Delta D}{2T^2} + I$$
 (4.4)

y sustituyendo, $\Delta G = -RTLnK$, así como multiplicando la ec. 4.4 por -RT , se obtiene:

$$\Delta G = J - RT \left((\Delta A)LnT + \frac{\Delta B}{2}T + \frac{\Delta C}{6}T^2 + \frac{\Delta D}{2T^2} + I \right)$$
 (4.5)

AUTONOMA DE NUEVO LA

Ocasionalmente los flujos de los procesos contienen una sola sustancia y con Recuencia consisten en mezclas de líquidos o gases, por lo cual, para definir la composición de una mezcla de sustancias que incluye la especie A, se utilizan las siguientes cantidades:

Fracción masa:

$$x_{1} = \frac{masa_de_A}{masa_total} \left(\frac{kg_de_A}{kg_totales}, \frac{g_de_A}{g_totales}, \frac{Lb_{m_}de_A}{Lb_{m_}totales} \right)$$
(4.6)

Fracción mol:

$$y_{A} = \frac{moles_de_A}{moles_totales} \left(\frac{kmol_de_A}{kmoles_totales}, \frac{mol_de_A}{moles_totales}, \frac{Lb-mol_de_A}{Lb-mol_totales} \right)$$
 (4.7)

4.3.1 CONSTANTES CRITICAS

El significado físico de las constantes críticas es el siguiente: si se aumenta la presión de un gas monocomponente a una temperatura relativamente baja, se alcanza un punto en el que el gas se empieza a condensar. Si el gas se lleva a una temperatura mayor y si se repite el proceso, se requiere una mayor presión para empezar la condensación; además las densidades de las fases gaseosas y líquidas son más parecidas a esta temperatura que a valor menor. Finalmente si se alcanza una temperatura T_c y una presión P_c , a las cuales las dos fases tienen exactamente la misma densidad (técnicamente en este punto existe solo una fase), si T es mayor que T_c no ocurre ningún cambio de fase, no importa cuanto aumente la presión. T_c se define como la temperatura crítica de la sustancia y P_c es la presión crítica; se dice que una sustancia a $T = T_c$ y $P = P_c$, está en su estado crítico. Para determinar las constantes críticas, P_c y T_c , se utilizó el método de Lydersen 47 , según las relaciones:

DIRECCIÓN GENERAL DE BIBLIOTECAS
$$T_{c} = T_{b} \left[0.567 + \sum \Delta_{\tau} - \left(\sum \Delta_{\tau} \right)^{2} \right]^{1}$$
(4.8)

$$P_c = M\left(0.34 + \sum \Delta_p\right)^2 \tag{4.9}$$

Las unidades empleadas son kelvins y atmósferas, siendo M el peso molecular. Las cantidades Δ son evaluadas sumando las contribuciones por los grupos. Algunos valores de Δ , tanto para la presión y temperatura crítica se muestran en la Tabla 4.1.

Tabla 4.1 Incrementos Δ para anillos⁽⁴⁷⁾, para determinar T_c y presion P_c .

Grupo	Δ_{τ}	Δ_{ρ}
-CH -	0.012	0.192
= CH	0.011	0.154
= C -	0.011	0.154
=('=	0.011	0.154
CI	0.017	0.320
-0-	0.014	0.12

4.3.2 GASES REALES

A medida que la temperatura disminuye y la presión aumenta, la ley del gas ideal proporciona cada vez una descripción más deficiente del comportamiento del gas ¹⁵, por lo tanto es necesario hacer una corrección para las desviaciones a partir del comportamiento ideal. Mediante un término Z, conocido como factor de compresibilidad en la ley de gas ideal, el cual tiene un valor de 1 para los gases ideales. Este término depende de la temperatura y presión del gas, ademas de qué tan cerca el gas está de su punto crítico. Para lo anterior es necesario determinar una constante llamada factor acéntrico, ω, que refleja la complejidad geométrica (no-esfericidad de la molécula) y la polaridad de la molecula de gas, (éstas se muestran en el Anexo C para los PCDD/Fs).

4.3.2.1 CÁLCULO DEL FACTOR ACÉNTRICO

En el metodo utilizado, primero se determinó la temperatura crítica y la presion Ademas de considerarse la temperatura de evaporación (Anexo B) a una atmosfera de presión Posteriormente se determinó el factor acéntrico(ω), a través de a relacion propuesta por Edmister⁽⁴⁷⁾:

DIRECCION GENERAL DE BIBLIOTECAS

$$\omega = \frac{3}{7} \frac{\theta}{1 - \theta} \log P_c - 1 \tag{4.10}$$

donde P_{ι} está en atmósferas y $\theta \equiv {}^{T_h}_{T_c}$, siendo T_h la temperatura de evaporación (Anexo B) a una atmósfera de presión y T_{ι} la temperatura critica (determinada con ayuda del paquete ASPEN PLUS™).

4.3.2.2 CÁLCULO DEL FACTOR DE COMPRESIBILIDAD (Z)

Éste se llevó a cabo a través de la correlación propuesta por Pitzer⁴⁷, ecuación 4.11, debido a que el sistema analizado está a presión baja (1 atmósfera).

$$Z = 1 + B \frac{P_r}{T_r} + \omega B^1 \frac{P_r}{T_r}$$
 (4.11)

donde B y B^1 son sólo función de la temperatura y se obtienen a través de:

$$B^{-} = 0.083 - \frac{0.422}{T^{1.6}} \tag{4.12}$$

UNIVERSIDAD ABITÓ139 $C_{T_r^{4/2}}^{0.172}$ A DE NUEVO LEAJ3N

DIRECCIÓN GENERAL DE BIBLIOTECAS

4.3.3 COORDENADA DE REACCIÓN

Los cambios en el número de moles de los componentes presentes (n_i) están en proporción directa con los números estequiométricos (v_i) es decir:

$$\frac{dn_1}{v_1} = \frac{dn_2}{v_2} = \frac{dn_3}{v_3} = \frac{dn_4}{v_4} = \dots = d\varepsilon$$
 (4.14)

donde dn, es el cambio diferencial del número de moles.

Por lo cual tenemos:

$$dn_i = v \, d\varepsilon \qquad \{i = 1, 2, \dots N\} \tag{4.15}$$

donde ε es la coordenada de reacción, la cual caracteriza la extensión o avance a que llega una reacción y debe ser cero para el estado inicial de un sistema, antes de la reacción. Entonces, la integración de la ecuación anterior desde su estado inicial sin reacción, donde $\varepsilon=0$ y n=n, hasta un estado alcanzado tras un avance arbitrario de la reacción, se escribe:

$$\int_{n}^{n} dn = v_i \int d\varepsilon \tag{4.16}$$

siendo la sumatoria sobre todos los componentes la siguiente:

$$n = \sum n + \varepsilon \sum v \tag{4.18}$$

por lo tanto la fracción molar (y) de los componentes presentes se relaciona con ϵ por medio de la siguiente ecuación:

$$y_i = \frac{n_i}{n} = \frac{n_i + v_i \varepsilon}{n_i + v \varepsilon} \tag{4.19}$$

Cuando dos o más reacciones independientes tienen lugar simultaneamente (como en el presente trabajo), a cada reaccion por separado se asocia una coordenada de reaccion (ε), donde el subindice \downarrow es el indice de la reaccion.

Teniendo ahora la fracción molar como:

$$y = \frac{n + \sum v_i \varepsilon}{n + \sum v_i \varepsilon}$$
 (4 20)

4.3.4 MULTIPLICADORES INDETERMINADOS DE LAGRANGE

Se basa en el hecho de que en el equilibrio, la energia total de Gibbs para el sistema tiene un valor minimo

La energía libre de Gibbs total para un sistema de una sola fase esta dada por:

$$(G^{i})_{TP} = G(n_{1}, n_{2}, n_{3}, ..., n_{s})$$
(4.21)

donde n, es el número de moles del componente i.

El problema consiste en encontrar el conjunto de los n_i , que minimicen G' para la temperatura y presión especificadas, sujeto a las restricciones impuestas por el balance de materia. La solución estándar de este tipo de problemas se basa en el método de multiplicadores indeterminados de Lagrange^[49]. El procedimiento para reacciones en fase gaseosa se describe como sigue:

1. El primer paso es formular las ecuaciones de restricción; es decir, los balances de materia, aún cuando los componentes moleculares en reacción no se conserven en un sistema cerrado, el número total de átomos de cada elemento es constante. Si el subíndice k identifica un elemento atómico particular, entonces A_k define el número total de masas atómicas del k-ésimo elemento del sistema, determinado a partir de la constitución inicial del sistema (C, Cl, H, O). Además si a_{ik} es el número de átomos del elemento k presentes en cada molecula del componente químico i, el balance de materia de cada elemento k se escribe:

$$\sum_{i} n_{i} \alpha_{k} = A_{k} \qquad (k = 1, 2, ..., w)$$
 (4.22)

2. Enseguida se introducen los multiplicadores de Lagrange, λ_k , uno por cada elemento, multiplicando el balance de cada elemento por su λ_k :

$$\lambda_k \left(\sum_{i} n_i a_{ik} - A_k \right) = 0 \qquad (k = 1, 2, ..., w)$$
 (4.23)

sumando estas ecuaciones para todas las k, se tiene

Si G_t^* se hace arbitrariamente igual a cero para todos los elementos en su estado estándar, entonces el cambio en la energía estándar de formación de Gibbs para los componentes i en los compuestos es $G_t^* = \Delta G_{f_t}$. Además, la fugacidad se elimina en favor del coeficiente de fugacidad mediante: $\hat{f} = y_t - \hat{\phi}_t P$. Con esto la ecuación para μ_t queda:

$$\mu_{t} = G_{fi}^{\circ} + RTLn \left(\frac{y_{t}}{\hat{\phi}_{t}P} \right)$$
 (4.30)

y combinada con la ecuación 4.27 queda:

$$G_{j_i}^{\circ} + RTLn\left(\frac{y_i}{\phi_i P}\right) + \sum_{k} \lambda_k a_{ik} = 0$$
 $(i = 1, 2, ..., N)$ (4.31)

Si el componente i es un elemento, ΔG_{j_i} es cero, con esto se tienen N ecuaciones de equilibrio (Ec. 4.31), para cada componente y w ecuaciones de balance de materia (Ec.4.22), para cada elemento; habiendo en total N+w ecuaciones. Las incógnitas en estas ecuaciones son las n_i (recordando que $y_i = n_i \sum n_i$) de las cuales existen N y las λ_k , de las que hay w_i en total N+w incógnitas. Por lo tanto, el número de ecuaciones es suficiente para determinar todas las incógnitas.

Además para los gases reales, cada $\hat{\phi}_i$ es función de y_i , por lo cual para determinar las cantidades hay que utilizar un proceso iterativo, para lo cual se inicia el cálculo igualando cada $\hat{\phi}_i$ a la unidad. La solución de las ecuaciones proporciona un conjunto preeliminar de y_i , que con frecuencia resulta adecuado para bajas presiones o temperaturas elevadas. Si eso no es satisfactorio, se emplea una ecuación de estado junto con los valores de y_i

calculados, obteniéndose un nuevo conjunto más correcto de ϕ_i , para emplearse en la ec.4.31.

A continuación se determina un nuevo conjunto de y_i . El proceso se repite hasta que las iteraciones sucesivas no produzcan un cambio significativo en y_i . En el proceso que se acaba de describir, la clave es determinar cual de las reacciones químicas que se manejan nunca entra directamente en alguna de las ecuaciones. Los cálculos anteriores se llevaron a cabo por el paquete ASPEN $PLUS^{TM}$.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN
DIRECCIÓN GENERAL DE BIBLIOTECAS

4.4 AIRE TEÓRICO Y AIRE EN EXCESO

Las reacciones de combustión se llevan a cabo invariablemente con mas aire del que se necesita, para suministrar oxígeno en proporción estequiométrica al combustible. Los siguientes términos se utilizan comúnmente para describir las proporciones de combustible y aire que se alimentan al reactor.

Oxígeno teórico. Son los moles o la velocidad de flujo molar de O_2 que se necesitan para efectuar la combustión completa del combustible en el reactor, suponiendo que todo el carbono del combustible se oxida para formar CO_2 y todo el hidrógeno se oxida para formar agua.

Aire teorico: es la cantidad de aire que contiene el oxigeno teórico.

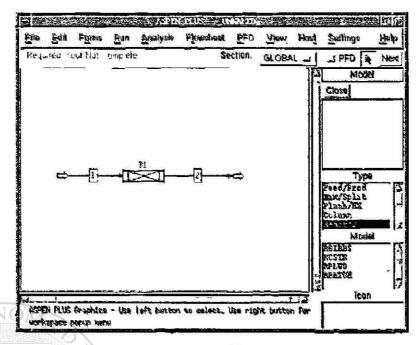
Aire en exceso: Es la cantidad en exceso de aire que se alimenta el reactor con respecto al aire teórico.

Porcentage _aire _exceso =
$$\frac{(moles _aire)_{a \text{ lim entado}} - (moles _aire)_{teorico}}{(moles _aire)_{teorico}} \times 100\%$$
 (4.32)

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

CAPÍTULO 5

ASPEN PLUS™


El ASPEN PLUS^{TM(50)} es un programa computacional comercial que permite calcular las principales reacciones que pueden suscitarse en un sistema dado. Permite crear un modelo del proceso empezando con el diagrama de flujo, especificando los elementos y/o compuestos químicos y las condiciones de operación.

En el proceso de simulación el ASPEN PLUSTM efectúa todos los cálculos necesarios y predice los productos formados.

DIRECCIÓN GENERAL DE BIBLIOTECAS

5.1 DIAGRAMA DE FLUJO

Muestra los elementos o componentes que entran al sistema. Se puede tener una o más entradas a la primera unidad de operación del sistema (ejemplo: un intercambiador de calor, compresor, reactor, etc.), dependiendo de los componentes que son introducidos y continúa ilustrando todas las unidades operativas intermedias y su interconexión.

5.1 Ejemplo de diagrama de flujo en ASPEN PLUS™, las flechas representan los componentes alimentados [1] y los productos [2], respectivamente, R1 es un reactor tipo tapón.

5.2 COMPONENTES QUÍMICOS

Se deben especificar todos los componentes químicos del sistema desde los reactantes, productos y su estructura molecular.

UN5.2.1 REACTANTES AUTÓNOMA DE NUEVO LEÓ

Se deben especificar los componentes de la materia prima que se utiliza en el proceso real y sus concentraciones.

5.2.2 PRODUCTOS

Aquí se ingresa la lista de productos esperados en el equilibrio, y se designa en que fase o combinación de fases pueden estar. Si esta lista no es ingresada y no se especifican las fases, la lista de productos considera todos los compuestos en la simulación. En dicha lista de productos, se necesita ingresar la energía libre

de Gibbs de formación, entalpía de formación y la capacidad calorífica de dicho producto. Se puede especificar la lista de productos posibles y el flujo.

5.2.3 ESTRUCTURAS MOLECULARES

Hay dos formas de ingresar las estructuras de las moléculas al ASPEN PLUS™, una de ellas requiere que se especifique los grupos funcionales (método específico de grupos funcionales) de que consta la molécula o se especifique la estructura molecular, es decir describiendo la conectividad de cada átomo en el compuesto.

En el caso de describir la conectividad de cada átomo en el compuesto ASPEN PLUS^{IM} automáticamente genera los grupos funcionales requeridos. En el caso del método específico de grupos funcionales, se especifican los grupos funcionales y el número de veces que esta cada grupo en el compuesto.

5.3 CONDICIONES DE OPERACIÓN

Todas las unidades de operación en el modelo del proceso son manejadas bajo condiciones de operación particulares (ejemplo: temperatura, presión), los cuales deben medirse en el proceso real.

Posteriormente se efectúa la corrida de simulación y se obtienen los resultados, ver Figura 5.2.

DIRECCION GENERAL DE BIBLIOTECAS

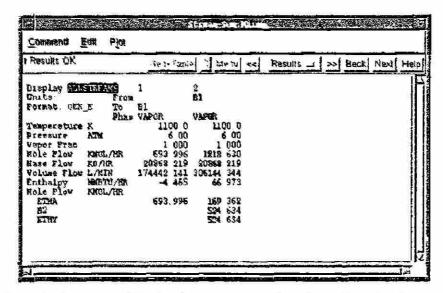


Figura 5.2 Ejemplo de una corrida de otro proceso en el cual se alimenta etano y se produce etileno e hidrógeno.

5.4 RGIBBS

Es un modelo de reactor que puede calcular:

- I. El equilibrio químico en una sola fase (vapor o líquido)
- II. La fase de equilibrio (vapor o líquido) sin las reacciones químicas.
- III. Fases o equilibrio químico con fases sólidas.
- V. Equilíbrio químico y fases simultáneamente.
- V. Calcula el equilibrio por minimización de la energía libre de Gibbs con separación de fases.
- VI. No es necesario especificar la reacción estequiométricamente.
- VII. También se puede utilizar cuando el sistema no reacciona completamente hasta el equilibrio.
- VIII. Restringir el equilibrio y especificar la extensión de la reacción, la temperatura aproximada al equilibrio, la cantidad o la fracción de un componente que no reacciona.
- IX. Puede calcular el equilibrio químico entre componentes sólidos y las fases fluidas. El modelo detecta si el sólido está presente en el equilibrio, y si es así,

- calcula la cantidad. Cada componente sólido es tratado como una fase sólida pura.
- X. Se puede restringir el equilibrio ingresando ya sea, el flujo de un componente en la alimentación que no reacciona o la fracción de componente alimentado que no reacciona.

5.5 OTRAS FUNCIONES DEL ASPEN PLUS™

Además ASPEN PLUS^{TM(50)}, puede calcular muchos otros parámetros requeridos, incluyendo todos los componentes puros.

- Estimación de propiedades.
- II. Propiedades de los datos: esto nos permite ingresar los datos experimentales que dependen de la temperatura, tales como la presión o el coeficiente infinito de actividad de dilución.
- III. Comparar propiedades estimadas; esta opción nos permite generar un reporte en el cual se comparan los valores estimados con los datos experimentales.
- IV. Resultados de las propiedades estimadas; en esta opción se examinan los resultados estimados.

INIVERSIDAD AUTONOMA DE NUEVO LE

Antes de estimar los parámetros y propiedades, se deben ingresar las temperaturas de evaporación y fusión, entalpía de formación y evaporación, capacidad calorífica (ecuación y coeficientes o en su caso los valores a diferentes temperaturas) y el peso molecular de los componentes, algunos datos anteriormente mencionados pueden ser estimados por ASPEN PŁUSTM, sin embargo es recomendado que se introduzcan los valores.

Además se pueden ingresar todos los datos experimentales que estén disponibles para minimizar la propagación de errores.

CAPÍTULO 6

EXPERIMENTACIÓN

En procesos comunes de sinterización en la producción de acero, se han realizado algunos estudios termodinámicos a cerca de la formación de dioxinas 29 34 36). Sin embargo, las propiedades termodinámicas utilizadas (37 38) no han sido adecuadas, según se ha determinado en estudios más recientes (32). En este trabajo se utilizaron las propiedades termodinámicas obtenidas por el método de diferencias (entalpía de formación) utilizado por O.V.Dorofeeva que una tecnología nueva.

Los estudios que se han realizado han sido en camas de sinter móviles y no fijas como en el caso del presente estudio. El proceso HY-RECOVERY, es un proceso nuevo, recientemente patentado^[43], y contiene los elementos (C, CI, O H) para la formación de las dioxinas. Por lo cual se buscará la simulación para determinar si se cumplen las condiciones termodinámicas para la formación de las dioxinas en el proceso de sinterización, utilizando el paquete termodinámico ASPEN PLUSTM.

Para obtener datos del proceso se tomaron muestras de la materia alimentada al reactor de sinterizado, para analizar la composición de los

materiales, además del cloro, carbono y precursores de dioxinas tales como bencenos, clorobencenos, fenoles y clorofenoles. Lo anterior con el objetivo de alimentar la información sobre los compuestos que existen en la materia prima y minimizar el error en la etapa de la simulación a través de RGIBBS (minimización de la energía libre de Gibbs).

Posteriormente se alimentaron las propiedades termodinámicas obtenidas por medio del método de diferencias⁽⁴⁴⁾ para posteriormente, realizar las simulaciones con ayuda del paquete ASPEN PLUSTM y el análisis de resultados.

6.1 PROCEDIMIENTO PARA HACER EL MUESTREO DE MATERIA PRIMA

El muestreo se realizó considerando los Métodos Estándar Internacional ISO 3081 y 3082 Segunda Edición, lo anterior para la escama de molino, micropelets, finos de sinter y cal. Además, para el coque se utilizó el Método Estándar ASTM D-346-78, Método estándar de colección y preparación de muestras de coque para análisis de laboratorio. Posteriormente, se tomaron las muestras que serían analizadas por cromatografía de gases con detector de masas.

6.2 PRUEBAS REALIZADAS EN PLANTA PILOTO

El objetivo de las pruebas en planta piloto, además de analizar los materiales, es obtener los perfiles de temperatura que se presentan en diversas partes del reactor de sinterizado al llevarse a cabo el proceso.

Primeramente se realizó la toma de muestras de los materiales antes de ser mezclados, ver Figura 6.1, tales como el polvo de horno eléctrico de arco, finos de coque, etc. Lo anterior con el fin de determinar la influencia de los diferentes materiales.

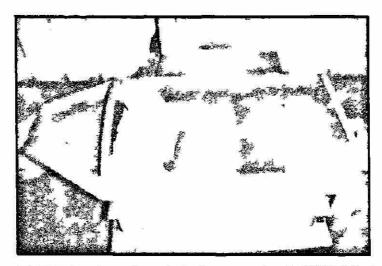


Figura 6.1 Materia prima alimentada (con permiso de HYLSA.S.A. de C.V.)

Posteriormente se analizaron las materias primas por cromatografía de gases con detector de masas, Figura 6.2,

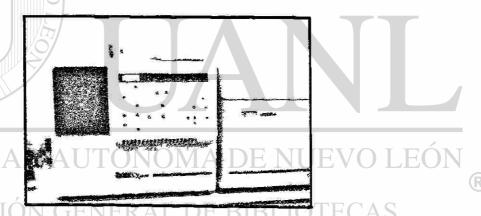


Figura 6.2 Cromatografo modelo Varian Saturn 3400 cx, con detector de masas, el cual tiene una resolución de 5 partes por millón (ppm).

La siguiente etapa fue la elaboración de la mezcla. Esto se llevó a cabo utilizando un mezclador tipo chileno por un periodo de aproximadamente 10 minutos, ver Figura 6.3.

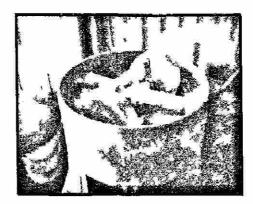


Figura 6.3. Mezclador (con permiso de HYLSA.S.A. de C.V.)

Una vez obtenida la mezcla homogénea, se procede al proceso de sinterización en un reactor construido para este efecto en los Laboratorios experimentales de la empresa HYLSA, S.A. de C.V. División Tecnología. El reactor es una escala a nivel planta piloto de lo que es el reactor a nivel planta productiva. Este reactor esta en vías de ser patentado. Una fotografía de este reactor aparece en la Figura 6.4.

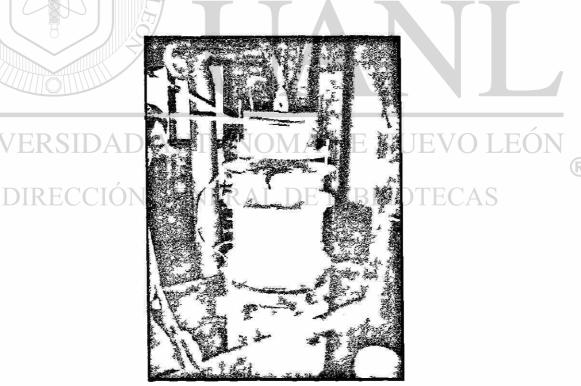
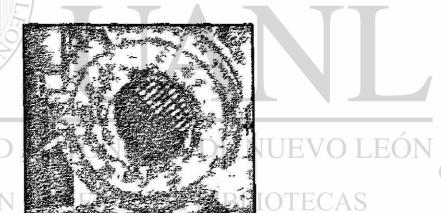



Figura 6.4 Reactor utilizado para la sinterización de las mezclas. (con permiso de HYLSA.S.A. de C.V.)

La preparación de la carga se inicia con una cama de sinter anteriormente producido, tal y como vemos en la Figura 6.5, esto con el fin de proteger las barras de acero al carbono del reactor, Figura 6.6.

Figura 6.5 Alimentación de la cama de sinterizado para protección de las barras de acero al carbono del reactor (con permiso de HYLSA.S.A. de C.V.)

UNIVERSIDAD DIRECCIÓN

Figura 6.6 Reactor de sinterizado. Al fondo se aprecian las barras de soporte de la cama (con permiso de HYLSA.S.A. de C.V.)

Posteriormente se alimenta la mezcla que contiene mineral, escama de molino, finos de sinter, cal viva, coque fino y agua, siendo llenado 40 cm de altura del recipiente, tal como se muestra en la Figura 6.7.

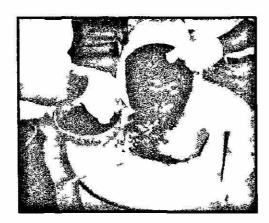


Figura 6.7 Alimentación de la mezcla conteniendo mineral, escama de molino, finos de sinter, cal viva, coque fino y agua. (con permiso de HYLSA.S.A. de C.V.)

Posteriormente se alimenta coque formando una capa de 2 cm de altura, tal como se muestra en la Figura 6.8.

Figura 6.8 Alimentacion de la capa de coque (con permiso de HYLSA.S.A. de C.V.)

Finalmente, la carga dentro del reactor queda formada por capas tal como se muestra esquemáticamente en la Figura 6.9.

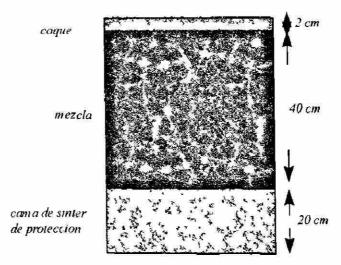


Figura 6.9 Esquema de cama de sinterizado.

Posteriormente se coloca el reactor sobre la caja de viento y se colocan los termopares necesarios, Figura 6.10. Posteriormente se posiciona el quemador y se aplica gas natural y aire, Figura 6.11, y se empieza a elevar la temperatura al irse quemando el coque colocado en la parte superior. El quemador se deja encendido hasta que el termopar No.1 indica una temperatura de 950°C, después se quita y se enciende el compresor, Figura 6.12, el cual succiona los gases calientes haciendo que estos pasen a través de la mezcla y la cama de sinter anteriormente producido, lo cual ocasiona que estas capas se precalienten.

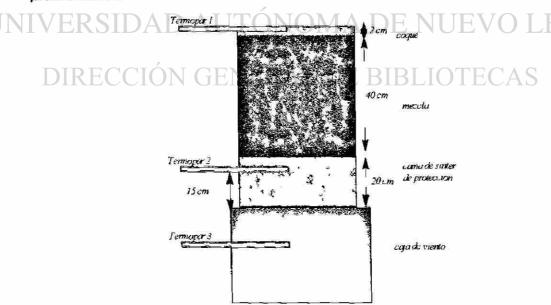


Figura 6.10 Esquema de colocación de los termopares.

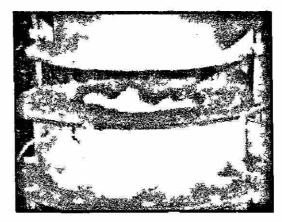


Figura 6.11 Inicio de quema y termopar No.1. (con permiso de HYLSA.S.A. de C.V.)

Se mide la temperatura utilizando un equipo interactivo desarrollado en la FIME con termopares tipo K, a lo largo del proceso, Figura 6.12.

Terminado el proceso, se deja que el producto sinterizado se enfrié dentro del reactor hasta los 200°C, posteriormente se extrae, Figura 6.13. Después se coloca en un recipiente, tal como se muestra en la Figura 6.14. De dicho sinter producido también se tomaron muestras para su posterior análisis. Estas pruebas se llevaron a cabo tres veces, esto con el fin de tomar los perfiles de temperaturas.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

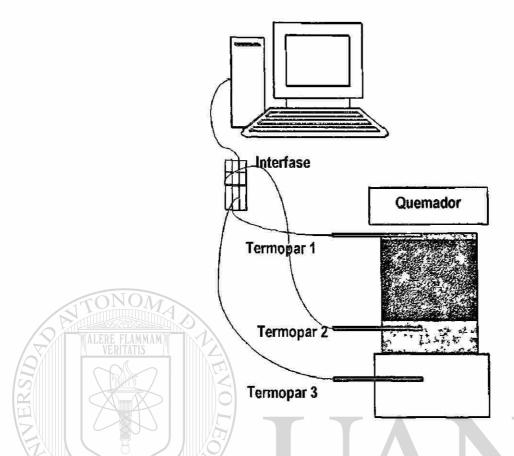


Figura 6.12 Diagrama de equipo utilizado en planta piloto, para la realizacion de las pruebas, para la obtención de perfiles de temperatura. (con permiso de HYLSA, S.A. de C.V.)

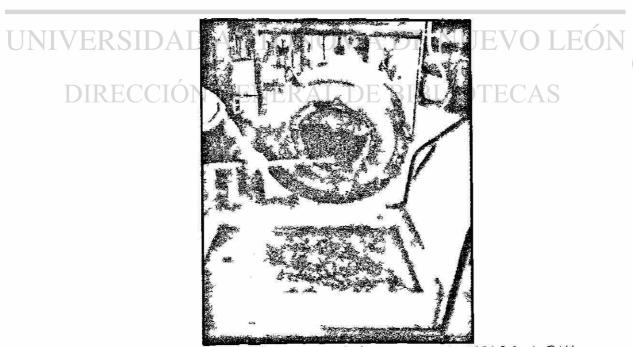
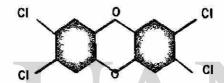
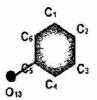



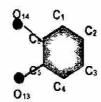
Figura 6.13 Extraccion de sinter producido (con permiso de HYLSA.S.A. de C.V.)

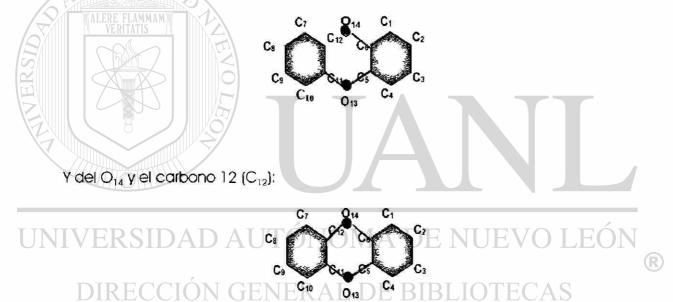

2,3,7,8 TCDD, 1,2,3,7,8 PCDD, 1,2,3,4,7,8 HxCDD, 1,2,3,6,7,8 HxCDD, 1,2,3,7,8,9 HxCDD, 1,2,3,4,6,7,8 HpCDD, 1-46-9 OCDD, 2,3,7,8 TCDF, 1,2,3,7,8 PCDF, 2,3,4,7,8 PCDF, 1,2,3,4,7,8 HxCDF, 1,2,3,6,7,8 HxCDF, 1,2,3,7,8,9 HxCDF, 2,3,4,6,7,8 HxCDF, 1,2,3,4,6,7,8 HpCDF, 1,2,3,4,7,8,9 HpCDF, 1-46-9 OCDF

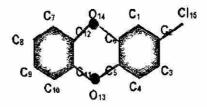
6.3.2 DESCRIPCIÓN DE LA ESTRUCTURA DE LAS MOLÉCULAS DE DIOXINAS (PCDD/Fs) EN ASPEN PLUS™

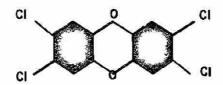
Para dar de alta las estructuras de las dioxinas se describió la conectividad de cada átomo en el compuesto y posteriormente ASPEN PLUS™, genera automáticamente los grupos funcionales requeridos. Por ejemplo: 2,3,7,8 TCDD


Primeramente se declaró la conectívidad de los átomos de carbono en los anillos bencénicos y el tipo de enlace, en este caso doble: C_1 a C_6 .


y de C₇ a C₁₂ también enlace doble; DE BIBLIOTECAS


Posteriormente se declaró la unión entre los carbonos y el oxígeno, es decir, un enlace simple del C_5 al O_{13} :


Y del C₆ al O₁₄:


Además de la conectividad de esos átomos de oxígeno y el otro anillo bencénico, es decir, la unión a través de un enlace simple del O_{13} y el C_{11} :

La conectividad entre los átomos de carbono y cloro, es decir, un enlace simple entre el C_2 y el Cl_{15} :

Así mismo se declaró el enlace simple de los demás átomos de cloro y los atomos de carbono que conforman los anitlos bencénicos, es decir, C_3 enlace simple con Cl_{16} ; del C_9 y Cl_{17} ; además del enlace simple del C_8 y el Cl_{18} ; definiendo así completamente la estructura del 2,3,7,8 TCDD. De manera similar se realizó para los demás PCDD/Fs analizados en el presente trabajo.

6.3.3 INFORMACIÓN CALCULADA CON AYUDA DE ASPEN PLUS™ PARA GASES REALES

Posteriormente se calcularon los demás datos necesarios tales como el factor acéntrico, la temperatura y presión crítica, el factor de compresibilidad, a través de los métodos mencionados en el Capítulo 4 con ayuda de ASPEN PLUSTM Los valores obtenidos se muestran en el Anexo C.

Se alimentó al ASPEN PLUS™, la entalpía de formación, la entropía, y la capacidad calorífica a diferentes temperaturas obtenidos por Dorofeeva⁽⁴⁴⁾, ver Anexo A, el peso molecular, la entalpía de evaporación, la temperatura de evaporación y de fusión⁽²⁶⁾, ver Anexo B.

6.3.4 DIAGRAMA DE FLUJO DEL PROCESO

Después se creó el diagrama de flujo del proceso en ASPEN PLUSTM que se está analizando, siendo este el que se muestra en la Figura 6.15, donde, B4 es un mezclador en el cual se introduce agua y aire seco con el fin de saturar el aire, el cual entra en el sistema al encender el compresor. El bloque ABANICO es utilizado para especificar el flujo de aire saturado que entra en el reactor de sinterización. CL2 GAS es utilizado para especificar la cantidad en kmol que se tiene en el sistema (a 70°C y 1 atmósfera de presión). COQUE para determinar la cantidad en kmol de carbono e hidrógeno en el sistema (a 70°C y 1 atmósfera de presión).

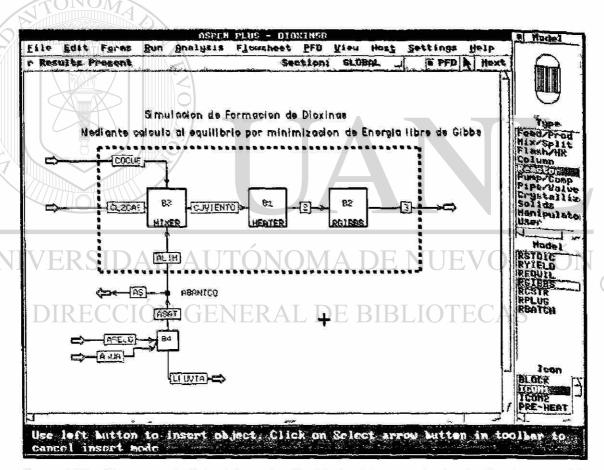


Figura 6.15. Diagrama de flujo del reactor de sinterización, para la simulación de formación de PCDD/Fs por medio del método de minimización de la energía libre de Gibbs.

El bloque B1 HEATER es utilizado para calentar el sistema hasta una temperatura de 250 °C y el bloque B2 RGIBBS es utilizado para llevar al equilibrio la simulación de formación de dioxinas utilizando el método de minimización de energía libre de Gibbs a varias temperaturas. El bloque B3 mixer es el mezclador de lo alimentado en el sistema (C, CI, O, H). Posteriormente se realizó un análisis de sensibilidad obteniéndose la gráfica mostrada en la Figura 6.16, para el 2,3,7,8 TCDD para diferentes flujos de aire saturado.

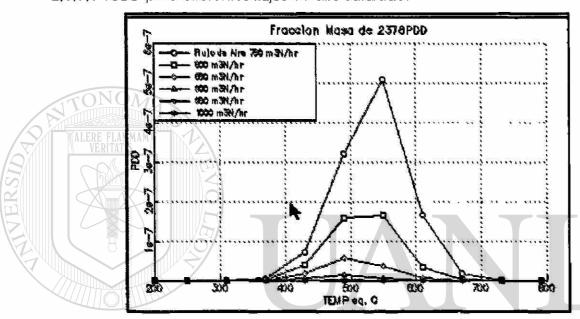


Figura 6.16 Resultado de la simulación en ASPEN PLUS^M de la formación del 2,3,7,8 TCDD a diferentes flujos de aire saturado (600, 650, 800, 850 y 1000 Nm 3 /hr. de aire saturado).

Pero en ASPEN PLUS^{IM} se tiene un límite de 1 e-8 en la escala de las gráficas por lo cual se optó en hacer las mismas en el paquete Excel, el cual es más óptimo para manejar escalas menores.

6.4 OBTENCIÓN DE LA CANTIDAD EN KMOL DE LOS ELEMENTOS DEL SISTEMA ANALIZADO (C, H, O, CI), DE LA CANTIDAD DE MATERIA UTILIZADA EN EL PROCESO A ESCALA INDUSTRIAL

Primeramente se consideró la información proporcionada por el Laboratorio químico de la empresa a cerca de los porcentajes en peso de los compuestos que normalmente se analizan en planta, además del aceite quemado (el cual se

considera como 1% del peso de la escama de molino), porcentaje en peso del cloro, humedad, e información ya establecida acerca de los porcentajes en peso de los elementos que componen el agua, y el aire, Tabla 6.1.

Tabla 6.1 Porcentaie en peso de los diferentes compuestos analizados

Tabla 6.1	Porcentaj	e en peso	de los difere	entes co	mpuest	os analizado	S.		
%PESO	Pre-		Finos de			Aceite	Sinter	i =====	
	mezcla	Escama	sinter -1/4"	Coque	Cal	quemado	cama	Agua	Aire
c	1.980	0.100	1.070	87.270	2.800	84.600	0.020		
S	0.600	0.040	0.191	0.929	0.001	0.635	0.045		
cenizas				8.360			i		
Humedad (H₂O)				0.500				<i>i</i> .	
CI	2.380	0.018	0.340	i			0.054		
HITOI	NOW					13.600		11.111	
FeO	2.910	59.810	20.780				9.660		
Fe ₂ O ₃	33.500	38.540	51.030		0.140		62.960		
SiO ₂	3.250	0.230	2.750	2.930	0.830		1.780		
Al ₂ O ₃	0.900		1.050	1.690	0.150		0.550		
MgO \	3.250	0.025	2.100	0.120	1.624		1.600		
MnO	2.850	1.040	1.870				1.810		
CaO	4.830		5.350	1.025	69.590		5.480		
NIO		0.018	0.066				0.800		
CI ₂ O ₃	0.227	0.091	0.140				0.159		
PbO	2.510		0.430				0.387		
CuO	0.243	0.134	0.150				0.179		
Na ₂ O	2.950	0.055	0.367		3-2	=	0.300		-
K ₂ O	1.000		0.019	MOI	ĪΛ	DE N	0.040		TÓI
ZnO	36.940	0.153	15.400		AIL				
V₂O ₅	8		0.010						
TIO ₂ R	ECC	ONC	0.060	AL	DE	BIBLI	DTEC	AS	
CdO	0.058	3					0.002		
Р	0.004	0.102			2 2		0.004		
PxC	4 5				28.630		2.2		
N				-		0.052			76.800
o		-				1.013		88.889	
O ₂						**************************************	3		23.200
				4					

Para el caso del aceite quemado se tomaron tres muestras y se analizaron, los elementos C, S, H, N y O, Tabla 6.2.

Tabla 6.2. Porcentajes en peso de los elementos detectados en las muestras de aceite quemado.

ACEITE QUEMADO					
%PESO	Ţ	2	3	PROM.	
C	84.500	84.600	84.700	84.600	
S	0.646	0.640	0.618	0.635	
Н	13.400	13.700	13.700	13,600	
N	0.055	0,051	0.050	0.052	
0	1.290	0.910	0.840	1.013	

Como ya se había mencionado, solamente se considerara el sistema C, Cl, H, O, por lo cual los demás compuestos (Ejemplo: SiO_2 , Al_2O_3 , FeO, Fe_2O_3 , etc.) se consideran en este trabajo como materia inerte en la simulación de la formación de PCDD/Fs.

Ya con la información disponible, se procedió a multiplicar la cantidad de materia prima (kg) utilizada en el proceso a escala industrial (ver Tabla 6.3) por cada uno de los elementos que se detectaron (C, Cl, O, H), esto con el fin de determinar la cantidad en kg de ese elemento presente en la materia utilizada en el proceso, además de considerarse, el sinter utilizado (400 kg) como cama para protección de las barras de acero al carbono del reactor de sinterización, ver Tabla 6.4.

Tabla 6.3. Material utilizado en la corrida normal del proceso a escala industrial

MEZCLA A UT	TLIZAR POR QUE	VA (kg)
MATERIAL.	PESO (kg)	%
Premezcla	942.900	27,104
Escama de molino	1,255.23	36.082
Finos de sinter	987.45	28.384
Cal viva -1/8	111,30	3.199
Finos de coque -1/8	91.08	2.618
Agua	90.90	2.613
Total	3,478.85	100.000

Tabla 6.4. Cálculo de masa (kg) de los elementos a considerar (C, CI, H, O) de la materia utilizada, en corrida normal a escala industrial, considerando un 1% de aceite quemado en la escama de molino

	comida normal								
	pre- mezcla	escama	finos de sinter -1/4"	coque	cal	aceite quemado	cama de sinter	agua	aire
kg	942.900	1255.230	987.450	91.080	111.300	12.552	400.000	90.90	5925,792
ċ	18.669	1.255	10,566	79.486	3.116	10.619	0.080	0.000	0.000
CI	22.441	0.226	3.357	0.000	0.000	0.000	0.216	0.000	0.000
Н	0.000	0.000	0.000	0.051	0.000	1.707	0.000	10.100	0.000
0	0.000	0.000	0.000	0.405	0.000	0.127	0.000	80.798	2749.56
O2	0.000	0.000	0.000	0.202	0.000	0.063	0.000	40.399	1374.78

Después los valores mostrados en la tabla 6.4, se dividieron entre los pesos moleculares correspondientes del carbono, cloro, hidrógeno y oxígeno, respectivamente, Tabla 6.5.

Tabla 6.5. Cálculo de número de kmoles de los elementos a considerar (C, CI, H, O) de la materia utilizada, en corrida normal a escala industrial, considerando un 1% de aceite quemado en la escama de molino.

							Cama		
	Pre-		Finos de		1	Aceite	de	\ _	
kmol	mezcla	Escama	sinter -1/4"	Coque	Cal	quemado	sinter	Agua	Aire
CVE	21.554	0.105	0.880	6.618	0.259	0.884	0.007	0.000	0.000
CI	0.633	0.006	0.095	0.000	0.000	0.000	0.006	0.000	0.000
HDII	0,000	0.000	GE 0.000	0.050	0.000	BIB.694	0.000	10.020	0.000
0	0.000	0.000	0.000	0.025	0.000	0.008	0.000	5.050	171.85
O2	0.000	0.000	0.000	0.013	0.000	0.004	0.000	2.525	85.92

Obteniéndose los resultados mostrados en la Tabla 6.6, los cuales fueron alimentados al ASPEN PLUSTM para posteriormente efectuar la simulación de la formación de las dioxinas.

Tabla 6.6. Cantidad en kmol obtenidas de los analisis de materia prima, considerando las cantidades de materia prima utilizados en el proceso a escala industrial.

	COMPONENTES				
C	10.307				
CĪ	0.740				
H	11.764				
0	176.938				
02	88.469				

Para la obtención de la cantidad en masa en kg de agua agregada a la mezcla se efectúo lo siguiente:

Con el dato de la cantidad de agua en volumen alimentada a la mezcla se hicieron los siguientes cálculos:

Se obtuvo la densidad del agua⁽⁴⁶⁾ a condiciones normales, es decir, 25°C y 1 atmósfera de presión.

 $ho_{
m ogus}$ = 0.998 gr/cm³, la cual se multiplicó para obtener la masa en gr. de agua, para posteriormente convertirlos a kilogramos.

91,080≈91,080 cm³, obteniendo un valor 90.90 kg de agua.

El cálculo del oxígeno proveniente del aire y que se considera en este trabajo se realizo de la siguiente manera:

Cuando se realizaron las pruebas se tomó el tiempo que permaneció encendido el compresor y el flujo de aire (proporcionado por la empresa, 6,600Nm³/hr. de aire en el proceso a escala industrial), el tiempo en promedio fue de 0.694 hrs.

Se obtuvo de la literatura⁽⁴⁸⁾, tanto la densidad del aire a 25° C y 760 mm Hg. (1.293 gr./l) y el porciento en peso del oxígeno en el aire (23.2%).

Posteriormente se obtuvo la cantidad de aire en kg

 $6,600 \text{ Nm}^3/\text{hr} (0.694 \text{ hr}) = 4,583.33 \text{ Nm}^3$

 $\rho_{\text{are}} = m_{\text{are}}/v_{\text{are}}$, despejando se obtuvo la m_{are}

 $m_{are} \approx 5;925,791$ gr. ó 5,925.791 kg, el cual se utilizó para obtener el número de kmoles de oxígeno que interviene en el sistema analizado (C, Cl, H, O)

6.5 SIMULACIONES EFECTUADAS EN EL PROGRAMA ASPEN PLUS™

Para la primera simulación de formación de PCDD/Fs se alimentaron los valores mencionados en la tabla 6.6, es decir, en el bloque de COQUE, mostrado en la Figura 6.15. Se alimentaron 10.307 kmol de carbono y 5.882 kmol de $\rm H_2$, en el bloque Cl2 GAS. Además de 0.37 kmol de $\rm Cl_2$ (gas) y en el bloque ABANICO se especificó que el flujo de aire es 6,600 Nm³/hr. Obteniéndose los resultados mostrados en el Capítulo 7.

Debido a los resultados de la simulación anterior fue necesario hacer otras simulaciones variando el contenido de cloro de 0.35 a 1.4 kmol/hr. de gas cloro, esto con el fin de determinar si al tener una mayor cantidad de cloro es factible la formación de dioxinas al tener el flujo de aire de 6,600 Nm³/hr., obteniéndose los resultados que serán mostrados en el Capítulo 7.

Debido al resultado de las anteriores simulaciones se determinó variar el flujo de aire, para lo cual se eligieron los flujos de 950, 1050, 1150, 1250 y 1350 Nm³/hr. de aire (esto debido a que se hicieron varias simulaciones en las que se fue disminuyendo el flujo de aire hasta detectar en niveles apreciables la formación de dioxinas).

Además de variar la cantidad de cloro de 0.35 a 1.40 kmol/hr de Cl_2 , para lo cual se eligió el flujo de aire de 1,350 Nm³/hr., manteniendo el contenido en mol-kg (kmol) de los demás elementos igual, es decir, 10.307 mol-kg de carbono, 5.882 mol-kg de H_2 . Teniendo lo mostrado en la Tabla 6.7.

Tabla 6.7 Cantidad en kmol obtenidas de los análisis de materia prima, considerando las cantidades de materia prima utilizados en el proceso a escala industrial con un flujo de aire de 1,350 Nm³/hr.

	COMPONENTES
	# TOTAL DE MOL-kg (kmol)
С	10.307
CI	0.740
Н	11.764
0	40.235
0,	20.118

Los resultados de las simulaciones se muestran en el siguiente capítulo.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN
DIRECCIÓN GENERAL DE BIBLIOTECAS

CAPÍTULO 7

RESULTADOS Y DISCUSIÓN

En este capítulo se presentan los resultados obtenidos en el presente trabajo.

En primer lugar se muestran los resultados de los análisis de los compuestos semivolátiles, según el método 8270 de la Agencia de Protección Ambiental (EPA por sus siglas en inglés). Además de los análisis de la materia prima por espectrometría por infrarrojo, por dicha técnica solamente se analizaron los finos de sinter y el polvo de horno eléctrico de arco. Además de reportarse los perfiles de temperatura y la localización de los termopares en la cama de sinter. Finalmente se muestran los resultados obtenidos de las simulaciones en el paquete ASPEN PLUS™.

7.1 RESULTADOS DE LOS ANÁLISIS POR CROMATOGRAFÍA DE GASES CON DETECTOR DE MASAS

DIRECCIÓN GENERAL DE BIBLIOTECAS

Respecto al análisis de compuestos volátiles en la materia utilizada por Cromatografía de gases con detector de masas, no fue posible su detección, ver Figura 7.1. Por lo cual, es evidente la necesidad de disponer de equipo con un poder de resolución mayor. El Cromatógrafo utilizado es modelo Varian Saturn 3400 cx (CG/DM), con un poder de resolución de 40 partes por billón (ppb), los

compuestos analizados por esta técnica se muestran en la Tabla 7.1, los cuales se analizaron por el método de análisis de compuestos semivolátiles EPA 8270.

Figura 7.1. Cromatograma en el cual no se observa ningun compuesto buscado (Tabla 7.1), solamente se encuentra ruido y la línea base.

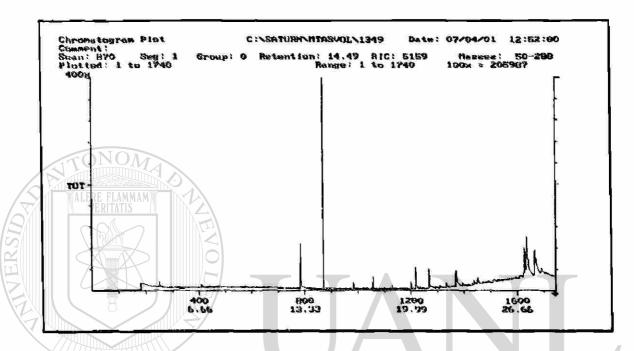


Tabla 7.1 Algunos de los compuestos analizados en las materias primas utilizadas en el proceso HY-RECOVERY por cromatografía de gases con detector de masas.

VER.	Compuesto	Valor obtenido (mg/kg)
	o-cresol	menor a 5
DIRE	m-cresol GENERAL DE	menor a 5
	p-cresol	menor a 5
	pentaclorofenol	menor a 5
	2,3,4,6 tetraclorofenol	menor a 5
	2,4,6 triclorofenol	menor a 5
	fenol	menor a 5
	hexaclorobenceno	menor a 5
	p-diclorobenceno	menor a 5

Posteriormente con ayuda del equipo FTIR de 16 barridos, se realizó un análisis de espectrometría por infrarrojo a los finos de sinter y el polvo de horno eléctrico de arco para detectar grupos funcionales que indicarán la presencia de algún precursor de dioxina, ver Figura 7.2, y 7.3.

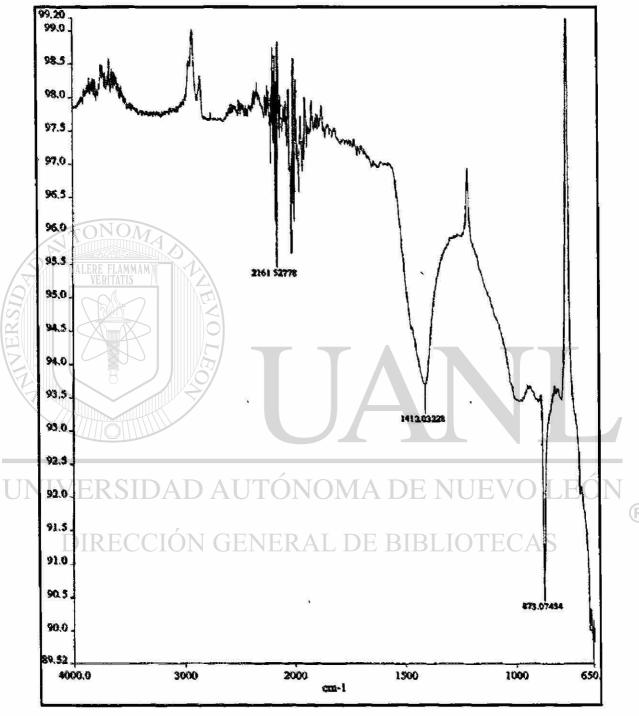


Figura 7.2 Espectro Infrarrojo de los finos de sinter, en el cual no se detectan indicios de la presencia de precursores de dioxinas.

Figura 7.3 Espectro infrarrojo de polvo de horno electrico de arco en el cual no se detectaron indicios de precursores de dioxinas.

Debido a que no fue posible detectar algún indicio que indicara la presencia de precursores de dioxinas, no fue posible alimentar información de compuestos formados durante el proceso, para minimizar el error al momento de hacer la simulación de la formación de las dioxinas (PCDD/Fs) en ASPEN PLUSTM Lo cual, dificulta la formación de los compuestos tipo dioxina (PCDD/Fs) analizados, ya

que la molécula tiene que formaise a partir de los elementos que lo forman (C, Cl, O, H), es decir, los átomos de carbono tienen que unirse para formar los anillos bencénicos, unirse a átomos de cloro (clorarse), para posteriormente unirse a uno o dos átomos de oxígeno (oxidarse), siendo necesaria una mayor cantidad de energía para efectuar dichas reacciones, a que si se parte de algún compuesto precursor, tal como los clorofenoles, clorobencenos, bencenos, fenoles, PCBs, en los cuales solamente es necesario que se lleve acabo alguna reacción, ya sea la de oxidación, como el caso de los clorobencenos y de los PCBs (Bifenilos policlorados), ó en el caso de los bencenos, las reacciones de cloración y oxidación.

7.2 PERFIL DE TEMPERATURA DEL PROCESO (PRUEBAS REALIZADAS EN PLANTA PILOTO)

Como ya se había mencionado anteriormente, se realizaron tres pruebas para la toma de perfiles de temperatura (Figuras 7.4 a 7.9) con la finalidad de determinar el rango de temperatura que hay en la cama de sinter. En la Figura 7.4 el termopar 1 (localizado en la cama según la Figura 7.5) cuando alcanza una temperatura de aproximadamente 950°C se quita de su posición, colocándose posteriormente el quemador encima de la cama a sinterizar. Por lo cual, la curva de enfriamiento de dicho termopar, no es significativa. En la misma Figura 7.4, el termopar 2, se tiene que el tipo de termopar utilizado es K, el cual funde a 1,270°C aproximadamente, por lo cual, la curva de calentamiento y enfriamiento registrados después de alcanzar dicha temperatura no es correcta, ya que el termopar ya se había fundido. Además, la temperatura se incrementa rápidamente (en algunos segundos) de temperatura ambiente a temperaturas altas (1,270°C), lo cual, en el caso de formarse algún compuesto tipo dioxina, se obtendirá rápidamente su descomposición, ya que se ha reportado su descomposición a temperaturas de aproximadamente 1,000°C^[51], pudiéndose formar nuevamente durante el enfriamiento.

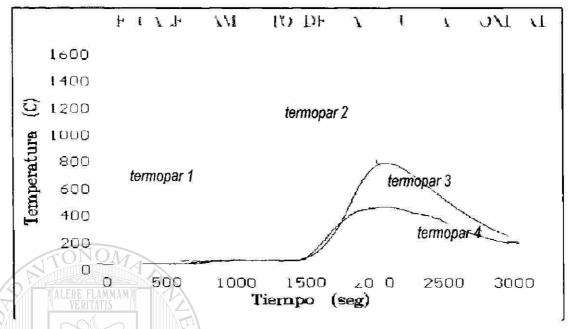


Figura 7.4. Perfil de temperatura de la primera prueba en planta piloto. Los termopares fueron colocados según se muestra en la Figura 7.5.

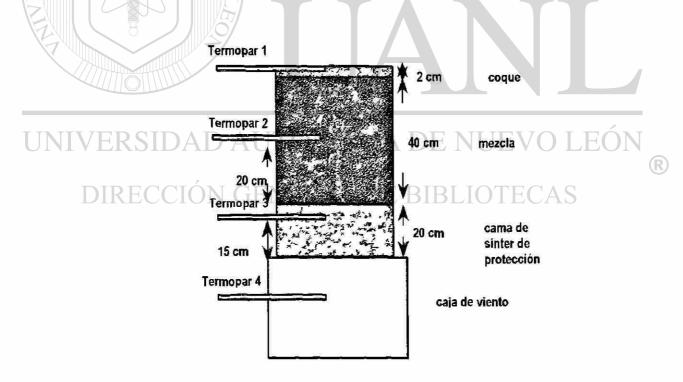


Figura 7.5. Esquema de la localización de los termopares tipo K, durante la realización de la primer prueba en la planta piloto.

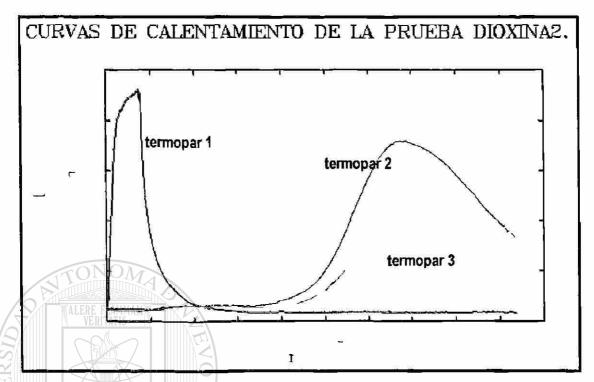


Figura 7.6 Perfil de temperatura de la segunda prueba. Los termopares fueron colocados segun se muestra en la Figura 7.7.

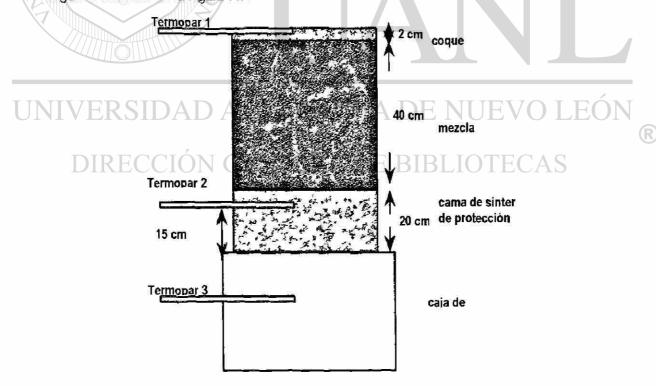


Figura 7.7. Esquema de la localización de los termopares tipo K, durante la realización de la segunda prueba en la planta piloto.

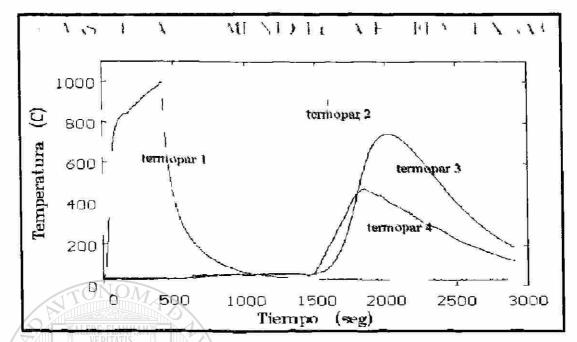


Figura 7.8. Perfil de temperatura de la tercer prueba. Los termopares fueron colocados según se muestra en la Figura 7.9.

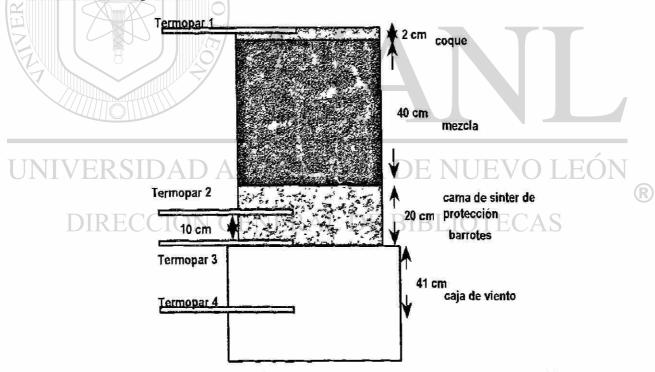


Figura 7.9. Esquema de la localización de los termopares tipo K, durante la realización de la tercer prueba en la planta piloto.

En la Figura 7.10 se muestra una comparación de los perfiles de temperatura de las tres pruebas realizadas, los cuales son muy semejantes.

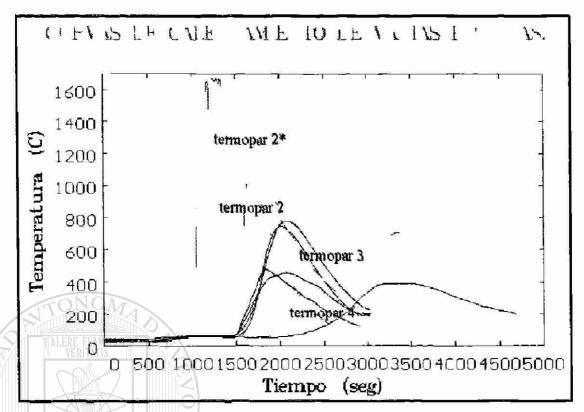


Figura 7.10, Perfil de temperatura de las tres pruebas, donde el termopar 2* es el colocado a mitad de la cama a sinterizar (Figura 7.5).

Por otro lado, también se midió el perfil de presión y temperatura, mostrado en la Figura 7.11.

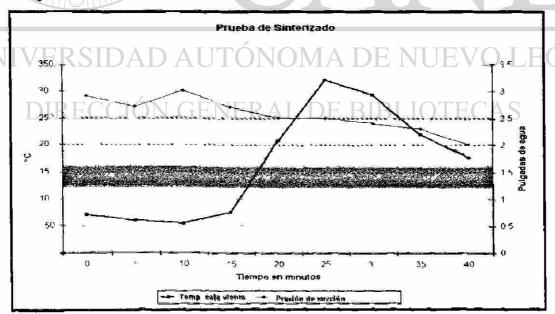


Figura 7.11 Perfil de presión y temperatura medidos en la caja de viento del equipo utilizado en planta piloto.

Como se observa en las Figuras anteriores, existe una variación muy grande de la temperatura en las diferentes zonas del reactor de sinterizado, sobre todo al inicio del proceso. La temperatura tiende a estabilizarse despues de 30 minutos.

El frente de temperatura de sinterizado avanza desde las capas superiores hacia las capas inferiores, dependiendo de la succión del aire.

7.3 RESULTADOS DE LA PARTE DE SIMULACIÓN DE FORMACIÓN DE DIOXINAS (PCDD/Fs) EN ASPEN PLUS™.

En los primeros resultados obtenidos de la simulación de la formación de las dioxinas (PCDD/Fs) en el paquete termodinamico ASPEN PLUSTM, no se observó la factibilidad termodinámica para la formación de dioxinas en la etapa de sinterización del proceso HY-RECOVERY, bajo las consideraciones de este estudio, utilizando el método de mínimización de la energía libre de Gibbs, además de la restricción de materia, por medio del método de multiplicadores indeterminados de Lagrange. Por lo cual se varió el flujo de gas cloro de 0.35 a 1.4 kmol/hr., esto con el fin de determinar el efecto de aumentar la cantidad de cloro bajo las condiciones de operación de la planta industrial (6,600 Nm3/hr. de aire), lo cual equivale a tener materia prima mayormente contaminada con cloro, no teniéndose la factibilidad termodinámica de formación de PCDD/Fs, tal como se muestra en las Figura 7.12. La descripción de la clave utilizada para las dioxinas (PCDD/Fs) se muestra en la Tabla 7.2.

Siendo determinado que bajo el aspecto termodinámico el aumento de la concentración de cloro en el sistema analizado, considerando las cantidades determinadas de la materia prima utilizada, no es un factor determinante en el aumento de la factibilidad termodinámica para la formación de dioxinas (PCDD/Fs).

Por lo cual se hizo evidente la necesidad de variar otros elementos del sistema. Siendo primeramente disminuido el flujo de aire y posteriormente (otra vez) el flujo de cloro en el sistema, siendo estos elegidos ya que son los elementos más importantes, que en determinado momento pudiesen variar al llevarse a cabo diferentes corridas en la planta industrial con diferentes flujos de aire y/o utilizando cargas contaminadas con diversos contaminantes, tales como pinturas, plásticos.

Tabla 7.2. Descripción de clave utilizada para dioxinas (PCDD/Fs).

10	abid 7.2. Descripción de clave dirizada pare	dioxinas (FCDD)	1 3).	
	COMPUESIO	CLAVE		
	2,3,7,8-TCDD	PCD1		
TONO	1,2,3,7,8 Penta-CDD	PCD2		
WALEDE FLA	1,2,3,6,7,8-Hexa-CDD	PCD3		
VERITAT	1,2,3,7,8,9 Hexa-CDD	PCD4		
	1,2,3,4,7,8 Hexa-CDD	PCD5		
TALERS IIIA	1,2,3,4,6,7,8 Hepta-CDD	PCD6		
	1,2,3,4,6,7,8,9-OCDD	PCD7		
17	2,3,7,8 TCDF	PCF1		
	1,2,3,7,8- Penta-CDF	PCF2		
	2,3,4,7,8- Penta-CDF	PCF3		
UNIVERS	1,2,3,6,7,8-Hexa-CDF	PCF4	VO LEÓN	
	1,2,3,7,8,9- Hexa-CDF	PCF5	(R
DIRE	3,2,3,4,7,8- Hexa-CDFRAL DE	PCF6OT	ECAS	
	2,3,4,6,7,8- Hexa-CDF	PCF7		
	1,2,3,4,6,7,8- Hepta-CDF	PCF8		
	1,2,3,4,7,8,9- Hepta-CDF	PCF9	1	
	1,2,3,4,6,7,8,9-OCDF	PCF10	1	
			4	

Comparación de PCDD/ Fs a 1 40 Kmol/hr de Cloro gas 6,600 Nm3/hr de aire

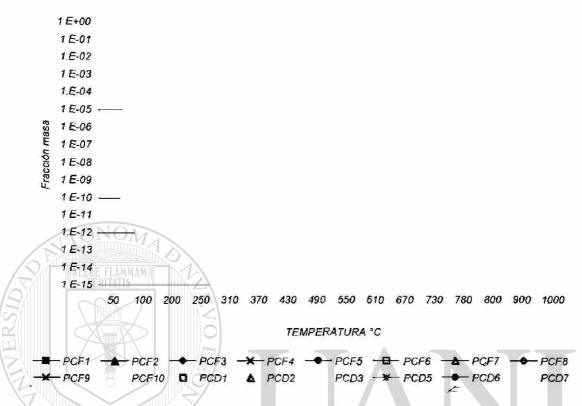


Figura 7.12 Ejemplo del resultado de la simulación de la formación de dioxinas con las condiciones (flujo de aire, 6600 Nm³/hr de aire) que se tienen en la planta a escala industrial, pero teniendo un flujo de gas cloro (Cl₂) de 1.40 kmol/hr.

7.3.1 EFECTO DE LOS DIFERENTES FLUJOS DE AIRE

Con los resultados previos obtenidos, se decidió disminuir el flujo de aire que se introduce al sistema (manteniendo igual la cantidad de los demás elementos) hasta detectar la formación de dioxinas, eligiéndose el rango de 950 a 1350 Nm³/hr.

DIRECCIÓN GENERAL DE BIBLIOTECAS

Obteniéndose que al disminuir el flujo de aire presente en el sistema (O_2) la factibilidad de formar las dioxinas(PCDD/Fs) aumenta, debido a que son productos de combustión incompleta, por lo cual, al disminuir el flujo de aire no hay el oxígeno suficiente para que se efectúe la combustión completamente

aumentando la factibilidad termodinámica de formación de estos compuestos, lo cual se muestra en las Figuras 7.13 y 7.14 para los PCDFs, 7.15 y 7.16 para los PCDDs (ver el resto de dioxinas analizadas en el ANEXO D).

Además al aumentar el flujo de aire el rango de temperaturas en el cual hay factibilidad termodinámica de la formación de dioxinas disminuye. Es decir, este tipo de compuestos se descompone a más baja temperatura conforme aumenta el flujo de aire. Siendo evidente la formación de otro tipo de compuestos característicos de una combustión efectuada bajo condiciones más adecuadas, tal es el caso del CO₂(Figura 7.23).

Teniéndose un caso especial en los compuestos octa clorados(Figuras 7.17 y 7.18 para los OCDFs y OCDDs respectivamente) a temperaturas menores de 370° C(aproximadamente), Figuras 7.19 y 7.20 a 250° C, Figuras 7.21 y 7.22 a 370° C, ya que la factibilidad termodinámica de formación de estos aumenta conforme aumenta el flujo de aire, debido a que este tipo de compuestos, cuando aumenta el flujo de aire la combustión se efectúa mejor y hay un aumento en la formación de CO_2 , Figura 7.23, tendiendo el cloro disponible a formar parte de compuestos más clorados (OCDD/Fs). Además que dichos compuestos octa clorados son los que bajo esas restricciones de materia son los que minimizan más la energía libre de Gibbs Total (G¹), bajo las condiciones de temperatura y presión (1 atmósfera) especificadas. Para que esto ocurra es necesario que se tenga la energía necesaria para formar dichos compuestos (energía de formación) considerando tambien la entropía, lo cual proviene de la definición de la energía libre de Gibbs, donde $\Delta G = \Delta H$ -T ΔS .

Ya que a temperatura de 800°C, Figuras 7.24 y 7.25, ya no se tiene dicho efecto en los compuestos octa clorados, es decir, conforme aumenta el flujo de aire se descomponen dichos compuestos, ya que se tiene la energía necesaria para descomponerlos, favoreciendo la formación de otros compuestos, tal es el caso del CO₂, Figura 7.23.

Además de comprobarse la mayor factibilidad termodinámica de formación de los PCDFs a los PCDDs, anteriormente reportado por Zaytsev⁽²³⁾ et. al 1998 y Thompson⁽²⁵⁾ et. al 1994, Kasay⁽⁵⁾ et. al 2001, Buekens⁽²⁹⁾, et. al 2001, Figuras 7.26 y 7.27 a 950 y 1,350 Nm³/hr. de aire respectivamente.

Con lo anterior, es evidente que el proceso HY-RECOVERY a escala industrial opera bajo condiciones de exceso de aire, lo cual favorece que no se observe factibilidad termodinámica para la formación de dioxinas (PCDD/Fs), según las consideraciones efectuadas en el presente trabajo. Por lo cual, se determinó el exceso de aire. Siendo éste de aproximadamente 98%, los cálculos se muestran en el Anexo E.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN
DIRECCIÓN GENERAL DE BIBLIOTECAS

COMPARACIÓN DE 2,3,7,8 TCDF A DIFERENTES FLUJOS DE AIRE

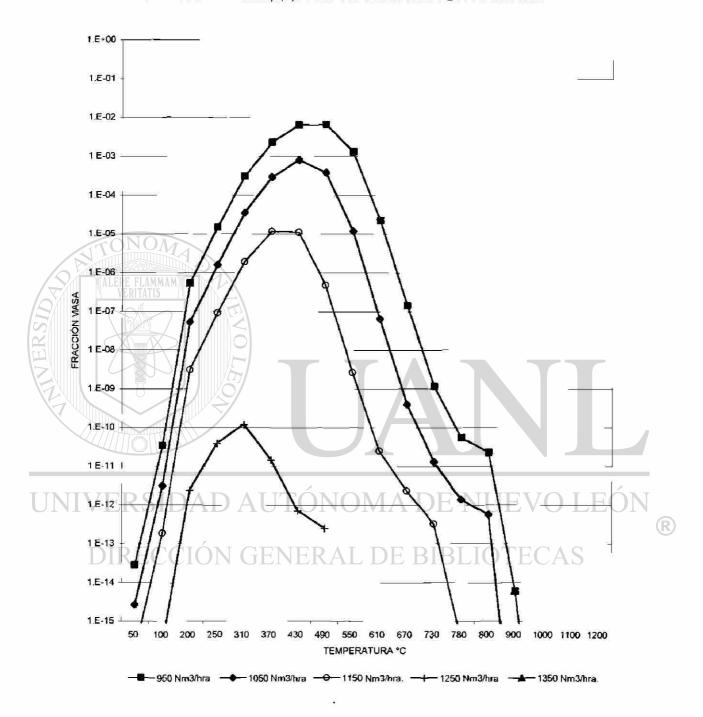


Figura 7.13 Resultados de la simulación de la formación del 2,3,7,8 TCDF disminuyendo el flujo de aire introducido al sistema de 950 a 1,350 Nm³/hr.

COMPARACIÓN DE 2,3,4,7,8 PCDF A DIFERENTES FLUJOS DE AIRE

Figura 7.14 Resultados de la simulación de la formación del 1,2,3,7,8 PCDF, disminuyendo el flujo de aire introducido al sistema de 950 a 1,350 Nm³/hr.

250 310 370 430 490 550 610 670 730 780 800 900 1000 1100 1200

TEMPERATURA °C

1.E-14

1.E-15

COMPARACIÓN DE 2,3,7,8 TCDD A DIFERENTES FLUJOS DE AIRE

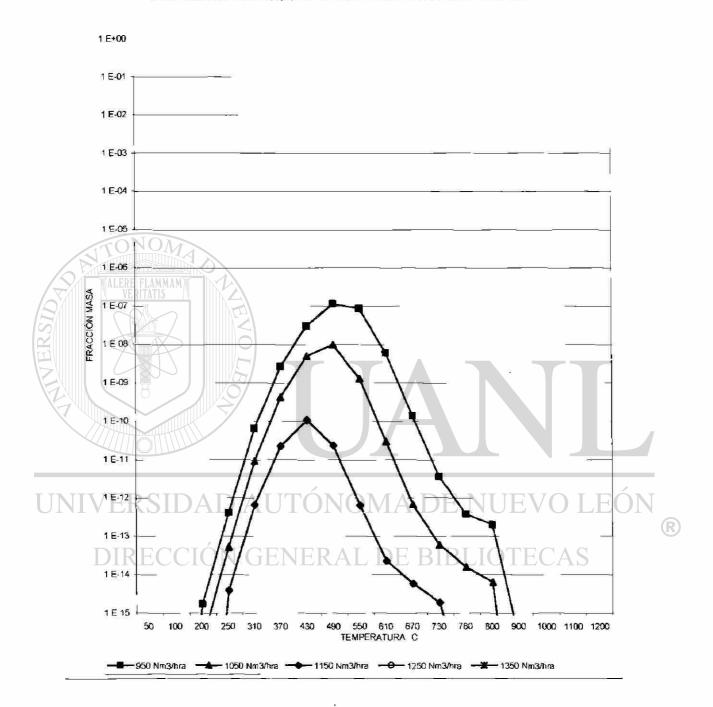


Figura 7.15 Resultados de la simulación de la formación del 2,3,7,8 TCDD disminuyendo el flujo de aire introducido al sistema de 950 a 1,350 Nm 3 /hr.

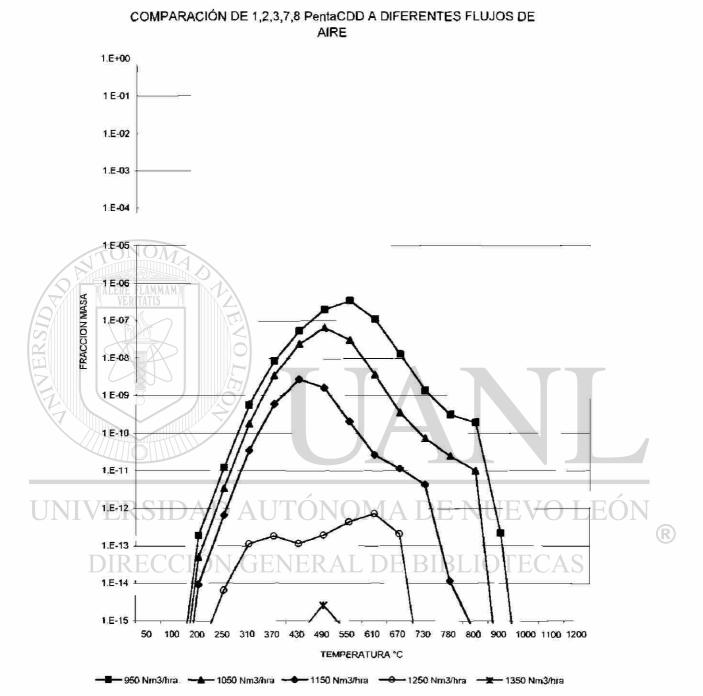


Figura 7.16 Resultados de la simulación de la formación del 1,2,3,7,8 PCDD, disminuyendo el flujo de aire introducido al sistema de 950 a 1,350 Nm 3 /hr.

COMPARACIÓN DE OCDF A DIFERENTES FLUJOS DE AIRE

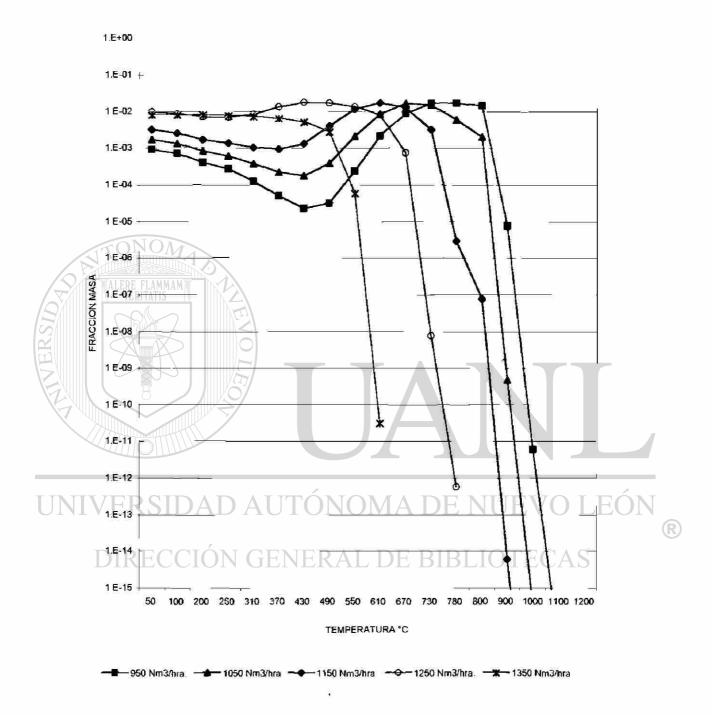


Figura 7.17 Resultados de la simulación de la formación del 1 2,3,4,6,7,8,9 OCDF teniendo un flujo de aire introducido al sistema de 950 a 1,350 Nm³/hr.

COMPARACIÓN DE OCDD A DIFERENTES FLUJOS DE AIRE

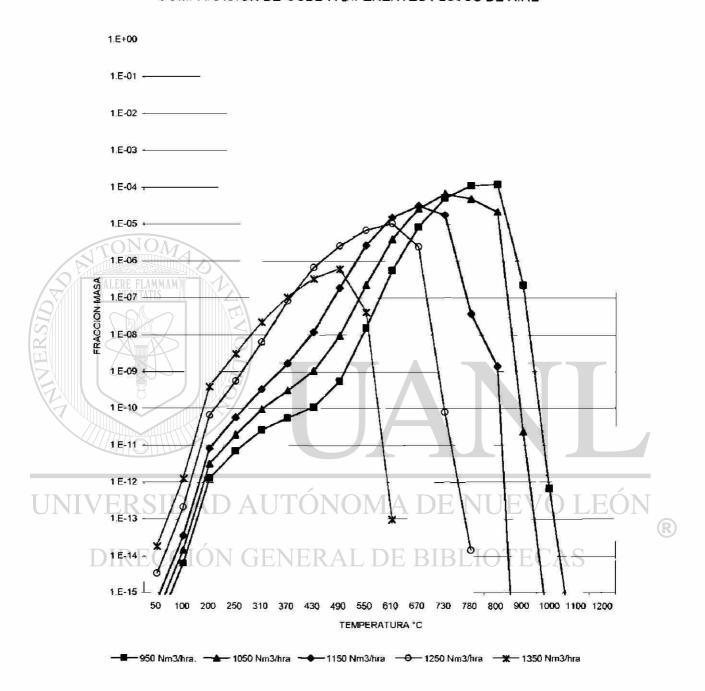


Figura 7.18 Resultados de la simulación de la formación del 1,2,3,4,6,7,8,9 OCDD teniendo un flujo de aire introducido al sistema de 950 a $1.350 \, \text{Nm}^3/\text{hr}$.

(121)

COMPARACIÓN DE PCDFs a 250°C Y DIFERENTES FLUJOS DE AIRE

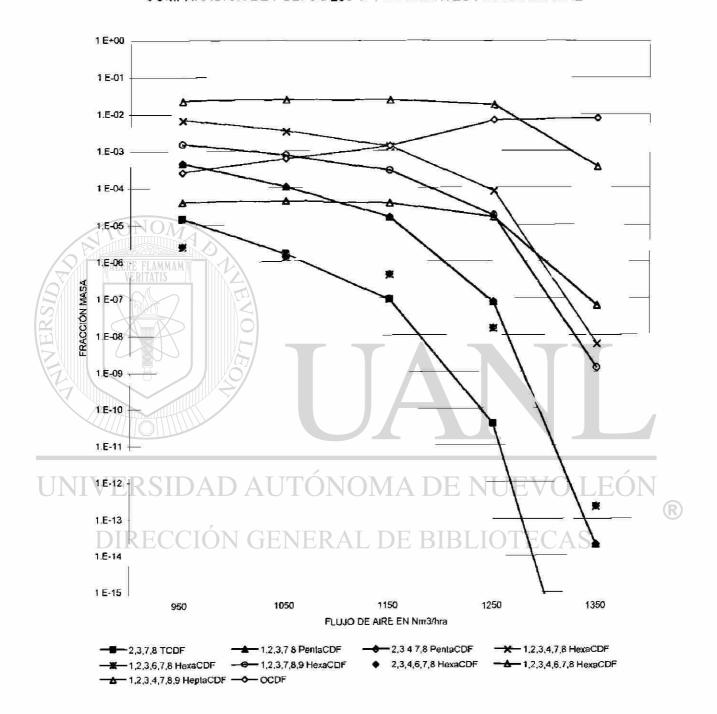


Figura 7.19 Resultados de la simutación de la formación de los PCDFs a 250 C, teniendo un flujo de aire introducido al sistema de 950 a 1,350 Nm³/hr.

COMPARACIÓN DE PCDDs A 250°C Y DIFERENTES FLUJOS DE AIRE

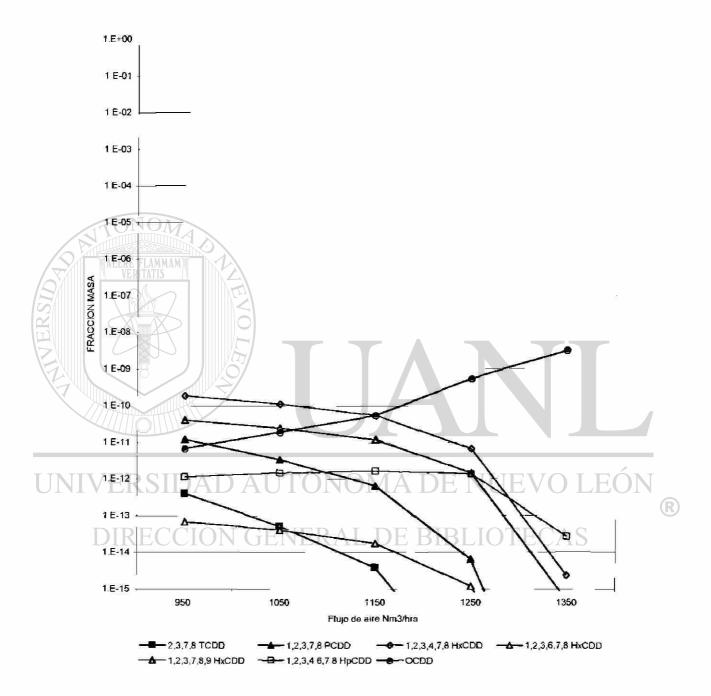


Figura 7.20 Resultados de la simulación de la formación de los PCDDs a 250 C, teniendo un flujo de aire introducido al sistema de 950 a 1,350 Nm³/hr.

COMPARACIÓN DE PCDDs A 370°C Y DIFERENTES FLUJOS DE AIRE

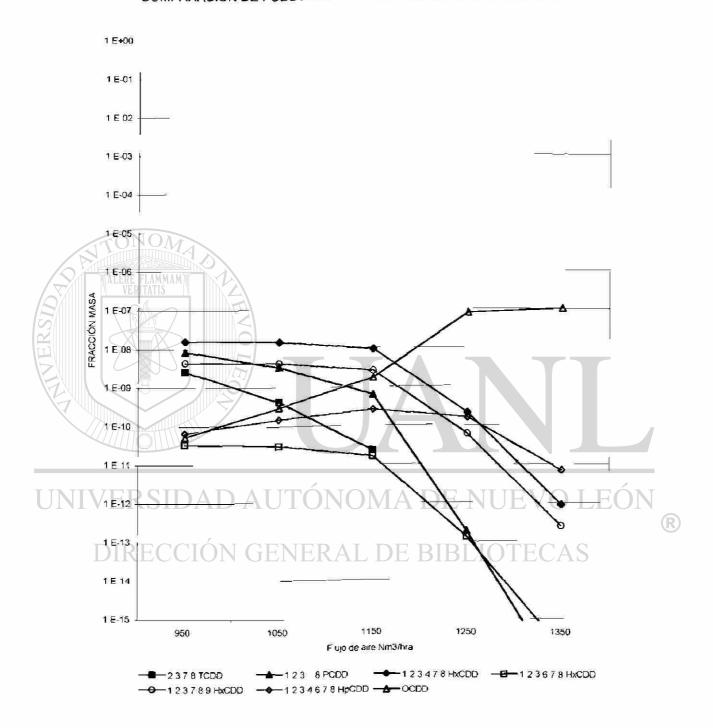


Figura 7.21 Resultados de la simulación de la formación de los PCDDs a 370 C, teniendo un flujo de aire introducido al sistema de 950 a 1,350 $\rm Nm^3/hr$.

COMPARACIÓN DE PCDFs A 370°C Y DIFERENTES FLUJOS DE AIRE

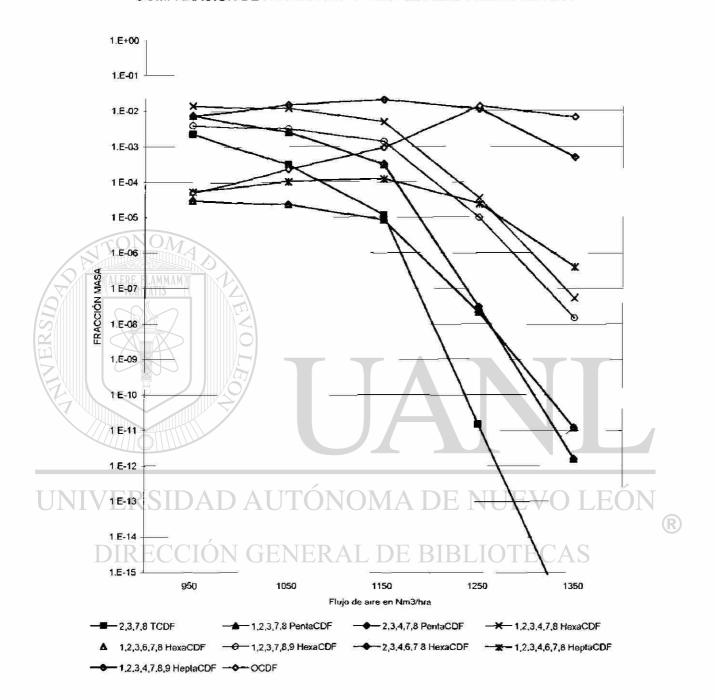


Figura 7.22 Resultados de la simulación de la formación de los PCDFs a 370 C, teniendo un flujo de aire introducido al sistema de 950 a $1,350 \, \text{Nm}^3/\text{hr}$.

COMPARACIÓN DE LA FORMACIÓN DE CO vs. CO2 A 370°C Y DIFÉRENTES FLUJOS DE AIRE

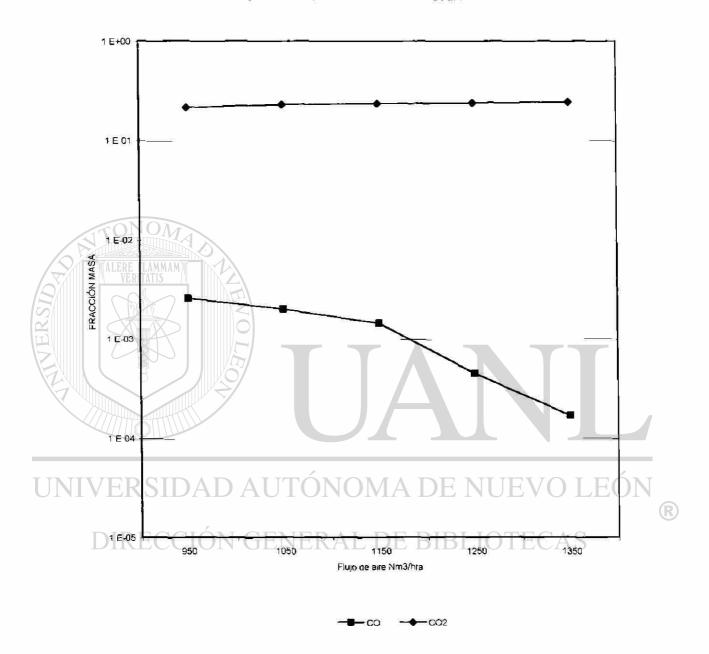


Figura 7.23 Resultados de la simulación de la formación de CO y $\rm CO_2$ a 370 C, teniendo flujo de aire introducido at sistema de 950 a 1,350 $\rm Nm^3/hr$.

COMPARACION DE PCDFs A 800°C Y DIFERENTES FLUJOS DE AIRE

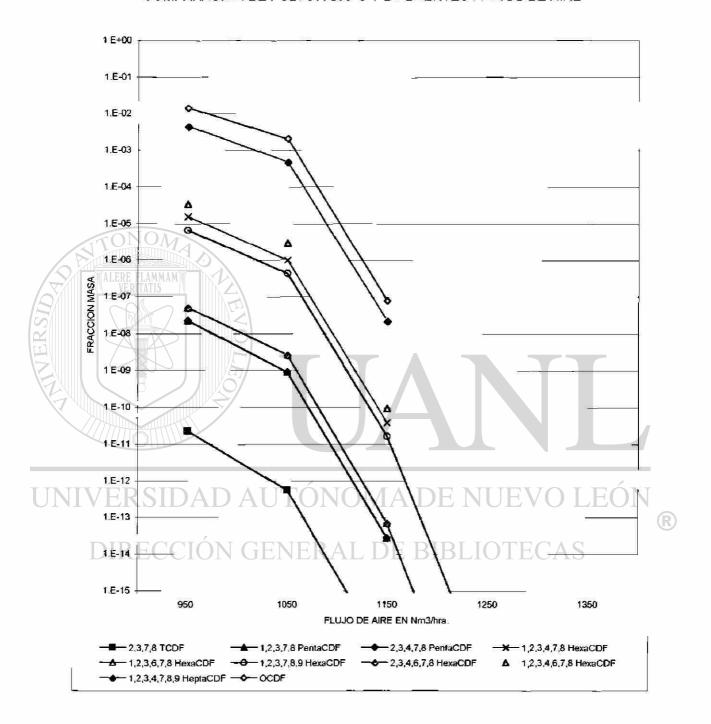


Figura 7.24 Resultados de la simulación de la formación de los PCDFs a 800 C, teniendo un flujo de aire introducido al sistema de 950 a 1,350 Nm³/hr.

COMPARACIÓN DE PCDDs A 800°C Y DIFERENTES FLUJOS DE AIRE

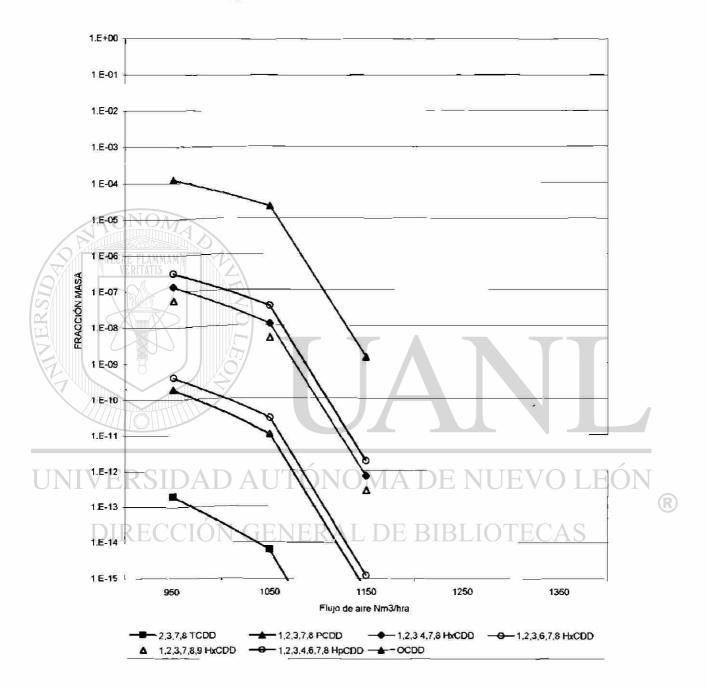


Figura 7.25 Resultados de la simulación de la formación de los PCDDs a 800 C, teniendo un flujo de aire introducido al sistema de 950 a 1,350 Nm 3 /hr.

COMPARACIÓN DE PCDF(10) vs. PCDD(7) A 950 Nm3/hra. DE AIRE CON LA MISMA CANTIDAD DE C,CI, H DETERMINADOS EN MATERIALES

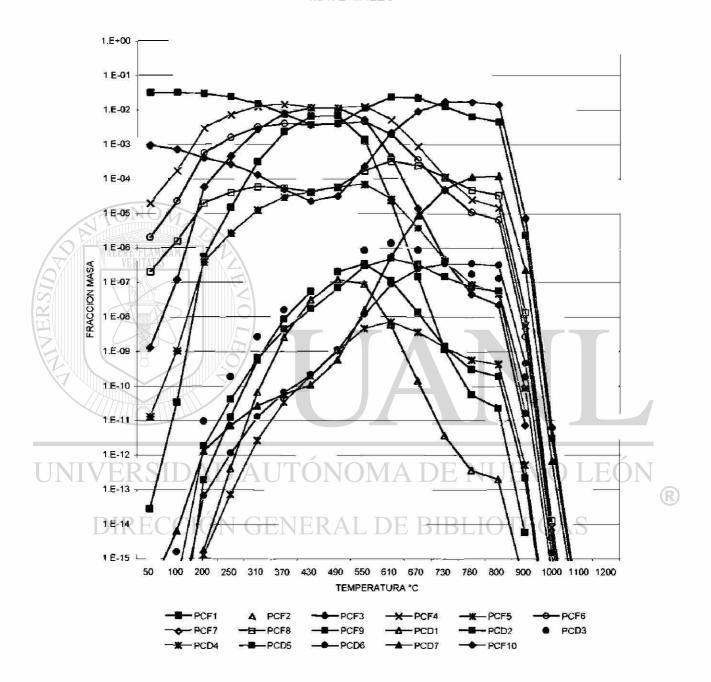


Figura 7.26 Resultados de la simulación de la formación de los PCDD/Fs (17 compuestos analizados) teniendo un flujo de aire introducido al sistema de 950 Nm³/hr.

COMPARACIÓN DE PCDF(10) vs. PCDD(7) A 1350 Nm3/hra. DE AIRE CON LA MISMA CANTIDAD DE C,CI, H DETERMINADOS EN MATERIALES

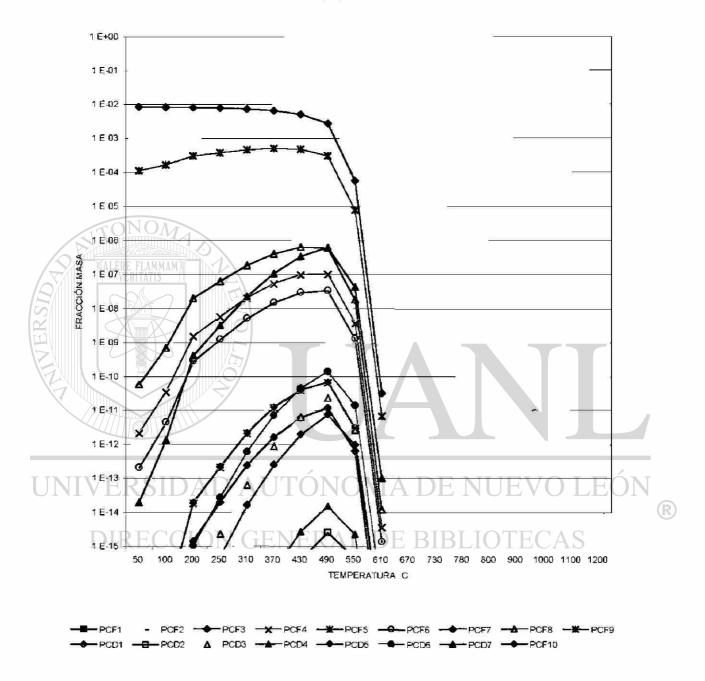


Figura 7 27 Resultados de la simulación de la formación de los PCDD/Fs (17 compuestos analizados) teniendo un flujo de aire introducido al sistema de 1,350 Nm³/hr.

7.3.2 EFECTO DE LA VARIACIÓN DE LA CANTIDAD EN KMOL DE CLORO

Con el fin de modelar el efecto del cloro (E. Kasay⁽²⁸⁾, en el año 2001), se utilizaron cantidades variables del mismo para observar su efecto en la factibilidad de formación de dloxinas.

Para lo cual se eligió arbitrariamente el flujo de aire de 1,350 Nm³/hr, manteniendo igual el contenido de carbono, e hidrógeno determinados en los materiales. Obteniéndose que en los congéneres menos clorados, su factibilidad termodinámica de formación disminuye al aumentar el contenido de cloro a temperaturas de 250°C (Figuras 7.28 y 7.29) y 370°C (Figuras 7.30 y 7.31), debido a que se tiene el cloro disponible pero no la energía suficiente para aumentar su formación conforme aumenta el cloro, siendo evidente la mayor influencia de la temperatura en la factibilidad de formación de las dioxinas, que la concentración del cloro disponible.

Teniéndose un caso especial en los compuestos octa clorados (OCDDs y OCDFs), ya que su factibilidad termodinámica de formación aumenta conforme aumenta el flujo de cloro debido a que en este tipo de compuestos, cuando aumenta el flujo de cloro hay más cloro disponible para formar este tipo de compuestos. Además de que dichos compuestos son los que minimizan más la energía libre de Gibbs total, bajo las condiciones de temperatura y a una atmósfera de presión, considerando el balance de materia, a través del método de multiplicadores indeterminados de Lagrange, mencionados en el Capítulo 4, sección 4.3.4.

Ya que a temperaturas mayores (550 y 610°C), no sucede, es decir, conforme aumenta el flujo de gas cloro alimentado aumenta la factibilidad de formación de las dioxinas, Figuras 7.32 y 7.33 a 550°C, 7.34 y 7.35 a 610°C.

COMPARACIÓN DE PCDFs A 250°C Y DIFERENTE kmol/hra DE GAS CLORO

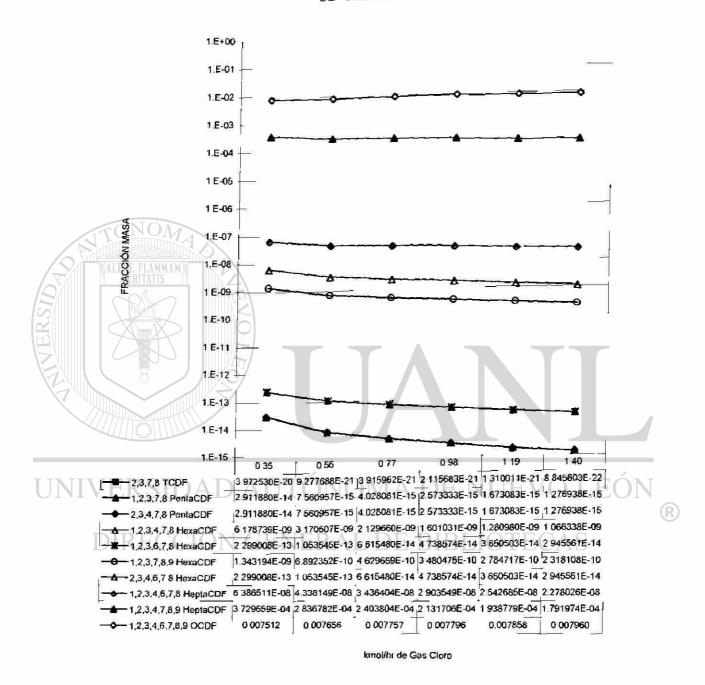
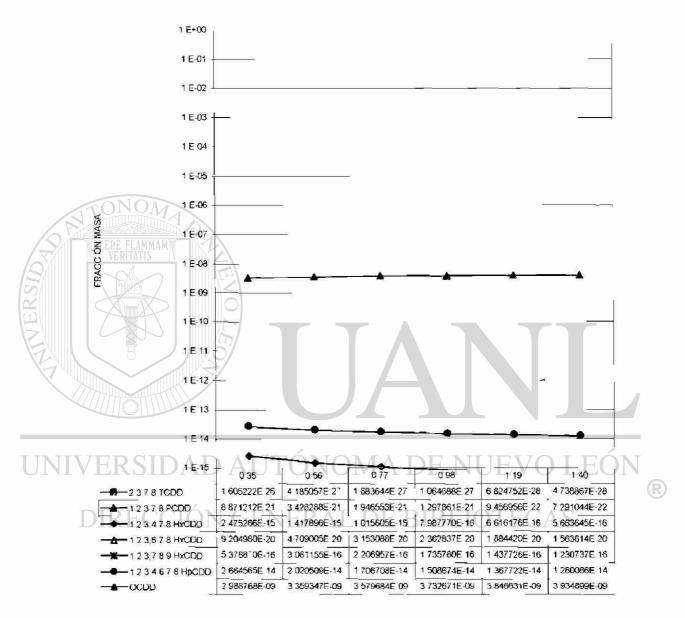



Figura 7.28 Resultados de la simulación de la formacion de los PCDFs a 250 C, variando el flujo de gas cloro (Cl₂) introducido al sistema de 0.35 a 1.40 kmol//hr.

COMPARACIÓN DE PCDDs A 250°C Y DIFERENTES kmol/hr DE GAS CLORO

kmol/hr de Gas Cloro

Figura 7.29 Resultados de la simulación de la formación de los PCDDs a 250 C, variando el flujo de gas cloro (Cl₂) introducido al sistema de 0.35 a 1.40 kmol/hr.

COMPARACIÓN DE PCDFs A 370°C Y DIFERENTE kmol/hr DE GAS CLORO

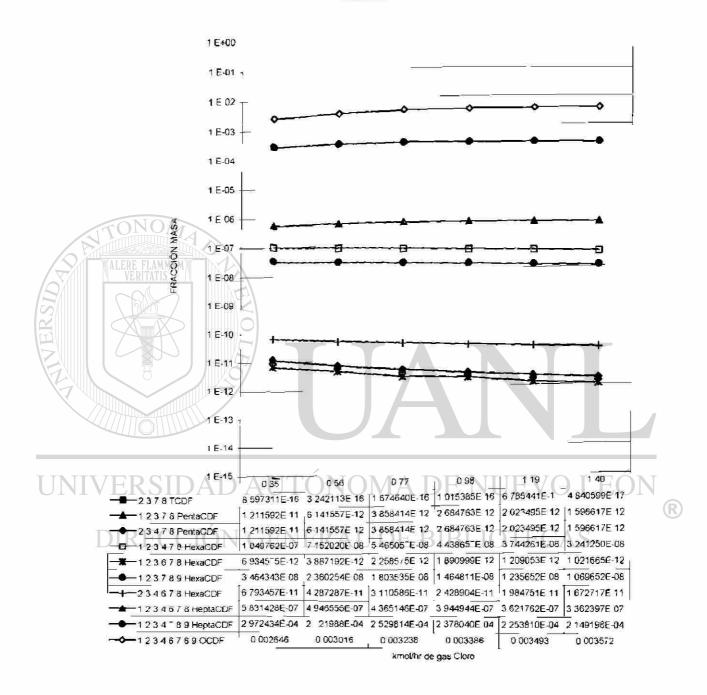


Figura 7.30 Resultados de la simulación de la formación de los PCDFs a 370 C, variando el flujo de gas cloro (Cl_2) introducido al sistema de 0.35 a 1.40 kmol/hr.

COMPARACIÓN DE PCDDs A 370°C Y DIFERENTES kmol/hr DE GAS CLORO

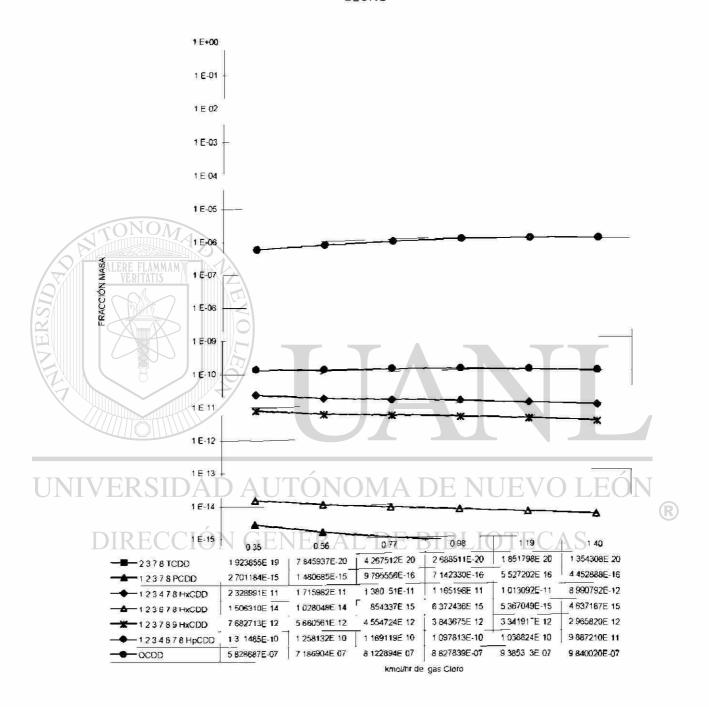
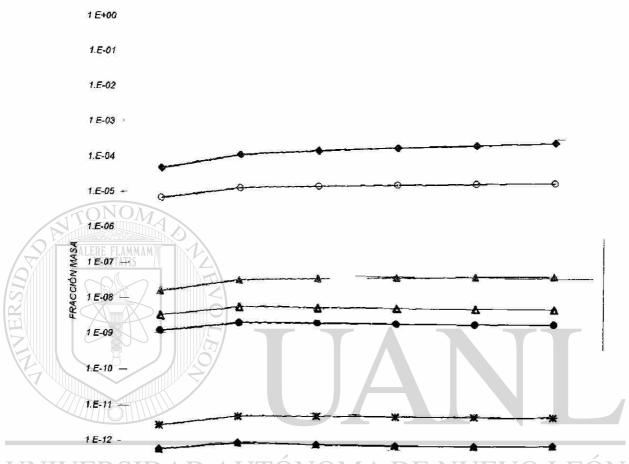



Figura 7.31 Resultados de la simulación de la formación de los PCDDs a 370 C, variando el flujo de gas cloro (Cl_2) introducido al sistema de 0.35 a 1.40 kmol/hr.

COMPARACIÓN DE PCDFs A 550°C Y DIFERENTE FLUJO DE GAS CLORO

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

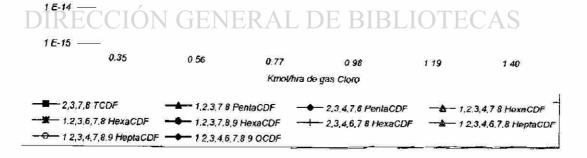


Figura 7.32 Resultados de la simulación de la formación de los PCDFs a 550 C, variando el flujo de gas cloro (Cl_2) introducido al sistema de 0.35 a 1.40 kmol/hr.

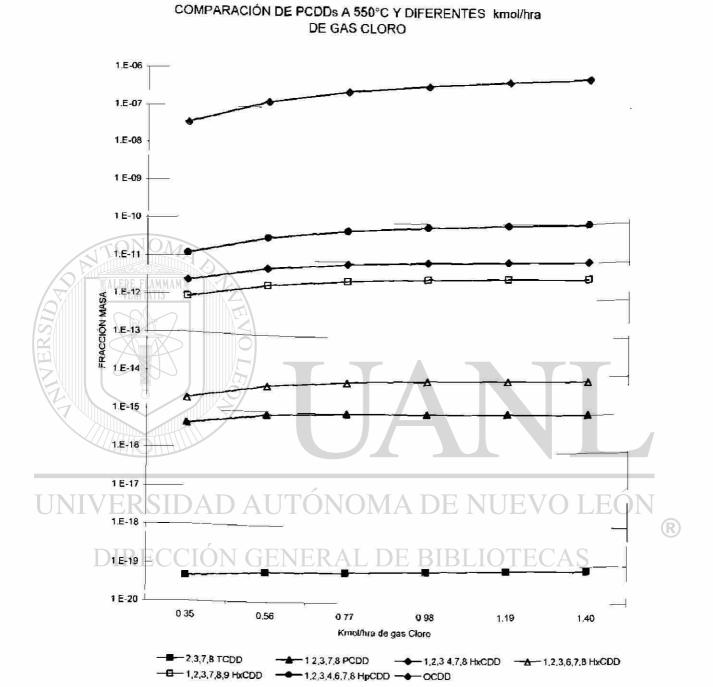


Figura 7.33 Resultados de la simulación de la formación de los PCDDs a 550 C, variando el flujo de gas cloro (Cl₂) introducido al sistema de 0.35 a 1.40 kmol/hr.

COMPARACIÓN DE PCDFs A 610°C Y DIFERENTE kmol/hr DE GAS CLORO

Figura 7.34 Resultados de la simulación de la formación de los PCDFs a 610 C, variando el flujo de gas cloro (Cl_2) introducido al sistema de 0.35 a 1.40 kmol/hr.

COMPARACIÓN DE PCDDs A 610°C Y DIFERENTES kmol/hr DE GAS CLORO

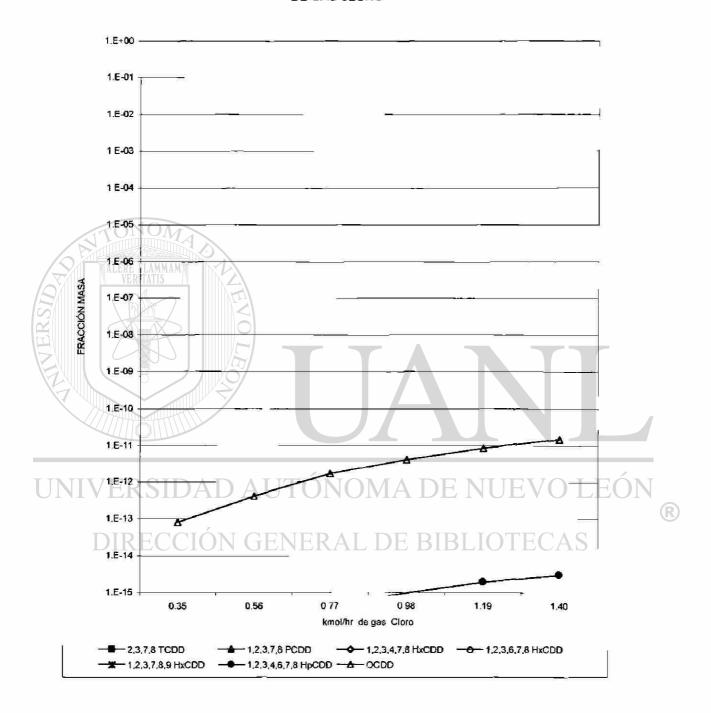


Figura 7.35 Resultados de la símulación de la formación de los PCDDs a 610 C, variando el flujo de gas cloro (Cl_2) introducido al sistema de 0.35 a 1.40 kmol/hr.

CAPITULO 8

CONCLUSIONES Y RECOMENDACIONES

8.1 CONCLUSIONES

- Se determina la dificultad de detección de los precursores de las dioxinas en las materias primas, siendo evidente la necesidad de disponer de equipos con un mayor poder de resolución.
- La alimentación y las condiciones de operación son de principal importancia para la reducción de las dioxinas, lo cual ya había sido mencionado por Buekens⁽²⁹⁾ en el año 2001. En nuestro caso el flujo de aire utilizado en la planta industrial es mucho muy grande (6,600 Nm³/hr.), lo cual evita la formación de dioxinas (PCDD/Fs), siendo esto solo factible si se disminuye el flujo de aire (aproximadamente1,350 Nm³/hr), por lo cual se debe evitar canalizaciones del aire en el proceso, es decir, áreas en las cuales haya una deficiencia de aire. Según las consideraciones del presente trabajo.
- Se determina que las propiedades termodinámicas utilizadas son adecuadas debido a que se comprueba la mayor factibilidad termodinámica de formación de los PCDFs a los PCDDs, reportado por

Thompson^[25] en 1994, Spencer^[22] en 1997, Zaytsev^[23] en 1998 y Kasay^[5] en el año 2001.

- Se determinó el efecto de aumentar la concentración de cloro, en el sistema, dándonos un panorama más específico con respecto a las consecuencias (según las consideraciones de este trabajo) de aumentar la cantidad de chatarra contaminada con plásticos, pinturas, etc., siendo esto a temperaturas mayores de 550°C.
- Se determinó el efecto de aumentar o disminuir el flujo de aire, ya que teniendo más aire y por lo tanto oxígeno disponible la combustión se puede llevar a cabo bajo mejores condiciones, siendo posible que incluso no haya factibilidad termodinámica de formación de estos compuestos tóxicos (PCDD/Fs), teniendo en cuenta las consideraciones del presente trabajo.
 - Se desarrolló una metodología para la simulación de formación de dioxinas (PCDD/Fs) aplicable a procesos reales.

18.2 RECOMENDACIONES TO NOMA DE NUEVO LEO

Las siguientes recomendaciones son de gran importancia para ampliar el conocimiento sobre el comportamiento de las dioxinas.

- En el presente trabajo se analizaron dioxinas en fase gas, es conveniente incluir el análisis de dioxinas adsorbidas (fase condensada) en partículas finas sólidas.
- También se sugiere ampliar el número de compuestos analizados.

El proceso de sinterizado en el HY-RECOVERY es complejo, debido a que se tiene que el campo del oxígeno, la distribución del aire y el flujo a través de la línea de sinterizado no está definido. Además de que el frente de sinterizado (calentamiento) gradualmente se mueve hacia abajo, provocando que haya una variabilidad en la porosidad y composición (el coque es consumido, la cal se transforma en óxidos complejos, la hematita es parcialmente reducida, sales y metales pesados son volatizados).

- Se recomienda hacer un análisis de proceso, (teniendo ya las propiedades alimentadas en fase condensada) considerando varios reactores, es decir, considerar que la cama a sinterizar se divide en capas, teniendo que las concentraciones obtenidas en gas de la capa anterior sean consideradas en la siguiente capa. Teniéndose que hacer consideraciones acerca del flujo de aire en dicha capa conforme se efectúa las reacciones y el cambio en la porosidad.
- Hacer un estudio acerca de la evolución de la porosidad con la temperatura y las características de la materia prima utilizada en el proceso, lo cual ayudara a tener una mejor báse sobre las consideraciones en el flujo de aire del punto anterior.
- Hacer mediciones directas de dioxinas (PCDD/Fs), considerando los puntos anteriores, lo cual nos ayudará a determinar si se cumplen además de las condiciones termodinámicas (en caso de que esto suceda), el tiempo de reacción para su formación.
 - Determinar la cinética de formación de estos compuestos en dicho proceso, lo cual permitirá predecir su formación bajo las condiciones del proceso, evitando la necesidad de hacer más mediciones y además de hacerse las modificaciones necesarias (aumentar el flujo de aire, temperatura o disminuir el contenido de chatarra contaminada con pinturas, plásticos con el fin de disminuir la cantidad de cloro presente), para evitar la formación de dichos compuestos.

3

BIBLIOGRAFÍA

- [1].- EPA Dioxin Reassessment, Health Assessment, Volume III, Sources http://www.cqs.com/dioxh94.htm
- [2].- Baker, John I. and Hites R. A. Is the Combustion the Major Source of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans to the Environment? A Mass Balance Investigation. Environmental Science & Technology, <u>34</u> [14], pp. 2879-2885 (2000).
- [3].- Quaß, Ulrich, Emissions of dioxins and furans from metallurgical processes: Iron ore Sintering and Secondary Zinc Production. Información Internet.
- [4].- The Lovar Foundation for the protection of the environment, "Dioxin", Iron and steel production, p.68-69, 73-76, 1998.
- [5].- Kasay, E. Aono E.; Tomita, Yukio; Takasay, Makoto; Shiraishi, N.; Kitano, S. Macroscopic Behaviors of Dioxins in the Iron Ore Sintering Plants, ISIJ International, 41 [1], p.86-92 (2001),
- [6].- Buekens, A.; Stieglitz, L.; Hell, K.; Huang, H. Dioxins from thermal and metallurgical processes: recent studies for the iron and stéel industry, Chemosphere, 42, pp.729-735(2001),
- [7].- HYLSA, S.A. de C.V. Reporte interno.Comunicación privada a la FIME-UANL Agosto 2000.
- [8].- Vernon J. F.; Janice K; Huwe, R.G.; Zaylskie. Chlorinated Dibenzo-p-dioxin and Dibenzofuran Concentrations in Beef Animals from Feeding Study. J. Agric. Food Chem. 48, p.6163-6173(2000),
- [9].- Quaβ, M. U. Emissions of dioxins and furans from metallurgical processes: Iron Ore Sintering and Secondary Zinc Production. Información Internet.
- [10].- Donald E.; Tillitt, R. W.; Gale, Jhon C.; Meadows, S.J.; Bursian, R. J. Aulerich. Dietary Exposure of Mink to Carp from Saginaw Bay. 3. Characterization of Dietary Exposure to Planar Halogenated Hydrocarbons, Dioxin Equivalents, and Biomagnification. Environmental Science & Technology, 30[1] p.283-291, (1996).
- [11].- Thornton, Joe. Conseguir la dioxina cero. Una estrategia de emergencia para la eliminación de dioxina, 1994.

- [12].- Kishimoto, A.; Oka, T.; Yoshida, K.; Nakanishi, J. Cost Effectiveness of Reducing Dioxin Emissions form Municipal Solid Waste Incinerators in Japan. Environmental Science & Technology, 35 [14], p. 2861-2866(2001).
- [13].- Lino, F.; Tsuchiya, K.; Imagawa, T.; Gullett, B.K. An Isomer Prediction Model for PCNs, PCDD/Fs, and PCBs from Municipal Waste Incinerators. Environmental Science & Technology, 35 [15], p. 3175-3181 (2001).
- [14].- Milligan, Michael S.; Altwicker, E.R. Chlorophenol Reactions on Fly Ash.1. Adsorption/Desorption Equilibria and Conversion to Polychlorinated Dibenzo-p-dioxins. Environmental Science & Technology, 30 [1], p. 225-229(1996).
- [15].- Cains, P.W.; MCcausland, L.J.; Fernandes, A.R.; Dyke, P. Polychlorinated Dibenzo-p-dioxins and Dibenzofurans Formation in Incineration: Effects of Fly Ash and Carbon Source. Environmental Science & Technology, 31[3], p. 776-786(1997).
- [16].- Brzuzy, Louis P.; Hites, Ronald A. Global Mass Balance for Polychlorinated Dibenzo-p-dioxins and Dibenzofurans. Environmental Science & Technology, 30[6], p.1797-1804(1996).
- [17].- Agencia de Protección Ambiental de los Estados Unidos http://www.cqs.com/epa/exposure/part1_v1.htm
- [18].- Lee, Robert G.M.; Jones, Kevin C. Gas-Particle Partitioning of Atmospheric PCDD/Fs: Measurements and Observations on Modelling. Environmental Science & Technology, 33[20], p.3596-3604(1999).
 - [19].- Spencer, P. J. and Neuschütz, D. Thermodynamic Conditions for the Formation of Dioxin. Chem. Eng. Technol, <u>15</u>, p.119-123 (1992).
 - [20].- Shaub, W.M. Procedure for estimating the heats of formation of aromatic compounds: chlorinated benzenes, phenols and dioxins. Thermochem. Acta, <u>55</u>, p.59-73(1982).
 - [21].- Saito, N.; Fuwa, A. Prediction for thermodynamics function of dioxins for gas phase using semi-empirical molecular orbital method with PM3 hamiltonian, Chemosphere, 40, p.131-145(2000).
 - [22].- Eriksson, G.; Spencer, P.; Neuschütz, D. Comparison of thermochemically calculated and measured dioxin contents in the off-gas of a sinter plant.

- Electrochemical Society Proceedings, 97[39], p.278-287(1997).
- [23].- Zaytsev, A. K; Leontiev, Leopold I.; Yusfin, Yulian S.; Belov, Gleb V.; Iorish, Vladimir S. On Principles of Thermodynamic Modelling of Dioxins Formation and Behaviour in Thermal Processes. Organohalogen Compounds, <u>36</u>, p. 197-200(1998).
- [24].- Gurvich, L.; Veitz, V.; Iorish, Vladimir S. Thermodynamic Properties of Individual Substances. Fourth Edition in 5 volumes, Chemosphere Pub Co. NY,L, vol. 1 in 2 parts, 1989.
- [25].- Thompson, D. Thermodynamic Considerations in Dibenzodioxin and Dibenzofuran Formation: Concentrations of Chlorinated Dioxins and Furans in Model Fuel rich Combustion Gases. Chemosphere, <u>29</u> [12], p.2583-2595(1994).
- [26].- Benson, S.W. Thermochemical Kinetics, second Ed. Wiley, New York, 1976.
- [27].- Shaub, Walter M. Procedure for estimating the heats of formation of aromatic compounds: chlorinated benzenes, phenols and dioxins. Thermochimica Acta 55 pp.59-73(1982)
- [28],- Kasay, E.; Hosotani, Y.; Kawaguchi, T.; Nushiro K. and Aono, T. Effect of Additives on the Dioxins Emissions in the Iron Ore Sintering Process. ISIJ International, 41[1], p.93-97(2001).
- [29].- Buekens, A.; Stieglkitz, L.; Hell, K.; Huang, H.; Segers, P. Dioxins from thermal and metallurgical processes: recent studies for the iron and steel industry.

 Chemosphere, 42, p.729-735(2001).
- [30].- Pirard, C; Xhrouet, C. and Pauw, Edwin. De Novo Synthesis of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans on Fly Ash from Sintering Process. Environmental Science & Technology. 35 [8], p.1615-1623(2001).
- [31].- HYLSA. Comunicación privada. Pablo Arreola Noviembre 1999.
- [32].- Tysklind, M.; Söderström, R. C.; Hägerstedt ,L-E.; Burström, E. PCDD and PCDF emissions from scrap metal melting processes at a steel mill. Chemosphere 19(1-6), p.705-710 (1989).
- [33].- Umweltbundesamt. Determination of requirements to limit emissions of dioxins and furans. Report from the Working Group of the Subcommittee

- Air/Technology of the Federal Government/federal States Emission Control Committee, Berlin. Germany (1996).
- [34].- The Lovar Foundation for the protection of the environment. Dioxin. Iron and steel production, 1998.
- [35],- Journal of Chromatography, <u>389</u> p.127-137,1987.
- [36].- Skoog, Douglas A.; West, Donald M. Análisis instrumental. Segunda Edición, Mc Graw Hill, 1989.
- [37].- Okamoto, Y. and Tomonari, M. Formation Pathways from 2,4,5-Trichlorophenol (TCP) to Polychlorinated Dibenzo-p-dioxins (PCDDs):An ab Initio Study. J.Phys.Chem., 103, pp.7686-7691. (1999).
- [38]. Froese, K.L. and Hutzinger, Otto, Polychlorinated Benzene, phenol, Dibenzop-dioxin and Dibenzofuran in heterogeneous Combustion Reactions of Acetylene, Environmental Science & Technology, 30 [3], p 998-1008 (1996).
- [39].- Agencia de Protección Ambiental de los Estados Unidos (USEPA).
 Información Internet (Volumen 2, Capítulo 3)
- [40].- Addink, R.; Govers, Harrie A.J. and Olie, Kees. Isomer Distributions of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans formed during De Novo Synthesis on Incinerator Fly Ash. Environmental Science & Technology. 32 [13], p.1888-1893 (1986).
- [41].- Cains, P.W.; Mccausland, Linda J.; Fernandes, A.R. and Dicke, P. Polychlorinated Dibenzo-p-dioxins and Dibenzofurans formation in Incineration: Effects of Fly ash and carbon Source. Environmental Science & Technology. 31[3], p.776-786 (1997).
 - [42].- Takasuga, T.; Makino, T.; Tsubota, K. and Takeda, Nobuo. Formation of Dioxins (PCDD/Fs) on fly ash as a catalyst and relation of chlorine sources. Organohalogen Compounds. <u>36</u>, p. 321-324 (1998).
 - [43].- HYLSA, S.A. de C.V. Comunicación privada. Dr. Carlos Javier Lizcano Zulaica, Noviembre 2000.
 - [44].- Dorofeeva, Olga V.; Iorish, Vladimir S. and Moiseeva, Natalia F. Thermodynamic Properties of Dibenzo-p-dioxin, Dibenzofuran and their Polychlorinated Derivatives in the Gaseous Phase. 1. Thermodynamic

- Properties of Gaseous Compounds. J. Chemical Engineering Data, <u>44</u>, pp.516-523(1999).
- [45].- Maron, Samuel H. y Prutton, Carl F. Fundamentos de Fisicoquímica, LIMUSA, 1980.
- [46].- Berchtold, F. Rordorf, Prediction of vapour pressures, boiling points and enthalpies of fusion for twenty-nine halogenated Dibenzo-p-dioxins and fifty dibenzofurans by a vapour pressure correlation method, Chemosphere, <u>18</u>, pp.783-788(1989).
- [47].- Reid, Robert C.; Prausnitz, John M.; Sherwood, Thomas K. The properties of gases and liquids, Third Edition, Mc Graw Hill, 1977.
- [48].- Hougen, O. A.; Watson, K.M.; Ragatz. R.A. Principios de Procesos Químicos.

 Editorial Reverte, Primera Edición, 1980.
- [49].- Smith, J.M.; Van Ness, H.C.;Introducción a la Termodinámica en Ingeniería Química, Cuarta Edición, Mc Graw Hill, 1989
- [50].- ASPEN PLUS™ 9.3-1, 1998; Programa Termodinámico, Compañía ASPEN.
- [51].- Rordorf, B.F.; Thermodynamic and thermal properties of polychlorinated compounds: the pressures and flow tube kinetics of ten dibenzo-paradioxines. Chemosphere, 14, pp.885-892(1985).
- [52].- The 17th Regulation for Implementation of the Federal Emission Protection Law (17.8lmSchV)., Anhang BGBI, I.S. 2545,2832, Vol.23.11.1990.

DIRECCIÓN GENERAL DE BIBLIOTECAS

R

ÍNDICE DE TABLAS

	labla	Descripcion	Pagina
	2.1	Factores de toxicidad equivalente para las dioxinas, según USEPA	10
	4.1	Incrementos Δ para anillos, para determinar T_{c} y presión P_{c} .	34
	6.1	Porcentaje en peso de los diferentes compuestos analizados.	62
/X	6.2	Porcentajes en peso de los elementos detectados en las muestras de aceite quemado.	63
	6.3.	Material utilizado en la corrida normal del proceso a escala industrial	63
	6.4	Cálculo de masa (kg) de los elementos a considerar (C, Cl,	64
		H, O) de la materia utilizada, en corrida normal a escala	
		industrial, considerando un 1% de aceite quemado en la	
		escama de molino	
Jľ	6.5 1	Cálculo del número de kmol de los elementos a considerar (C, Cl, H, O) de la materia utilizada, en corrida normal a	LÉÓN
	Dl	escala industrial, considerando un 1% de aceite quemado en la escama de molino	\S
	6.6	Cantidad en kmol obtenidas de los análisis de materia	65
		prima, considerando las cantidades de materia prima	
		utilizados en el proceso a escala industrial	
	6.7	Cantidad en kmol obtenidas de los análisis de materia	67
		prima, considerando las cantidades de materia prima	
		utilizados en el proceso a escala industrial con un flujo de	
		aire de 1,350 Nm³/hr	
	7.1	Algunos de los compuestos analizados en las materias	69
		utilizadas en el proceso HY-RECOVERY (micropelet, escama	

de molino, etc.) por Cromatografía de gases con detector de masas.

7.2. Descripción de clave utilizada para dioxinas (PCDD/Fs).

78

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

ÍNDICE DE FIGURAS

	Figura	Descripcion	ragina
	2.1	Presencia de dioxinas en materias primas y después del	14
		proceso de transformación	
	2.2	Formación de dioxinas a partir de precursores clorados	15
	2.3	Formación de Dioxinas y/o precursores a partir de orgánicos y	16
		donadores de cloro	
	2.4	Formación de dioxinas por "de novo síntesis"	17
	3.1	Colección de finos de mineral, polvo de HEA, escama de	19
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	S TA	molino) y polvo de decapado.	
	3.2	Obtención de la mezcla de polvos de horno eléctrico,	20
Ž I		escama de molino, polvo de decapado, y finos de mineral	
		de hierro	
7	3.3	Diagrama de una planta de sinterizado para el proceso HY-	22
		RECOVERY	
	3.4	Reducción del sinter y remoción de metales pesados (Zn, Pb,	23
		Ca)	
Jľ	3.5	Esquema de proceso de Aceración en Horno Eléctrico de	_24 () \
		Arco	(
	3.6	Proceso de colada continua ALDE BIBLIOTECA	S 25
	4.1	Energía total de Gibbs en relación con la coordenada de	31
		reacción	
	5.1	Ejemplo de diagrama e flujo en ASPEN PLUS™	43
	5.2	Ejemplo de una corrida de otro proceso en el cual se	4 5
		alimenta etano y se produce etileno e hidrógeno.	
	6.1	Materia prima alimentada	49
	6.2	Cromatógrafo modelo Varian Saturn 3400 cx	49
	6.3.	Mezclador	50
	6. 4	Reactor utilizado para la sinterización de las mezclas	50

	6.5	Alimentación de la cama de sinterizado para protección de	51
		las barras de acero al carbono del reactor	
	6.6	Reactor de sinterizado, en el que se muestran las barras de	51
		acero al carbono.	
	6.7	Alimentación de la mezcla conteniendo micropelet, escama	52
		de laminación, finos de sinter, cal viva, coque fino y agua	
	6.8	Alimentación de la capa de coque	52
	6.9	Esquema de cama de sinterizado	53
	6.10	Esquema de colocación de los termopares	53
	6.11	Inicio de quema y termopar No.1	54
	6.12	Diagrama del equipo en planta piloto, para la realización	55
9	TALE	de las pruebas para obtención de perfiles de temperaturas	
\mathcal{M}	6.13	Extracción de sinter producido	55
	6.14	Sinter producido	56
	6.15	Diagrama de flujo del reactor de sinterización	60
烈	6.16	Ejemplo del resultado de la simulación en ASPEN PLUS™	61
A		de la formación del 2,3,7,8 TCDD a diferentes flujos de aire	
		saturado(600, 650, 800, 850 y 1000 Nm³/hr)	
	7.1	Cromatograma en el cual no se observa ningún compuesto	69
N	TVE	analizado (Tabla 7.1) TÓNOMA DE NUEVO L	EÓI
_ \	7.2	Espectro Infrarrojo de los finos de sinter,	70
	7.3	Espectro Infrarrojo de polvo de horno eléctrico de arco 🗀 🗀 S	7 1
	7.4	Perfil de temperatura de la primer prueba	73
	7.5	Esquema de la localización de los termopares tipo K, durante	73
		la realización de la primer prueba en la planta piloto	
	7.6	Perfil de temperatura de la segunda prueba	74
	7.7	Esquema de la localización de los termopares tipo K, durante	74
		la realización de la segunda prueba en la planta piloto	
	7.8	Perfil de temperatura de la tercer prueba	75
	7.9	Esquema de la localización de los termopares tipo K, durante	75
		la realización de la tercer prueba en la planta piloto	

	7.10	Perfil de temperatura de las tres pruebas	76
	7.11	Perfil de presión y temperatura medidos en la caja de viento	76
		del equipo utilizado en planta piloto	
	7.12	Ejemplo del resultado de la simulación de la formación de	79
		dioxinas con las condiciones (flujo de aire, 6600 Nm³/hr de	
		aire) que se tienen en la planta a escala industrial.	
	7.13	Resultados de la simulación de la formación del 2,3,7,8 TCDF	82
		disminuyendo el flujo de aire introducido al sistema de 950 a	
		1,350 Nm³/hr.	
	7.14	Resultados de la simulación de la formación del 1,2,3,7,8	83
	TT	PCDF, disminuyendo el flujo de aire introducido al sistema de	
(ALE	950 a 1,350 Nm³/hr.	
	7.15	Resultados de la simulación de la formación del 2,3,7,8 TCDD	84
		disminuyendo el flujo de aire introducido al sistema de 950 a	
	5	1,350 Nm³/hr	
	7.16	Resultados de la simulación de la formación del 1,2,3,7,8	85
V		PCDD, disminuyendo el flujo de aire introducido al sistema de	
		950 a 1,350 Nm³/hr.	
	7.17	Resultados de la simulación de la formación del	86
N		1,2,3,4,6,7,8,9 OCDF teniendo un flujo de aire introducido al	FÓN
T.		sistema de 950 a 1,350 Nm³/hr	
	7.18	Resultados de la simulación de la formación del	87
		1,2,3,4,6,7,8,9 OCDD teniendo un flujo de aire introducido al	
		sistema de 950 a 1,350 Nm³/hr.	
	7.19	Resultados de la simulación de la formación de los PCDFs a	88
		250°C, teniendo un flujo de aire introducido al sistema de 950	
		a 1,350 Nm³/hr	
	7.20	Resultados de la simulación de lá formación de los PCDDs a	89
		250°C, teniendo un flujo de aire introducido al sistema de 950	
		a 1,350 Nm³/hr.	
	7.21	Resultados de la simulación de la formación de los PCDDs a	90

		370 C, lettiet do un tiajo de alle littloducido di sistema de 900	
		a 1,350 Nm³/hr.	
	7.22	Resultados de la simulación de la formación de los PCDFs a	91
		370°C, teniendo un flujo de aire introducido al sistema de 950	
		a 1,350 Nm³/hr.	
	7.23	Resultados de la simulación de la formación de CO γ CO $_2$ a	9 2
		370°C, teniendo flujo de aire introducido al sistema de 950 a	
		1,350 Nm³/hr.	
	7.24	Resultados de la simulación de la formación de los PCDFs a	93
		800°C, teniendo un flujo de aire introducido al sistema de 950	
	TTO	a 1,350 Nm³/hr.	
	7.25	Resultados de la simulación de la formación de los PCDDs a	94
5/1	1 ALLI	800°C, teniendo un flujo de aire introducido al sistema de 950	
		a 1,350 Nm³/hr.	
	7.26	Resultados de la simulación de la formación de los PCDD/Fs	95
		(17 compuestos analizados) teniendo un flujo de elire	
A		introducído al sistema de 950 Nm³/hr.	
	7.27	Resultados de la simulación de la formación de los PCDD/Fs	96
		(17 compuestos analizados) teniendo un flujo de aire	
N	TVF	introducido al sistema de 1,350 Nm³/hr.	EÓN
Τ.	7.28	Resultados de la simulación de la formación de los PCDFs a	98
	DII	250°C, variando el flujo de gas cloro (Cl ₂) introducido al	
		sistema de 0.35 a 1.40 kmol//hr.	
	7.29	Resultados de la simulación de la formación de los PCDDs a	99
		250°C, variando el flujo de gas cloro (Cl ₂) introducido al	
		sistema de 0,35 a 1,40 kmol/hr.	
	7.30	Resultados de la simulación de la formación de los PCDFs a	100
		370°C, variando el flujo de gas cloro (Cl₂) introducido al	
		sistema de 0.35 a 1.40 kmol/hr.	
	7.31	Resultados de la simulación de la formación de los PCDDs a	101
		370° C, variando el flujo de gas cloro (Cl ₂) introducido al	

	sistema de 0.35 a 1.40 kmol/hr.	
7.32	Resultados de la simulación de la formación de los PCDFs a	102
	550°C, variando el flujo de gas cloro (Cl ₂) introducido al	
	sistema de 0.35 a 1.40 kmol/hr.	
7.33	Resultados de la simulación de la formación de los PCDDs a	103
	550°C, variando el flujo de gas cloro (Cl ₂) introducido al	
	sistema de 0.35 a 1.40 kmol/hr.	
7.34	Resultados de la simulación de la formación de los PCDFs a	104
	610°C, variando el flujo de gas cloro (Cl ₂) introducido al	
	sistema de 0.35 a 1.40 kmol/hr.	
7.35	Resultados de la simulación de la formación de los PCDDs a	105
TAL	610°C, variando el flujo de gas cloro (Cl ₂) introducido al	
	sistema de 0.35 a 1.40 kmol/hr.	

UANL

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

ANEXO A

Propiedades termodinámicas para dioxinas (PCDDs y PCDFs) determinadas por el método de diferencias por Olga V.Dorofeeva

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN
DIRECCIÓN GENERAL DE BIBLIOTECAS

				UN			VERSID						
Propiedade	es termodin	Propiedades termodinámicas para PC		DDs determinadas por el método de	das por e	M métoc	do de d	diferencias por Olga V.Dorofeeva ⁽⁴⁴⁾	as por C	lga V.D	orofeew	Q ⁽⁴⁴⁾	
SUST TUYENTE	SUSTANCIA	Ŧ		E				Cp-J/K mol	s mol				
		(298)kJ/mol)	(298)(J/K mol)	298 15 K	300 K	400 K	500 °K	Y₀ 009	% 008	3° 000 I	1200 K	1 400 K	1500 K
	00	-592	407 38	180.044	181 185	239,06	287.106	325 389	380 39	417.066	442 65	461.051	468 326
	MCDD	89.8	436 715	195 434	176 571	253 763	300.698	337 819	390 643	425 437	449,475	466 645	473.406
2	MCDD	-89.8	436 715	195 434	196571	253.763	300 698	337 819	390.643	425.437	449,475	466.645	473.406
12	DCDD	-1116	464.72	210,9319	212 06281	268 49234	314.29907	268 49234 314.29907 350.27181 400 92244 433 78559 456 28196 472 22456 478 47302	100 92244	433 78559	156 28 196	472 22456	478 47302
13	DCDD	1.61	466 037627	66 037627 210 99536 212.12509 268 52826 314 31798	212.12509	268 52826	314 31798	350 26463 400 90404 433.81335 456 30396 472 24197 478 48869	400 90404	433.81335	156 30396	472 24197	478 48869
7	DCDD	119.3		466 55427 211.57825 212 70564 268 96888 314 64128 350.50702 401.05288 433 91417	212 70564 2	88896 89	314 64128	350.50702	101,05288	433 91417	456.3767	456.3767 472 29705 478 53718	478 53718
1.6	DCDD	120.4	466 05	210 824	211.957	268.466	31429	350 249	400.896	433 808	456 3	472.239	478 486
17	DCDD	120.4	466 05	210 824	211 957	268 466	314 29	350 249	400 896	433 808	456 3	472 239	478.485
1.8	0000	-120 4	466 05	210 824	211.957	268.466	314 29	350 249	400 396	433 808	456 3	472 239	478 486
19	DCDD	120 4	466 05	210824	211 957	268 466	314 29	350 249	400 896	433.808	456.3	472 239	478 486
23	. acoa	1116	464 72	210 9319	212 06281 268 49234		314 29907	350 27 181 4	400 92244 433 78559	133 78559	456 28196 472,22456 478,47302	472.22456	478.47302
27	DCDD	120.4	466 05	210 824	211.957	268.466	31429	350 249	400 896	433 808	456 3	472 239	478,480
2.8	DCDD	-1204	W466 05	210.824	211957	268 466	314 29	350.249	400.896	433.808	456.3	472 239	478 486
1.2,3	Tin CDO	-138		492 9012 226 72984 227.85035 283.36321	227.85035.2	183.36321	327 94027	327 94027 362 67978 41: 11769 442 14639 463 09678 477 80944 483 54465	111 11769	442 14639	463 09678	477 80944	183 54465
124	Ir CDD	149 9		494 3775 227.13463 228 25352 283 67751	228 25352 2		328 1856	328 1856 362 87478 411.24782 442 23847 463 16495 477 86154 483 59089	111.24782	442 23847	163 16495	477 86154	483 59089
1.26	Tri CDD	142.2	496 715		226.1061 227 23719 283 14266 327 87293 362 65619 411 12256 442 20141 463 14304 477 84744 483 57898	383 14266	327 87293	362 65619	411 12256	142 20141	463 14304	477 84744	483 57898
127	In CDD	-142.2	496.715		226 1061 227 23719 283 14266 327 87293 362 65619 411 12256 442 20141	283 14266 3	327 87293	362 65619	111 12256	442 20141	463 14304 477 84744 483 57898	477 84744	183 57898
1 2,8	Tri-CDD	-142.2	496715		226 1061 227 23719 283 14266 327.87293 362 65619 411 12256 442 20141 463 14304 477 84744 483 57898	983 14266	327.87293	362 65619	111 12256	442 20141	163 14304	477 84744	183 57898
12,9	Tri COD	142.2	496.715	31 L	227 23719 283 14266 327.87293 362.65619 411.12256 442 20141 463.14304 477 84744 483 57898	83 14266	327.87293	362.65619	111,12256	142 20141	163.14304	477 84744	183 57898
1,3 6	Tr CDD	146 7	4	95.372627 226 38536 227 51109 283 23126 327 90998 362 69463 411 15704 442 18435 463 12896 477 83597 483 56869	227 51109 2	283 23126	327 90998	362 69463	111 15704	442 18435	163 12896	477 83597	483 56869
1.3.7	Jin CDD	146 7		495 372627 226 38536 227 51109 283 23126 327 90998 362 69463 411 15704 442 18435 463 12896 477 83597 483 56869	227 51109 2	83.23126	327 90998	362 69463	111 15704	442 18435	163 12896	477 83597	183 56860

Confinuación	ión			UNI		WERSI	RSID						
SUSTITUYENTE	SUSTANCIA	DH.						Cp=J/ºk mol	*K mol				
3.00		(298)kJ/mol)	(298)(J/K mol) 2	298 15 °K	300 % √	400 °K	× 003	\$ 000 X	¥, 008	1000 K	1200 °K	1400°K	1500 °K
1 3,8	Tri-CDD	.146.7	495 372627 2	26.38536 2	372627 226.38536 227 51109 283 23126 327.90998 362 69463	3 23126 3.	27.90998	362 69463	411 15704	442 18435	411 15704 442 18435 463 12896	477 83597	483 56869
130	Til-CDD	146.7	495.372627 2	26.38536 22	372627 226.38536 227 51109 283 23126 327 90998 362 69463 411 15704 442 18435 463 12896 477 83597 483 56869	3 23126 3:	27,90998	362 69463	411 15704	442 18435	463 12896	477 83597	483 56869
1 4,6	Tri CDD	6 671	495 88927 2	5 88927 226 96825 228 09164	28 09164 28.	3 67188 3.	28.23328	362 93702	283 67188 328 23328 362 93702 411 30588 442 28517	442 28517	463 2017	463 2017 477 89105 483 61718	483 61718
1 4.7	Tri-CDD	-1499	495 88927 226 96825 228 09164 283 67188 328 23328 362 93702 411,30588 442 28517	26.96825 2.	28 09164 28	3.67188 3.	28 23328	362 93 702	411,30588	442 28517		463.2017,477 89105	483 61718
1,7,8	/II-CDD	-1422	494 055	226 3219 227 44881	27 44881 28	3.19534 3	27 89107	362 70181	411 17544	442 15659	283 19534 327 89107 362 70181 411 17544 442 15659 463 10696 477 81856 483	477 81856	483 55302
2 3,7	Tri CDD	142.2	494 055	226 3219 23	226 3219 227 44881 283 19534 327 89107 362 70181 411 17544 442 15659 463 10696 477 81856 483 55302	3.19534 3.	27 89107	362 70181	411.17544	442 15659	463 10696	477 81856	483 55302
1234	tcpp	1672	521 2862	243 0044	244 1108 298 54553 341 80868	8 54553 3	41 80868	375 2804	421,44869	450 56028	375 2804 421.44869 450 56028 469 94831 483 42127 488 63985	483 42127	488 63985
1 2,3,7	TC0D	168 6	522 2362 2	42 1984 24	22 2362 242 11984 243 23635 298 06621 341 53227 375 10978 421 37069 450 51739 469 92178 483.40344	8 06621 3	41 53227	375 10978	421 37069	450 51739	469 92178	483.40344	488 62465
1,3 6,8	rcop	181 6	524 72	241 604	242 729	297 872	341 474	375 109	421.402	450 55	469 95	483 427	488 646
1378	ICOD	1771	523 402373 2	41.54054 24	402373 241.54054 242 66672 297 83608 341 45509	7 83608 3.	41 45509	375 11618	421 4204	421 4204 450 52224	469.928	84	48
2378	1 00	1816	524 72	241 604	242 729	297872	341 474	375 09	42 402	450 55	469 95	483 427	488 546
1236	TCDD	168 6	522 2362 2	42.11984.24	22 2362 242 11984 243 23635 298 06621 341 53227 375 10978 421 37069 450.51739 469.92178 483 40344 488 62465	8 06621 3.	41 53227	375 10938	421 37069	450.51739	469.92178	483 40344	488 62465
1,238	TCDD	3 891.	ισ	42 11984 2	22 2362 242 11984 243 23635 298 06621 341 53227 375 10978 421 37069 450 51739 469 92178 483 40344 488 62465	8.06621 3.	41 53227	375.10978	421 37069	450 51 739	469 92178	483 40344	488 62465
1239	ICDD	.168 6	ام ر	42 11984 2	22 2362 242 11984 243 23635 298 06621 341 53227 375 10978 421 37069 450 51739 469 92178 483 40344 488 62465	8 06621 3	41 53227	375 10978	421 37069	450 51739	469 92178	483 40344	488 62465
1 2,4,6	TCDD	-180.5	523 7125 2	142 52463 24	23 7125 242 52463 243 63952 298 38051		341 7776	375 30478	421,50082	450 60947	341 7776 375 30478 421,50082 450 60947 469,98995 483 45554 488 67089	483 45554	488 67089
1 2,4,7	TCDD	-180 5	523 7125 2	42 52463 24	23 7125 242 52463 243 63952 298 38051	1	341 7776	375.30478	421 50082	450 60947	341 7776 375 30478 421 50082 450 60947 469 98995 483 45554 488 67089	483 45554	488.67089
1,2,4,8	1CDD	180.5	523 7125 2	42 52463 24	523 7125 242 52463 243 53952 298 38051		341 7776	375 30478	421,50082	450 60947	341 7776 375 30478 421 50082 450 60947 469 98995 483 45554 488 67089	483 45554	488 67089
12,49	TCDD	.180.5	523 7125 2	42 52463 24	23 7125 242 52463 243 63952 298 38051	- 0	341 7776	375 30478	421 50082	450 60947	341 7776 375 30478 421 50082 450 60947 469 98995 483 45554	483 45554	488 67089
126.7	icoo	1816	524.72	241 604	242 729	297 872	341 474	375 109	421.402	450 55	469.95	483 427	488 646
1,2 6,8	TCDD	1.861	526 037627 2	21 66746 2	037627 241 66746 242 79128 297 90792 341,49291 375 10182	7 90792 3.	41,49291	375.10182		421 3836 450.57776		469 972 483 4441 488 66167	488 66167
126,9	1000	1893	526 55427 2	42 25035 24	6 55427 242 25035 243 37183 298 34854 341.81521	8 34854 3.	41.81621	375.34421	421.53244	450 67858	375.34421 421.53244 450 67858 470.04474 483 49949	483 49949	488 71016
1278	1000	810	524 72	241 604	242 729	297 672	341 474	375 109	421 402	450 55	469 95	483 427	488 646
				Ì						200			ı,

Continuación	ión			UNI		ANNERSI	RSID						
SUSTITUYENTE	SUSTANCIA	Ä	S	V				Cp=J/*K mol	(mol				
		(298)kJ/mol)	(298)(J/ºK mol)	298 15 K	300 °K	400 °K	500 K	у 009	800 ×	1000 K	1200 %	1400 K	1500°K
1279	TCDD	1861	526.037627	6.037627 241 66746	242 79128 2	297 90792 3	1991	375 10182	421 3836 450 57776	450 57776	469 972	Ξ	488 66167
1 2,8 9	TCDD	-1816	\$24 72	241.504	242 729	297 872	341 474	375.109	421 402	450 55			488 646
1,369	fCDD	1848	525 236643	5 236643 242 18589 243 30955 298 31262 341 79731 375 35139 421 55084 450 65082 470.02274	243 30955 2	98.31262 3	141 79731	375 35139 4	121 55084	450.65082	470.02274	483 48208	488,69449
137.9	TCDD	.181 6	624,72	241 504	242 729	297 872	341.474	375 109	421 402	450 55	469 95	483 427	488 646
146,9	TCDD	. 816	524 72	241 504	242 729	297 872	341 474	375 109	421 402	450.55	469.95	483.427	488 646
1478	TCDD	-173.9	522.88573	240 95765	242 08617 297.39546 341 13179	97.39546 3		374 87379 4	121 27156	450 42 142	421 27156 450 42142 469 85526 483 35451		488 58184
123,46	Penta CDD	197.8	550 6212	258 3944	259.4968 313 24853 355 40068	113 24853 3	155 40068	387.7104	131 70169	387,7104 431 70169 458 93128 476 77331	476 77331	489 01527 493.71985	493.71985
123.47	Penta-CDD	.197.8	550 6212	258 3944	259 4968 3	259 4968 313.24853 355 40068	155 40068	387 7104 431 70169 458.93128 476.77331 489 01527 493	131 70169	458.93128	476.77331	489 01527	193 71985
123,67	Penta CDD	2164	555 2088	555 2088 256 58506 257 71346 312 40713	257 71346 3		355 0168	355 0168 387 56103 431 71275	131 71275	458.9312	476 78518	458.9312 476 78518 489 03012 493 73437	493 73437
12368	Penta-CDD	-220 9	556 526427	556 526427 256 64952 257 77574 312 44305 355 03571 387 56385 431 69435 458.95896 476.80718 489 04753 493 75004	257 77574 3	112.44305 3	155 03571	387 55385 4	131 69435	458,95896	476.80718	489 04753	493 75004
2.369	Penta CDD	-224 1	557.04307	557.04307 257.23241 258 35629 312 88367 355 35901 387 79624 431.84319 459 05978 476 87992 489 10261	258 35629 3	112 88367 3	355 35901	387 79624 4	31.84319	459 05978	476 87992	489 10261	493 79853
123 8	Pe to DD	2164	555 2 88	555 2 88 256 58606 257 71346 3	257 71346 3	2 40713	355 0 68	355 0 68 387 56103 431 71275		458 9312	458 9312 476 785 8 489 03012		493 734 7
123,7,9	Penta CDD	-220 9	556 526427	556 526427 256 64952 257 77574 312 44305 355 03571	257 77574 3	112.44305 3	155 03571	387 55385 431 69435 458 95896 476 80718 489 04753 493 75004	131 69435	458 95896	475 80718	489 04753	493 75004
123,89	Penta CDD	2164	555 2088	555 2088 256 58606 257 71346 3 2 40713	257 71346 3		355.0168	387 56103 431 71275	131 71275	458 93121	476 78518	458 9312 476 78518 489 03012 493 73437	193 73437
1,2,4 6 7	Penta CDD	204 5	553 7325	553 7325 256 18127 257 31029 312 09283 354 77147 387 36603 431 58262 458 83912 476 71701 488 97802 493 68813	257 31029 3	112 09283	154 77147	387 36603, 4	131 58262	458.83912	476 71701	488.97802	493 68813
1,2,4,6,8	Pento-CDD	-209	555 050127	555 050127 256 24473 257 37257 312 12875 354 79038 387 35885 431 56421 458 86688 476 73901 488 99543 493 70379	257 37257 3	112 12875 3	154 79038	387.35885 4	31 56421	458 86688	476 73901	488 99543	493 70379
12469	Penta CDD	2 2 2	555 56677	55 56677 256 82762 257 95312 312 56937 355 11368	257 95312 3	112 56937 3	355 11368	387 60124 431 7 306	131 7 306		47681175	458.9677 476 81175 489.05051 493 75229	493 75229
12,4,78	Penta CDD	204.5	553 7325	553 7325 256,18127 257 31029 312,09283 354 77147	257 31029 3	112,09283	154 77147	387 36603 431 58262 458 83912 476 71701	131 58262	458 83912	476 71701	488 97802 493 68813	493 68813
1,24,79	Penta CDD	209	555.050127	5.050127 256.24473 257.37257 312 12875 354 79038 387 35885 431 56421 458 86688 476 73931 488 99543 493 70379	257.37257 3	112 12875 3	354 79038	387 35885 4	131 56421	458 86688	476 73931	488 99543	493 70379
2.4,89	Penta CDD	-204 5	553.7325	563 7325 256 18127 257 31029 312 09283 354 77147 387 36603 431 58262 458 83912 476 71701 488 97802 493 68813	257 31029 3	112 09283 \$	154 77147	387 36603 4	131 58262	458 83912	476,71701	488 97802	493 68813
1 2,3,4,6,7	Hexa-CDD	248.4	585 4938	27.	0915 272 22501 326 63081 368 33239 399 82041 441 88775 467 25931 483 68365 494 60629 498 79917	126 63081 3	368 33239	399 82041 4	41 88775	467 25931	483.58365	494 60629	198 79917
12,34,68	Неха СОВ	252 9	586 811427	6 811427 271-15496 272 28729 326 66673	272 28729 3		368 3513	368 3513 399 81323 441 86934 467 28707 483 60565	141 86934	467 28707	483 60565	494 6237 498 81483	498 31483
		SI SI		1								u .	

COntinuación SUSTITUYENTE SUSTANCIA DHF 12.3.4 &,9 Hexa CDD .256 1 2 3.4.7 8 Hexa CDD .242 8 12.3.6 8 9 Hexa CDD .254.7 12.3.6 8 9 Hexa CDD .242 8 12.4 6.7 9 Hexa CDD .242.8 2 4 6.8 9 Hexa CDD .242.8 2 4 6.8 9 Hexa CDD .242.8 2 2 4 6.8 9 Hexa CDD .242.8 2 3 4 6.7 8 Hexa CDD .242.8									
ENTE SUSTANCIA DHf (298)kJ/mol) Hexa CDD 248 4 Hexa CDD 242 8									
(298)kJ/mol) Hexa CDD -256 1 Hexa CDD 248 4 Hexa CDD 242 8 Hexa CDD 244				Al	Cp=J/ºK mol				
Hexa CDD	nol) (298)(J/ºK mol)	298 15 K 300 °K	°K 400 K	900 % 900g) K 800 K	1000 %	1200 K	1400 K	1500 ºK
Hexa CDD Hexa CDD Hexa CDD Hexa CDD Hexa CDC Hexa CDC Hexa CDC		587 32807 271 73785 272 86784 327 10735	5784 327 10735	368 6746 400 05562 442 01819	05562 442 018		467.3879,483.67839,494.67878,498.86333	494 67878	498 86333
Hexa CDD	249 4 585 4938	271 0915 272 22501 326 63081		368 33239 399 82 41 441 88775 467 2593	32 41 441 887	75 467 2593	483 58365 494 60629 498 79917	494 60629	498 79917
Нека СDD Нека СDD Нека СDD Нека-СDD Нека-СDD В Нерта С D	242 8 583 39	272 384 273 5	5 1 327 278	368 658 39	399 969, 441 908	18 467 292		4946 5	498 806
Hexa CDD Hexa-CDD Hexa-CDD Hexa-CDD Hexa-CDD		584 8663 272 78879 273 90417		327 5923 368 90333 40	400,164 442 03813 467.38408 483 66817	13 467.38408	483 66817	194 6671	494 6671 498.85224
Hexa CDD Hexa-CDD Hexa-CDD Hepta C D	242 8 583 39	272 384	273 501 327 278	368 658 39	399 969 441 908	18 467 292	483 6		498 806
Hexa-CDD Hexa-CDD Hepta C D	242.8 583 39	272.384	273 501 327 278	368 658 39	399.959 441.908	08 467,292	483.6	494 615	498.806
Hexa-CDD Hepta C D	242.8 583.39	272 384 273	273.501 327.278	368 658 39	399.969 441 908	18 467 292	483 6	494 615	498.806
Hepta C D	242 8 583.39	272 384	273 501 327 278	368.658 39	399 969 441 908	08 467 292	483 6	494 615	408 BUA
_		613 675 286 88944 288 01255 34	50168	381 97359 4 2	2 22838 452 0	452 083 475 620 2 490 39847 500 191	490 39847	500 191 7	က
1 2 3,4,6 7 9 Hepta-CDD 286 7	286 7 615.1513	287 29423 288 41572	572 341 81598	341 81598 382 21892 412 42338 452 21313 475 71219 490 46664 500 24327 503 91704	42338 452 213	13 475 71219	490 46664	500 24327	503 91 704
2 46 9 O DO 3 4	3 4 642 6	303 64 304 273		395 842 42	424 829 462 414	14 484 34	497 25	6	508 000

A DE NUEVO LEÓN

DE BIBLIOTECAS

The first Sustancia DH				2	SITTING	ueremmindads por el metodo de diferencias por Olga V. Dorofeeva ⁴⁴⁾	metoc	go de d	Iterencic	S por O	iga V.D	orofeew	Q(44)	
MCDF 24.697 MCDF 24.697 MCDF 24.697 MCDF 24.697 MCDF 24.697 MCDF 24.697 DCDF 24.697 DCDF 24.697 CDCDF 24.697 DCDF 24.697 Add 44 DCDF 24.697 DCDF 28.97 DCDF 5.903	SUSTITUMENTE	SUSTANCIA	È	S	V				Cp=1/	K mol				
MCDF 24.697 MCDF 24.697 MCDF 24.697 MCDF 24.697 MCDF 24.697 DCDF 28.97 DCDF 1.603 44 DCDF 5.903			(298)kJ/mol)		298 15 °K	300 %	400 %	200 °K	₩ 009	800 °K	7, 0001	1200 °K	1400°K	1500 °K
MCDF 24.697 MCDF 24.697 MCDF 24.697 MCDF 24.697 DCDF 24.697 DCDF 28.97 DCDF 28.97 DCDF 28.97 DCDF 28.97 DCDF 28.97 DCDF 28.93		Ö	55.297	381		164 751	220,833	267 5475		358 3659	394 1728	419.2091	437 249	444 3801
MCDF 24.697 MCDF 24.697 MCDF 24.697 DCDF 1.603 44 DCDF 5.903		MCDF	24.697	410 9356	179	180 137	235 530	281 1395		368.6189			442 843	449 4691
MCDF 24 697 MCDF 2897 DCDF -1 603 44 DCDF -5 903	2	MCDF	24.697		- 4	180 137	235 536	281.1395		368.6189	402 543B		442 843	449 4691
MCDF 24 697 DCDF -1 603 44 DCDF -5 903 5 903	9	MCDF	24.697			180 137	235.536	281 1395		368 6189	402.5438	426,0341	442.843	449 4691
DCDF -1 603 44 DCDF -5 903 4 DCDF -5 903 44 DCDF -5 903 5 903 ALI CDF -5 903 5 903	4	MCDF	24 697			180 137	235 536	281 1395		368 6189	402 5438	425 0341	442 843	449 4691
DCDF -1 603 44 DCDF -5 903 4 DCDF -5 903 4 DCDF -5 903 44 DCDF -5 903 42 DCDF -5 903 42 DCDF -5 903 42 DCDF -5 903 42 DCDF -5 903 5903 DCDF -5 903 5903	1.2	DCDF	2 897			195.62881	250 26534	294.74057		378 89834	410 89239	432 84106	448 42256 454 53612	454 53612
DCDF -5 903	11.3	DCDF	-1 603	7	194 60146	195 69109	250 30126	294.75948	329.67153	378 87994	410 92015	432 86306	448,43997	454 551 79
DCDF -5 903	7	DCDF	4 803	440 77487	195 18435	19627164	250 74188	295 08278	329 91392	379 02878	411 02097	432 9358	448 49505 454 60028	454.60028
DCDF 5.903 DCDF -5.903 All CDF -5.903	9	DCDF	-5 903		194		250.239	294 7315		378 8719	410.9148	432.8591	448 437	454 549
DCDF -5.903 All CDF -5.903	17	DCDF	5.903		194	. 1	250 239	294 7315	- 1	378 8719	4109148		448.437	454 5491
DCDF -5.903 DCDF 1 603 44 DCDF -5.903 All CDF -5.903	88	DCDF	-5 903		- 19	195 523	250 239	294 7315		378.8719	4109148	432.8591	448.437	454 5491
DCDF 2 897 DCDF -5 903 ALI CDF -5 903	1.9	DCDF	-5.903		- 40	195.523	250 239			378 8719	4109148	432 8591	448 437	454,5491
DCDF - 5 903 3 Tri CDF - 5 903	2.3	DCDF	2 897		194 538	195 62881	250 26534	294.74057	329,67871	378 89834	410 89239	432 84106	448 42256	454.53612
DCDF -5 903 ACDF -5 903 ACDF -5 903 ACDF -5 903	24	DCDF	1 603	4		195.69109	250 30126	294 75948	329 67153	378 87994	41092015	432 86306	448.43997	454 55179
DCDF -5.903 DCDF -5.903 DCDF -5.903 DCDF -5.903 DCDF -5.903 ATILICDF -5.903	2,6	DCDF	-5 903			195 523	250 239	294 7315		378.8719	410 9148	432 8591	448 437	454 5491
DCDF -5.903 DCDF -5.903 DCDF -5.903 1/I CDF -5.903	27	DCDF	-5 903			195.523	250.239	294 7315		378 8719	4109148	432 8591	448.437	454 5491
OCDF 2 697 DCDF -5 903 DCDF -5 903 DCDF -5 903 All CDF 23 503	2,8	DCDF	-5.903	440 2706	76	195 523	250 239	294 7315		378 8719	4109148	432.8591	448 437	454 5491
DCDF -5 903 DCDF 5 903 3 Trl CDF 23 503	3.4	DCDF	2 697		194 538	195.62881	250,26534	294.74057	329 67871	378.89834	410 89239	432 84106	448 42256	454.535.2
DCDF 5 903	3.6	DCDF	-5.903			195 523	250 239	294.7315	329 6559	378 8719	410.9148	432 8591	448.437	454.5491
3 Trl CDF 23.503	3,7	DCOF	-5 903	440 2706	194		250 23%	294 7315		378.8719	4109148	432 8591	448 437	454 549
Iti CDF 23.503	4,6	DCDF	5 903			195.523,	250 239	294 7315		378 8719	410 9148	432 8591	448 437	454 5491
	123	Tel CDF	23 503		210 33594	211 41635	265 13621	308.38177	342.08668	389 09359	419 25319	439 65588	454 00744	450 AN 75

- (- 	4			UNI		VINTERSI	RSID						
	5 _	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	D,	Y]					- J.				
SUSTITUYENTE	SUSTANCIA	DHf 12981kJ/mol	s (298)[J/*K mol)	298 15 K	300 %	400 °K	500 °K	600 K	800 K	1,000°K	1200 K	1400°K	1500 K
12.4	1ri-CDF	-35 403	468.5981	21074073	211.81952 265.45051	265,45051	308 6271	342 28168	389 22372	419 34527	439 72405	454 05954	459.65399
126	Ir-CDF	-27.703	468.2756	209 928		211 01481 264 96834	308 33257	308 33257 342 10871 389 15134	389 15134		419 26339 439 66606 454 01656 459 61612	454 01656	459.61612
1.2.7	14 CO.	27.703	468 2756	4	209 928 211 01481 264.96834 308 33257 342 10871 389 15134 419 26339 439 66506 454 01656	264 96834	308 33257	342 10871	389 15134	419 26339	439.66606	454 01656	459 61612
1 2.8	m-cDf	27.703	468 2756	4	209.928 211.01481 264 96834 308 33257	264 96834	308 33257	342 10871	389.15134		419.26339 439 66606	454.01656	459 61612
1.2.9	In-CDF	27 703	468.2756	209 928	211.01481	264 96834	308.33257	308.33257 342 10871 389.15134	369.15134	419 26339	419 26339 439 66606 454.01656 459	454.01656	459 61612
3.4	In-CDF	35 403	468.5981	210 74073		211 81952 265 45051	308.6271	342.28168	389 22372	419 34527	308.6271 342.28168 389 22372 419 34527 439 72405 454.05954	454.05954	459 65399
1.3.6	TI CDF	-32.203	469 693227	209.99146	209 99146 211 07709 265 00426 308 35148 342 10153 389 13294 419 29115 439 68806 454 03397	265,00426	308.35148	342 10153	389.13294	419 29115	439,68806	454 03397	459 631 79
1.3.7	Tri-CDF	-32.203	469 593227	209,99146		211 07709 265 00426 308 35148	308 35148	342 10153	389 13294	419 29115	389 13294 419 29115 439 68806 454 03397 459	454 03397	459 63179
138		32 203	469 593227	209 99146	21107709	211 07709 265 00426 308.35148 342 10153 389.13294 419.291	308.35148	342 10153	389.13294		5 439 68806 454 03397	454 03397	459.63179
3.39	Tri CDF	32 203	469 593227	209.99146	209 99146 211 07709 265 00426 308 35148	265 00426	308 35148	342 10153	389 13294	389 13294 419 29115		439,68806 454 03397	459 631 79
146	I CDF	35.403	470 10987	210.57435		211 65764 265 44488 308,67478	308,67478	342 34392	389 281 78	419,39197	439 7608	454.08905	439 7608 454.08905 459 68028
1 4 7		35 403	470 10987		210 57435 211 65764 265 44488 308 67478 342.34392	265 44488	308 67478	342.34392	389 281 78	389 281 78 419 39197		439.7608 454 08905	459 68028
1.4.8	Iri CDF	35.403	470,10987	210.57435	210.57435 211.65764 265.44488 308 67478 342 34392 389.28178	265,44488	308 67478	342 34392	389 281 78	419.39197	439 7608	454 08905	459 68028
1,4 9	Ir CDF	-35,403	470 10987	210 57435	470 10987 210 57435 211 65764 265 44488 308 67478 342 34392 389 28178	265 44488	308 67478	342 34392	389 28178	419 39197	439 7608	454.08905	439 7608 454.08905 459.68028
1,6,7	Tri CDF	-27 703	468 2756	- 1	209.928 211.01481	264 96834	308 33257	342 10871	389 15134	419.26339	264 96834 308 33257 342 10871 389 15134 419 26339 439 66606 454 01656	454 01656	459 61612
89 [Tricos	-32,203	469.593227		209 99146 211 07709 265 00426 308,35148 342 10163	265 00426	308,35148	342 10153	389 13294		419 29115 439 68806	454 03397	459 63179
α.	T CDF	27 703	468 2756	- 7	209.928 211.01481 264 96834	264 96834	308 33257		342 10871 389 15134	419 26339	419 26339 439 66606 454.01656 459 61612	454.01656	459 61612
23.4	in CDF	.23 503	467 1218	210 33594	211 41635	865,13621	308.38177	342 08658	389,09359	419 25319	342 08668 389,09359 419 25319 439 65588 454 00744 459	454 00744	459 60775
0.36	Ir CDF	.27.703	468.2756		209 928 211 01481 264 96834 308 33257 342 10871 389 15134 419 26339 439 66606 454 01656 459	264 96834	308.33257	342.10871	389 15134	419,26339	439.66606	454 01656	459 61612
5 3 7	Tri-CDF	-27 703	468 2756		209 928 211 01481 264.96834 308 33257 342.10871	264.96834	308 33257	342,10871	389 15134	419 26339	389 15134 419 26339 439,66606 454 01656	454 01656	459.61612
0 2 B	Ti-CDF	-27,703	468.2756	209 928	211.01481	264 96834	308 33257	342 10871	389.15134	419.26339	264 96834 308 33257 342 10871 389.15134 419.26339 439 66606 455.01656 459.61672	454.01656	459 61612
246	F. C.	-32 203	469 593227		209,99146 211 07709 265 00426 308 35148 342 10153 389 13294 419.29115 439 68806 454 03397 459 63179	265 00426	308 35148	342 10153	389 13294	419.29115	439 68806	454 03397	459.63179
0,4,2	50						100	į.					

Continuación	ión			UNI		H	VIVINERSID						
SUSTITUYENTE	SUSTANCIA	JHO	Ds	VI				Cp=J/ºK mo	k mol			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	((298)kJ/mot)	(298)(J/ ³ K mol)	298 15 °K	300 °K 4	400 °K	500 °K	У ₀ 009	800 °K	1000 °K	1200 °K	1400°K	1500 %
2,4 7	Th CDF	-32,203	469,593227	209 99146	469 593227 209 99146 211 07709 265 00426		308 35148	342 10153 389.13294		419 29115	439 68806	454 03397	459 63179
2,4,8	In-CDF	-32.203	469,593227	209.99146 211.07709		265 00426 308 35148	08 35148	342 10153	389 13294	41929115	389 13294 419 29115 439 68806 454 03397		459,63179
2,6 7	In-CDF	27.703	468 2756	209 928	209 928 211.01481 264 96834		308.33257	342 10871	389 15134	419.26339	439 66606	389 15134 419 26339 439 66606 454 01656 459 61612	459 61612
3,4,6	M-CDF	-27 703	468 2756	209.928	209 928 211 01481 264 96834 308.33257 342 10871	4 96834 3	08.33257	342 10871	389,15134	419 26339	419 26339 439 66606 454 01656		459.61612
3.4.7	TH-CDF	.27 703	468.2756	209 928	209 928 211.01481 26	264 96834 308 33257	08.33257	342.10871	389 15134	419 26339	342 10871 389 15134 419 26339 439 66606 454.01656	454.01056	459 61612
1,2,3,4	ICDF	-52.703	495 5068	226 6105	227 6768 280 31853		322 25018	354 6873	399 42459	427,66708	354 6873 399 42459 427.66708 446,50741 459.61927	459.61927	464.70295
1.2.3 6	ICDF	-54 103	496.4568	225.72594	496.4568 225.72594 226.80235 279 83921		321 97377	354 51668	399 34659	427 62419	399 34659 427 62419 446 48088	459.50144	464 68775
12,3,7	TCDF	54 103	496 4568	225 72594	496 4568 225 72594 226 80235 279 83921		21 97377	354 51668	399 34659	427 62419	321 97377 354 51668 399 34659 427 62419 446.4808B	459 60144	464 68775
1,23,8	TCDF	-54 103	496 4568	225 72594 :	225 72594 226 80235 279 83921		. 77879.12	354 51668	399 34659	427.62419	321.97377 354 51668 399 34659 427.62419 446 48088 459.60144		464 68775
1239	TCDF	-54 103	496,4568	225.72594	225.72594 226 80235 279.83921		321.97377	354,51668	354,51668 399 34659 427,62419	427.62419	446 48088	459 60144	464 68775
1,2,4,6	7CDF	-66 003	497 9331	226 13073	7 9331 226 13073 227 20552 280 15351	1	322.2191	354 71168	399 47672	427 71627	399 47672 427 71627 446.54905 459 65354	459 65354	464 73399
12.47	TCDF	66 003	497,9331	226.13073	226.13073 227 20552 280 15351		322 2191	354 71168	399 47672	427 71627	322 2191 354 71168 399 47672 427 71627 446 54905 459 65354	459 65354	464 73399
12,48	TCDF	-66.003	497 9331	226 13073	226 13073 227 20552 280 15351		322 2191	322 2191 354 71168	399.47672	427 71627	446.54905	399.47672 427 71627 446.54905 459 65354 464 73399	464 73399
12,4,9	TCDF	-66 003	497 9331	226 13073	227 20552 28	280 15351	322 2191	354 71168	399,47672	427.71627	446.54905	459,65354	464.73399
1,2,6 7	īcor	67.103	498 9406	225,2101	226.295	279 645	321,9155	354 5159	399.3779	427 6568	446,5091	459 625	464 7091
1,2,68	TCDF	71.603	500.258227	225.27356	225.27355 226.35728 279.68092	9.68092 3	321.93441 354.50872	354.50872	399,3595	427.68456		446 5311 459 64241	464 72477
1 2,6,9	TCDF	-74 803	500 77487	225.85645	225.85645 226,93783 280.12154 322.25771	0.12154 3		354 75111	399 50834	427.78538	446 60384	446 60384 459 69749	464 77326
12,7,8	TCDF	-67 103	498 9406	225 2101	226.295	279.645	321 9155	354 5159	399.3779	427 6568	446 5091	459 625	464 7091
1,2,7,9	1CDF	71 603	500.258227	225 27356	226 35728 27	279.68092 3	321 93441	354,50872	399 3595	427.68456	446 5311	459 64241	464.72477
12.89	TCDF	-67 103	498 9406	225 2101	226 295	279 645	321 9155	354.5159	399.3779	427 6568	446 5091	459 625	464.7091
1,3,4 6	TCDF	-66.003	497 9331	226 13073	226 13073 227 20552 280 15351		322 2191	354 71168	399 47672	427.71627	427.71627 446 54905 459 65354		464 73399
1,3,4,7	TCDF	66,003	497 9331	226 13073 227	227 20552 280 15351	_	322.2191	354 71168	354 71168 399,47672 427	427 71627	71627 446 54905	459 65354	464 73399
)									

Continuación	ón		-	UNI		TWERSI	SRSIL						*
SUST TUYENTE	SUSTANCIA	占	D J	/E				Cp−J/ºK mo	N mol				
		(298)kJ/mo)	(298)(3/k mol)	298 15 °K	300 ×	400 K	500 K	¥	800°×	1000 K	1200 K	1400°K	1500°K
1,3 4.8	TCDF	-66 003		226 13073	227 20552 280 15351	280.15351	322.2191	354 71168	399 47672	427 71627	446.54905	354 71168 399 47672 427 71627 446.54905 459 65354 464 73399	464 73399
134,9	7CDF	-66 003	497 9331	226 13073	227 20552	280.15351	322 2191	322 2191 354,71168	399 47672	427.71627	427,71627 446 54905	459 65354	464.73399
1,3 6,7	TCDF	-62.603	۵	225 14664	497 622973 223 14664 226 23272 279 60908 321.89659 354.52308	279 60908	321.89659	354,52308	399 3963	427 62904	445 4871	459 60759	464 69343
13,68	TCDF	67 103	498 9406	225 2101	226.295	279.645	321,9155	354 5159	399 3779	427 6568	446 5091	459 625	464.7091
136,9	TCDF	-70 303	499 457243	225,79299	225,79299 226 87555 260 08562 322 23881 354 75829	280 08562	322 23881			427 75762	446 58184	399.52674 427 75762 446 58184 459.68008	464.75759
1,378	TCDF	-62 603	497.622973	225 14664	225 1 4664 226 23272 279 60908 321 89659 354 52308	279 60908	321 89659	354 52308	399 3963	399 3963 427 62904	445 4871	459 60759 464 69343	464 69343
1,3,79	TCDF	67 103	498 9406	225 2101	226.295	279 645	321 9155	354 5159	399 3779	427 6568	446 5091	459 625	464.7091
1 4,6,7	TCDF	-59 403	497 10633	497 10633 224 56375 225 65217	225 65217	279 16846	321 57329	354 28069	399 24746	427 52822	446.41436	279 16846 321 57329 354 28069 399 24746 427 52822 446.41436 459 55251	464 64494
1 4 6,8	TCDF	-63 903	498 423957	22/ 62727	225 71445 279 20438	279 20438	321 5922	354 27351	399 22906	399 22906 427 55598 446.43636 459.56992	446,43636		464 66061
1469	rcof	-67 103	498 9406	225 2101	226 295	279 645	321 9155	354 5159	399 3779	427.6568	446.5091	459.625	464 7091
1,4,7,8	TCDF	59 403		497 10633 224 56375	225 65217 279		321 57329	354 28069	399 24746	427 52822	446 41436	6846 321 57329 354 28069 399 24746 427 52822 446 41436 459 55251 464 64494	464 64494
879	TCDF .	62 803	498 928227	225 38146	226 46309	279 70726	321 94348	226 46309 279 70726 321 94348 354 53153 399 38594 427 66215 446 51306 459 62797	399 38594	427 66215	446 51306		464 71179
234,6	TCDF	-62 803	V. 17.0	225 38146	498 928227 225 38146 226 46309 279 70726 321 94348 354 53	279 70726	321 94348		53 399 38594	427 66215	446 51306	427 66215 446 51306 459 62797 464 71179	464 71179
2,3 4.7	TCDF	-62 803	498 928227	225 38146	498 928227 225 38146 226 46309 279 70726 321 94348 354 53153 399 38594 427 66215 446 51306 459 62797 464 71179	279 70726	321.94348	354 53153	399 38594	427 66215	446 51306	459 62797	464 71179
234,8	TCDF	-62 803	498 928227		225 38146 226 46309	279 70726	321 94348	279 70726 321 94348 354,53153 399 38594 427.662	399 38594	427.662 5	446.51306	5 446.51306 459 62797 464 71179	464 71179
2,3,6,7	TCDF	-67 103	498 9406	225 2101	226 295	279 645	321 9155	354 5159	399 3779	427 6568	446 5091	459.625	464.7091
2,3,68	TCDF	-71 603	500.258227		225 27356 226 35728	279 68092 321.93441 354 50872	321.93441	354 50872	399,3595	427 68456		446 5311 459 64241	464 72477
2378	1CDF	67 103	498 9406	225 210	226 295	279 645	321 9155	354 5159	399 3779	427 6568	446 5091	459 625	464 709
24,67	1CDF	62 603	497 622973	225 14664	226 23272	279 60908 321.89659	321.89659	354 52308	399 3963	427 62904	446 4871	459 60759	464 69343
24.68	ICDF	-67 103	498 9406	225 2101	226 295	279.645	321 9155	354 5159	399.3779	427 6568	446 5091	459 625	464.7091
3467	TCDF	-67 103	498 9406	225 2101	226 295	279.645	3219155	354 5159	399 3779	427 6568	446 5091	459 625	1607.7091
,1 2,3 4 6	Penta CDF	-83 303	524 8418	242 0005	243 0628	295 02153	335 84218	367 1173.	409 67759	436 03808 453 33241	453 33241	465 21327 469 78295	469 78295

R)

Continuación	ón			UNI		ANINERSI	RSID	P					
SUSTITUYENTE	SUSTANCIA	Ŧ	D _s	/E				Cp=J/K mo	'k mol				
		(298)KJ/mal)	(298)(J/9K mol)	298 15 °K	300°K	400 ²K	500 K	600 K	800 K	1000 K	1200 K	1400°K	1500 K
12,34,7	Penta-CDF	83 303	524.8418	242 0005	243 0628	243 0628 295 02153	335 84218	367 1173	367 1173 409 67759 436.03808 453 33241 465 21327	436.03808	453 33241	465 21 327	469.78295
1.2 3,4,8	Penta-CDF	.83 303	524,8418	242 0005	243 0628	243 0628 295 02153	335 84218	367 1173	367 1173 409 67759		436.03808 453 33241	465 21 327	469 78295
1,2 3,4,9	Penta CDF	-83.303	524 8418	242 0005	243 0628	243 0628 295 02153 335.84218	335.84218	367 1173	367 1173 409 67759 436 03808 453 33241	436 03808		465 21327	469 78295
1236,7	Penta CDF	-101 903	529,4294	240 19216	240 19216 241 27946 294 18013	294 18013	335 4583	366.96793	335 4583 366.96793 409 68865	436 038	436 038 453 34428 465.22812	465.22812	469 79747
1,2,3 6 8	Penta-CDF	106 403	530 747027	240 25562	240 25562 241 34174	294 21605	335.47721 366 96075	366 96075	409,67025	436.06576.	436.06576 453 36628 465 24553	465 24553	469 81314
12369	Penta CDF	109 603	531.26367	240 83851	241 92229	294 65667	335.80051	367 20314	240 83851 241 92229 294 65667 335 80051 367 20314 409.81909 436 16658 453 43902 465.30061	436 16658	453 43902	465.30061	469 86163
123 8	enta CDF	10193	529 4294	240 92 6	24 27946 294	294 8 13	335 4583	366 96793	335 4583 366 96793 409 68865	436 038	436 038 453 34428 465 228	465 228 2	469 79747
1 2.3 7,9	Penta CDF	106 403	530 747027	240 25562	240 25562 241,34174	294 21605 335 47721	335 47721	366 96075	409 67025	435.06576	435.06576 453 36628 465 24553	465 24553	469 81314
1.2,3,8,9	Penta CDF	-101 903	529 4294	240 19216	240 19216 241 27946	294 18013	335.4583	366,96793	335.4583 366.96793 409 68865	436 038	436 038 453 34428	465.22812	469 79747
12,46,7	Penta-CDF	600 06.	527 9531	239 78737	240 87629	293 86583	335 21297	366 77293	239 78737 240 87629 293 86583 335 21297 366 77293 409.55862 435 94592 453 27611 465 17602	435 94592	453 27611	465 17602	469 75123
1 2,4 6,8	Penta CDF	-94 503	529 270727	259 85083 240 93857		293 90175	335 23 88	366 76575	366 76575 409 54011 435 97368 453 29811 465 19343	435 97368	453 29811	465 19343	469 76689
1246.9	Penta-CDF	97 703	529 78737	240.43372	240.43372 241 51912 294 34237 335.55518 367 00814 409 68896	294 34237	335.55518	367 00814	409 68896	436 0745	436 0745 453 37085 465 24851	465 24851	469 81539
12478	Penta CDF	800 003	527 9531	239.787.37	240.87629	293 86583	335 21297	366 77293	239 78737 240 87629 293 86583 335 21297 366 77293 409 55852 435 94592 453 27611	435 94592		465 17602	469 75123
1,2,4 7,9	Penta-CDF	94 503	529 270727	239,85083	240.93857	293 90175	335 23188	366 76575	239 85083 240 93857 293 90175 335 23188 366 76575 409 54011 435 97368 453 29811	435 97368	453 29811	465,19343	469 76689
12,489	Penta-CDF	.90.003	527 9531	239 78737	239 78737 240.87629	293 86583	335 21297 366 77293	366 77293	409 55852 435,94592 453 27611	435.94592		465 17602	469,75123
1 2,6,7,8	Penta-CDF	-93 503	527 1218	241 00804	241 00804 242 08254	294,51587	335 5567	366 92387	335 5567 366 92387 409 57315	436 0176	436 0176 453 32392 465 20988	465 20988	469.78073
12,6,7,9	Pento-CDF	105 403	528 5981	241 41283 242 48571		294 83017 335 80203 367 11887	335 80203	367 11887	409 70328 435,10968	435.10958	140	453 3921 465,26198	469 82697
13.467	Penta-CDF	.90 003	527,9531	239.78737	239 78737 240 87629	298 86583	335 21297	366 77293	298 86583 335 21297 366 77293 409 55852 435 94592	435 94592	453 27611	465 17602	469 75123
134,68	Penta CDF	94 503	529 270727	239 85083 240.93857		293 90175	335 23188	366 76575	293 90,175 335 23188 366 76575 409 54011 435.97368 453 29811	435.97368		465 19343	469 76689
1 3 4,6,9	Perita-CDF	97,703	529 78737 240 43372 241.51912 294 34237 335 55518 367 00814 409 68896	240 43372	241.51912	294 34237	335 55518	367 00814	409 68896	436 0745	436 0745 453 37085	465 24851	469 81539
1 3,4,7,8	Penta-CDF	600 00	527 9531	239 78737	527 9531 239 78737 240 87629 293 86583		335 21297	366 77293	33 <u>5 21297 366 77293 409 55852 435.94592 453 27611 465 17602 469 75123</u>	435.94592	453 27611	465 17602	469 75123
1,34,79	Penta CDF	-94 503	529 270727	239 85083	270727 239 85083 240 93857	293 90175	335 23188	366 76575	335 23188 366 76575, 409 54011	435 97358 453 29811		465 19343	465 19343 469 76689

FENTE SUSTANCIA DH1 S	Continuación.	ón			UNI		VINVERSI.	SRS10	P					
Perrio-CDF	SUSTITUYENTE	SUSTANCIA	JHO	DJ.	/Ε				Cp=7/	'K mol				
Perro-CDF -89 0003 522 580 173 20 94 498 122 0,0004 124 1499 17 294 0393 335 21 449 366 589 65 409 44271 43 799 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			(298jkJ/mol)	(298)(J/K mol)	cp.	300 K		500 K		800 °K			1400 K	1500 K
Perrio CDF	1 3.6 7.8	Penta-CDF	£00 68-	525 804173	240 94458	242 02026	294.47995	335 53779	366 93105	409.59155	435 98984	453 30192	465 19247	469 76506
Perro CDF 100 403 530,747027 240,55542 241 34174 294 21056 335,47721 365,96075 409 67025 43 Ferro CDF 100 9.3 530,747027 240,055542 241 34174 294 2016 535,47721 365,96075 409 67025 43 Ferro CDF 101 9.3 529,4294 240,19216 24,27945 294 6013 335,4254 346 77389 376,9679 409,9670 409,9750 409,9670 409,9750 409,9670 409,9750 409,9670 409,9750 409,9750 409,9750 409,9750 409,9750 409,9750 409,9750 409,9750 409,97	1 4 6,7,8	Penta CDF	-85 803	525 28753	240 36169	241 43971	294,03933	335 21449	366.68866	409.44271	435 88902	453,22918	465 13739	469 71657
Perrio CDF 101 9 3 529 4294 240 192 10 24 2 1946 594 8013 335 4368 336 96795, 409 67025 43 4 4 68045 4 4 68045 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2 3,4 6,7	Penta-CDF	-101 903	529,4294	240 19216		294.18013	335.4583	366.96793		436 038	453,34428	465 22812	469 79747
Hewa CDF 139 903 550 7144 254 6976 255 79101 309 43973 346 77389 379 272731 419 86336 44 Hewa CDF 138 403 561 032027 254 76106 255 85329 308 43973 346 77289 379 22731 419 86336 44 Hewa CDF 138 403 561 032027 254 76106 255 85329 308 43973 348 77289 379 22731 419 86336 44 Hewa CDF 138 403 561 032027 254 76106 255 85329 308 43973 348 77289 379 22731 419 86356 44 Hewa CDF 128 303 561 032027 254 76106 255 85329 308 43973 348 77289 379 22731 419 86356 44 Hewa CDF 128 303 557 6 00 255 9901 257 057 309 055 349 39489 379 22731 419 86359 4 Hewa CDF 128 303 557 6 00 255 9901 257 057 309 055 349 0995 379 27231 419 86399 4 Hewa CDF 128 303 557 6 00 255 9901 257 057 309 055 349 0995 379 379 27731 419 86399 4 Hewa CDF 128 303 557 6 00 255 9901 257 057 309 055 349 0995 379 379 970 420 01403 44 Hewa CDF 128 303 557 6 00 255 9901 257 057 309 051 349 0995 379 379 379 419 8839 4 Hewa CDF 128 303 557 6 106 255 9901 257 057 309 051 349 0995 379 379 379 379 1809 419 75377 44 Hewa CDF 128 303 557 6 106 255 9901 257 057 309 051 349 0995 379 379 379 1809 419 75377 44 Hewa CDF 128 303 557 6 106 255 9901 257 057 309 051 349 0995 379 379 1809 419 75377 44 Hewa CDF 128 303 557 6 106 255 9901 257 057 309 051 349 0995 379 379 1809 419 75377 44 Hewa CDF 128 303 557 6 106 255 9901 257 057 057 050 051 349 0995 379 379 1809 419 75377 44 Hewa CDF 128 303 557 6 106 255 9901 257 057 057 050 051 349 0995 379 379 1809 419 75377 44 Hewa CDF 128 303 557 6 106 255 9901 257 057 050 051 349 0995 379 379 379 379 379 379 379 379 379 379	2.3 4 6.8	Penta CDF	106 403	530 747027	240.25562	241 34174	294 21405	335 47721	366 96075	409 67025	436 06576	453 36628	465 24553	469 81314
Hexa CDF 138 903 559 7144 254 6976 255 8329 308 43973 348 77389 379 22731 419 84324 4 19 8432 2 19 8432 2 19 8439 379 22731 419 8432 4 19 8432 2 19 8438 2 1	23478	Penta CDF	10193	529 J294	240 19216		294 8013	335 4583	366 96793	409 68865	436 38	453 34428	465 22812	469 79747
Hexa CDF 138 403 561 54867 255 34395 256 43384 308 88035 349 1161 379 46252 419 90409 4600 4600 4600 4600 4600 4600 46	12.3467	Hexa-CDF	-133 903	559.7144	254 6976	255 79101		348 77389	379.22731	419 86365		460 14275	470 80429	474 86227
Hexa CDF 13 903 565 7 44 254 6976 255 79 308 40365 349 1161 379 46252 419 99409 Hexa CDF 138 403 559 7 44 254 6976 255 79 0 308 4038 348 7738 379 2273 419 86355 4 Hexa CDF 138 403 559 7 44 254 6976 255 7910 308 43973 348 77389 379 2273 419 86356 4 Hexa CDF 128 303 557 6 10 255 990 257 067 309 05 349 0995 379 3759 419 8639 Hexa CDF 128 303 557 6 10 255 990 257 067 309 055 349 0995 379 3759 419 8639 Hexa CDF 116 403 557 6 10 255 990 257 067 309 051 349 0995 379 3759 419 8639 Hexa CDF 116 403 555 1343 256 66383 266 66383 308 7367 349 0995 379 3759 419 8639 Hexa CDF 116 403 555 1343 256 5090 257 067 309 051 349 0995 379 3759 419 8639 </th <td>1,23468</td> <td>Hexa CDF</td> <td>138 403</td> <td>561 032027</td> <td></td> <td>255 85329</td> <td>308 43973</td> <td>348 7928</td> <td>379 22013</td> <td>419 84524</td> <td>444 39387</td> <td>460 16475</td> <td>470 8217</td> <td>474.87793</td>	1,23468	Hexa CDF	138 403	561 032027		255 85329	308 43973	348 7928	379 22013	419 84524	444 39387	460 16475	470 8217	474.87793
Hexa CDF 138 403 561 032027 254 6976 255 79 0 Hexa CDF 128 303 551 032027 254 76106 255 85329 Hexa CDF 128 303 557 6 06 255 9901 257 067 Hexa CDF 128 303 557 61 6 255 9901 257 067 Hexa CDF 128 303 557 61 6 255 9901 257 067 Hexa CDF 128 303 557 6106 255 9901 257 067 Hexa CDF 128 303 557 6106 255 9901 257 067 Hexa CDF 128 303 557 6106 255 9901 257 067 Hexa CDF 128 303 557 6106 255 9901 257 067 Hexa CDF 128 303 557 6106 255 9901 257 067 Hexa CDF 128 303 557 6106 255 9901 257 067 Hexa CDF 128 303 557 6106 255 9901 257 067 Hexa CDF 128 303 557 6106 255 9901 257 067 Hexa CDF 128 303 557 6106 255 9901 257 067	23.469	Hexa CDF	141 603	561 54867		256 43384	308 88035	349 1161	379 46252	419 99409	444 4947	460 23749	470.87578	474 92643
Hexa CDF 138 403 561 032027 264 76106 255 85329 Hexa CDF 128 303 559 7144 264 6976 255 79101 Hexa CDF 128 303 557 6 06 255 9901 257 067 Hexa CDF 128 303 557 6 1 6 255 9901 257 67 7 Hexa CDF 116 403 557 6 1 6 255 9901 257 067 Hexa CDF 128 303 557 6 1 06 255 9901 257 067 Hexa CDF 128 303 557 6 1 06 255 9901 257 067 Hexa CDF 116 403 557 6 1 06 255 9901 257 067 Hexa CDF 116 403 557 6 1 06 255 9901 257 067 Hexa CDF 116 403 556 1343 255 585 9901 257 067 Hexa CDF 116 403 556 1343 255 585 9901 257 067 Hexa CDF 128 303 557 6 106 255 9901 257 067 Hexa CDF 128 303 557 6 106 255 9901 257 067	3478	Hexa CDF	33 903	559 7 44		255 79 0		348 7738	379 2273	419 86365	444 366	460 14275	470 80429	474 8622
Hexa CDF 133 903 559 7144 254 6976 255 79101 Hexa CDF 128 303 557 6 06 255 9901 257 067 Hexa CDF 128 303 557 61 6 255 9901 257 67017 Hexa CDF 116 403 557 6106 255 9901 257 067 Hexa CDF 128 303 557 6106 255 9901 257 067 Hexa CDF 116 403 557 6106 255 9901 257 067 Hexa CDF 116 403 557 6106 255 9901 257 067 Hexa CDF 128 303 557 6106 255 9901 257 067 Hexa CDF 128 303 557 6106 255 9901 257 067 Hexa CDF 128 303 557 6105 255 9901 257 067 Hexa CDF 128 303 557 6105 255 9901 257 067 Hexa CDF 128 303 557 6105 255 9901 257 067	123,479	Hexa CDF	138 403	561 032027		255 85329	308 43973	348 7928	379.22013	41984524	444 39387	460 16475	470 8217	474 87793
Hexa CDF 128 303 557 6 06 255 9901 257 067 309 3653 349 34483 379 5709 420 01403 444 99084 460 25727 1 10 203 559 0869 255 374 7017 309 3653 349 34483 379 5709 420 01403 444 99084 460 25727 1 10 203 557 016 255 9901 257 67 309 051 349 0995 379 379 19 19 6839 444 3984 460 1591 1 10 403 557 016 255 9901 257 057 309 051 349 0995 379 379 379 379 379 379 379 379 379 379	123489	Hexa CDF	133 903	559 7144		255 79101	308 40381	348 77389	379 22731	419 86365	444 36611	460 14275	470 80429	474 86227
Hexa CDF 128 303 557 61 6 255 9901 257 67 309 3653 349 937 9 419 6839 444 3988 460 1597 16 403 CDF 116 403 557 61 6 255 9901 257 67 309 051 349 0995 379 37 9 419 6839 444 3988 460 1591 16 403 557 6106 255 9901 257 067 309 051 349 0995 379 375 419 8839 444 3988 460 1591 16 403 557 6106 255 9901 257 067 309 051 349 0995 379 375 419 8839 444 3988 460 1591 16 403 557 6106 255 9901 257 067 309 051 349 0995 379 375 419 8839 444 3988 460 1591 16 403 557 6106 255 9901 257 067 309 051 349 0995 379 375 419 8839 444 3988 460 1591 16 403 557 6106 255 9901 257 067 309 051 349 0995 379 375 419 8839 444 3988 460 1591 16 403 557 6106 255 9901 257 067 309 051 349 0995 379 375 419 8839 444 3988 460 1591 16 403 557 6106 255 9901 257 067 309 051 349 0995 379 375 419 8839 444 3988 460 1591 16 403 557 6106 255 9901 257 067 309 051 349 0995 379 375 419 8839 444 3988 460 1591 16 403 657 6 06 357	23678	Hexa CDF	128 303	557 6 06		257 067	309 05	349 0995	379 3759	419 8839	444 3988		47 813	474 869
Hexa CDF 128 303 557 61 6 255 9901 257 67 309 051 349 0995 379 37 9 419 8839 444 3988 460 1591 Hexa CDF 116 403 556 1343 255 58531 256 66383 308.7367 348 85417 379 1809 419 75377 444 30672 460 09093 Hexa CDF 128,303 557 6106 255 9901 257 067 309 051 349 0995 379 3759 419 8839 444 3988 460 1591 Hexa CDF 116,403 556 1343 255 58531 256 66383 308 7367 348 85417 379 1809 419 75377 444 30672 460 09093 Hexa CDF 128,303 557 6106 255 9901 257 067 309 051 349 0995 379 3759 419 8839 444 3988 460 1591 Hexa CDF 128,303 557 6106 255 9901 257 067 309 051 349 0995 379 3759 419 8839 444 3988 460 1591 Hexa CDF 128,303 557 6106 255 9901 257 067 309 051 349 0995 379 3759 419 8839 444 3988 460 1591	23689	Hexa CDF	140 203	559 0869	256.39489		309 3653	349 34483	379 5709	420 01403	444 49088	460 22727	470 8651	474.91534
Hexa CDF 116 403 556 1343 265 68531 256 66383 308.7367 348 85417 379.1809 419.75377 444 30672 460 09093 148 CDF 128.303 557 6106 255 9901 257 067 309 051 349 0995 379.3759 419 8839 444 3988 460 1591 Hexa CDF 128.303 556 1343 255 58531 256 66383 308 7367 348 85417 379 1809 419.75377 444 30672 460 09093 Hexa CDF 128.303 557 6106 255 9901 257 067 309 051 349 0995 379.3759 419 8839 444 3988 460 1591 Hexa CDF 128.303 557 6106 255 9901 257 067 309 051 349.0995 379.3759 419 8839 444 3988 460 1591 Hexa CDF 128.303 557 6106 255 9901 257 067 309 051 349.0995 379.3759 419 8839 444 3988 460 1591 Hexa CDF 128.303 557 6106 255 9901 257 067 309 055 349 0995 379.3759 419 8839 444 3988 460 1591 Hexa CDF 128.303 557 6106 255 9901 257 067 309 055 349 0995 379.3759 419 8839 444 3988 460 1591 Hexa CDF 128.303 557 6106 255 9901 257 067 309 055 349 0995 379.3759 419 8839 444 3988 460 1591 484 0575 419 88	123789	Hexa CDF	128 303	557.61 6	!		309 051	349 0995	37937 9		444 3988	450 159	470.813	474 869
Hexa CDF -128 303 557 6106 255 9901 257 067 309 051 349 0995 379 3759 419 8839 444 3988 460 1591 Hexa CDF -116.403 556 1343 255 58531 256 66383 308 7367 348 85417 379 1809 419 75377 444 30672 460 09093 Hexa CDF -116.403 557 6106 255 9901 257 067 309 051 349 0995 379 3759 419 8839 444 3988 460 1591 Hexa CDF -128 303 557 6106 255 9901 257 067 309 051 349 0995 379 3759 419 8839 444 3988 460 1591 Hexa CDF -128 303 557 6106 255 9901 257 067 309 055 349 0995 379 3759 419 8839 444 3988 460 1591 Hexa CDF -128 303 557 6106 255 9901 257 067 309 055 349 0995 379 3759 419 8839 444 3988 460 1591 Hexa CDF -128 303 557 6106 255 9901 257 067 309 055 349 0995 379 3759 419 8839 444 3988 460 1591	1 2 4,6,7,8	Hexa CDF	116 403	556 1343		256 66383	308,7367	348 85417	379.1809	41975377	444 30672	460 09093	470 7609	474 82286
Hexa CDF 128.303 557 6106 255 9901 257 067 309 051 349 0995 379 3759 419 8839 444 3988 460 1591 Hexa CDF -116.403 556 1343 255 58531 256 66383 308 7367 348 85417 379 1809 419 75377 444 30672 460 09093 Hexa CDF -128.303 557 6106 255 9901 257 067 309 051 349 0995 379 3759 419 8839 444 3988 460 159 484 0515 484	1 2,4 6,7,9	Hexa CDF	.128 303	557 6106		257 067	309 051	349 0995	379.3759		444 3988	460 1591	470.813	474 8691
Hexa CDF -116.403 556 1343 255 58531 256 66383 308 7367 348 85417 379 1809 419 75377 444 30672 460 09093 Hexa CDF -128 303 557 6106 255 9901 257 067 309 05 349 0995 379 3759 419 8839 444 3988 460 1591 Hexa CDF 128 303 557 6106 255 9901 257 067 309 05 349 0995 379 3759 419 8839 444 3988 460 1591 REPAIR CDF 128 303 557 6106 255 9901 257 067 309 05 349 0995 379 3759 419 8839 444 3988 460 1591 REPAIR CDF 128 303 557 6106 255 9901 257 067 309 05 349 0995 379 3759 419 8839 444 3988 460 1591 REPAIR CDF 128 303 557 6106 255 9901 257 067 309 05 349 0995 379 3759 419 8839 444 3988 460 1591 REPAIR CDF 128 303 557 6106 255 9901 257 067 309 05 349 0995 379 3759 419 8839 444 3988 460 1591 REPAIR CDF 128 303 557 6106 255 9901 257 067 067 067 067 067 067 067 067 067 06	12468.9	Hexa CDF	128.303	557 6106		257 067	309 051	349 0995	379 3759	419 8839	444 3988		470813	474 8691
Hexa CDF -116.403 556 1343 255 58531 256 66383 308 7367 348 85417 379 1809 419 75377 444 30672 460 09093 Hexa CDF 128 303 557 6106 255 9901 257 067 309 05 349 0995 379 3759 419 8839 444 3988 460 159 B Hexa CDF 128 303 557 6 06 255 9901 257 067 309 05 349 0995 379 3759 419 8839 444 3988 460 159 B Hera CDF 76 3 76 3 76 3 76 3 76 3 76 3 76 3 76	1 2,4,7,8,9	Hexa-CDF	-116.403	556 1343		256 66383	308 7367	348 85417	379 1809	419 75377	444 30672		470 7609	474 82286
Hexa CDF 128 303 557 6106 255 9901 257 067 309 051 349.0995 379.3759 419 8839 444 3988 460 1591 Hexa CDF 128 303 557 6 06 255 9901 257 067 309 05 349 0995 379.3759 419 8839 444 3988 460 159	1,3,4,6,7,8	Hexa CDF	-116.403	556 1343		256 66383		348 85417	379 1809	419 75377	444 30672	460 09093	470 7609	474 82286
Hexa CDF 128 303 557 6 06 255 9901 257 067 309 05 379 0995 379 3759 419 8839 444 3988 460 159	1346,7,9	неха СОғ	128 303	557 6106		257 067	309 dt	349.0995	379.3759	419 8839		460 1591	470 813	474 8691
8 Hept DE 60 3 587 8054 370 40554 371 57855 33 377468 342 43578 33 580 450 3464 05757	234678	Hexa CDF	128 303	557 6 06		257 067	309 05	349 0995	379 3759	419 8839	444 3988	460 159	470 813	474 8691
9 JMP1 C. 00 3 307 4734 2734 21 37833 23 27408 332 41307 37 33228 43 387 432 2027 430 737 37	12346 8	Hept DF	60 3	587 8956	270 49554	271 57855	23 27468	362 41509	39 63528	43 589	452		476 389 7	479 9339

SUSTITUTENTE SUSTANCIA DH' S 1298 15 'K 1,2 3.4 6.7,9 Hepta CDF -172 203 589 3719 270 90033 2,2 3.4 7.8 9 Hepta CDF 16.3 3 587 8956 270 49554								700			
Hepta CDF .172 203 Hepta CDF .172 203 Hepta CDF .172 203),	/ F				Cp=J/*K mo	"K mo				
Hepta CDF -172 203 Hepta CDF -172 203 Hepta CDF 16 3 3	(298][J/YKmo] 2	3' 21.89	300 °K	400 K	500 °K	× 009	500 °K 800 K 1000 K 1200 K 1400°K	1000 K	1200 K	1400°K	1500 °K
Hepta CDF 172 203	3 589 3719 2	70 90033	271 98172	589 3719 270 90033 271 98172 323 58898 362 66042 391 83028 430 18903 452 81899 467 02574 476 44127 479,98014	362 66042	391 83028	430 18903	452 81899	467.02574	476 44127	479,98014
Hebta CDF 16 3 3		70 90033	271 981 72	580 3719 270 90033 271 98172 323 58898 362 66042 391 83028 430.18903 452 81899 467 02574 476 44127 479 98014	362 66042	391 83028	430.18903	452 81899	467 02574	476 44127	479 98014
Hebra Cut	, .	70 40554	271 57855	SRN SCEA 270 ACCEA 271 57855 323 27468 362 41509 391 63528 430 0589 452 72692 466 95757 476 389 7 479 9339	362 41509	391 63528	430 0589	452 72692	466 95757	476 389 7	479 9339
80 503		286 7701	287 839	338 457	376 835	4 4 2359	338 457 376 835 4 4 2359 440 3899 46 408 473 8 91 482 0	46 408	4738 91	482 0	485 29

UNI

Datos Termodinamicos utilizados en el presente trabajo.

UANL

AUTÓNOMA DE NUEVO LEÓN

©ENERAL DE BIBLIOTECAS

R

ANEXO B

Peso molecular, entalpía de evaporación, temperatura de fusión y de evaporación de las dioxinas (PCDDs y PCDFs), utilizados en el presente trabajo

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

DIRECCIÓN GENERAL DE BIBLIOTECAS

Peso molecular, entalpía de evaporación, temperatura de fusión y de evaporación utilizados en el presente trabajo⁽⁴⁶⁾.

	Compuesto PCDD/Fs	Peso molecular	Entalpía de evaporación (kJ/mol)	Temperatura de fusión (°C)	Temperatura de evaporación (°C)
	2,3,7,8TCDD	321.970	79.9	305	446.5
	1,2,3,7,8PCDD	356.415	88.7	240	464.7
	1,2,3,4,7,8 HxCDD	390.859	89.1	273	487.7
	1,2,3,6,7,8 HxCDD	390.859	88.1	285	487.7
THE STORY OF THE S	1,2,3,7,8,9 HxCDD	390.859	91.7	243	487.7
	1,2,3,4,6,7,8				
	HpCDD	425.304	92.5	264	507.2
	1-46-9 OCDD	459.749	86.7	330	510.0
	2,3,7,8 TCDF	305.970	80.3	227	438.3
	1,2,3,7,8 PCDF	340.415	83.8	225	464.7
	2,3,4,7,8 PCDF	340.415	85.8	196	464.7
	1,2,3,4,7,8 HxCDF	374.860	86.5	225.5	487.7
	1,2,3,6,7,8 HxCDF	374.860	86.1	232	487.7
UNIVE	1,2,3,7,8,9 HxCDF	374.860	85.2	246	487.7
DI	2,3,4,6,7,8 HxCDF	374.860	85.7 DE DI	239	487.7
D1	1,2,3,4,6,7,8	ENER	AL D E DE	DLI VI E	-A3
	HpCDF	409.305	87.8	236	507.2
	1,2,3,4,7,8,9	0			
	HpCDF	409.305	88.6	221	507.2
	1-46-9 OCDF	443.749	90.0	258	537

ANEXO C

Valores obtenidos del factor acéntrico, la temperatura y presión crítica y el factor de compresibilidad

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

Valores obtenidos del factor acéntrico, la temperatura y presión crítica y el factor de compresibilidad.

	Compuesto	factor	temperatura	presión	factor de
	PCDD/Fs	acéntrico	crítica (T₀) °C	crítica	compresibilidad
		(w)		(P _c) bar	(Z)
	2,3,7,8TCDD	.8305533080	696,8665541	29.99151764	.2586361260
	1,2,3,7,8PCDD	.8887931920	709.7250031	28.35363948	.2583140220
	1,2,3,4,7,8 HxCDD	.9448980500	729.3323261	26.84635762	.2555808620
	1,2,3,6,7,8 HxCDD	.8411149950	741.5482761	26.51560483	.2525359730
	1,2,3,7,8,9 HxCDD	.9448980500	729.3323261	26.84635762	.2555808620
	1,2,3,4,6,7,8	.8965941780	756.1380461	25.15067706	.2505416290
TALE	HpCDD	eg.			
WERSING A	1-46-9 OCDD	.9495574270	749.3579861	23.88849170	.2533147660
K C	2,3,7,8 TCDF	.7679870580	692.9243591	29.47275526	.2504295620
5	1,2,3,7,8 PCDF	2.201220820	676,4078241	126.5308618	.5072493750
E	2,3,4,7,8 PCDF	.8266123630	716.4946631	27.87661520	.2478265550
	1,2,3,4,7,8 HxCDF	.8834317450	735.7259361	26.40671133	.2457096510
	1,2,3,6,7,8 HxCDF	.7804251780	748.5910761	26.08402534	.2427215810
	1,2,3,7,8,9 HxCDF	.8834317450	735.7259361	26.40671133	.2457096510
UNIVE	2,3,4,6,7,8 HxCDF	.7804251780	748.5910761	26.08402534	.2427215810
	1,2,3,4,6,7,8	.8365397240	762.7555761	24.75186197	.2412576860
DI	HPCDFCIÓNG	ENERA	L DE BII	BLIOTE	CAS
	1,2,3,4,7,8,9	.9379588280	750.6753361	25.05007447	.2441025380
	HpCDF				
	1-46-9 OCDF	.8904798840	790.8864561	23.51920661	.2362089490

ANEXO D

Resultados obtenidos de las simulaciones en ASPEN PLUS™ con diferente flujos de aire y gas cloro

UANL

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

DIRECCIÓN GENERAL DE BIBLIOTECAS

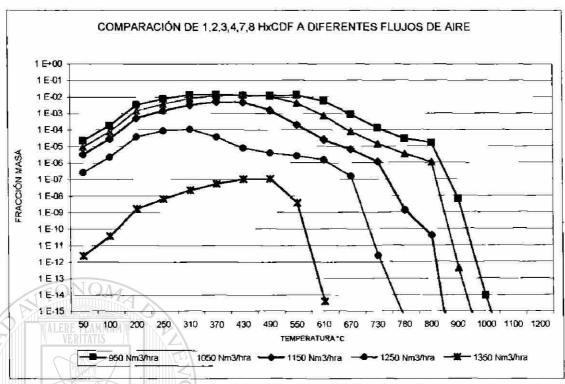


Figura 1. Resultados de la simulación del 1,2,3,4,7,8 HxCDF a diferentes temperaturas y flujo de aire.

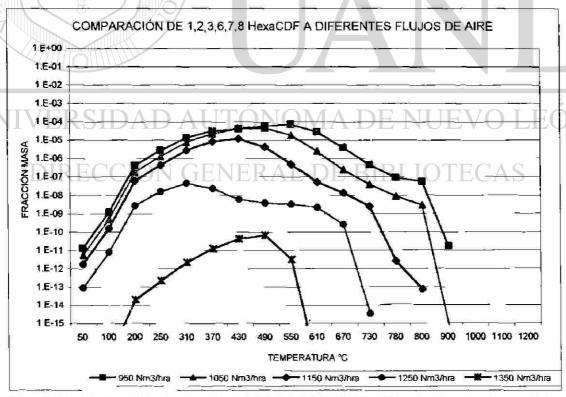


Figura 2. Resultados de la simulación del 1,2,3,6,7,8 HxCDF a diferentes temperaturas y flujo de aire.

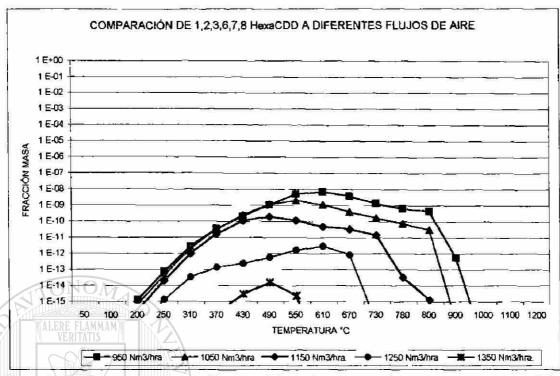


Figura 3. Resultados de la simulación del 1,2,3,6,7,8 HxCDD a diferentes temperaturas y flujo de aire.

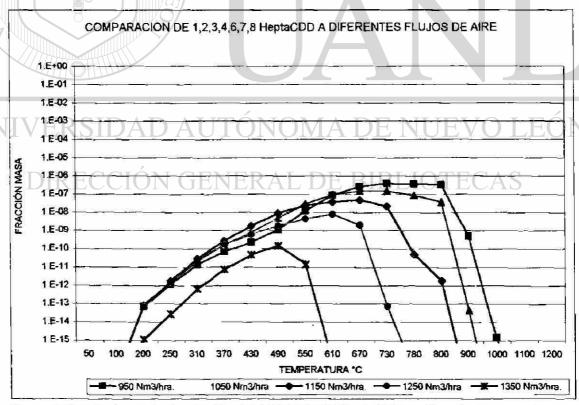


Figura 4. Resultados de la simulación del 1,2,3,4,6,7,8 HeptaCDD a diferentes temperaturas y flujo de alre.

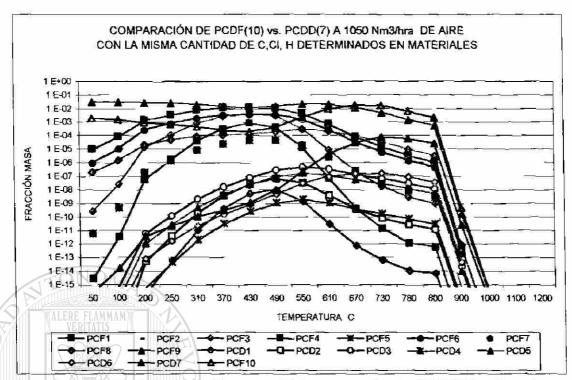


Figura 5, Resultados de la simulación de las 17 dioxinas analizadas (PCDD/Fs) a diferentes temperaturas y 1,050Nm³/hr de flujo de aire.

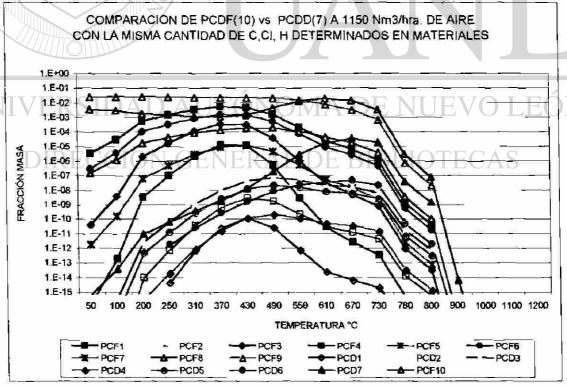


Figura 6. Resultados de la simulación de las 17 dioxinas analizadas (PCDD/Fs) a diferentes temperaturas y 1,150Nm³/nr de flujo de aire.

COMPARACION DE PCDF(10) vs. PCDD(7) A 1250 Nm3/hra. DE AIRE CON LA MISMA CANTIDAD DE C,CI, H DETERMINADOS EN MATERIALES

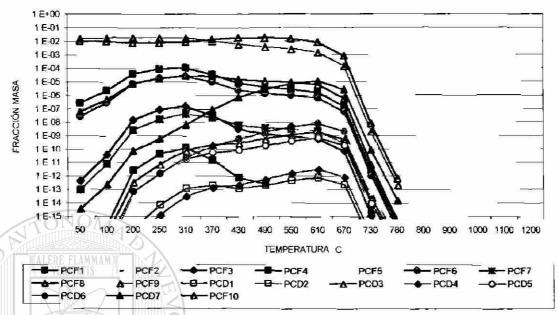


Figura 7, Resultados de la simulación de las 17 dioxinas analizadas (PCDD/Fs) a diferentes temperaturas y 1,250Nm³/hr de flujo de aire.

COMPARACIÓN DE PCDFs A 50°C Y DIFERENTES FLUJOS DE AIRE

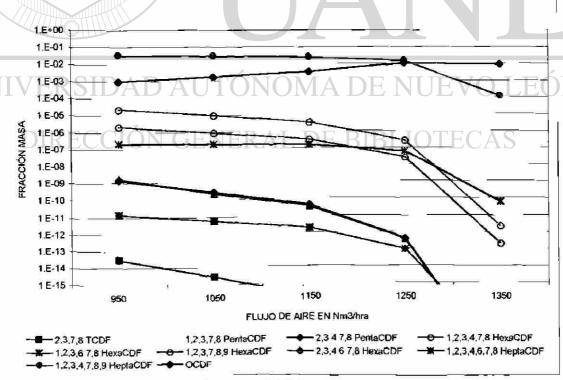


Figura 8. Resultados de la simulación de los 10 PCDFs a 50 °C y diferentes flujos de aire.

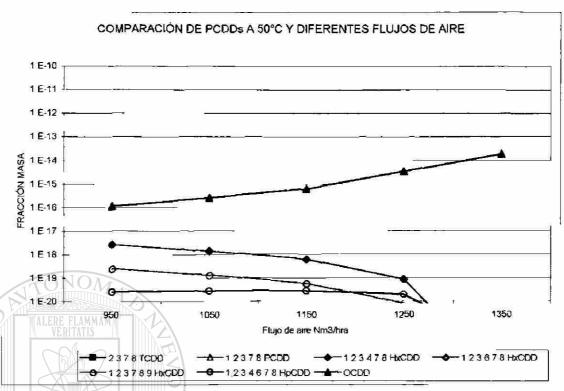


Figura 9. Resultados de la simulación de los 10 PCDDs a 50 C y diferentes flujos de aire.

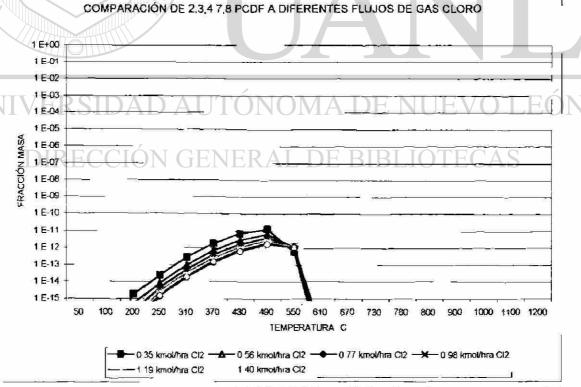


Figura 10. Resultados de la simulación del 2,3 4,7,8 PentaCDF a diferentes temperaturas y flujo de gas Cloro.

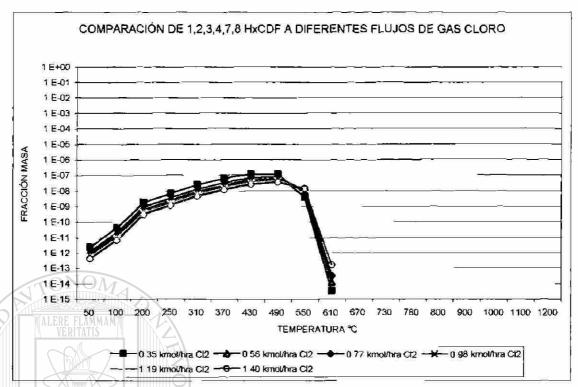


Figura 11. Resultados de la simulación del 1,2,3,4,7,8 HexaCDF a diferentes temperaturas y flujo de gas Cloro.

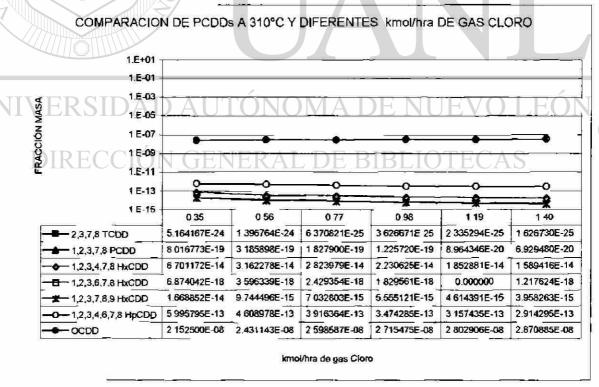


Figura 12. Resultados de la simulación de los PCDDs (7 compuestos tóxicos) a 310°C y diferentes flujos de gas Cloro

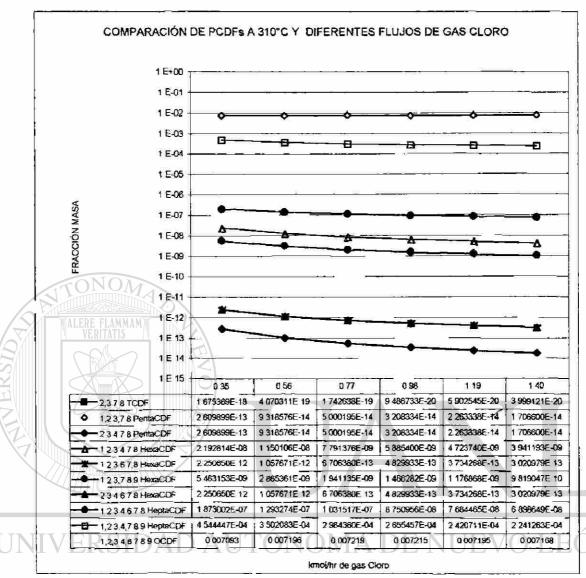


Figura 13. Resultados de la simulación de los PCDFs (10 compuestos tóxicos) a 310°C y diferentes flujos de gas Cloro.

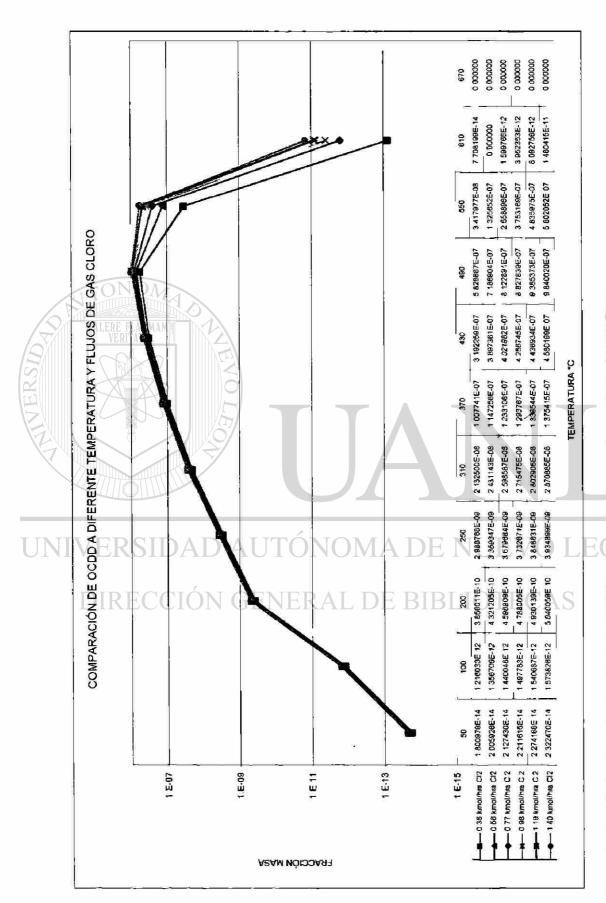


Figura 14. Resultados de la simulación de los OCDDs a diferentes temperaturas y flujos de gas Cloro.

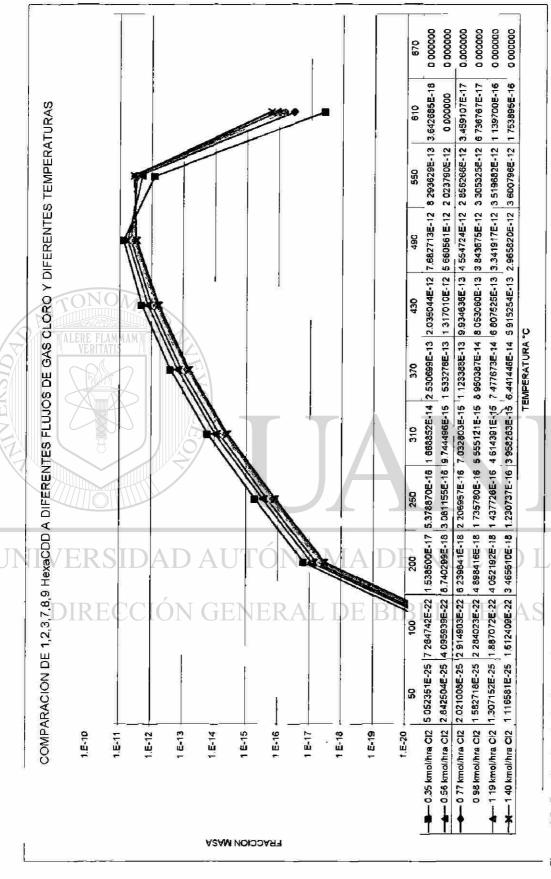


Figura 15 Resultados de la simulacion de los 1,2,3,7,8,9 HexaCDD a diferentes temperaturas y flujos de gas Cioro.

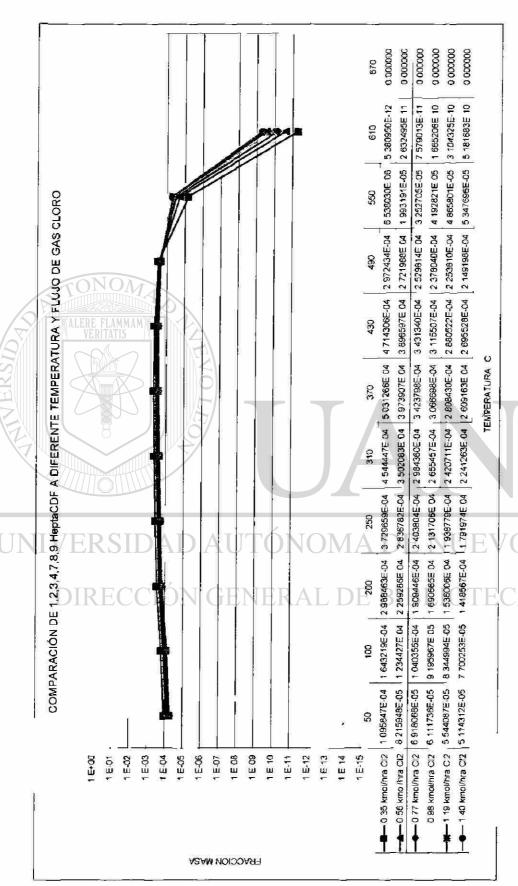


Figura 16. Resultados de la simulación de los 1,2,3,4,7,8,9 HeptaCDF a diferentes temperaturas y flujos de gas Cloro.

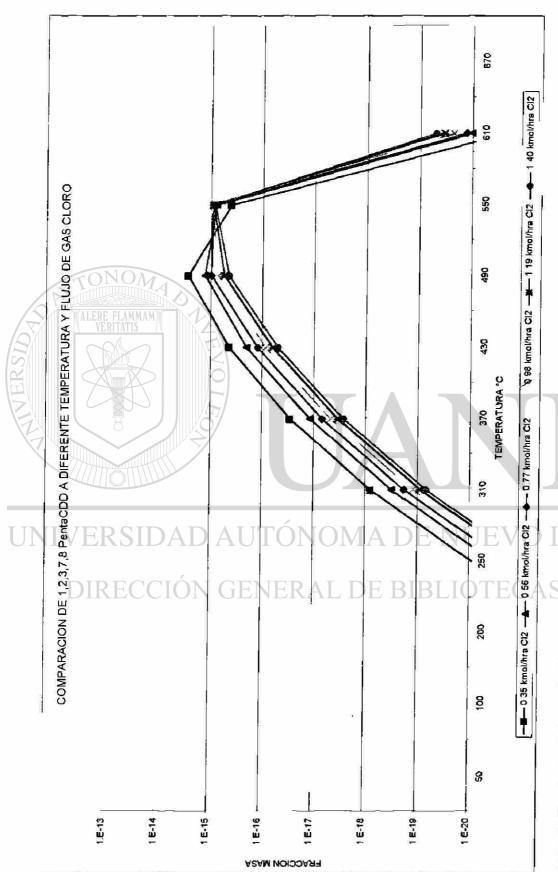


Figura 17. Resultados de la simulación de los 1,2,3,7,8 PentaCDD a diferentes temperaturas y flujos de gas Cloro.

Figura 18. Resultados de la simulación de los PCDFs(10 compuestos tóxicos) a 1,350Nm³/hr de aire, 0.35 kmol/hr de gas Cloro y diferentes temperaturas.

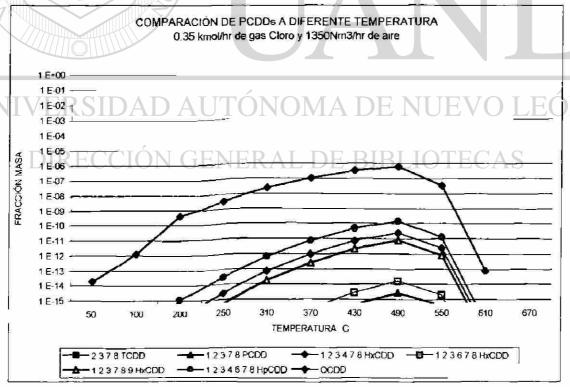
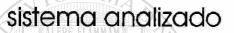



Figura 19. Resultados de la simulación de los PCDDs(7 compuestos tóxicos) a 1,350Nm³/hr de aire, 0.35 kmol/hr de gas Cloro y diferentes temperaturas.

ANEXO E

Cálculo del porcentaje en exceso de aire del

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

DIRECCIÓN GENERAL DE BIBLIOTECAS

	ANALIZADO	
	SISTEMA	\ I
	AIRE DEL	(
ANEXO E	XCESO DE	
	TAJE EN E	
	- PORCEN)
*	CÁLCULO DEL PORCENTAJE EN EXCESO DE AIRE DEL SISTEMA	

10.30877 CO₂ 23.528 H₂ + 10.3067704 C

23.528 H₂O

44.1415 kmol de 11

õ

teórico

 $O_2 = 88.4688$ 98.74 kmol de aire

alimentado aire alım.

AIRE EN EXCESO= AIRE ALIM-AIRE TEORICO/AIRE TEORICO

aire teórico= 190,265262

11

%aire exceso %aire

II

exceso

%peso

ž õ

76 8 23.2

= 210.11373 kmol aire 210113.7 mol aire

44141.5 mol O₂

4.76 mot de aire mol O₂=

GLOSARIO

PCDDs: Dibenzodioxinas policioradas.

PCDFs: Dibenzofuranos policiorados.

PCDD/Fs: Dibenzodioxinas/furanos policloradas.

Organoclorados: Compuestos que en su estructura contienen átomos de carbono y cloro.

HEA: Horno electrico de arco.

ng: Nanogramos (1e.9 gramos).

1-TEQ: Cantidad de toxicidad equivalente internacional.

TEF: Factor de toxicidad equivalente.

Nm³: Metros cúbicos normales(medidos a 25°C y 1 atmósfera de presión).

USEPA: De las siglas en inglés de Agencia de Protección Ambiental de Jos Estados Unidos de Norte América.

TCDD: Compuestos Di bencénicos, con dos átomos de oxígeno y cuatro átomos de cloro en su estructura.

Penta-CDD: Compuestos Di bencénicos, con dos átomos de oxígeno y cinco átomos de cloro en su estructura.

Hexa-CDF, HexaCDD: Compuestos Dí bencénicos, con uno ó dos átomos de oxígeno, respectivamente y seis átomos de cloro en su estructura.

Hepta-CDF, Hepta-CDD: Compuestos Di bencénicos, con uno ó dos átomos de oxígeno, respectivamente y siete átomos de cloro en su estructura.

OCDF, OCDD: Compuestos Di bencénicos, con uno ó dos átomos de oxígeno, respectivamente y ocho átomos de cloro en su estructura.

CG/DM: Cromatografía de Gases con detector de masas.

 G^i : Energía Libre de Gibbs Total

 ε_e : Coordenada de reacción de equilibrio.

RESÚMEN AUTOBIOGRÁFICO


María de Lourdes Espino Zúñiga

Candidato para el Grado de Maestro en Ciencias de la Ingeniería Mecánica con Especialidad en Materiales.

Tesis: Estudio termodinámico de la formación de dioxinas (PCDD/Fs) en la etapa de sinterización del proceso HY-RECOVERY

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

María de Lourdes Espino Zúñiga nació en Monterrey, Nuevo León, México, el 10 de Septiembre de 1977. Es hija del Sr. Francisco Espino Martínez y de la Sra. Mónica Zúñiga Torres. En Agosto de 1994 inicia sus estudios de Licenciatura con apoyo de la Fundación Martínez Sada. En Septiembre de 1999 recibió el título de Ingeniero Mecánico Administrador en la Facultad de Ingeniería Mecánica y Eléctrica de la Universidad Autónoma de Nuevo León, con Mención Honorífica. En Septiembre del mismo año inició sus estudios de Postgrado, becado por el Consejo Nacional de Ciencia y Tecnología (CONACYT), en la misma Facultad. Participó en el Diplomado sobre Impacto Ambiental organizado por FECIME, la Universidad Autónoma de Nuevo León y el Instituto Tecnológico de Educación Superior de Monterrey.

