UNIVERSIDAD AUTONOMA DE NUEVO LEON FACULTAD DE INGENERIA MECANICA Y ELECTRICA DIVISION DE ESTUDIOS DE POSTGRADO

ESTUDIO DE ADHESIBILIDAD ENTRE UNA ALEACION DE ALUMINIO A319.0 Y UNA CAMISA DE ALUMINIO BASE. Al-SI-Co-Mg. PARA APLICACIONES AUTOMOTRICES

POR

FERNANDO MORALES RENDON

TESIS

EN OPCION AL GRADO DE MAESTRO EN CIENCIAS DE LA INGENIERIA MECANICA CON ESPECIALIDAD EN MATERIALES. ALST OF MIG. PARA APLICACIONES AUTOMOTRICES D ASTRO Y UNA CAMBA DE ALUMINO BASE M 58 M2 IM 00 M6

UNIVERSIDAD AUTONOMA DE NUEVO LEON

FACULTAD DE INGENIERIA MECANICA, Y ELECTRICA
DIVISION DE ESTUDIOS DE POSTGRADO

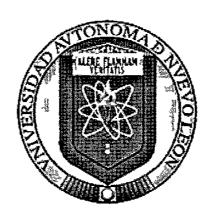
ESTUDIO DE ADHESIBILIDAD ENTRE UNA ALEACION DE ALUMINIO A319.0 Y UNA CAMISA DE ALUMINIO BASE. Al- Si- Cu- Mg, PARA APLICACIONES AUTOMOTRICES

POR

FERNANDO MORALES RENDON

TESIS

EN OPCION AL GRADO DE MAESTRO EN CIENCIAS DE LA INGENIERIA MECANICA CON ESPECIALIDAD EN MATERIALES.


CD. UNIVERSITARIA

JUNIO DE 2003

TM 255 .M2 1 20 .M67

UNIVERSIDAD AUTONOMA DE NUEVO LEON FACULTAD DE INGENIERIA MECANICA Y ELECTRICA DIVISION DE ESTUDIOS DE POSTGRADO

ESTUDIO DE ADHESIBILIDAD ENTRE UNA ALEACIÓN DE ALUMINIO A319.0 Y UNA CAMISA DE ALUMINIO BASE Al-Si-Cu-Mg, PARA APLICACIONES AUTOMOTRICES

POR FERNANDO MORALES RENDÓN

TESIS

EN OPCION AL GRADO DE MAESTRO EN CIENCIAS DE LA INGENIERIA MECANICA CON ESPECIALIDAD EN MATERIALES

CD UNIVERSITARIA

JUNIO DEL 2003

UNIVERSIDAD AUTONOMA DE NUEVO LEON FACULTAD DE INGENIERIA MECANICA Y ELECTRICA DIVISION DE ESTUDIOS DE POSTGRADO

ESTUDIO DE ADHESIBILIDAD ENTRE UNA ALEACIÓN DE ALUMINIO A319.0 Y UNA CAMISA DE ALUMINIO BASE Al-Si-Cu-Mg, PARA APLICACIONES AUTOMOTRICES

POR FERNANDO MORALES RENDÓN

TESIS

EN OPCION AL GRADO DE MAESTRO EN CIENCIAS DE LA INGENIERIA MECANICA CON ESPECIALIDAD EN MATERIALES

CD UNIVERSITARIA

JUNIO DEL 2003

UNIVERSIDAD AUTONOMA DE NUEVO LEON FACULTAD DE INGENIERIA MECANICA Y ELECTRICA DIVISIÓN DE ESTUDIOS DE POSGRADO

Los miembros del comité de tesis recomendamos que la tesis "Estudio de adhesibilidad entre una aleación de aluminio A319.0 y una camisa de aluminio base Al-Si-Cu-Mg, para aplicaciones automotrices" realizada por el alumno Fernando Morales Rendón, matrícula 814926 sea aceptada para su defensa como opción al grado de Maestro en Ciencias de la Ingeniería Mecánica con especialidad en Materiales.

El Comité de Tesis

Asesor

Dr. Rafael Colás Ortiz

Coasesor

Dr. Alberto Pérez Unzueta

Coasesor

Dr. José Talamantes Silva

Dr. Guadalupe Alan Castillo Rodríguez División de Estudios de Posgrado

DEDICATORIA

A DIOS

Por permitirme realizar este logro

A MIS PADRES

Por haberme forjado de la manera que soy

A MIS HERMANOS

Alan, Eliu, Fernanda, por ser como son

A Rocio

Por siempre apoyarme en cada momento

AGRADECIMIENTOS

Al Consejo Nacional de Ciencia y Tecnología (CONACYT) por el apoyo económico

brindado durante mis estudios.

A la Universidad Autonoma de Nuevo León y dentro de ella a la Facultad de Ingeniería

Mecánica y Eléctrica donde realicé mis estudios de licenciatura.

Al Doctorado de Ingeniería de Materiales (DIMAT) de la Facultad de Ingeniería

Mecánica y Eléctrica en donde realicé mis estudios de maestría.

A la empresa NEMAK por facilitar los materiales y las instalaciones de su laboratorio de

investigación y desarrollo para la realización del presente trabajo.

Le doy las gracias y mi más sincero agradecimiento al Dr. Rafael Colás por sus

invaluables consejos y por apoyarme en todo momento durante mis estudios.

Al Dr. Salvador Valtierra por todo el apoyo y consejos que me ha dado, además de su

amistad.

A mis coasesores Dr. Alberto Perez U. y Dr. Jose Talamantes S, por todos los consejos y

recomendaciones para la realización de este trabajo además de su amistad.

A Dr. David Gloria, Dr. Eulogio Velasco, Dra Martha Guerrero, Ing Alejandro Gonzalez

por su apoyo y valiosos consejos.

A toda la raza de NEMAK: Miguel, Alejandro, Marcos, Rocio L, Rocio V, Neivi, etc.

A todala raza del DIMAT: Julian, Jaime, Rodrigo, Vicente, Lulú, Lalo, Luis, etc.

Indice

	Página
Resumen	1
Capítulo I Introducción	2
Capítulo II Aleaciones de aluminio en la industria automotriz	7
2.1 Introducción	7
2.2 Aleaciones de aluminio para fundición	9
2.3 Aplicaciones de las aleaciones para fundición	12
2.4 Aleaciones de aluminio trabajado	15
2.5 Aplicaciones de las aleaciones de aluminio trabajado	23
2.6 Motores de combustion interna	27
2.7 Camisas de aluminio	29
Capítulo III Vaciado y solidificación de aluminio	35
3.1 Introducción	35
3.2 Vaciado en molde de arena	35
3.3 Vaciado en molde de arena a baja presión	38
3.3.1 Vaciado en molde metálico a baja presión	39
3.4 Moldes permanentes	39
3.5 Vaciado en moldes metálico a presión	43
3.6 Vaciado por método de cera perdida	43
3.7 Solidificación	43
3.8 Mecanismos de nucleación	44
3.9 Solidificación en aleaciones de aluminio	45
3.10 Aleaciones de Al-Si	46
3.11 Recalescencia	48

	Página
Capítulo IV Procedimiento Experimental	50
4.1 Introducción	50
4.2 Diseño del molde	50
4.3 Rugosidad de las camisas	54
4.4 Granallado de las camisas	56
4.5 Ahumado de camisas	57
4.6 Procedimiento de vaciado	58
4.7 Preparación de piezas vaciadas	60
4.8 Pruebas mecánica ("Push Out")	62
4.9 Obtención de temperaturas de vaciado a diferentes alturas	64
Capítulo V Resultados y discusión.	66
5.1 Introducción	66
5.2 Valores de rugosidad	68
5.3 Análisis de temperaturas de vaciado	74
5.4 Influencia de la temperatura de vaciado en el enlace metálico	78
5.5 Resultados de los ensayos mecánicos	80
5.5.1 Descripción del punto de ruptura de la interfase	82
5.6 Discusión de resultados de ensayos mecánicos	82
5.7 Porosidad en camisas de aluminio	89
5.8 Prueba a camisas de hierro gris, insertadas a presión	89
5.9 Resumen de resultados de pruebas mecánicas	90
Capítulo VI Conclusiones y recomendaciones	98
Bibliografía	100
Indice de Figuras	103
Indice de Tablas	107
Anexo 1 Perfiles de rugosidad	108
Anexo 2 Gráficas carga vs desplazamiento	121
Anexo 3 Micrografías de interfase	137

Resumen

La importancia y el auge que en los últimos años han desarrollado las nuevas aleaciones de aluminio a nivel industrial, principalmente en el campo automotriz, donde el principal objetivo es reducir el consumo de combustible, ha creado una demanda para la reducción de peso, en la cual las camisas de aluminio reforzado, juegan un papel muy importante sustituyendo a las camisas de hierro gris. El objetivo del presente trabajo es evaluar la resistencia al deslizamiento que existe en la interfase camisa de aluminio reforzado y la aleación A319.0. Para la evaluación de la resistencia al deslizamiento, primero se elaboró un molde de arena sílica, en el cual se colocó en el interior una camisa de aluminio reforzado y posteriormente se vació con la aleación de aluminio A319.0, con la finalidad de simular el vaciado de un monoblock con camisas de aluminio. La condición superficial de las camisas fue variada mecánicamente por medio de un granallado y con un recubrimiento de de carbon (ahumado). Posteriormente, la superficie fue caracterizada en cuanto a su rugosidad utilizando un perfilómetro mecánico. La rugosidad se midió antes de depositar el recubrimiento de carbón. La preparación de muestras consistió en maquinar la pieza vaciada, dándole forma de un cubo con la camisa de aluminio, en el interior. Una vez en forma de cubo, se partió en varias rodajas y se prepararon metalográficamente para tomar micrografias de la zona de la interfase. Durante el pulido de estas rodajas, se cumplió con la planitud entre caras. La experimentación consistió en colocar éstas rodajas en un troquel y un punzón, los cuales fueron diseñados para éste estudio. Este punzón acoplado al cabezal de la máquina de tensión embonaba en la cara superior de la camisa tratando de desplazarla bajo carga y de este modo ver el comportamiento de la carga contra desplazamiento que sufría la camisa. Lo anterior se registró en curvas carga contra desplazamiento generadas por la máquina de ensayos mecánicos. De los resultados arrojados en las pruebas de empuje, las probetas correspondientes a las camisas recubiertas con grafito fueron las que menor resistencia al deslizamiento presentaron, sin embargo las pruebas que mejor resistencia presentaron fueron las de camisa sin ahumar, específicamente las probetas correspondientes al acabado supeficial de granallado normal, es decir con un valor promedio de rugosidad Ra de 6µm, presentándose esfuerzos de deslizamiento de 70 MPa.