Capitulo 8

Controlador Optimo en Sistemas

Polinomiales

8.1. Problema del Confrolador Optimo

8.1.1. Planteamiento del Problema

Sea (2, F, P} un espacio de probabilidad completo con una familia creciente y continua
por la derecha de o-algebras Fy, t > 0,y sean (W, (t), Fy, t > 0) y (Wa(2), Fi, t = 0) procesos
de Wiener Fi-adaptados. Considere el proceso aleatorio no observable F,-medible z(¢)

gobernadd por la ecuacion polinomial de tercer grado

dz(t) = (ao(t) + ai(t)z(t) + a2(t)z%(t) + as(t)2%(2))dt + G(t)ult)dt +  (8.1)
b(t)d V1 (¢), z(te) = o,

y el proceso de salida (observacién)
dy(s) = (Ao(t) + A({)z(1))dt + B(t)dW,(t). (8.2)
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Aqui, z(t) € R" es el vector de estado no observable, para el cual los componentes del
segundo y tercer grados estan dados en Ja siguiente forma: z?(t) = [z1(t) 23(t) z3(¢) ...
227, 23(t) = [z3(t) 23() #3() ... 2B()]T, u(t) € RP es la variable de control,
y(t) € R™ es el proceso de observaciones, y los procesos de Wiener independientes W (i)
y W (t) representan disturbios aleatorios en las ecuaciones de estado y de observaciones,
los cuales son independientes del vector inicial Gaussiano zo. A(t) es una matriz no cero
y B(t)BT(t) es una matriz positiva definida. Ademds, la funcién de costo cuadratico a ser

minimizada J, estd dada por
1 _
J = Bl5[6(T) -zl @x(T) -zl + (8.3)

%ft uT(s)K(s)u(s)ds—l-%f 2" (s)L(s)e(s)ds],

0 to
donde z-es un vector dado, K es una matriz positiva definida y &, L son matrices
simétricas definidas no-negativas, T > {3 es un cierto instante de tiempo, el simbolo
E[f(z)] denota la esperanza (media) de una funcién f de una variable aleatoria z, y a?
denota la transpuesta de un vector {matriz) a.
El problema de control éptimo consiste en encontrar el control u*(t}, t € [t0, T, que
minimice el criterio J a lo largo de la trayectoria z*(¢), t € [to, T], generada al sustituir

u*(t) en la ecuacién de estado (8.1).

8.1.2. Principio de Separacién para Sistemas Polinomiales

Asi como para los sistemas estocdsticos lineales, el principio de separacién también
es vilido para un sistema estocdstico dado por una ecuacién polinomial de tercer grado,
con observaciones lineales, y criterto cuadrdtico. El principio de separacién ya ha sido
enunciado en sécciones anteriores, pero se hard mencién del mismo para facilitar la lectura

v comprension del texto. Reemplazando el estado del sistema no observable z(t) por su
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estimado 6ptimo m(t) dado por la ecuacién (5.15)

dm(t) = (ao(t) +ar{t)m(t) + a2(t)p(t) + aa(t)m?(t) + . (8.4)
a3(t)(3p(t) x m(t) + m*(t))dt + G(t)u(t) +
PT)AT()(B@)BT()) " (dy — (As(t) + A(t)m(t))dt),

con la condicién inicial m(ty) = E(z(te) | FY¥). Aqui, m(t) es el mejor estimado del
proceso no-observable z(t) en el tiempo t basado en el proceso de observacién Y (t) =
{y(s),to < s < t}, el cual estd dado por la esperanza condicional m(t) = E(z(t) | FY),
mft) = [m(t) ma(t) ... ma(t)l; P(E) = Bl(2(t) - m(e)(z(t) — mENTIY ()] € R es
la matriz de covarianza del error; p(t)he R™ es el vector cuyos componentes son las
varianzas de los componentes de z(t) — m(t), i.e., los elementos de la diagonal de P(¢);
m?(¢}) y m*(t) son definidos como vectores de los cuadrados y cubos de los componentes
de m(t): m2(t) = [m2(t) m3(e) ... m2@]T, m*(t) = [md() m3(2) .. m(OF; PE)m()
es el producto convencional de la matriz P(f) por un vector m(t); vy p(t) * m(t) es el

producto de dos vectores dado como el producto entre sus componentes: p(t) * m(t) =

(o1 (£ (2} p2(6hma () ... pa{t)ma(2)]T. El mejor estimado m(¢) minimiza el criterio
H = E[(z(t) — m(t))" (x(t) — m(#))], (8.5)

con respecto a la eleccidn del estimado m como una funcién de las observaciones (¢}, en
todo momenta de tiempo ¢ ([62]).

La ecuacin complementaria para la matriz de varianza P(t) toma la forma (5.18)

dP(t) = (q(0)P(t) + P(t)aT (1) + 2ax(t)m(t) * P(t) + (8.6)
2(P(t) » mT (t))a3 (t) + 3as(t) (p(t) * P(1)+
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3(p(t) ¥ P())" 05 (t) + 3as()(m*(t) * P(1)) +
3(P(t) * (m*(£)) )az (t) + (b(£)67 (2)) —
P)AT()(B()BT (1)) A() P (1)) dt,

con la condicién inicial P(ty) = E({z(to) —m{te)) (z{te) ~m(te))? |y(to)), donde el producto

m{t) x P(t) entre un vector m(¢) y una matriz P(t) es definido como en la Seccién 5.3.
Es posible verificar (como en {56]) que el problema de control éptimo (8.1) y la funcién

de costo (8.3) es equivalente al problema de control éptimo para el estimado (8.4) y la

funcién de costo J, representada como:

J = B{[m(T) ~ a]"[m(T) - 2] + (3.7
- /t oT()K (s)u(s)ds + [ (o) Lsm(s)ds

+% /t tr{P(s)L(s)]ds + tr[P(T)3]},

0
donde tr{A] denota la traza de la matriz A. @, K, L son matrices simétricas, K es una
matriz positiva definida y ® y L son matrices no negativas.
Dado que la dltima parte de J es independiente del control u(t) v del estado z(#), la

funcién de costo reducida M a ser minimizada toma la formas:

M = B m(T) ~ zff @ m(T) - ] + (8.5)
1/TT)K s+ 1 [ mT(s)L{s)m(s)d
5 ; u (8)K{(s)u(s s+§ 3 m’ (s)L{s}m(s)ds}.

En conclusidn, el principio de separacién para sistemas polinomiales de tercer grado es-
tablece que la solucién del problema original de control dptimo especificada para (8.1),(8.3)
puede encontrarse resolviendo el problema de control 6ptimo dado por (8.4),(8.8). Adem4s,

el valor minimo del criterio J debe ser determinado usando (8.7).
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8.1.3. Solucién al Problema de Control Optimo

Teniendo como base la solucién al problema de control obtenido en el capitulo previo
en el caso de un estado del sistema observable, gobernado por una ecuacién polinomial
de tercer grado, los siguientes resultados son vélidos para el problema de control éptimo
(8.4),(8.8), donde el estado del sistema (el estimado m(t)) es completamente disponible,

y observable. La ley de control éptima estd dada por:
u*(t) = K- (t)GT ()Q()m(?), (8.9)

donde la matriz Q(t) es la solucién de la siguiente ecuacién (7.4), dual a la ecuacién de

la varianza

dQt) = (—a{(NQt) — Q)ai () — 205 (DQ(2) ¥ m™ (¢} - (8.10)
2m(t) * Q(t)az(t) — 3a5 ()Q(L) * ¢7 (1) ~
3q(t) » Q(t)as(¢) — 3az (H)QE) * ((m*)7 (1)) —
3(m2() * Q(t))as(t) + L(t) — Q)GH K ()G (£)Q(¢))dt,
con la condicién terminal Q(T) = ®. La operacién binaria # ha sido introducida en la
Seccién 5.3, ¥ q(t) = [q1(t) ¢2(t) ... g.(¥)]T denota el vector formado por los elementos de

la diagonal de la matriz Q(¢). En el proceso de obtencién de la ecuacion (8.10), ha sido

tomado en cuenta que el dltimo término en la ecuacién (8.4),
PT(AT()(B) BT ()™ (dy — (Ao(t) + A()m(1))dt),

es un ruido blanco Gaussiano,
Sustituyendo la ley de control éptimo {8.9) en la ecuacidn (8.4) para el estado reconstruido

del sistema m(t), se obtiene la siguiente ecuacién para el estimado del estado éptimamente
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H

controlado: !

dm(t) = (aolt) +a(m(t) + a®plt) + B+ (8.11)
aa () (3p(t) + mit) + m*(£))dt + G (K (1) " GT () Q(tym(t)dt +
PT(8) AT(6) (B() BY (£)) ™ (dy — (Aoft) + A(t)mi(t))dt),
mito) = E(z(te)|FY)-

Asi, la ecuacién del estimado del estado 4ptimamente controlado (8.11), la ecuacién
de la matriz de ganancia (8.10}, la ley de control éptima (8.9), y la ecuacién de la var-
ianza (8.6), forman la solucién completa del problema del controlador para estados no

observables de sistemas polinomiales de tercer grado.

8.2. Aplicacion del Controlador Polinomial Optimo

a un Sistema Automotriz

.8.2.1. Planteamiento del problema

Esta seccidn presenta la aplicacion del controlador para un estado polinomial de tercer
grado con observaciones lineales y funcién de costo cuadrdtica para controlar las variables
de estado no observables, y dngulos de orientacién y de giro del volante, en un modelo
cinematico no lineal de un carro en movimiento [63], el cual ya ha sido presentado en sec-
ciones anteriores, pero se repetira el planteamiento para facilitar la lectura y comprension

del texto. Las ecuaciones de estado para este sistema estan representadas por:

dz(t) = wvcos¢(t)dt, (8.12)
dy(t)

v sin ¢(t)dt,

181



do(t) = (v/l)tané(t)dr,
dé(t) = u(t)de.

Aqui, z(t) ¥ y(t) son las coordenadas cartesianas del centro de masa del carro, ¢(t) es
el dngulo de orientacidn, v es la velocidad, { es la longitud entre los dos ejes del carro, §(%)
es el dngulo del volante, y u(t) es la variable de control (velocidad angular del volante).
Se suponén condiciones iniciales cero para todas las variables.

El proceso de observacién para lag variables no observables ¢(t) y §(¢) es dado por las
observaciones lineales directas, las cuales contienen disturbios independientes e idéntica-
mente distribuidos, modelados como ruidos blancos Ganssianos. Las ecuaciones correspon-

dientes a las ocbservaciones son

dz¢,(t) = (b(t)dt-le(t)dt, (8.13)
dzs(t) = B8(8)dt + wa(t)dt,

donde z4(t) es la variable de observacién para ¢(t), zs(t) es la variable de observacién
para é(t),. y wi(t) ¥y wo(t) son ruidos blancos Gaussianos independientes uno del otro.
Los valores asignados para la velocidad y la longitud entre los ejes son v = 17m/min,
[ = 2m, los cuales corresponden a un modelo de carro de tamaiio estdndar. En otras:
palabras, el problema es lograr el giro maximo de las ruedas de su posicién inicial, usando
la minima energia para dirigir el volante. Por razones de economizar combustible y reducir
la contaminacidn del aire, el peso del término de control en el criterio, se considera diez
veces mayor que el peso del término del estado terminal. Bl criterio correspondiente J a

ser minimizado toma la forma

T ’ .
J=[#(t) = ¢*>+ 10 / Cu¥(t)dt, (8.14)
0
donde T = 0.3min, y o = 10rad es un valor grande de ¢(¢) inalcanzable en el tiempo 7.
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La aplicacion de los algoritmos del controlador obtenido se hace para el sistema no
lineal (8.12), observaciones lineales (8.13}, y criterio cuadrdtico (8.14), usando la expansidn
de Taylor para las dltimas dos ecuaciones en (8.12) en el origen, hasta el tercer grado (el

cuarto grado no aparece en la serie de Taylor para la tangente)

v, ,8%(¢t

) = (50 + O EEpa, (8.15)
ds(t) = ult)dt.

8.2.2. Solucién

La solucién para el problema del controlador éptimo establecido, es dada como sigue.
Dada K =1y GT =[0,1] en (8.14) y (8.15), la ley de control éptimo
ut(t) = (K1) 'GT(¥)Q(t)m(t) toma la forma
u*(2) = qar (E)my(t) + gaa(t)ms(t), (8.16)
y las siguientes ecuaciones para el controlador éptimo (8.9)—(8.11) y (8.6) para el estado

polinomial de tercer grado (8.15) sobre observaciones lineales (8.13) y criterio cuadratico

(8.14) son:

(l

dmyg ((%)ma + (%)(31:5 +mf) + pgs(zp — M) -+ pes(76 — mg)}dE,  (8.17)

dm§ = ('u.* (t) + p5¢(2¢ — M¢) + pag(z(j — mJ))dt,

' 2v 2v
dpyy = ((20/Dpsgpss + T Psg + = MgPsg — Py — Poa)ths

{
v Y
dpgs = (Tpaa + ngpaa — DpaPos — PeaPss)dt,
dpss = (—Djp — Das)dt
dg(t) = (—an(t))dt,

v v v
dgia{t) = (—‘I'Qﬂ — Q22 = 79~ ?miml)dt,

2u PAY

2
dgoa(t) = (—'—Q12 — T2 - Tmafhz — g3 )dt.
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Aqui, my y ms son los estima:'dos de las variables ¢ ¥ 8; pgg, Pgs, Pss Son elementos de la ma-
triz simétrica de covarianza P; ¥ qy1(), g21(t), ¢o2(¢) son elementos de la matriz simétrica
de ganancia Q(t) formando el control éptimo (8.16). Los siguientes valores iniciales para
las variables de entrada son asignados: ms(0) = 1,ms(0) = 0.1, ¢(0) = §(0) = 0, Pyy(0) =
10, Py;(0) = 1, P55(0) = 1. Son disturbios Gaussianos w(f) y we(t) en (8.13) son realiza-
dos como ruidos blances, tomando el block correspondiente en el Matlad 6, version 1.2.
Las condiciones terminales para los elementos de la matriz de ganancia @ estdn dadas
por: g1 (T) = 0.1, g12(T') = 0, ¢22(T") = 0, en el tiempo final T = 0.3min.

Asi, el sistema compuesto por las dos iltimas ecuaciones de (8.12) y las ecuaciones
(8.17) debe ser resuelto con las condiciones iniciales my(0) = 1, m;5(0) = 0.1, ¢(0) = 6(0) =
0, Pps(0) = 10, Pys(0) = 1, P5s(0} = 1, y las condiciones terminales ¢;1(T) = 0.1,912(T) =
0, g22(T) = 0. Este problema de frontera es resuelto numéricamente usando un método
iterativo, pasando del sistema en tiempo directo al sistema en tiempo inverso, como fue
realizado en la seccién de la aplicacién del control éptimo a un sistema automotriz (Seccidn
8.2). Las gréficas de la simulacién para el caso polinomial de tercer grado son mostradas
en la Figura 8.1. La ley de control éptimo en el caso lineal es la misma que en (8.16), pero

las ecuaciones del controlador lineal éptimo estan dadas por:

v
dm¢ = (?ma + p¢¢,(z¢ - m¢) + p,;,a(ZJ — ma))df, (8.18)
dms = (u*(t) + psg(2zs — my) + os(25 — ms))dt,

2v
dpgy = (Tpéqﬁ — Dy — Dijg)dt,

U
dpgs = (fpaa — PppPss — Poslss)dt,

dpss = (~—p3s — pas)dt.
dgn(t) = (—g ())dt,

v
dqi2(t) = (—qlzfm—?fi’u)dﬁ:
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2v !
dga(t) = (“79‘12*932)dt- _ ’

Se puede observar que en el caso lineal solo se requiere un paso en el sistema inverso
para ¢’s, porque las ecuaciones para ¢'s en (8.18) no dependen de ¢, 4, my, ni ms, y los
valores iniciales para ¢’s en ¢ = 0 pueden ser obtenidos después de un pase por el sisterna
inverso {con el tiempo (~%)). Las graficas de la simulacién para el caso lineal se muestran
en la Figura 8.2. Asi, dos conjuntos de graficas son obtenidos: 1. Gréficas de las variables
¢ y & que satisfacen las ecuaciones del sistema polinomial (8.15) y el controlador usando
el regulador lineal 6ptimo definido por (8.16), (8.18); graficas de los estimados my ¥ m;
que satisfacen el sistema (8.18) y el controlador usando el regulador éptimo lineal definido
por {8.16), (B.18); graficas de los valores correspondientes del criterio J; grificas de los
valores correspondientes del control éptimo u* (Figura 8.1).

2. Griéficas de las variables ¢ y & que satisfacen el sistema polinomial (8.15) y el
controlador usando el regulador dptimo polinomial de tercer grado definido por (8.16),
(8.17); gréficas de los estimados my y m; que satisfacen el sistema (8.17) y ¢l controlador
usando el regulador éptimo polinomial de tercer grado definido por (8.18), (8.17); graficas
de los valores correspondientes del criterio J; grdficas de los valores correspondientes del
control éptimo u* (Figura 8.2}.

Los valores obtenidos de la variable controlada ¢ y del criterio J son comparados
para el controlador 6ptimo polinoinial de tercer grado y el controlador éptimo lineal en
el tiempo terminal T = 0.3min en la siguiente tabla (correspondiente a las Figuras 8.1 y

8.2).
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Controlador Lineal Controlador Polinomial de Tercer Orden
$(0.3) = 0.054rad $(0.3) = 0.084rad
J = 98.971 J = 98.45

Los resultados de la simulacién demuestran que el valor de la variable controlada ¢ en el
punto terminal 7 = 0.3min es mayor por una y media veces en el controlador polinomial
con respecto al controlador lineal, y la diferencia entre los valores iniciales vy finales del
criterio es m4s que una y media veces mayor en el controlador polinomial de tercer orden
con respecto al controlador lineal. Por tanto, mediante esta simulacién queda demostra-
da la eficacia del algoritmo del controlador polinomial de tercer grado, con respecto al

controlador lineal.
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Figura 8.2: Gréficas del controlador éptimo polinomial de tercer grado, correspondiente a
las ecuaciones (8.17) y (8.16). phi = ¢, delta = 6, Mphi = my, Mdelta = mg, criterion =

J, control = u*.
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Capitulo 9

Conclusiones, Aportaciones y
Recomendaciones para Trabajos

Futuros

9.1. Conclusiones

Se han obtenido matemadticamente los algoritmos del regulador éptimo para sistemas
de Itd-Volterra con entradas de control continuas o discontinuas, partiendo del principio
de dualidad para el caso de las ecuaciones de It6-Volterra con observaciones lineales.
Utilizando el principio de separacidn, y los algoritmos de filtrado obtenidos previamente,
se obtuvo matemdticamente el controlador éptimo para los sistemas de It6-Volterra.

Se obtuvieron los algoritmos de filtrado y control 6ptimos para ecuaciones de estado
polinomiales de tercer y cuarto grado, con observaciones lineales. Se ha mostrado la efi-
ciencia de los algoritmos de filtrado y control, obtenidos mateméaticamente, para sistemas

polinomiales de tercero v cuarto grados, con observaciones continuas, comparandolos con
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los algoritmos de filtrado de Kalman-Bucy ya existent .‘3, mediante una simulacién en Mat-
Lab 6, versidon 1.2., aclarando que en esta simulacidn, el ruide blanco es considerado ¢omo
una senal de banda ancha finita, por lo cual es una aproximacién. En forma similar al caso
de It6-Volterra, se obtuvieron mediante procedimientos matematicos, los algoritmos del
controlador é6ptimo para ecuaciones de estado polinomiales de tercer grado. Aplicandolos,
a un fendmeno fisico, mediante simulacion en MatLad 6, version i.2., se compararon los
algoritmos del controlador polinomial cbtenido en este trabajo, con los algoritmos del
controlador lineal, obteniendo mejores resultados con el controlador polinomial. Como
un caso general, se trabajé con los algoritmos de filtrado 6ptimo para el caso bilineal, y
teniendo el deseo de verificarlos en un niimero mayor a dos ecuaciones, se llevd a cabo
su aplicacién a un modelo matematico de un reactor de polimerizacién, con el propésito
de mostrar su eficacia respecto a los algoritmos lineales ya existentes. Lo antericr se con-
siguié mediante la simulacién en MatLabd 6, versidn 1.2, Queda como trabajo a futuro la
verificacidn de la eficacia de los algoritmos obtenidos mediante su aplicacién a diversos

fenémenos fisicos que se presentan en la naturaleza.

9.2. Aportaciones

Las aportaciones se pueden enlistar en la siguiente forma:

a) Disefio de algoritmos de filtrado éptimo para:
» Sistemas de Itd6-Volterra y observaciones lineales continuas.
= Sistemas de I1t0-Volterra y observaciones lineales discontinuas.

» Ecuaciones de estado polinomiales de tercer y cuarto grados y observaciones lineales

continuas.

190



» Ecuaciones de estado bilineales y observaciones lineales continuas.

b) Disefio de algoritmos de control éptimo para:
» Sistemas de It6-Volterra y entradas de control lineales continuas.
= Sistemas de It6-Volterra y entradas de control lineales discontinuas.
= Ecuaciones de estado polinomiales de tercer grado y entradas de control lineales

continuas.

¢) Disefio del controlador para sistemas que representan procesos no observables para:
= Sistemas de Ito-Volterra con observaciones y entradas de control lineales continuas.

» Sistemas de It6-Volterra con observaciones y entradas de control lineales disconti-
nuas.

» Ecuaciones de estado polinomiales de tercer grado con observaciones y entradas de
control lineales continuas.

d) Los problemas técnicos resueltos en este trabajo son los siguientes:

= Obtencién del control éptimo del movimiento de un misil con motores jet e impul-
sivos.
» Obtencién de controlador dptimo del movimiento de un misil con motores jet e

impulsivos y velacidad no observable.

» Obtencién de las ecuaciones de filtrado éptime referentes al movimiento angular de

un automdovil.
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= Obtencidn de las ecuaciones de control 6ptimo referentes al movimiento angular de

~un automoévil.

= Obtencidn de las ecuaciones del controlador optimo referentes al movimiento angular

de un automovil.

» Obtencién de las ecuaciones de filtrado éptimo para la estimacién de un proceso de

polimerizacion.

9.3. Recomendaciones para Trabajos Futuros

Existen multiples casos a desarrollar en las dreas de filtrado y control, dada la diver-

sidad de los procesos de la naturaleza. Algunos de ellos pueden ser:

s Corroboracién de los algoritmos de filtrado y control obtenidos, mediante su apli-

cacidn en diversos fendémenos fisicos.

= Desarrollo de filtro y control éptimo para sistemas de otros grados polinomiales

superiores, con observaciones continuas.

s Desarrollo de filtro y control dptimo para sistemas de otros grados polinomiales

superiores, con observaciones discontinuas.

s Desarrollo de filtro y control éptimo para ecuaciones de estado con términos no
lineales y no polinomiales, con funciones de tipos exponencial, logaritmico, trigonométri-

co, etc., con observaciones continuas y discontinuas.

s Aplicacidn de los algoritmos obtenidos a problemas técnicos de diversas areas de

Ingenier{a.
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» Verificacién de los algoritmos de filtrado bilineales, interdisciplinariamente, esto es
con un especialista en las dos ingenierias, de control v quimica, para el proceso
de polimerizacién presentado por Ogunnaike [64], utilizando métodos quimicos para

elegir las ecuaciones afines, y los valores de los pardmetros, y los algoritmos obtenidos

en este trabajo.

La verificacién y corroboracién de los algoritmos de filtrado obtenidos permitir4 la consolida-
cion de los mismos,y esto, junto con el desarrollo de los algoritmos de filirado y control
para otras condiciones especificas que presenta la naturaleza, proveedra de herramientas

para resolver diversos problemas técnicos de las Ingenierias Quimica, Automotriz, Eléctri-

ca, efc.
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1 Imntroduction

The optimal control and filtering problems for dynamic systems with delays,
which represent a particular case of discontinuous integral systems, have been
studied in a number of publications from various viewpoints (see, for exam-
ple, [9], [10}, [1] for dynamic systems and [17] for a particular case of integral
Volterra ones). This attention is directly related to common use of dynamic
systems with delays in global economy concepts [12], marketing models [13],
technical systems {7], and others. Since the class of integral Volterra systems
includes the class of retarded dynamic ones, the study of integral systems
becomes a significant part of the control theory. Nevertheless, the integral
Volterra systems have been of independent interest in the deterministic en-
vironment, as well as in the stochastic one (see [2]).

‘This paper presents solutions of the optimal linear-quadratic control prob-
lems for stochastic integral Ito-Volterra systems with continuous and then
discontinuous states. There are a number of papers investigating the con-
trol problems for continuous system states given by stochastic differential
equations {see [11, 19] and bibliography therein) or bivariate Volterra ones
{17}, or deterministic continuous and discontinuous system states governed
by Volterra equations [3, 4]. However, the problems have not been treated
yet in the case of integral stochastic systems governed by Ito-Volterra equa-
tions. The solution presented in the paper is based on applying the duality
principle for Volterra systems {substantiated n [3]} to the known solutions of
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the dual filtering problems for Ito-Volterra states over continuous and then
discontinuous abservations. The duality principle enables one to use the op-
timal gain matrix structure in the dual filtering problem for the optimal gain
matrix in the control! one, as it was done for differential stochastic systems
[14, 15}, As a result, the optimal control law and the gain matrix formula
are first derived in the general case an Ito-Volterra state equation, where the
gain matrix constituent satisfying a Riccati equation depends on two time
variables, as the cross-correlation matrix in the dual filtering problem does
(see [5]). The gain matrix formula is then simplified in the case of a dynamic
plant (the internal part of a system} governed by a differential state equation,
where the gain matrix constituent satisfying a Riccati equation depends on
only one time variable, similarly to the variance in the dual filtering prob-
lem (gee [6]). The obtained results for discontinuous system states, where
the optimal control problem is dual to the optimal filtering problem over
discontinuous observations ({5, 6]), consist of the discontinuous control law
and the corresponding Riccati equation with integration with a discontinuous
measure, which allows discontinuous solutions. In particular, the obtained
results enable one to compute jumps of the optimal control parameters (the
gain matrix, optimal control law, and optimally controlled state) that can
appear due to discontinuities in system bhehavior.

The secondary goal of this paper is to reveal more functional capabilities
of the duality principle as a means for solving the optimal control (or, vice
versa, filtering) problems. Indeed, the duality principle applicability to linear
dynarnic systems is well known (see [8, 18]) and its applicability to linear in-
tegral Volterra (Tto-Volterra) systems is investigated in {3. 4] and this paper.
However, it seems that the more advanced conjecture is valid: the duvality
principle should be valid in all cases of linear and nonlinear systems, where
the optimal solution to control or filiering problem exists. Taking this work-
ing hypothesis into account makes the duality principle a quite powerful tool
for designing the optimal control and filtering algorithms.

The paper is organized as follows. The Section 2 presents the optirnal
control statement and its solution (the optimal control law and gain matrix
equation) for a continuous Ito-Volterra system, based on applying the duality
principle to the solution of the dual filtering problem. The optimal conirol
problem for a discontinuous Ito-Volterra system is stated and solved in Sec-
tion 3. The obtained results are then simplified in the case of a dynamic plant
(the internal part of a system) governed by a differential equation. In par-
ticular, the relations enabling one to compute jumps of the optimal control
parameters are obtained. Finally, Section 4 presents the technical exam-
ple illustrating application of the obtained results to solution of the optimal
control problem of launching a missile with continuous and impulsive jet mo-
tors to the maximal possible altitude with the minimal fuel consumption,
if the velocity dynamics is affected by equally distzibuted and independent
stochastic disturbances.
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2 Optimal Control in Continuous Ito-Volterra
Systemns

2.1 Problem statement

Let (2, F, P) be a complete probability space with an increasing right-contin-
uous family of o-algebras F,,t > 0, and let (Wi{f), Fy,t > 0) be an Fi-
adapted Wiener process. Let us consider the Fi-mmeasurable random process
z(#) governed by the Tto-Volterra equation

z(t) = x(to)+f(ao(t,8)+a(t,3)$(8)+b(t,8)u(t,6))d8+]t9{8)dW1 (s)- (1)

tg tg

Here z(t) € R™ is the state vector, u(t,s) € RP is the control variable,
the Wiener process W;(t) represents a random disturbance, and the initial
Gaussian vector z(ip) is independent of Wi (t). The guadratic cost function
J to be minimized is defined as follows

7 = Bl o(0) - ool ¥ [o(T) - 0] 2)

T T
w2 [T R, s)ds + X f 27 (5)Q(s)z(s)ds),
2 £g . 2 to
where zy 18 a given vector, ¥, R, Q are positive (nonnegative) definite sym-
metric matrices, T > tp i a certain time moment, the symbol E{f(z)] means
the expectation (mean) of a function f of a random variable z, and a7 de-
notes transpose to a vector (matrix) a.

The optimal control problem is to find the control u*(¢), t € [to, T, that

"~ minimizes the criterion J along with the trajectory z*(¢}, ¢ € [tp, T}, gener-

ated upon substituting u”(t) into the state equation (1).

2.2 Duality principle

For dynamic systems governed by differential equsations, solition of the op-
timal control problem can be obtained using the solution of the optimal
filtering problem and the duality principle [8, 18]. Thus, it would be help-
ful to introduce the duality principle for integral stochastic systems, as done
below.

Consider the integral Volterra systems:

z{t) = z(to) + /t(a(t,s)z(s) + blt, s)ﬁ(t,s})ds, T (3)

y(t) = [t clt,s)z{s)ds + /t d(t, s)ult, s)ds
1] ty
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and

2(8) = ={tp} -+ /t —aT(t,5)z(s)ds + ./t et (t, s)v(t, s)ds, (4)

tp L1}

t
+(t) =./: b (L, s)z{s)ds + /j dT (2, s)u(t, s)ds.

The duality principle claims that the system [3) is controllable (observable)
at £y, if and only if the system (4) is observable (controliable) at tg.

The proof of the duality principle for integral systems [3] is based on the
fact that there exists the iransition matrix ®(2,%); t,t9 € (—00,00), such
that ‘

iy

x(t) = ®(f, to)x(ta) + / t B(t, 7)biE, TIu(t. T)dr.

2.3 Dual filtering problem solution

The suggested solution to the optimal control problem for integral stochastic
systems is based on applying the duality principle to the optimal filtering
problem solution obtained in (5], Indeed, let us consider the filtering problem,
dual to the optimal control one given by (1},(2), for the state equation

2(t) = z(to) + ft(a%"(ia s) ~aT(t,5)z(s))ds + [t QY2 (s)dWs(s)  (5)

to

and the observation equation

¢ ' ¢
y(t):L(bT[t,s)z(s))ds—F[t RY2(5)dW,(s), (6)

where W3(s) a.nd Wa(s) are independent Wiener processes which are in turn
independent of an initial Gaussian vector z(fy).

The filtering problem is to find the best estimate for the Ito-Volterra
process ©(t) at time t based on the observation process Y (t) = {y(s),#y <
5 < t}, that is the conditional expectation m(t) = E(z(¥) | F¥). Denote
the correlation function of the best estimate as P(f) = E{(z(¢) — m{£){z(t) —
m()T | FY).

As shown in [5] and the previous papers {16, 21}, it is impossible to obtain
a closed system of filtering equations for variables m(¢} and P(2} due to the
Volterra nature of the equations (5} and (6). Designing a closed filter requires
introducing the additional cross-correlation function f(i, s) characterizing a
deviation of the best estimate m(t) from the real state z(t}:

£t,8) = B((z; - m)(z(s) —m(s))™ | ),

where 5

z, =z(to) + [ (ag(t:r) - 6T(t»f)3(r))d3’+f Q2 ()W (r),
B to tp
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Ffs is the o-algebra generated by the stochastic process y!
yt = / 8T (¢, s)2(s)ds + / RM¥(sYdWy(s),
tg to

and mi=E@L|F).

The optimal filter for the state vector (5} over the continuous observation
process (6) is given [5] by the following equations for the optimal estimate
m(t), its correlation function P(t), and the cross-correlation function f(%, s)

4
m(t) =m(to) + | (ag(t,s) ~ a” (¢, s)m(s))ds= (7}

ta

t: F(t, )b{t, s)(R(s)) " [du(s) — b7 (t, s}m(s)ds .
Pt} = P(ta) + /t:[_“T("’ )Tt 5) — Ft, s)alt, s) + Q(s))ds—  (8)
[ 0,00 R0 )7 e,
f{t,s) = Plto} + [t:[—aT(s,r)fT(t,r) — f(s,)alt,r) + Q(r)ldr—  (9)

ft ,[ FE,m)b(s, 7Y R(r)) 0T (s,7) f7 (s, 7)+

f(s,0)blt, D) (R(r)) 6T (1,7 f7 (8,7} -
(/2 F(t,)b(t, ) (R() T (,7) 7 (5,7) -
(1/2)5 (s, 7)b(s, ) (R(r)) 20" (8,7} 7 (2, 7)]dr,

where m(to) = E(z(to) | Fy} = zo and Plp) = E((z(to) — m(to)(2{ta) —
m{to))7T | Ft‘;) are the initial conditions.

Thus, the solution to the optimal control problem defined by (1),{2) can
be now obtained using the expression for the optimal filter gain matrix in (7)
and the cross-correlation equation {9).

2.4 Optimal control problem solution
Since the filter gain matrix in (7) is equal to
M.f (t. 3) = f(t,s)b(t,s)(R(s))_l,

the dual gain matrix in the optimal control problem takes the form of its

2 transpose
' M(t,3) = R YUsHT(8,8) 572, 5).



304 M.V. Basin and M.A. A. Garcia

Hence, the optimal control law in the problem (1}, (2} is given by
u*(t,5) = R™H{g)b" (1, 5) f 7 (t, s)e(s), (10)

where f(¢,s) is the solution of the integral Riccati equation

f(t,8) = P(to) + f: 8[—aT(s,r)fT (t,r) — f(s,r)alt,r) + Q(rNidr—  (11)

/ "L r)b(s, (R 16T (5, 7) F (s, )+

F(sr)b(t, (RN (@, ry () -
(1/2) f(t, P)b(t, PR T (s, 7) f T (5,7)—
(1/2) F(5,73b(s, 7Y (R(r) 707 (¢, 7) fT (¢, 7)}dr,

with the terminal condition f(T,T) = P(T}= ¢ .
Finally, upon substituting the optimal contro! (10) into the state equation
{1}, the optimalily controlled state equation is obtained '

{t) = x(ty) + [ (o0(t,5) + alt, 5)(s)+ (12)

to

b(t, )R (s30T (2, 8) FT (8, 8)x(s))ds + f t g(s)dWy (s).
to

3 Optimal Control in Discontinuous Ito-Volterra
Systems - -

3.1 Problem statement

Let (2, F, P) be a complete probability space with an increasing right-contin-
uous family of o-algebras Fi,¢ > 0, and let (W;(t), F:,t > 0) be an F;-
adapted Wiener process. Let us consider the Fi-measurable random process
z{t) governed by the Ito-Volterra equation

z(t) = z{to) + t(ag(t, 5) + alt, s)x(s)ds+ (13)

7]

t t
[ b(t, s)u(t, s))du(s) +[ g(s)dWi(s).
ip 3
Here z(t} € R™ is the state vector, u(t,s) € R? is the control variable, v{s) is
a scalar bounded variation function, the Wiener process Wi{¢) represenis a
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random disturbance, and the initial Gaussian vector z{fs) is independent of
Wi (t}. The quadratic cost function J to be minimized is defined as follows

J = Bl [o(T) ~ w0l ¥~ (T) ~ ] (14)
T
-}—% ftjuT(t, s)R{sjult, s)du{s) + % fto 2T (s)Q(s)z(s)ds],

where =g is a given vector, ¥, R, @ are positive (nonnegative) definite sym-
metric matrices, T > ig is a certain time moment.

The optimal control problem is to find the control u*(t), t € [to, '], that
minimizes the criterion J along with the trajectory z*(2), i € [to,T], gen-
eraied upon substituting u*(t) into the state equation (13). The state tra-
jectory z(t) may be discontinuous due to discontinuity of the integral with
discontinuous function w(t) in the right-hand side of {24). This model of sys-
tem states enables one to consider sharp changes (jumps) in system position,
as well as its gradual continuous movement.

3.2 Dual filtering problem solution

Using the same technique as in Section 2, the suggested solution to the op-
timal discontinuous control problem for integral stochastic systems is based
again on applying the duality principle to the optimal discontinuous filtering
problem solution obtained in [5]. In this case, the filtering problem over dis-
continuous observations, dual to the optimal discontinucus control problem
(13), (14), is formulated for the unobserved state

z(t)=2(to)+/ (ag(faS)—aT(t=8)2(3))d8+£ QY (s)dWals)  (15)

ity

and the discontinuous observation process

y(t) = [ (87 (1, s)2(s))do(s) + f RV (s)dWi(o(s)), (1)

where W3z (s) and Wy(s) are independent Wiener processes which are in turn
independent of an initial Gaussian vector z(fg). The filtering objective is the
same as in Subsection 2.3,

As a result, the following filtering eqnations for the optimal estimate m(t),
its correlation function P(t), and the cross-correlation function f(¢,8) (all
notation is the same in Subsection 2.3) have been obtained in [5], applying the
filtering procedure [20] for deriving the filtering equations over discontinuous
observations from the known filtering equations over continuous ones to the
equations {8)—(10):

m(t) = m(to) + [ (@I (t,5) — a7 (1, s)m(s))ds+ (a7)

ty
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/t F(t,8)b(2, ) B(s)) " [dy(s) — b7 (8, sym{s)dv(2)],
PO) = Plto) + [ a7 (0,9/7(09) ~ 16, 5)altys) + Qllds— (19)
to
[ 50,5080 9) RO, 057 ),

F(t8) = Plto) + [ [=aT (5} f7(6,r) ~ fls,r)altor) + Q()ldr—  (19)

/ LG b5, R B (5,7 £ (5,7 +

Fs,)b(er) (R()) 0T (8, 1) 7 ()=
(1/2) £ (2, 7)b(t, r)(R(r)) T 67 (3,7) £ (s5,7)
(1/2)f (s, )b(s. ) (R(r)) " 07 (£, ) f7 {8, )]du(r),

where m(to) = E(z(to) | Fg) = 1o and P(tg) = E{{z(tp) — m{tg)(2(tg) —
m(to}) T | th:) are the initial conditions. The functions m(¢} and P{¢} have
jumps at the discontinuity points of the function v(t), and the function f(z, s)
is continuous int ¢ and has jumps in the second time argument s at the same
discontinuity points of v(i).

3.3 Optimal control problem solution

Based on the duality of the filtering and control gain matrices, we conclude
that the optimal control law is given by the same expression

iz*kt, s) = R7Ys)bT(t, s) FT (2, 8)z(s), (20)

and f(t,s) is the solution of the integral Riccati equation

f(t,s) = Plte) + S[—aT(s,f‘)fT(t,r) - f(s,r)alt,r) + Q(r)jdr—  (21)
io

/ Lt )bl )R (5,7 T (5, )+

Fla, (e} (RE) BT (¢, ) T (2, 7) -
(1/2)f (£ 7)ot r)(R() 787 (5,7) T (s07)
(1/2) f(s,7)b(s.r)(R(r)) 8T (¢, 1) FT (8, 7))o (),
with the terminal condition f(T,T) = P(T') = g1
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Upon substituting the optimal control (20} into the state equatlon (1),
the optimally controlled state equation is obtained

z(t) = z(fg) + [t(ao(t, 5) +al(t, s)z(s)+ {22)

616, )R ()07 1)1t Ja()o(s) + [ (5)dW ).

The obtained equations (21)-(22) are integral equations with integration
w.r.t. a discontinuous measure generated by a bounded variation function
v(t), which do not tell us how to compute jumps of the optimally controlled
state z(¢} and the gain-forming matrix f(i, s} at the discontinuity points of
the function v(t) corresponding to discontinuities in the state z(t). Neverthe-
less, in accordance with Theorem 3 in [8], the jumps can be computed solving
the following system of differential equations, where z(t—) and f(¢,s—) are
values from the left of the system state z(¢) and its cross-correlation f(i,s)
at their discontinuity points £ and (¢, s), respectively:

i_z = b(t, ) R™L T (8, D) £ (2, v)z(w),

z(0) = z(t—), w»€[0,Au(t)],

dfgvv = ﬁ[f(t U S)(R(s))_le(s,s)fT(_g,v)—}-

F(s,0)b(2, $)(R()) 7167 (1, 5) 7 (¢, v)~
(1/2)£ (2, v)bit, 8) (R(s)) 7167 (s, 8) T (s,0)—
(1/2)] (5, 9)0(s, s)(R(s)) 767 (£, 5) F T (2, 0)),

F(t,0) = f(t,s-), wv€|0,Avs)).

Subsequent solution yields the following jump expressions
Az{t) = b{t, ORI ODT (1, 1) f (£, t=) Av(2),

Af(t,s) = —[f{t,s=)[T + (b(s, s}R(s)) 26T (5,5) f T {5, 5—)+
b(t, s)(R(s)) b7 (¢, 5)f 7 (t, )
(1/2)b(s, s)(R(s)) ™07 (2, 8) T (t,5—)—
(1/2)b(t, s)(R(s)) ™07 (3, ) f (3, 8—)) Au(s)] ™" x
b(s,s)(R(s)) b7 (5, 5) fT(s,s—)+
Fls, s)I + (b(s, 5)(R(s))7*b (5,8) f T (s,5-)+
b(t, s)(R(s)) 167 (¢, 8)fT (¢, s-)—
(1/2)b(s, s)(R(s)) 07 (¢, 8)F7 (8, 5-)~
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(1/2)b(t, s)(R(5)) 716 (s, 5) fT (5, 5~)) A (s)] ! x
bt,s)(R(s))" b7 (t,8)f T (¢, s}~
(1/2)f(s,8=)I + ({8, 8)(R(8)) 167 (5,5) /T (5. 5- )+
bt, 8)(R(s))~ 67 (2, 8) T (¢, 8~} -

(1/2)b(s, s) (R(s)) b7 (1, 8) ST (8, 5—)—
(1/2)b(t, $)(R(5)) b7 (5, 5) f7 (s, 5—)) Au(s)] "' x

 b(s, 8} (R(8))07(t, ) £ (2, 8- ) —
(1/2)£ (¢, s—)I + (b(s, s)(R(s)) 07 (5,8} f T (3,5 )+
b(t,5) (R(s))”'le(t, s)fT(t, §—j—
(1/2)b(s, s)(R(s)) 7267 (¢, s} /T (¢, 5~ )~
(1/2)b(t, s}(R(s}) 7167 (3, 5) fT (5, 5]} Au(s)] 7 x
b(t, s)(R(s)) 7267 (s, 5) F7 (5, s—}}Av(s),

where [ is the n x n-dimensional identity matrix.

Following [5], the obtained jump expressions can be incorporated into
the regulator equations (21}-(22), using the form of the equivalent equations

with a measure

z(t) = z(io) + /t (ag(t,s) + alt, s)z(s)+

1

b(t, YR~ (567 (8, 8) £ (¢, 5-)a(s))duis) + [ o()dW (5).

56,9 = [ a7 (170 - S, 790t ) + Qe
S

[[f(i?r—}[f+ (s, rY(R(r)) ™ 0 (5, 7) T (s, 7 )+

b(t, P} (R(r) T (8,7 f T (dr—) -
(1/2)b(s, ) (R(r)) ™ b7 (8,7} T (8,7 —)—
(1/2)b(t, T HR(r)) 7187 (s, 7) (s, 7)) Av(r)] ! x
b(s, rHR(F)) 26T (s,r} f ¥ (s,7—)+
Fls v NI + (s, PHRE) T (5,7) fT (5,7 )+
bt T REN BT (8, T (8, r—) -
(1/2)b(8, PR TG, ) 7 (2,7 =) -
(1/2)6(&T)(R(T))"bT(s.r)fT(s,r—))Av(f)]“ x

(23)

(24)
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b(t, r)(R(f'))_le(t, r)fT(t, r—)—
(1/2)f(s.7=)[T + (be, PHR() 10" (5.7) f T (o7 )+
b(t, r)(R(r)) 8T (8 ) f Tt~ ) -
(1/2)b(s, r)(R(r)) b7 (¢, 1) F¥ (£ r—)—
(1/2)b(t, P (R(r) 76 (3, 7) T (5, 7)) Aw(r)] ' x
b(s, HR(r) 16T (8, r) T (8,7 ) -
(1/2)f{t. r=)[I + (bs, P} (R(r)) 76 (5, 7)f T (3, 7-)+
b, RN T T (b r-) -
(1/2)b(s, )R T (6, )T (b7 ) -
(1/2)b(t, ) (R(r)) 10T (5,7)f T (5,7—)) Av(r)] ' x
b(t, r)(R(r)) 7 67 (5,7)fT (s, 7—)]duv(r),

with the terminal condition f(T,T) = P(T) = ¥~*. Here Av(t) is the jump
of the bounded variation function (¢} at its discontinuity point ¢, and z(#) -
and f(t,s—) are values from the left of the system state z(¢) and the gain-
forming matrix f(t. s) at their discontinuity points £ and (¢, s), respectively.

3.4 Optimal control for dynamic plant

As shown in this section, the huge equations of Subsection 3.3 can be signif-
icantly simplified in the case of 4 dynamic system, if the state equation (13)
has an internal differential part, i.e., is given by

2(t) = 2(to) + / (ao(s) + as)z(s)ds-+ (25)

t 1
f b, shult, s))du(s) + f: o(s)dW, (s),

and the quadratic cost function J is the same as in (14). Then, the dual
filtering problem should be formulased for the unobserved state

t

z(t) = z(tg) + [

Lo

t .
(a8 (s) — aT(s)z(s))ds + [ QV*(s)dWal(s)  (27)
tg
and the disconiinuous observation process

t _ :

v0) = [ (TE9a@ave + [ RAGawE).  03)
to ty

As was proved in [6], in the case of a dynamic equation (27), it is possible

to obtain a closed system of the optimal filtering equations with respect to

only two variables. the optimal estimate m(t) and its variance P(i), without
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imtroducing the cross-correlation f(t,s). Those filtering equations take the
form [6]

m(t) = mits) + f (aZ(s) — a (sym(s))ds+ (29)

to

/ " P(s)bit, 8)(R()) " dy(s) — 67 (2, s)mis)du(s)]

P(t) = P(to) + f [~aT(s)P(s) — P(s)a(s) + Q(s))ds—  (30)

/ * P(e)b(t, 8)(R(s)) 87 (t, ) P(e)du(s),

where m(ty) = E(z(to) | F¥) = zp and P(to} = E((z(to) — m(to)(z(te) —
m(te))T | F¥') = ¥ are the initial conditions.

Based again on the duality of the filtering and control gain matrices, we
conclude that the optimal control law is given by the expression

u'(t, 8) = R7H(s)bT (8, )P (s)x(s), (31)
and P(s) is the solution of the integral Riccati equation

P(t) = P(to) + ft[—aT(s)P(s) -~ P(s)a(s) + Q(s)]ds— (32)

to

[![P(S)b(t,5)(3(8))'15T(t,S)P(S)]dv(S),

with the terminal condition P(T") = ¥~L.
Upon substituting the optimal control (31) into the state equation (25),
the optimally controlled state equation is obtained

t

z(8) = z(tp) + f {@aa(s} + a(s)z(s)+ (33)

)

b(t, s)R " (s)b% (£, 5) P{s)x(s))dv(s) +ftg(s)dW1 (s).

Correspﬁnding[y, the jumps of the optimaliy controlled state z(¢) and the
gain-forming matrix P(t) at the discontinuity points of v(t) take the more
simplified form

Ax(lt) = b(t, YR™L(0)6T (£, ) P{t~) Aw(t), 1
AP(8) = —[PE—=)T + (B2, )(R@) 8T (t, ) P(t—)Av(8)] 7' x
bt Y (R()) 7 (1, ) P(H)] Au(t),
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which can be incorporated into the following equations with a measure

2(t) = 2(to) + [ (aals) + o(s)a(s)+ (34)

£

Bt 5) R ()67 (¢, 8) Pls—)z(s))dv(s) + ft o(8)dWi (s).
P(t) = /ﬁ [—aT (s}P(s) — P(s)a(s) + Q(s))ds— (35)

]t[P(s—)[I + (b, s)(R(s)) 107 (4, s}P(s—)Av(8)) ™ %

b(t, s)(R(s)) 147 (1, 5) P(s—)]du(s),

with the terminal condition P(T) = ¥~1.

4 Movement of Missile with Impulsive and Jet
Motors

Let us consider the optimal control problem for movement of a missile with
two motors, impulsive and jet (continuous), whose task is to reach the max-
imal possible altitude at a certain time moment T > 0 with the minimal
possible fuel consumption. The missile movement is considered governed by
the following equations (cf. {7])

h(t) = ho + [0 t'u(s)ds,

m{t) = my +/0 g{T(%ds,

v(t):[ﬁ Fils) (Q)(’”’ fgd8+/ r{(5)dW (s),

where {5 = 0, v(t) is the missile velomty, vp = (0} = 0;

he = h(0) > 0 is the initial adjusted altitude corresponding the missile
position on the earth surface, h(t) is the current adjusted altitude;

m(s) is the missile and fuel mass, mg >3 0Q;

P, (t) is the propulsion force;

C(t,s) < 0is the difference factor of the ideal velocities of the missile
at time ¢ and the outflowed fuel at time s, which is varying with change of
altitude and, consequently, temperature, pressure, gravity acceleration, ete.;

¢ is the gravity acceleration;
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r(s)dW(s) is the stochastic disturbance represented by a Wiener process
and arising due to the resulting effect of unknown equally distributed and
independent disturbances affecting velocity dynamics; and

w(s} is a bounded variation function which represents functioning of two
missile motors, impulsive and jet (continuous): the jet motor expels fuel
gradnally and the impulsive one does thig instantaneously at a certain time
moment £, O < ¢; < 7. Thus, the motors functioning is described using
decomposition of w(t) into its continruous component w(t) (continuous jet)
and the Heaviside function x(t — t;) with jump at the moment ¢, (impulsive
motor), i.e., w(t) = w(t) + x{t — ;).

Tt is assumed that the atmosphere resistance force is ahsent: Q(&,v) =0.

Upon selecting the mass ontflow function u(s) = -;%:—i = £ [in(m(s)))
as control, the optimal control problem is completely stated for the system
state z{¢} = [A{2), ©(t)] governed by the equation

z(t) = zo + /Ot Ax{s)ds + fot B(t, s)u(s)dw(s) + ]ﬁt Gds + ’[Ot R(s)dW (s),

where
0= (3] a=[8 o= [, ]
6={ %, | ro={ 7 | w00 =2 = L gmesi,

zo = [ka, 0], and the cost function to be minimized

7= % [z(T)— [ g’ ”T%b[z(T)“ [ 3‘ ”

ot :
+= { u*(s)dw(s) — min,
5 [ Weu(s) - mi

where

Y = (1) g ¢ h*>> hg,and T > 0 is a certain time moment.

In accordance with (31), the optimal control is given by

. — h{s)

ut,s)=[0 C(ts) ] P(s} [ ofs) ] X
Note that the initial adjusted altitude ko > 0 is determined from the condi-
tions #(0) = 0 and #({0) = 0 (there is equilibrium of the missile on the earth
surface at the initial time moment), which, upon substituting the optimal
control u*(¢, s} into the velocity equation, yield 0 = C(fo,{p)u* (fo.t0) — g =
C(0,0)1*(0,0) — g. Thus, the initial adjusted altitude hg > 0 is determined
from the equation

9=¢C(0,0)[ 6 C0,0)] PO [ 3“ ]
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In accordance with (34)}-(35), the equations for an optimal trajectory =({t)
and the matrix P(t) take the forms

P(t) = P(0) — /ﬂ' t [ ‘1) 0 } P(s)ds

/:P(s)[g ”ds—[})(s)x{[é ?]

+ [ g(t,s) } [0 C@,s) ] P(s—)Aw(s)}

x [ UC(t,s) ] [0 Cft5) ] P(s—)duw(s),

with the terminal condition P(T) = ¢, and

:c(t):a:o+]:{[g é]z(sHG}dﬁfot[{}c@‘s)]

x [0 C(t,s) ] P(s—)z(s)dw(s) + fot [ 3(3) }duf(s),

with the initial condition z(0) = go ], and their jumps at the point iy,

where the impulsive motor is applied, are equal to

AP(t) = P(h—){[{l) (1) ] + [ g(tl,tl) J
x[ 0 Clta,ta) ] P(ti—)Aw(ts)} ™

) ,: g(thtl) ] [0 Cluh) ] Pla-)Awln),

Ax(ty) = { g”(tl,h) } [0 Clt1,ta) ]| Pltr—)a(tr)Aw(ts).

Thus, the complete algorithm for solving this optimal control problem is
described as follows:

- the equation for the matrix P(¢) with the terminal condition P(T} = %
and the jump AP(t;,) at the point #; is solved;

- the initial condition P{0) is thus determined;

- the initial adjusted altitude hy is calculated;

- substituting w*(¢, s) into the state equations and solving them with
initial conditions k(0) = hg and v(0) = 0 yields the optimal trajectorics
[R(t),v(£)] = =(t), where the velocity v(t) has a jump at the point ¢,, aiid the
adjusted altitude k() is continuous; .

- the desirable maximal altitude is determined as h(T") — hy.



314

M.V. Basin and MLA. A. Garcia

References

(1
(2§
(3]
4]

(5}
18]

7]
i8]
&
f10]
1]
(22]
(13]
14]
[15]

18]

{17]

(18]
(19]

(20}

[21]

R. L. Alford and E. B. Lee, Sampled data hereditary systems: linear quadratic theory,
IEEE Trans. Automat. Contr., AC—31, (1986) 60-65.

A. V. Balakrishnan, On stochastic bang-bang control, Lecture Notes in Conirol and
Information Sciences, 25, Springer, New York, (1980) 221-238.

M. V. Basin and [, R. Valadez G., Minmax filiering in Volterra systems, Proc. Amer-
ican Control Conference 2000 (Chicago, IL), (200G} 1380-1385.

M. V. Basin and L. R. Valadez G., Optimal minmax filiering and control in discon-
tinvous Volterrz systems, Proc. American Control Conference 2000 (Chicage, IL),
(2000) 904-909,

M. V. Basin and M. A. Villanueva L., On filiering problems over ito-Volterra observa-
tions, Proc. American Control Conference 1999 (San Diego, CA), (1999) 3407-3412.

M. V. Basia, M. A. Villanueva L., and I. R. Valadez G., On filtering problems
aver observations with delays, Proe, 38th [EEE Conference on Deciston and Con-
trol {Phoeniz, AZ), (1999} 4572-4577.

A. E. Bryson and Y. C. Ho, Applied Optimal Control, Hemisphere Publishing Cem-
pany, New York, 1979.

C.T. Chen, Linear §ystem Theory and Design, Holt, Rinehart, and Winston, New
York, 1984.

D. Chyung and E. B. Lee, Linear optimal systems with tiine delays, STAM J. Conir.,
3, (1966) 548-575.

M. C. Deifour, The linear-quadratic optimal contro] problem with delays in state and
control variables: a state space approach, SIAM J. Conir., 24, {1986) 835-833.

W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control,
Springer, New York, 1975,

G. L. Fonseca, Keynesian Business Cycle Theory, Department of Economics, Balti-
more University, 1998.

R. F. Hartl, Optimal dynamic advertising policies for hereditary processes, J. Optim.
Theory Appl., 43, (1984) 51-72,

R. E. Kalman, A nsw approach to linear filtering and prediction problems, ASME
Trans., Part D {J. of Basic Engineering}, 82, (1960) 35—45.

R.E. Kalman and R.S. Bucy, New results in linear filtering and prediction theory,
ASME Trens., Part D (J. of Basic Engineering), 83, {1961) 95~108.

M. L. Kleptsina and A. Yu. Veretennikov, On filtering and properties of conditional
laws of Ito-Volterra processes, Statistics and Control of Stochastic Processes. Steklov

Seminar. 1984, Optimization Software Inc., Publication Division, New York, (1985)
179-196.

E. B. Lee and Y. C. You, Optimal control of bivariate linear Volterra integral type
systems, Proc. 26th IEEE Conference on Decision and Control, {1987) 721-726.

F. L. Lewis, Optimal Control, Wiley, New York, 1986.

5. K. Mitter, Filtering and stochastic control: A historical pers;;ective, Control Sys-
tems, 16{3), (1996) 67-76.

Yu. V. Orlov and M. V. Basin, On minmax filtering ower discrete-continuous obser-
vations, JEEE Trans. Automat. Contr., AC~40, (1995) 1623-1626.

L. E. Shajkhet, On an optimal control problem of partly observable stochastic
Volterra's process, Problems of Contr. and Inform. Theory, 16(6), (1987) 430-448.

Received August 2000; revised May 2001.

http:

//monotone uwaterloo.ca/~journal



Dynaemics of Condinuous, Discrete and Fmpulsive Systems
Seres B: Applications & Algorithms 9 (2002) 85-100

Copyright ©2002 Watans Press

OPTIMAL CONTROL IN UNOBSERVABLE
ITO-VOLTERRA SYSTEMS

Michael V. Basin and Maria A. Alcorta Garcia

Department of Physical and Mathematical Sciences
Autonomous University of Nuevo Leon
Apdo postal 144-F, C.P. 66450, San Nicolas de los Garza

Nuevo Leon, Mexico

Abstract. This paper presents solution of the optimal linear-quadratic controller problem
for unobservable ite-Volterra systems with continnous/discontinuous staies over continuo-
us/discontinucus observations. As a result, the system of the optimal contreller equations
is ebtained. including a linear integral equation for the optimally controlled estimate and
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1 Introduction

This paper presents solution to the optimal linear-quadratic controller prob-
lem for unobservable fto-Volterra systems with continuous/discontinuous
states over continuous/discontinuous observations. Due to the separation
principle for integral systems, which is stated analogously te that for dy-
namic differential ones [5], the initial continuous problem is split into the
optimal minmax filtering problem for Ito-Volterra systems over continuous
observations (see (1]} and the optimal linear-quadratic control {regulator)
problem for observable Ito-Volterra systems with continuous states (see [2]).
{Both papers [1, 2] contain the bibliography related to control and fiitering
problems for Tto-Volterra processes.) Based on the resnlts obtained in [1, 2],
the system of the optimal controller equations is first derived in the general
case of Tto-Volterra state and observation equations, including a linear inte-
gral equation for the optimally controlled estimate and two integral Riccati
equations for the estimate cross-correlation function and a constituent of the
optimal regulator gain matrix. Those equations are then simplified in the
case of a dynamic plant (the internal part of a state equation) governed by a
differential equation, where the estimate cross-correlation function coincides
with its variance (sec [1}). In this situation, the estimate variance and the
gain matrix constituent satisfying the Riccati equations depend on only one
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time variable, simifarly to the variance in the filtering probiem for a dynamic
process over [to-Volterra observations ([1]).

The optimal controller equations for Ito-Volterra systems with discontin-
uous states over discontinuous observations are obtained using the filtering
procedure {6. 1] for deriving the filtering equations over discontinuous obser-
vations proceeding from the known filtering equations over continuous ones,
which have already been obtained in the paper, and the dual results in the
optimal control problem for Ito-Volterra systems (2], In view of discontinuity
of states and observations, the obtained optimal control law is discontinuous,
and the optimal eontroller equations allow discontinuous solutions. Never-
theless, the obtained results enable one to compute jumps of the optimal
filtering and control parameters (the optimally controlled state. the cross-
correlation or variance, the gain matrix constituent, and the optimal control
function) that can appear in poings of discontinuity of states or ohservations.

Design of the optimal controller tfor Ito-Volterra state and observation
equations and its simplification in the case of a dynamic plant (she internal
part of a system} can serve as a background for subsequent design of the
optimal controller for systems with delayed states and observations. The
first obtalied results (see {1]) have been based on the fact that a differential
equation including even muitiple time-varying delays presenis a particular
case of an integral (Ito}-Volterra equation. Further possible applications to
controlling industrial processes, whose state and observation equations are
subject to delays, are expected. '

The paper is organized as follows. In Section 2, the optimal controller
problem is stated and solved for unobservable continuous Ito-Volterra sys-
tems, wsing the separation principle for integral systems. Section 3 general-
izes those results to discontinuous unobservable Ito-Volterra svstems. The
optimal controller equations are first obtained for Ito-Volterra state and ob-
servation equations and then simplified in the case of a dynamic plant (the
internal part of & state equation).

2 Optimal Controlier for Unobservable Con-
tinuous Ito-Volterra Systems

2.1 Problem statement

Let (£2, F, P) be a complete probability space with an increasing right-contin-
uous family of g-algebras F;,t > 0, and let (W,(i), Fy,1 > 0) and {(Ws(¥), Ft,
t > 0) be Fi-adapted Wiener processes. Let us consider the unobservable
Fy-measurable random process x(t) governed by the Ito-Volterra equation

w(t) = z(ty) + !‘t(ag(t, s} + aft, 8)x(s) + blt, s)ult, s))ds + ft g(t, s)dWi(s)
to I
{1)

¥
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and the output (ohservation) process

t ¢ -
y(é) = /c-n (Ag(t,s) + Alt, s)z(8))ds +‘/0 Bt sl (s). (2)

Here, z(t) € R™ is the unobservable state vector, v(t.s) € R¥ is the control
variable, yit) € R™ is the observation process, and the independent Wiener
processes [17(t) and Wa(t) represent random disturbances in state and obser-
vation equations. which are in turn independent of an initial Gaussian vector
z(tg). Let A(t,s) be a nonzero matrix and B(t,s)BT(t,s) be a positive def-
inite matrix. In addition, the quadratic cost function J to be minimized is
detined as follows

T = Bl3(T) " @ alT) - o 3)
_1_1 T T K d 1 T T L( e ’)('1
15,/(:, u? (£, ) K (s)ult, s) s+§A‘ 2T () L{s\r{s)ds],

where zg is a given vector, ¢, K, L are positive (nonnegative} definite sym-
metric matrices. T > ¢, is a certain time moment, the symbol E|f(x)] means
the expectation (mean) of a function f of a random variable x, and o7 de-
notes transpose to a vector (matrix) a.

The optimal control problem is to find the control w*(¢}. # € [to.T). that
minimizes the criterion J along with the trajectory z*(t). t € [to. T}, gener-
ated upon substituting w*(f} into the state equation (1).

2.2 Separation principle in integral systems

As well as in linear stochastic systems governed by differential equations,
the separation principle remains valid in linear integral stochastic systems
governed by Ito-Volterra equations. Indeed, let us replace the unobservable
system state z(t) by its optimal estimate m(t) given by the equation (see {1]
for statement and derivation)

mit) = mity) + /t(ag(t.s) + a{t, s)m(s) + b{t, shu(t. s))ds+ (4)
0

{
] St 5)AT (& 5)(B, )BT (1,5)) " [dy(s) — (Aa(t. s) + A(t. s)m(s))ds],

0
with the initial condition m(ts) = E(z(to) | F}). Here, m(t) is the best
estimate for the Ito-Volterra process #(¢) at time ¢ based on the observa-
tion process Y{t) = {y(s).to £ s < t}, that is the conditional expectation
m(t) = E{z(t) | FY). As shown in [1] and the previous papers [4, 7],
it is impossible to obtain a clofed system of filtering equations only for
the optimmal estimate m(?) and its correlation function (variance) S(i) =
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E{(z(t) — m(t)(z(t} — m(NT | F}'), due to the Volterra nature of the equa-
tious (5) and (G). Designing a closed filter requires introducing the additional
cross-correlation function f(t, s) characterizing a deviation of the best esti-
mate m(f) from the real state z(f):

f(t.8) = E((a} — m{)(z(s) —m(s))T | FL). (5)

where

Tl = /ts(ag{t, 7} 4 alt, r)z(r) + b(t, s)yult, s))dr + ' gl r)dii(r),

tl]

F}, is the g-algebra generated by the stochastic process y!

5 &
yi = | (Aolt,s) + At s)z(s))ds + / B(t, s)dWa(s)
to ty
and m{ = E(zf | F},).

The equation for f(#, s) takes the form (see [1] for derivation)
flt.s) = f(to. o) +f [a(s, ) FF(E, ) + f(s,r)d” (t.r)+ (6)
to

(1/2)(g(t,r)g" (s, 7) + gls,7)g” (8. 7))]dr—
f 5[ Ft. VAT (5,7)(B(s,»)BT (5,7)) " A(s, ) fT (5. 7)+
Q

Fla.r)AT(t, ) (Bt )BTt 7)) A, r) FT(t 1) -
(1/2)f(t. ) AT (¢, 7)(B(t, )BT (s,7)) " Als, ) fT(5,7)—
(1 (2} Fls, AT (5,7)(B(s,7) BT (t, 7)) L A(t, ) FT (¢, 7)]dr,

with the initial condition f{te,f0) = E({x(to) — m(to)(x(to) — m{te))T | FX).
Note that since S(t) = f(t,#), the variance equation for S(t) directly follows
from (6):

S(t) = 5(to) + /t la(t, 8) T (£, 8) + f(t, s)aT (1, 5)+

glt, 8)gT (e, s)lds — j: flt. s}AT(t, )(B(t,5)BT(t,8)) LA{L, 5)FT (2, 5)ds,

where S(t0) = f(fo.%0). It is readily verified that the optimal control problem
for the system state (1} and cost function (3) is equivalent to the optimal
control problem for the optimal minmax estimate {4) and the cost function
J represented as

J= E{% [n(T) = 20)7 & [m(T) — 20)
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r T
+%/ Tt s)K (s)uft. s)ds +3 L mT (s}L{s)m(s)ds

o ta

1 T

= f (S () L(5)]dds + tr[S(T)®]} ()
= Jiy :

where tr|A] denofes trace of a matrix A. Since the latter part of J is inde-

pendent of control u(¢) or state 2(¢), the reduced effective cost funct:on Al

to be minimized takes the form

ﬂI—E{—[m(T)—-zo] @ [m(T) — zo]

1 (T . 1 (T
+§] uT(t.s)It(s)u(t,s)ds+§ mT (s)L(s)m(s)ds)}. (8)

to 1o
Thus, the solution for the optimal control problemn specified by {1),(3) can
be found solving the optimal control problem given by (4).(8). However,
the minimal value of the criterion J should be determined using (7). This
conclusion presents the separation principle in integral Ito-Volterra systems.

2.3 Optimal control problem solution

Based on the solution of the optimal control problem obtained in [2] in the
case of an observable system stafe, the following results are valid for the op-
timal control problem (4),{8), where the system state (the minmax estimate
m(t)) is completely available and, therelore, observable.

The optimal control law is given by

u’(t.5) = K- 1(s)T (¢, )T (t, s)m(s), (9)
where ¢(t, 5) is the solution of the integral Riccati equation

o(ts) = qltorto) + | [~aT(s,r)q7(t,7) — als.r)altyr) + Liridr—  (10)

fo

[g(t. 7)b(s, 7K (r)) 70 (5, 7)gT (s, 7)+

q(s, 7)b(E.7)(K (1)) 7167 (¢, r)qT (8, 7)—
(1/2)q(t, r}oit, r)(K(r)) 710 (s, 7)g" (s,7)~
(1/2)q(s,r)b{(s, T)(EK () 7167 (t.7)a" (2, 7)]dr,

with the terminal condition ¢(T,T) =

Upon substituting the optimal control (9) into the equation {4) for the
reconstructed system state m(t), the following optimally controlled state es-
. timate equation is obtained

H t -
m(t) = mite) + / Alt.s)m(s)ds + ] b(t,s)K“l(s)bT(t, s)g(t, s)m(s)ds
[ in
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+ f Ft.)AT (5 ) B )BT (t,8)) 7 [dyls) — (Ap{t.s) + Ait. mis))ds).
a
(11)

Thus. the optimally controiled state estimate equation {11). the gain ma-
trix constituent eguations {10), the optimal control law (9). and the cross-
correlation equation (6} give the complete solution to the optimal controller
problem for unobservable states of continuous integral systems governed by
Ito-Volterra equations.

3 Optimal Controller for Unobservable Dis-
continuous Ito-Volterra Systems

3.1 Problem statement

Let (£, F., P) be a complets probability space with an increasing right-contin-
uous family of o-algebras Fi.t > 0, and let (W(2). Fi,t > 0) and {1¥s(8), Fy,
t > 0) be Fy-adapted Wiener processes. Let us consider the unobservable
Fi-measurable random process (¢} governed by the Ito-Volterra equation

t
zl{ty = o) + f (ao(t, s) + alt, s)z(s))ds+

f i' b2, s)ult, s)du(s) + f t glt, s)dWy(s) (12)
S “

] to .

and the output [observation} process

-

y(i) :fﬂ (.4g(t,.s}+A(t‘s)m(s))dw(s)+[0 B(t, s)dWalw(s}], (13)

where both state and observation equations are integral equations of the
Volterra type with integration w.r.t. discontinuous mmeasures, and the rest of
the notation is the same as in Subsection 2.1.

The discontinuous measures in the state and observation equations are
generated by scalar bounded variation functions v(t) and w(t}, which can of
course coincide or have discontinuities (jumps) at the same points. Therefore,
the observation function y(¢} may be discontinuous due to discontinuity of
the integral with discontinuous measure dw(t) in the right-hand side of (13).
This model of observations enables one to consider continuous and discrete
observations in the commaon form: continuons observations correspond to
the continuous component of a botinded variation function w{t), and discrete
observations correspond to its function of jumps.

The quadratic cost function J to be minimized is defined as follows

T = Bl 1#(T) — 2of” $ [2(T) - 2 (14)
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T T
+%/ .uT(t,S)K(S)u(t,s)dv[s)—1—%] 2T ($)L(8)r(s)ds).
tn ta
where zg is a given vector, ¢, K, L are positive (nonnegative} definite sym—
metric matrices, T > iy is a certain time moment.

The optimal control problem for the unobservable system state z(t) is
to find the coutral u*{#), t € [tg, 7], that minimizes the criterion J along
with the trajectory z*(t), ¢ € [tp, T}, generated upon substituting u*(¢) into
the state equation (12). The state trajectory z(Z) may also be discontinuous
due to discontinuity of the integral with discontinuous function v(¢} in the
right-hand side of [12]. This model of system states enables one to consider
sharp changes (jumps) in system position, as well as its gradual continuous
movement. Modeling discontinuous unobservable system states of an Iio-
Volterra system along with discontinucus observations of the Volterra type
enables one to cousider linear eontinuous, discrete, and delaved systemns in
the common form given by (12),(13), as it was done in [1].

3.2 Separation principle in discontinuous integral sys-
tems

The separation principle for discontinuous system states (12) and discontin-
uous ohservations (13) is based on the separation principle for continuous
states and observations (5),(6). Actually, the corresponding filtering proce-
dure was suggested [6] to obtain filtering equations over discontinucus obser-
vations proceeding from the known filtering equations over continuous ones.
In the examined case, the following actions substantiated in [6] should be
performed:;

- assuming functions v(t) and w(?) in state and observation equations (12)
and {13) to be absolutely continuous, write out the separation principle for
continuous systems, obtained in Subsection 2.2, which yields the modified
optimal control problemn given by the state equation (4), effective criterion
(8), cross-correlation function equation (6), and optimal value criterion (7);

- in thus obtained optimal control problem, assume the functions v(t) and
w(t) to be arbitrary bounded variation ones again, keeping in mind that their
derivative 9(f) and Ww(f) can be generalized functions of zero singularity or-
der (for example, 3-functions), generating integration with the discontinuous
measures do(t) and dw(t).

As a result, the unobservable system state z(t) of the system (12} is
replaced by its optimnal minmax estimate () given by the equation (see [1]
for statement and derivation)

m(t) = mito) + [ (ao(t,) +att ym(e)ds + [ b6t aputt, D)+ (15)

fi ft.s)AT (1, s)(B(2, )BT (t.8)) Hdy(s) — (Ao(t, 8) + Alt, s)m{s))dw(s)],
0
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with the initial condition m{ty) = E{z{ty) | Fi ), where the cross-correlation
funetion f(f. s) satisfies the Riccati equation

fli.s) = /0 [a(s,r)fT(t,r}—E-f(s,r)aT(r.,r)+ (16)

(1/2)(a(t,r)g (s.7) + g(s.7)g" (t.7))]dr—
/0 S[ Fie. AT (8,7 (Bls, 7)) B (s, 7)) " Als, r) f (5, 7)+

Fls.m)AT (@, 7B E,MBT @, ) AR T () —
(/26 AT (., 7)(B{t.r) BT (s,7)) " A5, 7) £ (5,7)—
(/D) f(s.1)AT (5, 7)(B(s,7) BT (1, v )) LA P) £ T (1, w)fdw{r).-

with the initial condition f(to, to) = E{(z(to) — m{te){z(to) ~m(te))¥ { F}¥).

Furthermore. the optimal cantrol problem for the system state {12) and
cost function (14) is equivalent to the optimal control problem for the optimal
estimmate (15) and the cost function J represented as

L T 1 T ™
J= E{§ (e (T} — zof” @ [m(T) — 2] + é—‘/; u' (t, 8)K{s)u(t. s)dv(s)

T T
+% mT(s)L(s)m(s)ds-}-% tlS(s)L{s)ds + trS(TYD)}. (1)

: ta tg

which can be reduced to the effective cost function AS

M = B{; (L) = 0l  [m(T) - 2]

1 T ) 1 /7

+§] w? (t, 8) K ()ult, sydu(s) + §f m? (s)L(s)m(s)ds}. (18)
in 4]

Thus. the solution for the optimal control problem specified by (12).(14) can

be found solving the optimal control problem given by (15),(18) and using

(17) for the minimal value of the criterion J.

3.3 Optimal control problem solution for discontinuous
systems

Based on the solution of the optimal control problem obtained in [2] in the

case of an observable discontinuous system state, the following resulis are

valid for the optimal control problem (15),(18), where the system state (the

optimal ¢stimate m(t)) is completely available and, therefore, observable.
The optimal control law is given by

u'(t,5) = K7Hs)bT (8, 9)g™ (2, s)mls). (19)
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where g(t, s} is the solution of the integral Riccati equation

q(t.s) = q(tn. to} + j; [-—aT(S, ?‘)qT(t, T} —g{s,r)alt. r) + Liridr—  (20)

[ Tate, ot R ) (13" 0+

- g(s, r)i;(t, YK () T (&, 7Tt r)—
(1/2)g(t. 7)ot rHE (r)) 707 (5,7)q" (s.7)—
(1/2)q(s, r)b(s, PY(K ()~ 7 (2,7)” (€. 7)o ().

with the terminal condition ¢{T,T} = ®.

Upon substituting the optimal control! (19} into the equation (15) for
the reconstructed systein state m(t), the following optimmally contrelled state
estimate equation is obtained

m(t) = m(to) + /t(ao(tw) +a(t, s)m(s))ds

b
+ f S b(t, s) K~ (s)bT (¢, 8)q{t, s)m{s)du(s)

: :
+ f F(t.s)AT(t, sY(B(¢,s) BT (1, 5)) 7 [dy(s) — (Ao(t, )+ Alt. shn(s))dw(s)),

i (21)
with the initial condition m(to) = E(z(tg) | FY).

The obtained equations (20)-(21), as well as the equation (16) for the
crass-correlation function f(t. s), are integral equations with integration w.r.t.
discontinuous measures generated by bounded variaticn functions v{¢) and
w(t), which do not tell us how to compute jumps of the controller variables
(the estimate m(¢), its cross-correlation function f{t,s), and the gain matrix
constituent g{¢, s)) at the discontinuity points of the functions »(t) and w(t),
corresponding to discontinuities in the system states x(1) and the observation
process y(t). Nevertheless, the direct method for computing the jumps was
given by Theorem 3 in [1}, which yields the following jump expressions

Am(t) = f(t,t—-)[I + AT, (B OBT ., 8)) T TAR B FT (1. t—)Aw(t)) "1 x

AT U B(, )BT (1, 1)) 7T {Ay(t) — (4o(t. 1) + Alt, ym(t—))Aw(t)] +
b(t. )KL ()67 (2, )T + AT (8, 8)(B(t.1) BT (2.£)) ' Alt. )
FT () dw(t)] " q(t t- Jm{t—)ido(t),
Af(t.s) = —(f(t. s} + (AT (s, s)(Bls, BT (5,r)) 1 Als. ) T (5,5-)+
AT(. )(BE. )BT (t, 7)) At 8) T (ts—)—
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(1/2)AT (s, s)(B(s. 7} BT (¢, 7)) TV Alt, 8)F T (t.s—1—
(2DAT (4. ) (B(t,7) BT (5,1)) 7  Als, 8) f{s, 5=)) dur(s)] 7 x
AT(5,8)(B(s, 1) BT (5,7} " (s, 8)F T (5, 8—-)+
Fls. s + (AT (s, 8)(B(5,7) BT (5,7)) " Als, s} fT (5. 5~)+
AT, $)(B(e, )BT (t.r)) T AL )T (ks -)~
{(1/2)A7 (5, 8)(B{s. )BT (¢, 7)) At ) FT (1. s~V
(1/2)AT(t, s)(B(t, r) BT (s.1)) T A(s, 8} fT (8, 6=)) Duis)) 1 x
AT 5) (B, )BT (1)) Alt, )57 (8, 5-)-
(1/2)f(s, s + (AT (5. 5)(B(s, 7) BT (5,7)) " A(s. )T (5,5 )+
AT (B, )BT, r) YA 8)F T (t,5—)—
(1/2)AT (5, 8)(B(s.7)BT (1, 7)) T A{t, s} fT(t. 8—}—

(1/2)AT (¢, s)(B(t,r)BT (5,7)) 1 Als, ) fT (5, 5-))Aw(s)] T x
AT (5, 5)(B(s,7) BT (t,7)) L Alt, $)F T (8, 5—)—
(L/2)f(t 5T + (AT (5,8)(B(s, 7} BT (5,7)) 7 Als. 5)f T (5,5-)+
AT(t, sHB(L, )BT (t, rN Y AR, ) F T (t, s—)—
(1/2)AT (s, s)(B(s,7) BT (t,7)) " Al 8) fT {t. s =) -

(1/2) AT 1, s M B, 1) BT (s,7)) 1 A(s,5) fT (5, 5— )} Ar(s)] T x
AT sHB(t, 1) BT (s,7)) "1 A(s, 8} f T (s, =)} Awls),

where [ is the n x n-dimensional identity matrix, and
Aqlt, s) = —|glt, s=)T + (bls, $)(K(s)™ 1T (s, s)qT(s,sﬁ)ﬁ-
bit, ) (K (s)) 10T (t, s)g¥ (#,5-)—
(1/2)b(s, s)(K(s)) 167 (¢, 8)q" (¢, =)~
(1/2)b(t, (K ()6 (5, 8)a(s, 5—)) An(s)]~* x
b(s, 8)(I(s)) 7107 (s, 5)q” (58, 8—)+
qls,5=)T + (b{s. ) (K(8)) 7167 (5. 8)¢ (5,5—)+
bit, s)(K(s)) 107 (¢, s)gT (2, 5—)—
(/2065 5)(K (s)) 77 (£, )" (¢, 8~)—
(1/2)b(t ) (K ()7 (5, 5)q7 (s, 8- )) Aw(s)} T
! b(¢, s)(K(5)) b7 (¢, 5)gT (t, 5—)~
(1/2)q(s. 5 )T + (b(s, sHK(5)) 7167 (s, 8)q” (5, 5- )+
| 0t 8) (K (1)~ 167 (2, £)q7 (8, 5-) =
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(L/2D)(s, s) (K (2187 (¢, 837 (8, 8—)—
(1/2)b(t, s)(K () 710" (s, 5)q” (5,5~ ))Av(s)] 7"~
b{s,s)(K(8)) 67 {t.5)q" (t,5—)—

(1/2)q(t, s=)T + (b{s. s} ()~ 10T (s, 9)q" (8,5 )+
bt s)(K(s)) 7167 (8, 5)q7 (£, 5—)—

(1/2)b(s, s)(K ()70 (t, 8)g" (£, s—) =
(1/2)b{t. (K (s)) 716" (5,8)a" (5, =) Ar(s)] 7P ¢
b{t. s)(K(s)) 7107 (5. 8)q” {5, s=)]Av{s).

Following [1], the obtained jump expressions can be incorporated into the
controlier and filtering equations (20), (21), (16) using the equivalent form
of integral equations with integration w.r.t. a discontinuous measure

m(t) = mqg + t(ag(t,s) + a(t. symfs))ds + f b{t, shult. s)ds

Jin ty

4 f t bt. s) K~ Ha)bT (. ){T + AT (¢, 8)(B(t.5)BT (t.s)) " A(t, 5)

41

x f(t. s=)Baw(s)} " q(t, s—)m(s—)dv(s)
+ t flt.s—) {I + AT (L, s)(B(L s)BT(t,S))'lA(t,s)f(t,s-)A‘w(s)}Fl
in

x AT(t, s)(B(¢, 8)BT (t,5)) 7! [dy(s) — Alt, s)m(s—)dw(s)]. (22)
with the initial condition m(ty) = E(z(fo) | Fg,),

flt,s) = f(ta.ta) + fs[a(s, YT, r) + Fls,rya® (i, r)+ (23)
to

(1/2)(g(t,m)g7 (s,7) + g(s.7)g" (£, 7))]dr—
/ls[f(f, r=)[1 + (AT (s, T)(B(S,T)BT(S,T))_IA(S, rif(s,r—)+

AT (¢, v} B, r)BT(¢,7) AR, ) f(t.r—)—
(1/2)A7 (s,7)(B(s,7) BT (&, 7)) Alt. r) (.7 —)—
(1/2)AT (6, 7) (B(t, )BT (5, 7)) T  Als, ) f(5,7=)) Auw{r)] T
AT(s,r)(B(s, )BT (s,7)) " Als,7) fT (5,7 )+
Flsr =) + (A" (s,7)(B(s,7) B  (5,7)) 7 Als, 1) f (s, 7= )+
AT ) (B(t. )BT (6, 7)) T AL ) Ft 7 —)—
(1/2)A7 (s,7){(B(s. )BT (t. 7)) T A(t. 7Y f(t.r ) —
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(172 AT (., r) (Bt )BT (5,r) LA(s, ) f(s. r=))Awir) P x
AT, ) (B, )BT (t,1) AR T (8 r—) -
(1/2)f(s.7=)1 + (AT(s.7)(B(s,7) BT (s,7)) T A(s,7) fls. r =)+
AT(L, (B, )BT (6, 7)) T AL T F (1,7 -) -

(1/2)AT (s,7)(B(s,7)BT (t, 7)) T A(t, ) f(t,r—)—
(1/2)AT (8, r) (Bt )BT (s,1)) " Als, 1) f{s, r=DAw(r)) 7 x
AT (s, 7)(B(s, )BT (t, v N Alt, ) fT (8, 7—)—
(1/2)f(t. 7= + (AT (s,7)(B(s,7) BT (5,7)) 1 Als,#) fs. 7 =)+
AT Py B, Y BT, ) Al Pl r=)—
(1/2)AT (s, r)(B(s.7)BT (¢, 7)) T At, r) f(t,r =)~
(/2 AT (t, 7 W B(t,r) BT (s,7)) " LA(s, ) f(s. 7= )) Aw(r)] "' x
AT v U B, rY BT (s, 7)) Als, r) fT (5, =) dw(r).

with the initial condition f(to,to) = E{(z(te) — m(ta)(z(te) — m(ta V)T | Fgl),
the function f(t,s) is continuous in ¢, and

q(t, s) = g(to.t0) + fs[—a.T(s,r)qT(t,r] —q(s,rjalt,ri+ L{r}ldr— {24)

[[qu‘r')[f + (b(s. P (K () 0T (s, )a" (5.7 )+

b(t. r)(K(r)) 167 (8, 7)g" (17 —) -
A2, PN E )y (T (8 =) -
(1/26(t, (K {r))~ 07 (s, r)q(s,‘r—))ﬂ.v(r)]_lx
b(s,r)(K(r))_le(s,r)qT(s,T—)+
q(s, 7= + (s, 7 )I )Y T (5, 7)gT (8,7 )+
b(t, ) (K (r) 0T (8, )q" (¢, 7 =)
(1/2)b(s, r) (B (r)) 67 (£ )gT (8 7—)— -
(17208, r)(K ()70 (3,7)g" (5,7 =) Au{r)) ™ %
b(t, PYK(r) T (8, )" (8, )=
(1/2)q(s. 7=)[I + (b(s,r)(K (r)) 70 (5,7)q" (5,7 )+
bt IHE (P07 (t,r)g” (1, 7—)—
(1/2)b(s, ) (K (r)) " 6T (8. m)g" (.7 )~
(1/2)b(t, rI K@) (s m)a" (s, 7 =N Au(r)] '



Onptimal Control in Unobservable Ito-Volterra Systens 97

(s, ) (K (r) T (YT (for )~
(1/2)q(t,r=)[T + (b(s, K (1)) 0T (s, 1) (5.7 —)+
b(t, r) (K (r) 7T (¢ r)e” (t,r—)—
(1/2)b(s. 7)(E(r)) 07 (t.7)g" (t,7-)—
(L/2)b(t, wYIA(r)) 7167 (s, 7)a™ (8.7 ))Do(r)] ) x
b(t, r)(K (7)) 0T (s, 7)g” (5,7 Av(r).

with the terminal condition ¢(T,T) = &, the function g(f.s) is continuous
in ¢t. Here Aw(t), Au(t), and Ay(t) are the jumps of the beunded variation
functions w(t), v(t), and the observation process y(t) at a point f, respec-
tively, and m(t-), f(t,s—), and ¢(t,s—) ave the values of the discontinuous
controller and filtering parameters (the estimate m{1), its cross-correlation
function f(Z, s), and the gain matrix constituent g(t, s}} at points ¢ and (£, 5)
from the left.

The optimally controlled state estimate equation (22). the gain matrix
constituent equation (24), the cross-correlation equation {23}, and the op-
timal control law {19) give the complete solution to the optimal controller
problem for unobservable states of discontinuous integral systems governed
by Ito-Volterra equations, including analytic expressions for jumps of the con-
troller and filtering variables at the discontinuity points of the real system
state x{t) and the observation process y{t).

3.4 Optimal controller for dynamic plant

As shown in this section, the equations of Subsection 3.3 can be significantly
simplified in the case of a dynamic system, if the state equation (12) has an
internal differential part, i.e.. is given by

z(t) = z(tp) + /t (ao(3) + a(s)z(s))ds+ (25)

t t

/ B(t, s)ult. s))du(s) +/ y(t, s)dWi(s),
to : 78

and the observation process y(t) {(13) and the quadratic cost function J (14}

are the same.

As was proved in [1], in the case of a dynamic plant equation (25), it
is possible to obtain a closed system of the optimal filtering equations with
respect to only two variables, the optimal estitnate m{t) and its variance S(¢),
without introducing the cross-correlation f(f,s). Those filtering. equations
take the form [1]

4

m(t) = m(ty) + ‘((I(](S) + a{sym(s))ds + _/: b(t, s)ult, s))du(s)+  (26)

L
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/1 S(s)AT(t, s)(B(t, )BT {2, 5))dy(s) — (Ao(t, 5) + At shm{s))dw(s)],
0

with the initial condition m(ty) = E(x(to) | £Y ), where the variance function
5(¢) satisfies the Riccati equation (which is given in the equivalent form and
follows from (23) using S{¢) = f(i,t))

S(t) = 5{t0) + /S[a:(s)S(s) + S(s)a” (s) + g(t, s)g7 (*. s)lds— (27)

to
] t{S(sf){I + AT (t, 8)(B(t, 5) BT (1, 5)) " A{t, 538 (s - ) Aw(s)}

AT (t, 8)(B(t,s) BT (t,5)) T A(t, 8)S(s—)]dw(s).

with the initial condition S{tg) = f{a.to) = Bl(x(fy) — m{ip){z{ta) —
m(fn))T | Fti—)'

Furthermore, the optimal control problem for the system state (25} and
cast function (14) is equivalent to the optimal control problem for the opti-
mal estimate (26) and the cost function (17), which can be reduced to the
effective cost function (18], Thus, the solution for the optimal control prob-
lem specified by (25},{14) can be found solving the optimal conérol problem
given by (26),{18) and using (17) for the criterion minimal value.

Based on the results obtained in [2] for the optimal control problem in an
Tto-Volterra system with a dynamic internal part, the optimnal control law is
given by

w*(t,5) = K1 (s)b" (£, 8) P(s)m(s), (28)

where P(t) is the solution of the integral Riccati equation (which is given in
the equivalent form aand follows from (24) using P(t) = ¢(¢,1))

Pt} = Plig) +/t [—a” (5)P(s) — P(s)a(s) + L(s)|ds— (29)

/ 1P(s—){T + AT (£, 5)(B(t, ) BT (1, 8)) "L A(¢, 5)P(5 - ) Aw(s)] 1 x

bt $)(K ()" 167 (¢, 8) P(s~)]dv(3s),

with the terminal condition P(T) = ¢(T",T) = &.

Upon substituting the optimal control (27) into the equation (26} for
the reconstructed systern state m(t), the following optimally coirtrolled state
estimmate equation is obtained {which is given in the equivalent form and
follows from (22) using S(t) = f(¥,t) and P{t) = ¢{t,2))

m(t) = mg + fi(a,o(s) 4+ a{s)m(s))ds + / b(t, s)u(t. s)ds

ty A
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ot
+ / bt sHR ()07 (1. s){T + AT (t. 8) (B, &) BT (150171 4L, 8)

HT

xS(s—)Aw(s)} " P(s—)m{s~—)dv(s)
) S {1 + AT (L ) (BUL )BT (1,9)) AL 8)S(e— A (s)} !

x AT (2, 5)(B(2. 8) BT (t, 5)) ! [dy(s) — Alt, sym(s—idu{s)], (30)

with the initial condition m(tg) = E(z(te) | F) ).

Tlhus, in the case of an Ito-Volterra system with a dynamic internal plant,
the optimal controller problem solution is completely given by the optimal
controlier equation (30), the variance equation (27), the gain matrix con-
stituent equation {29). and the optimal control law (28). Obviously, the case
of continuous state and observation equations in Ito-Volterra svstemn with a
dynamic internal part (considered in Section 2) is recovered assuming v(#) =t .
and w(t) =t in (25)-(30).

The jumps of all the optimal controller variables in the discontinuous case
also take the simplified form

am{t) = St + AT (OB OBT (1)) AR HSE—) Aw(@®)] T x
AT(&.)(B(t.6)BT (£,4))7 [Ay(t) — (Ag(t. 1) + At t)m{t—))Aw(t)] +
bt )N @)pT (8, O + AT (6, 0B, )BT (8.8)) " A1 ) x
S(t—)Aw(t)] " Pt—)m{t—)Av(t),
AS(E) = —{St)T + (AT (6. (B 1) BT (4, 6)) A 1 SE-)N Aw(E)] ! x
AT (B OB @.6) YA DS (E-) Aw(t).
and
AP(t) = —[P(t=)[] + (b(t, ) (K (8)) b7 (£ 1} P(t—)) Av(r)] '

bt O ()~ 07 (1, 1) Pt =) Av(s).

Let us finally note that the results in design of the optimal controller
for a system with an internal dynamic part can readily be applied to solu-
tion of the optimal controller problem of launching a missile with continuous
and impulsive jet motors and unobservable velocity to the maximal possible
altitucle with the miniinal fuel consumption (see [3] for its initial continu-

ous statement), as it has been done for the corresponding optimal regulator
problemn in [2].
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This paper presents the optimal nonlinear filter for a stochastic system state given by
a polynomial equation of degree 3 or 4 and linear observations confused with white
Gaussian noises. The obtained filtering equations are applied to solution of the state
estimation problem for a nonlinear automotive system. Simulation results are com-
pared for the optimal polynomial filter given in this paper and the linear Kalman-
Bucy filter applied to the linearized system. Using the duality principle, the optimal
regulator is then designed for a polynomial system of degree 3 with linear control in-
put and guadratic cost criterion, applied to the nonlinear automotive system, and
compared to the optimal! linear regulator dual to the Kalman-Bucy filter,

1. Introduction

Although the general optimal solution of the filtering problem for nonlinear state
and observation equations confused with white Gaussian noises is given by the
Kushner equation for the conditional density of an unobservable state with respect to
observations [6], there are a very few known examples of nonlinear systems where the
Kushner equation can be reduced {o a finite-dimensional closed system of fillering
equations for a certain number of lower conditional moments. The most famous re-
sult, the Kalman-Bucy filter [5], is related to the case of linear state and observation
equations, where only two moments, the estimate itself and its variance, form a closed
system of filtering equations. However, the optimal nonlinear finite-dimensional filter
can be obtained in some other cases, if, for example, the state vecior can take only a
finite number of admissible states [13] or if the observation equation is linear and the
drift term in the state equation satisfies the Riccati equation dffdx + f* = x> (see [31)
The complete classification of the “general situation” cases (this means that there are
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no special assumptions on the structure of state and observation equations), where the
optimal nonlinear finite-dimensional filter exists, is given in {14].

This paper presents the optimal nonlinear filter for a stochaslic system staie given
by a polynomial equation of degree 3 or 4 and linear observations confused with
white Gaussian noises. This relatively simple case seems to be important for practical
applications, since a nonlinear state equation can usually be well approximated by a
polynomial of degree 3 or 4 and the observations are frequently direct, that is linear.
Moreover, the filtering problem for a polynomial state equation of lower degree is
significant itself, because many, for example, chemical processes are described by
quadratic equations (see [10]). As shown in the paper, the polynomial filter of lower
degree represents a particular case of the polynomial filter of any superior degree, so
the quadratic filter is a particular case of the polynomial filter of degree 3, 3 of 4, cte.

The obtained optimal filter for a polynomial state equation of degree 3 is applied
to solution of the state estimation problem for a nonlinear automotive system [9]
whose state equation for car orientation angle is nonlinear (contains tangent). Along
with the original state equation, its expansion to Taylor polynomial up to degree 3 is
also considered. For both state equations and linear observations, the optimal filtering
equations for a polynomial state of third degree are written and then compared to the
linear Kalman-Bucy filter applied to the linearized system. Simulations are conducted
for both original and approximate systems and also compared to the linear Kalman-
Bucy filter applied to the linearized system. The simulation results given in the paper
show significant advantage of the optimal polynomial filter in comparison to the
Kalman-Bucy one, especially for the original nonlinear state equation.

Although the optimal control (regulator) problem for linear system states was
solved, as well as the filtering one, in 1960s {7, 4], the optimal control function for
nonlinear systems has o be determined using the general principles of maximum [11]
or dynamic programming [2] which do not provide an explicit form for the optimal
control in most cases. However, faking into account that the optimal control problem
can be solved in the linear case applying the duality principle to the solution of the
optimal filtering prablem, this paper exploits the same idea for designing the optimal
control in a polynomial systern with linear control input, using the optimal filter for
polynomial system states over linear observations. Based on the obtained polynomial
filter of the third degree, the optimal regulator for a polynomial system of degree 3
with linear control input and quadratic cost criterion is obtained in a closed form, find-
ing the optimal regulator gain matrix as dual transpose to the optimal filter gain one
and constructing the optimal regulator gain equation as dual to the variance equation
in the optimal filter. The results obtained by virtue of the duality principle could be
rigorously verified through the general equations of [11] or [2] applied to a specific
polynomial case, although the physical duality seems obvious: if the optimal filter ex--
ists in a closed from, the optimal closed-form regulator should also exist, and vice
versa. Finally, the obtained optimal control for a polynomial system of the third de-
gree is applied for regulation of the same automotive system [9], with the objective of
increasing values of the state variables and consuming the minimum control energy.

The paper is organized as follows. The Kalman-Bucy filter for linear state and
observation equations is reminded in Section 2. Section 3 presents an intermediate
result: the Kushner equation in the case of polynomial state and linear observation
equations. The optimal nonlinear filter for a polynomial state equation of degree 3 and
linear observations is derived in Section 4. This resuit is generalized to a polynomial
state equation of degree 4 in Section 5. The optimal control problem for a polynomial
system is stated, the duality principle is briefly reminded, and the optimal control
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problem fdr a polynomial system state of degree 3 is solved in Section 6. In Section 7,
the obtained results are applied to the filtering problem for a nonlinear automotive
system with two staie variables, orientation and steering angles, over direct linear ob-
servations confused with white Gaussian noises. Graphic simulation results are also
obtained and compared with those for the linear Kalman-Bucy filter applied to the lin-
earized system. Section 8§ presents application of the optimal polynomial regulator to
the same automotive system, with the objective to increase values of the state vari-
ables and consume the minimum control energy. Graphic simulation results are con-
ducted for polynomial control of degree 3 and compared with those for lineal control.

2. Optimal filtering for linear state and obhservation
equations

For reference purposes, this section briefly describes the Kalman-Bucy filter 5]
for lincar state and observation equations. Let an unobservable random process x(t)
satisfy a linear equation

dx(t) = (ao(t) *+ a(OX(D)dt + bOAWI(D), x(to) = X,
and linear observations are given by:

dy(t) = (A(t) + A()x(D))dt + B()dWa(t),
where W (t) y Wa(t) are Wiener processes, whose weak derivatives are Gaussian
white noises and which are assumed independent of each other and of the Gaussian
Initial value xo.

The filtering problem is to find dynamical equations for the best estimate for the
real process x(t) at time t, based in the observations Y(t) = {y(s) / ty < s <1}, that is the
conditional expectation m(t) = E[x(t) / Y(t)] of the real process x(t) with respect to the
observations Y(t). Let P(t) = E[(x(t) - m{D)}x(£) — m()}/ Y(t)] be the estimate vari-
ance (correlation function).

The solution to this problem is given by the following system of filtering equa-
tions, which is closed with respect to the introduced variables, m{t) and P(t):

dm(t) = (ao(t) + a()m(t))dt + PAT)BOB ()Y '[dy - (Ae(t) + Am(t))]d,
m(to) = E[x(to) / y(to)],

dP(t) = (a(t)P(1) + P(D)a’(t) + b(t)b" (t))dt POATH(BOBT®) AP,
P(ta) = E{(x(to) — m(te))(x{to) — m(t0))" / y(to)}.

3. Kushner equation for nonlinear state and linear
observations

In the case of a nonlinear state equation, the problem i1s more complicated. Let an
unobservable random process x(t) satisfy a nonlinear equation

1) dx(t) = (f{x(t)))dt + bW, (t}, x(to) = X0,
and linear observations are given by
(2) dy(t) = (Ag(t) + A(®x())dt + B(HAW(t),

where W{t) and W,(t) are Wiener processes independent of each other and of the
Gaussian initial value xo. The desirable best estimate is the conditional expectation
m(t) = E[x(t) / Y(t)] of the real pl_rocess x(t) with respect to the observations Y(t), and
P(t) = E{(x(1) - m(t))(x(t) — m(t)) / Y(t}] is its variance (correlation function).
Since the observation equation 1s linear, the innovations process v(t) = y(1) —
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*
it (Ag(t) + AD(D) dt = fio' (Ao(t) + ADX(1)) dt + BHAWa(t) ~ (Ae(t) + A(OM(D)) dt
= Jio' (A -m(t))) dt + B(t)dW(t) is a Wiener process in the case of Gaussian
disturbances (sec [8]), and fio" B{t)dW2(t) is also a Wiener process, then the random
variable A()(x(t) — m(t)) is Gaussian with respect to observations for each fixed t
[12]. If the matrix A" exists, then the random vector (x(t) ~ m(t)) is also Gaussian
[12].

Moreover, in this case, the Kushner equation for the optimal estimate m(t) =
E[x(t) / Y(t)] takes the form which readily follows from the general form of the
Kushner equation (see [8]) and the observation equation (2)):

(3)  dm(t) = E[fx())/ Y©)) dt + POATOBOBO) ' [dy(t) — (Ae() +A®m(t)de),
m(to) = Elx(t0) / y(to)]. :

Let us note [1] that if the function f(x(t)) = ag(t) + a(Ox(t) + ax()x(t) +
ay(U)x’(0)+... is a polynomial, it should be possible to compute a finite-dimensional
filter in a closed form for variables m(t} and P(t), using the fact that the random vari-
able (x{t)-m(t}} is Gaussian. This implies that all conditional odd central moments of
this Gaussian variable p; = E[{(x(t) — m(t)} / Y(O)], 1z = E[(x(t) — m())’ / Y(®)], us5 =
E{(x{t) - m(t))’ / Y(t)],... are equal to 0, and all even central moments L = E[(x(t) —
m(t) / Y1)}, s = E[(x{t) - m())* / Y(t)], ... can be represented as functions of the
variapce P(t). For example: 1; = P, g = 3P%, ug = 15P°,... ete. Thus, all higher mo-
ments of x(t) with respect to Y(t) can be expressed using P(t), and this yields addi-
tional relations for representing each higher initial moment of x(t) with respect to Y(t)
and, finally, the possibility to obtain the optimal fiiter in a closed form, i.e., the opti-
mal finite-dimensional filter should exist in the polynomial-linear case.

4. Optimal filter for polynomial state equation of degree 3
and linear observations

In this section, the outlined procedure is applied to deriving the optimal filter for
the case of a polynormal state equation of degree 3, obtained from (1) if f(x)= ag(t) +
(Dx(0 + (X (1) + as(Ox’(1);

@) A= (a(t) + 20XV + a(Ox (W) + as(t)x (t))dH b(t)dWJ(t) X{to) = o,
and the linear observations (2), where x € R”, x (t) = (xl (1), x2 1), 1321, .. Xq (t))
(1) = (x(), x2°(©), X2 (0),....Xx" (1)),

Since all odd central moments for (x(t) - m(t)) are equal to 0 and all even central
moments can be represented as functions of P(t), the higher initial moments of the
state x(t) with respect fo the observations Y(t) can also be expressed as functions of
m(t) and P(t), as 1t is done below.

Let m(t) € R” be the best estimate vector, m(t) = (my(t), ma(t),...mu(0); P() ¢ R™
be the covariance matrix; p(t) e R" be the vector whose cornponents are the variances
of the components of x(t), i.c., the diagonal elements of P(t); m (1) be deﬁned as the
vector of squares of the components of m(t): m (t)—(ml (t), my (t), L m2(0); P(Om(t)
be the conventional product of a matrix P(f) by a vector m(t); and p(f)*m(t) be the
product of two vectors by components: p(ty*m(l) = [pi{tim(t),
Pa(t)my(t),....pa(ms(L)].

Using the introduced notation, the expression for the second initial moment is
given by
(5) E[x*(0/Y(D)] = p(t) + m’(0).

Since E[(x(1) — m(0))’ 7 Y()] = 0, then E[(x(t) - m(1))” / Y(t)] = E[x’(t) /Y()} -

Tpyow H Mescdyuapodnot kondepenuy abidenmugpioanyus cucmen u ra0auy yrpasaenwiy SICPRO 03 Mockea 29-31 anwaapa 2003 7.
Proceedings af the i Inieraational conference " System Mentification and Control Problems™ SHCPRO 03 Moscow 2931 January 2003



2094

3m(t) * E[x*(0) / Y()] + 3m’(t) * E[x(t) / Y(t)] - m’(t) = 0.

Substituting (5) into the last equation, the third initial moment expression is ob-
tained
(6) E[x*(t) / Y(0)] = 3p(t)*m(t) + m’(t).

Taking into account E[(x(t) - m(t))* /Y(t)] = 3p’(t), the following equality is valid:
EL(x(t) - m(®))/Y(1)] = E[x"(6) /Y(1)] - 4m()*E[x*(t) /Y(®)] + 6m’(t)*E[x*(t) / Y()] -
A’ ()*E[x(t) /Y {t)] + m*(t) = 3p(1), where m’(t) = (m*(t), m*(t),...m, (1)) and m*(t)
= (m*(t), rng4(t),...mn4(t)). Substituting (5) and (6) and making the corresponding al-
gebraic transformations, the fourth initial moment expression follows
(7) E[x"() / Y(©)] = 3p*(t) +6p(ty*m’(t) + m*(v).

The fifth initial moment representation can be obtained analogously using the
equality E[x’(t) / Y(t)] = 0 and substituting the previously obtained expressions (5)-
(7): '

(8) (1) / YOI = 15m(i*p’(t) + 10p(t)*m’(t) + m’(0),
where m>(t) = (m;’(t), my (t),..ma (t)). Thus, in the case of a polynomiat state equa-
tion of degree 3, f(x(1)) = ag(t) + a;(t)x(t) + ag(t)xz(t) + a3()x’(t), the Kushner equation
(3) for the optimal estimate m{t) = E[x(t} / Y{1}] can be reduced to
dm(t) = (Elao(t) /Y(1)] + Efai(hx(t) / Y(D] + E [ax(D)x*())/ Y(1)] +
Efas())x*(t) / YOt + POAT(ENBOB())"(dy — (Ao(t) +FA©Dm(D)clt).
Using the representations (5) and (6) for the second and third moments, the opti-
mal estimate equation takes the form
) dm(t) = (ao(t) + a1(D)m(t) + ax()p(t) + ax(hm’(t) +
ax(Bp(D*m(t) + m’(t))dt + POADBMOB' (1) '(dy — (Ao(t) +
AM®m)d), mto) = E[x(to) / (to)]. :
The next step is to obtain the equation for the covariance matrix
P(t) = B[(x(t) - m())(x(1) - m(®))"/ Y(1)].
Upon differentiating the last equality in t
dP(r) = dBE[((t) ~ m(O)(x(t) - m®)’ / Y()] =
E[d {x(§)(x(t) ~ m()" +m(D(x() - m()"}/ Y] =
E[{ (dx(D)(x{t} - m(1))" +x(t)d(x(t) —m(1)) )} / Y(D)] =
EL{(dx(0)(x(D) - m(1))" +x(t){dx(t) - dm()"}/ Y(1)] =
E[(dx(0)(x(1) —m(t))" / Y(O)] + E[x(t)(dx(t) — dm(t))" / Y(1)]
and substituting the expressions for dx(t) and dm(t) given by (4) and (9), the following
equation follows
dP(t) = E[(((ag(t) + a,(1)x(t) + az()x’(t) + as()x*(1)) dt +
BIEIW (D)) — m(D)T + x()((ae(t) + an(Dx(t) + () +
a3(DX (Ot + bW 1(t) + (— a0(t) —a (Hym(t)-ax(t)p(t) — ax(Dym*(t) +
3a3(t)p(t)*m(t) — ax(m’(©)dt +HKdv)'/ Y(1)],
where
K(t)=PTOAT((BMB (D))"
and v(1) is the innovations process,
du(t) = dy(t) — (A(t) + AiOm(t)d
The latter equation can be transformed into .
dP(t) = (ag(E[(x(0) ~ m()" / Y(1)] + B[Ot ~ m(@) / Y()] +
(OO - m@)! / YO + asOE[CO(0) -m(0)" / Y(©) +
E[x()@(Ox (1) '/ YO+ E[x(O(aa(x ()" / Y(O)] +
Elx (0a;()x° () / Y(O] - E[x(t)(a ()m()’/ Y(5)] -
Efx((ax(0p(1)' / Y()] - E[x(0(ax()m* ()" / Y()} -
E[x(OasOp®*m()' / YO - ExO@hm’@) / Y(©) +
b(b'(6) - POAT BB (1) AQP(1))dt.
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Finally, upon substituting (5)-(7) and making the corresponding algebraic trans-

formations, the variance equation takes the form

(10) dP(t) = (a,(OP) + P(H)a, "(t) + 2a2(t)m(t)*P(t) + 2(P(E*m(£))ay " (1) +
3a3(O(p(H)*P (1)) + 3(P(t)*P(t)) a3'(1) + 3ax(t)(m’ (O*P(1)) +
3P(O*(n’() )as () + (b () - POATQBOB' M) ADPD)L
P(to) =E((x(to)~ m(to))(x(to) — m(ta))" / y(t0)),

where the product m{t)*P(t) between a vector m(t) and a matrix P(t) is defined as the

matrix whose rows are equal to rows of P(t) multiplied by the same corresponding

element of m(t):
my(t)  Pndt) Pt} Pl m{)P () my(t)P12(1)... o1 ()Pya(t)
my(t) Pai(t) Paa{t)...P2a(0) m()P21(t) my(t)Paz(t)... mu(t)Pan(t)
M Purl® PPl  my(OPu(®) Mu(Pealt) . m0a(60Ponl)

The transposed matrix P(t)*mT(t) = (m(t)*P(1))" is defined as the matrix whose
columns are equal to columns of P(t) multiplied by the same corresponding element

of m(t):
[ml(t) m2(t) .. mn(t)]
Pu(t) Pty .. P1n(t) . mp(OP (&) ma{)P2(1)... mu(DP (1)
Pu(t) Paft) ... Polt) m(HP21(t) mp(D)P2a(t)... My(t)Pa(1)
Par() Paoll) .. Pal) m(OP (D) Ma(P () .. Da(t)PanD)

Thus, the equation (9} for the optimal estimate m(t) and the equation (10) for its
covariance matrix P(t) form a closed system of filtering equations in the case of a
polynomial state equation of degree 3 and lincar observations given by the equations
(4) and (2), respectively.

S. Optimal filter for polynomial state equation of degree 4
and linear observations

Generalizing the result of the previous section, the outlined procedure is now ap-
plied to deriving the optimal filter for the case of a polynomlal state equanon of de-
gree 4, obtained from (1) if f{x)= ap(t) + a;()x(t) + az(t)x O+ a3(t)x (t) + ag(t)x"(0):
(1) dx(t) = (ao(t) + ai(t)x(t) + ax(t)x*(1) + as()x() + ag(t)x*(©)dt + bEHIW (1),

X(1g) = Xo,
and the linear observations (2), where x  R®, x*(t) = (x, (1), x2*(0), X3 (1), X (D),

Following the scheme of the previcus section and substimting the expressions
(5)-(R) for the conditional initial moments of x(t) in the Kushner equation (3), the fol-
lowing equation is obtained for the optimal estimate in the case of a polynomial state
equation of degree 4 and linear observations
(12) dm(t) = (aa(t) + BOCE) + (0P + 3O’ + Jaa(Up(t)m(t) +

ag(t)m3(t) +3ay)p (t) + 6ax()p(D*m’(t) + ay(Hm*(O)de +
POATOBOB () (dy — (Ao(t) TAMm())dD),
m(to) = E[x(to) / ¥t}

Correspondingly, the variance equatlon takes the form

(13) dP(t) = (ai()P(L) + P(D)a: (1) + Za;,_(t)(m(t)*P(t)) + 2Pty m () '(6) +
3a;()(P(LY*P () 3(P(Y*P(B) a3 (1) + 3ax(tNm*())*P(0) +
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3@’ ) s () +12a4O(@@O*POIPW) +
12(PW*(m(t)*p(1) )(a4(t)) +4aa(t)(m (O*P(6)) +

AP (©) N(@s()" + bODT() - kA "HBOBTB) AGP®),
P(to) =E((x(to} m(1o))(x(to) — m(te))" / ¥(t0)).

Remark. If we continue obtaining the filters for polynomial state equations of de-
grees 5, 6, etc., the corresponding equations for the estimate m(t) and the variance P(t)
would contain the terms of the preceding lower degrees, complemented with new
terms. In other words, the filtering equations for the quadratic state contain all terms
of the linear filtering equations, plus new quadratic terms, the filtering equations for
the cubic state contain all terms of the linear and quadratic filtering equations, plus
new cubic terms, and so on.

6. Optimal control for polynomial state degree 3 with linear
control input

Consider the polynomial system
(14)  dx(t) = (ao(t) + a; (t)x(t) + ag(t)x )+ a3(t)x (t))dt + G(t)u(t)dt x{to) = X,
where x(t)e R" 1s the system state X (t) = (% (1), X2 (t) X3 (t) - Xn (t))

X (t) = (x.3(t) X (t) X3 (t)= wXp (t)) and u(t) is the control varlable The quadratic
cost function to be minimized is defined as follows:
(15)  T="%[x(T)x:]"F [ x(T) - x;] + % Jo? u"(s)R(s)u(s) ds +

Y Jio" x1(s)L(s)x(s) ds, .
where x; is a given vector, ¥, R, L are positive (nonnegative) definite symmetric ma-
trices, and T > ty is a ¢ertain time morment.

The optimal control problem is to find the control u*(t), t € [t,T], that minimizes
the criterion J along with the trajectory x*(t), t € [t;,T], generated upon substituting
u*(t) into the state equation (14). To find the solution to this optimal control problem,
the duality principle [7] could be used. For linear systems, if the optimal control exists
in the optimal control problem for a linear system with the quadratic cost function J,
the optimal filter exists for the dual linear system with Gaussian disturbances and can
be found from the optimal control problem solution, using simple algebraic transfor-
mations (duality between the gain matrices and the matrix and variance equations),
and vice versa. Taking into account the physical duaiity of the filtering and control
problems, the last conjecture should be valid for all cases where the optimal control

- {or, vice versa, the optimal filter) exists in a closed finite-dimensional form. This
proposition is now applied to a third order polynomial system, for which the optimal
filter has already been obtained (see Section 4),

Let us return to the optimal control problem for the polynomial state (14) with
linear control input and the cost function (15). This problem is dual to the filtering
problem for the polynomial state (4) of degree 3 and the linear observations (2). Since
the optimal polynomial filter gain matrix in (9} is equal to

Ki=PHAT(BMHOB (1)),
the gain matrix in the optimal control problem takes-the form of its dual transpose
K= (R())"'G'1)Q),
and the optimal control law is given by
(16) u'(0) = Kex =R(1)'G" (HQ(x(0),
where the matrix function is the solution of the following equation dual to the vari-
ance equation (10)
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(17) dQ) (-2 (Q(Y-Q(Ba1 (122 WX "()-2x()* Qt)ag(t) -
323" ()Q(V*q ' (1)-3a(t)* Q(t)as(t)-3a2" (HQO* (XY M)} 3 (V*QNas(t)
+LIO-QOGHR G QW)L .
with the terminal condition Q(T)= ¥. The binary operation * has been introduced in
Section 4, and q{t) ={qi(1),q2(t),...,qn(t)) denotes the vector consisting of the diagonal
elements of Q(%).

Upon substituting the optimal control (16) into the state equation (14), the opti-

mally controlled state equation is obtained
dx (1) = (20(t) + 2i(DX(E) + ax(thx’ (1) + as(x>(©))dt +
G(H(R() "G OB, x(to) = Xo,

Note that if the real state vector x(t) is unknown (unobservable), the optimal con-
troller uniting the obtained optimal filter and regulator equations, can be constructed
using the separation principle [7] for polynomial systems, which should also be valid
if solutions of the optimal filtering and control problems exist in a closed finite-
dimensional form.

The results obtained in this section by virtue of the duality principle could be rig-
orously verified through the general equations of the Pontryagin maximum principle
[11] or Beliman dynamic programming [2].

7. Application of optimal polynomial filter to automotive
system

This section presents applieation of the obtained filter for a polynomial state of
degree 3 over linear observations to estimation of the state vanables, orientation and
steering angles, in a nonlinear kinematical mode! of car movement [9] satisfying the
following equations:

(18) dx(t) = v coso(t) dt,

dy(t) = v sing(t) dt,

de(t) = (v/1) tand(t) dt,

d&(t) = u(t) dt.

~ Here, x{t) and y(t) are Cartesian coordinates of the mass center of the car, @(t) 1s

the orientation angle, v is the velocity, 1 is the [ongitude between the two axes of the
car, o(t) is the steering wheel angle, and u(t) is the control variable (steering angular
velocity). The zero initial conditions for all variables are assumed.

The problem is to find the optimal estimates for the variables @(t) and 8(t), using
direct linear observations confused with independent and identically distnibuted dis-
turbances modeled as white Gaussian noises. The corresponding observation equa-
tions are
(19) dzg0) = (AL + Or(O)d,

dzs(t) = S(U)dt + ga(n)dt,
where z,(t) is the observation variable for ¢(t), zs(t) is the observation variable for
o(t), and ¢:1(t) and dy(t) are white Gaussian noises independent of each other.

To apply the obtained filtering algorithms to the nonlinear system (18) and linear
observations (19), let us make the Taylor expansion of the two last equations in (18)
at the origin up to degree 3 (the fourth degree does not appear in the Taylor series for

tangent)
(20) dop(t) = (VDS + (WS ()/3)dt
do(t) = u(t)dt
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The filtering equations (9) and (10) for the third degree polynomial state (20)
over linear observations (19) take the form
@1 = ((/lyms + (V/31)(3ps + m’s) + paq (2g — M) + Pesl(zs — mg))dt,

dma = (W(t) + psg(Zy — my) + Pss(zs — ma))dt

dpge = ((2V/1)psepas + (ZD/l)pacp + 2uNm’pay — Plog—Pes )L,
dpes = ((W/)pss + (0/1)m’sPss - DeoDed — PesDss )AL,

dpss = (— P se— P s )8,

where m, and mg are the estimates for variables ¢ and 8, and pyq , Pes, Pss are ele-

ments of the symmetric covariance matrix P.

The estimates obtained upon solving the equations (21) are compared to the con-
ventional Kalman-Bucy estimates satisfying the following Kalman-Bucy filtering
equations for a state of the iinearized system (18) (only the linear term is present in
the Taylor expansion for tangent) over linear observations (19)

(22) dmg = ((v/1)ms + pe (29 —My) + Pea(25 — ms))dt,

dmg = (u(t) + psg(zy — My) + pas(zs — me))dt,
dpge = ((20/)pag — P e — Ples )1,

dpes = ((v/1)pss - PoyPes — PysDss )AL,

dpss= (—Ppsp—P 56 )dt.

Numerical simulation results are obtained solving the systems of filtering equa-
tions (21) and (22). The obtained values of the estimates my and ms are compared, in
both cases, to the real values of the variables ¢ and 0 in the original system (18) and
its polynomial approximation (20).

Thus, two sets of graphs are obtained.

1) Graphs of variables ¢ and 8 for the polynomial approximation system (20); graphs
of the Kalman-Bucy filter estimates mg and ms satisfying the equations (22); and
graphs of the optimal third degree polynomial filter estimates m, and ms satisfy-
ing the equations (21} (Figs. 1 and 2).

2) Graphs of variables ¢ and & for the original system (18); graphs of the Kalman-
Bucy filter estimates mg and ms satisfying the equations (22); and graphs of the
optimal third degree polynomial filter estimates my and ms satisfying the equa-
tions (21) (Figs. 3 and 4).

For each of the four filters and two reference systems invelved in simulation, the
following values of the input variables and initial values are assigned: v=1,1= 1, u(t)
= 0.05, mg(0) = 10, m3(0) = 0.1, ¢(0) = &(0) = 0, Pye(0) = 100, Pys(0) = 10, P5s(0) = 1.
Gaussian disturbances ¢(t) and ((t) in (21) are realized as sinusoidal signals: ¢(t) =
$a2(t) =sin t.

The obtained values of the reference variables ¢ and 9 satisfying the polynomial
approximation system {20) are cormpared to the Kalman-Bucy filter and optimal third
degree polynomial filter estimates mg and ms at the terminal time T=20 in the follow-
ing table (corresponding to Figs. 1 and 2).

Kalman-Bucy filter Third degree polynomial. filter
©(20) =5 ©(20)=5

8(20) = 1 C8(20)=1

mg(20) = 3.35 m(20) =52

ms(20) =0.48 m(20) = 0.73
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The obtained values of the reference variables ¢ and 6 satisfying the original sys-
tem (18) are compared to the Kalman-Bucy filter and optimal third degree polynomial
filter estimates my and m; at the terminal time T=20 in the following table (corre-
sponding to Figs. 3 and 4)

Kalman-Bucy filter Third degree polynomial filter
©20)=12.3 P20)=123

8(20) =1 320y =1

my(20) = 7.35 my(20)=11.83

mg(20) = (.61 ms(20) = 0.905

The simulation results show that the estimates obtained by using the optimal third
degree polynomial filter are closer to the real values of the reference variables than
those obtained by using the conventional Kalman-Bucy linear filter, especially for the
original nonlinear system (18). Although this conclusion follows from the developed
theory, the numerical comparison serves as a convincing illustration.

8. Application of optimal polynomial regulator to
automotive system

This section presents application of the obtained optimal regulator for a polyno-
mial system of degree 3 with linear control input and quadratic eriterion to controlling
the state variables, orientation and steering angles, in the nonlinear kinematical model
of car movement [9] given by the nonlinear equations (18). The optimal control prob-
lem is to maximize the orientation angle ¢ using the mifiimum energy of control u.

The corresponding criterion J to be minimized takes the form

I=%[o(T) - 0" + %4 JoT ui(s) ds,
where T = 0.3, and ¢ = 1 is a large value of @(t) unreachable for time T. Since R = |
and G’ = [0 1], the optimal control law (16) u*(t) =R 'GT(H)Q)x(1) takes the form
cu () = an(t)o) + q(t)8(t), where the elements qu1(t), qxi(t), qu(t) of the symmetric
matrix Q(t) satisfy the equations
(23) dqu(® = - (@)’ dt, .

daua() = (-3C0/) (@1(1)” - qnQa(t) - (D8} - 3D [DquiD))dt,

dgaa(t) = (-2(0/q:2(t) - 2(01) qi2()qea(t) - 200 E)qra(t) ~

(d22(0)))dk.
The system composed of the two last equations of (18) and the equations (20) should
be solved with initial conditions ¢(0) = 0.1, 8(0) = 0.1 and terminal conditions q;(T)
=1, q12(T) = 0, g22(T) = 0. This boundary problem is solved numerically using the
iterative method of direct and reverse passing as follows. The first initial conditions
for q’s are guessed, and the systerh is solved in direct time with the initial conditions
at t = 0, thus obtaining certain values for ¢ and § at the terminal point T = 0.3. Then,
the system is solved in reverse time, taking the obtained terminal values for ¢ and d in
direct time as the initial values in reverse time, thus obtaining certain vatues for q’s at
the initial point t = 0, which are taken as the initial values for the passing in direct
time, and so on. The given initial conditions ¢(0) = 0.1, 80) = 0.1 are kept fixed for
any direct passing, and the given terminal conditions ¢((T) = 1, qi(T) = 0, q22(T) = 0
are used as the fixed initial conditions for any reverse passing. The algorithm stops
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when the system arrives at values qui(T) = 1, q12(T) = 0, q22(T) = 0 after direct passing

and al values @(0) = 0.1, &(0) = 0.1 after reverse passing. The obtained simulation

graphs for ¢, 8, and the criterion J are given in Fig. 5. These results for polynomial
regulator of degree 3 are then compared to the results obtained using the optimal lin-
ear regulator, whose matrix Q(t) elements satisfy the Riccati equations

(24) dau (1) = - (gu(H)” dt

dqi2(t) = (- qut)qu2(t) - (W/DHgn(t)) di,
deaa(t) = (2(0/Dqua(t) — (@) dt,

with terminal conditions q.i(T) = 1, q12(T) = 0, q2:(T) = 0. Note that in the linear case

the only reverse passing for @’s is necessary, because the system (24) does not depend

on ¢ and 3, and the initial values for q’s at t = 0 are obtained after single reverse pass-

ing. The simulation graphs for the linear case are given in Fig. 6.

Thus, two scts of graphs are obtained.

1) Graphs of variables @ and § satisfying the original system (18) and controlled us-
ing the optimal linear regulator defined by (24); graphs of the corresponding val-
ues of the eriterion J (Fig, 5).

2) Graphs of variables ¢ and § satisfying the original system (18) and controlied us-
ing the optimal third order polynomial regulator defined by (23); graphs of the
corresponding values of the criterien J (Fig. 6).

The obtained values of the controlled variables ¢ and & and the criterion J are
compared for the optimal third order polynomial and linear regulators at the terminal

time T = 0.3 in the following table (corresponding to Figs. 5 and 6).

Linear regulator Third degree p(_)lyriomial regulator
¢(0.3)=0.132 ©(0.3)=10.138

8(0.3)=10.1045 8(0.3)=0.1278

J(0.3)=0.759 J(0.3)=0.75

The simulation results show that the values of the controlled variables ¢ and 8 at
the terminal point T = 0.3 are greater for the third order regulator than for the linear
one (although only the variable ¢ is maximized) and the criterion value at the terminal
point is less for the third order regulator also. Thus, the third order polynomial regula-
tor controls the system variables better than the linear one from both points of view,
thus illustrating, as well as for the filtering problem, the theoretical conclusion.

9, Conclusions

The optimal nonlinear filter for a stochastic system state given by a polynomial
equation of degree 3 or 4 and linear observations confused with white Gaussian noises
has been obtained. The optimal polynomial filter of degree 3 has been then applied to
solution of the estimation problem for state variables, orientation and steering angles,
of a nonlinear automotive system describing kinematics of car movement. The esti-
mates obtained by using the optimal third degiee polynomial filter have been com-
pared to the conventional Kalman-Bucy linear filter estimates. The numerical simula-
tion résuits have demonstrated that the values of the polynomial filter estimates are
closer to the real values of reference variables than the Kalman-Bucy ones, showing
that the polynomial filter yields better estimation results for nonlinear systems. Using
the duality principle, the optimal regulator has been designed for a polynomial system
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of degree 3 with linear control input and quadratic cost criterion. Application of the
obtained regulator to the nonlinear automotive system have yielded lesser values of
the criterion and greater values of the controlled variables in comparison to the opti-
mal linear regulator. In both cases, the numerical simulation results confirm the theo-
retical conclusions.

T,
. of Optimal Piocesses, Moscow, 1961; New York: Interscience, 1962.
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Optimal Filtering for Bilinear System States and Its
Application to Polymerization Process Identification
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Abstract. The paper presents the optimal nonlinear filter for bilinear state and linear observation
equations confused with white Gaussian disturbances. The general scheme for obtaining the optimal
filter in case of polynomial state and linear observation equations is announced. The obtained bilinear
filter is applied to solution of the identification problem for the bilinear terpolymerization process and
compared to the optimal linear filter available for the linearized model and to the mixed filter designed
as a combination of those filters.

1 Introduction

It is virtually the common opinion that the optimal nomlinear finite-dirnensional filter exists and
ran be obtained in a closed form only in the case of linear state and observation equations. "his
famous construction is called the linear Kalman-Bucy filter [1], referring to the scientists who derived
it in 1960s. However, it is much less known that the optimal nonlinear finite-dimensional filter can
he obtained in many other cases, if, for example, the state vector can take only a finite number of
admissible states [2] or if the observation equation is linear and the drift term in the state equation
satisfies the Riccati equation gé + f? = z* (see [3]). Moreocver, the complete classification of ke
"general situation” cases (this means that there are no special assumptions on the structure of state
and observation equations) when the optimal nonlinear finite-dimensional filter exists is given in [4].

This paper would like to attract attention to relatively simple (but important in practical appli-
cations, see [5]) cases when the optimal nonlinear finite-dimensional filter can be obtained in a closed
form. Indeed, if the observation equation is linear and the observation matrix is invertible, then. as
shown below in the paper, it is possible to obtain the optimal finite-dimensional filter for a polyuomial
state cquation, provided that the system coefficients depend on time only. In the case of a hilincar
state equation, the corresponding filtering equations are derived in the paper directly. The possibilily
to derive similar results for an arbitrary polynomial state equation is underlined.

The paper is organized as follows. Section 2 briefly reminds the linear Kalman-Bucy filter for
reference purposes, considers the case of nonlinear state and linear observation equations, establishies
the procedure to obtain a closed system of the filtering equations for polynomial state and linear



observation equations, and gives the optimal filter for bilinear system states and linear observations
in the explicit form. In Section 3, the obtained bilinear filter is applied to solution of the identificatio
problem for the bilinear terpolymerization process and compared to the optimal linear filter availahlc
for the linearized model and to the mixed filter designed as a combination of those filters. Tihe
simulation results show an advantage of the optimal bilinear filter in comparison to the other filters.

2 Optimal filtering for polynomial state equation

2.1 Linear Kalman-Bucy filter

It is well known that the linear optimal filter [1] can be designed in a closed form, if the state and

observation equations of a dynamic system are linear. Let an unobservable random process x(t) satisly
a linear equation

dz(t) = (ao(t) + a{t)z(t))dt + (D)AWL (£), z(ts) = o, | (1)

and linear observations are given by
dy(t) = (Ap(t) + A(t)z(t))dt + B(t)dWa(?). (2)

Here, W, (t) and dWs(t) are Wiener processes, whose weak derivatives are Gaussian noises and which

arc assumed independent of each other and of the initial value z4. The last equation can also bhe
written in the algebraic form:

Gl#) = Ag(t) + A(t)x(t) + B(t)p(2). (3)

where ©(¢) is a white Gaussian noise (a weak derivative of Wy (t)).

The estimation problem is to find the best estimate for the real process z(t) at time ¢ based on the
observations Y () = {y(s), ty < s < t}, that is the conditional expectation m(t) = E{x(t) | Y'(t)) of the
real process x(1) with respect to the observations Y (¢}. Let P(t) = E((z(t)—m(t)(z(t)—m{t))" | Y{i))
be the estimate variance (correlation function).

The solution to this problem is given by the following system of filtering equations, which is closed
with respect to the introduced variables, m(t) and P(t):

dm(t) = (ag(t) + a(t)m(t))dt + P AT () (BE) BT (£)) ™' x
(

dy(t) — (Aot) + A(t)m(¢))dt], _ (4
m(te) = E(z(t) | ¥ (o))
dP(t) = (a(t)P(t) + P(t)aT (t) 4 b(t)b™ (t))d¢— (5)

P(t)AT(£)(B(t)BT (1)) A(t) P(t)dt,
P(to) = E((a(to) — m(to}(x(te) — m(t))" | ¥ (20)-

The advantages of the Kalman-Bucy filter are very well known: the equations are simple, the variance

equation is independent of the observations y{t) and can be solved off-line, the estimate equation i
linear and the variance one is quadratic of the Riccati type.




2.2 Nonlinear filtering equation

In the case of nonlinear state and observation equations, the problem is more complicated. Let an
unobservable random process x(t) satisfy a nonlinear equation

d:f(t) = flz())dt + b(T)dW1(t), x(to) = %o, (6)
and nonlinear observations are given by
dy(t) = h(z(t))dt + B(t)dWo(t). (7)

There exist two principal results related to this case [6]. First, as in the previous linear case, the
innovations process ¥(t) = y(t) — f;, E(h{z(s)) | Y(s))ds is a Wiener process and, second, contains
the same new information as the observation process y(t) itself. The first result means that for every
fixed ¢, the random variable 9(f) is Gaussian and the second one implies that for every function ¢(a:)
depending on the real unobservable vector z{t), the expectatiom with respect to the observation and
innovations processes are the same: E{p(z(t)) | Y (1)) = E{w(z(t)) | {¥(s),ty € s < t}), in particular.
it p(z) = 2, then m(t) = B(z(1) | Y1) = E@(®) | {8(s),4 < 5 < 1}).

Using these basic properties, it is possible to obtain the equation for the optimal estimate m(f) =
E(z(t) | Y(t)), the so-called nonlinear filtering equation, first derived by Kushner {7], in the form

dm(t) = E(f(z()) | Y (2))dt+

[E(h(z(t)zT(t) | Y()) — E(R(z(t)) | Y ()} ()] %
(B(t)BY (1)) "[dy(t) — E(h(x(s)) | Y(¢#))dt],
m(to) = E(x(to) { Y (%)) {8)

However, the computation of m(t) requires computing the functions in the right-hand side of this
equation, which, in turn, requires computing the quantities: E(f(z(t)) [ Y (2)), E(h{z{t))z(t) | Y ()}
and E(h(z(t}} | ¥Y(t)). Each of them is a nonlinear function of x and, as a consequence, a non-
Gaussian random variable. Thus, one has to solve a nonlinear stochastic differential equation for each
of these variables, which involves higher moments of these variables in its right-hand side. Hence.
an mfinite-dimensional system of nonlinear stochastic equations should be obtained as the optimal
filter. In other words, the optimal filter cannot be obtained in a closed form, i.e., with respect to a
finite number of filtering variables (there are two, m(t) and P(¢), in the linear Kalman-Bucy filter).
or one can say that the optimal finite-dimensional filter does not exist. Actually, there are only a few
nuinber of examples where the optimal finite-dimensional filter exists for a nonlinear model of state
and observation processes [2—4] in the ”general situation.”

2.3 Polynomial state and linear observation equations

Nonetheless, it should be possible to obtain the optimal finite-dimensional filter in a closed fortn in
the following case. Let a uncbserved random process x(t) satisfy a nonlinear equation

da(t) = Fx(1)dt + b(EYdWL(E), =(to) = xo, ()



and linear observations are given by
dy(t) = (Ao{t) + AR)z(£))dt + B(t)dWa(t), (10)

where the function f(z(t)) = ao(?) + a1(t)x + a2(t)z® + ... is a polynomial and the observation matrix
A(t) is invertible, i.e., the inverse matrix A~1(¢) exists.

Since the observation equation is linear, the first result of nonlinear filtering implies that the
innovations process 9(t) = y(t) — fi, (Ao(s) + A(s)m(s))ds = I (Ao(s) + A(s)x(s))ds+ [y, B(s)dWa(s)
— fi (Ao(s) + A(s)m(s))ds = f{ A(s)(z(s) —m(s))ds + J B(s)dW(s) is a Wiener process, and, since
Ji B(s)dWs(s) is also a Wiener process, the random variable A(2)(z(t) — m(t)) is Gaussian for every
fixed t. If the inverse matrix A~!(¢) exists, then the random vector (z(t) — m(t)) is also Gaussian (8.

Moreover, in this case, the second term in the nonlinear filtering equation is equal to

[E(a(z(£)z" () | Y1) — E(h{z(2)) | Y (£))m" ()] %

(B BT(6)™ [dy(t) - A(ym(t)d] =
[E(®)a” (AT | Y1) ~ m@EG" (AT (@) | ¥ (1))
| (BB ()" [dy(t) - A@tym{t)de] =
[B(@(t)s” (2) | Y()AT() — m() B (1) | ¥ (1) AT (1)}
(BB ()~ dy(t) — A()m{t)dt] =
(B (1) | () - m(t)mT (9]47(t)x
(B BT(9)7 dy(t) — Alt)m(t)df] =
P()AT(6) (B(2) B (1))~ [dy(t) — A(Wym(t)de]

Hence, the nonlinear filtering equation for the optimal estimate m(t) takes the form:
dmlt) = B( () | Y(©)dt+
P()AT () (BB (1) dy(t) ~ A@)m(t)dt],

m{to) = E(z(t0) | Y (to)). (11)

Let us note now that if the function f{x(t)) = ag(t) + a1(t)x + ae(t)x? + ... is a polynomial, it should
be possible to compute a finite-dimensional filter in a closed form for variables m(¢) and P(¢), using
the fact that the random variable (z(t) — m(t)) is Gaussian. Since all the system coefficients in (9).
(10) do not depend on state z(¢) and observations y(t), the conditional moments of {z (¢} — m(t)) with
respect to observations y(¢) coincide with the unconditional ones. This implies that all odd central
conditional moments of this Gaussian variable u; = E({(z{t) — m{(8)) | Y (1)), ui = E{(z(2) — m(t))*]
Y1), us = E((z(t) — m(t))® | Y(£)),... are equal to 0, and all even central conditicnal momens
pz = E((2() —m(t))* | Y (), pa = B((z(t) = m{))* | Y(8), pe = E((z(t) = m(1))° | Y (1)), .- can br
.represented as furnctions of the variance P(t). For example, po = P, g = 3P2%, pe = 15P°, .... Thus.
all higher moments of (z(t) — m(t)) can be expressed using P(t), and this yields additional relations
for representing every higher initial moment of x(t) and, finally, the possibility to obtain the optimal




filter in a closed form, i.e., the optimal finite-dimensional filter should exist in the polynomial-lincar
case.
For example, if the function

f(z) = ao(t) + a1 (O)z + az(t)xxT (12)

is a bilinear polynomial, where z is now an n-dimensional vector, a, is an n X n - matrix, and a; is a
3D tensor of dimension n X n X n, the system of filtering equations is as follows

dm(t) = (ao(t) + ar (E)m(t) + e (O)m()m” (1) + ax() P(£))di+

P()AT()(B)BT (1)) [dy(t) — A(e)m(t)dt],
m(to) = E(z(t) | Y(to)), (13)
dP(t) = (a () P(t) + P(t)af (£)+
205(t)m(t)P(t) + 2P(t)m” (t)ag () +

b(£)oT (t))dt — P()A* (8)(B(t) BT (1))~ A() P(t)dt,

P(to) = E((z(to) ~ m(to))(z(ta) — m(ta))" | ¥ (o)), | (14)
since the third central moment p3 is equal to 0, and the third initial moment of z(¢) can be expressed
using its second and first moments, i.e., P(¢f) and m{t). In this bilinear-linear case, the variance
equation is also independent of the observations y(t), but has the bilinear terms m(¢)P(t} in its

right-hand side and depends on m(#), thus making both the equations interconnected. The estimatc
equation is bilinear with respect to m, as expected.

3 Application

The obtained optimal filter for bilinear system states and linear observations is applied to solution of
the terpolymerization process identification problem in the presence of direct liriear observations. The
mathematical model of terpolymerization process given by Ogunnaike [5] is reduced to ten equations
for the concentrations of input reagents, the zeroth live moments of the product molecular weight
distribution (MWD), and its first bulk moments. These equations are intrinsically nonlinear (bilincar).
so their linearization leads to large deviations from the real system dynamics, as it could be seen from
the simulation results. Of course, the assumption that the MWD moments can be measured in the
real time is artificial, since this can be done only with large time delays, however, at this step, the
objective is to verify the performance the obtained nonlinear filtering algorithm for a nonlinear system
and compare it with other filtering algorithms based on the linearized model. Taking into account
delays in some of the observation components would be the subject of subsequent papers.

Let us rewrite the bilinear state equations (9),(12) and the linear observation equations (107 in
the component form using index summations

dzi(t)/dt = age(t) + Z a1 (t)z: (£)+ (15)

> aseis(t)ma(t)a; (t me Bdu(t), k=1,n,
i3



= Z Api(B)zi(t) + Z Bii(t)¥2:(t),

where t1(t) and ¥2(t) are white Gaussian noises. Then, the filtering equations (13),(14) can be
rewritten in the component form as follows:

dmk(t)/dt = (ngtt) (16)
Z_ api(t)my(t) + Z (ks ( m;(t)+
Zagm Py(t))dt + > Pyy(t) AL (£)(Bip(t) Bps(2))) Hdys — ZAsr(t m,(t)dt]
ijlps

with

mi(to) = Elzi(to) | Y{to)],

E arik () Pij(t) + Z Pij(t)ayu(2)+ (17)

2 Z a2it () (t) Pe; + 2 angre () () Pra(t}+
et
Zbg;— f;)bkj t) - Z Pm t)A t)(Bﬁp(t)Bps(t)))ﬂlAsr(t)Prj(t)n

klpsr

with

Py(to) = El(ws(te) — mi(to)) (x3(t0) — m;(t0))7 | Y (t0)]
The terpolymerization process model reduced to 10 bilinear equations selected from [5] is given by
dCp fdt = [(1/V)dAp1 fdt — ((1/8) + KnC* + Kipp + Ko pgy + Kz pt)Cont; (18)
dCrafdt = (1/V)dAn/dt — ((1/8) + K12C* + Kiopp + Koppt)Crma;
K ACrns]dt = (1/V)dBmafdt — ((1/6) + K13s)Crs;
dCma/dt = (1/V)dD e Jdt — ((1/8) + Ky + K11 Cny + KpoCor2)C™5
dup/dt = (=1/60 — Kin)up + KiiCmiC" — {K12Cm2 + K13Crs )i+
Ko Com i + K1 Cont s
dug/dt = (—1/8)ug + KpaCnmaC* — (K2Cm1 + Kol + KuCrmapip;
dup/dt = (=1/0hu% — (K31Cmy + Kea)ug + K13Crns e
dA/dt = (—=1/ON® + Ky Cn C + Kp2CrpC™ + K1 Craaptp+
K Cra1pty + K31 Cr1 k;
A\ /dt = (=1/0)X0° + K1 CouC™ + Kp2CroC* +
| K19Criopip + KonCrnattgy;
dA/dt = (=1/NA + (K11Comi + K12Cm2)C™ + Ki3Crnapi;

6



Here, the state variables are: Cp1, Cpo, and Cps are the reagent (monomer) concentrations, C* is
the active catalyst concentration; u%, pg), and p} are the zeroth live moments of the product MWD,
and A{%, A1 and A% are its first bulk moments. The reactor volume ¥V and residence time , as
well as all coefficients K’s, are known parameters, and A, Awmz, Ams, Ame stand for net molar flows
of the reagents and active catalyst into the reactor.

The identification (filtering) problem is to find the optimal estimate for the unobservable states
(18) assuming that the direct observations Y; mixed with Gaussian noises ¥,’s are provided for cach
of the ten state components z; :

Yi = Ti + oy,

Here, x; denotes Cpi, x2 denotes Cpye, and so on up z;9. In this situation, the bilinear filtering
equations {16) for the vector of the optimal estimates m(t) take the form

dmy(t)/dt = (1/V)dAp fdt — ((1/8) + Kpima(t) + Kyyms(2)+ (19)

K21m6(t) + K31m7(t))m1 (t) - KLI-Pltl(t) — K11Pl5(t)—
Ky Pig(t) — K3 Pi7(8) + Z Py;ldy;/dt — my]

dmg(t)/dt = (1/V)dAm2/dt — ((1/9) + KL2m4(t) + K12m5(t)+
Kaome(t))ma(t) — KpoPag(t) — K19 Pas(l) — Ko Pag(t)+
2 Pojldy;/dt — my]

dms (t)/dt = (1/V)dAms/dt — ((1/6) + K13ms(£))ms(t)—

K13P35(t) + Z P3j[d'yj/dt — mj]
drg(t)/dt = (1/V)dAp. [dt — {(1/8) + Kyq+ Kpym, (t)+
Klgmg(t))m4(t) — KL1P14(t) — K12P24(t)+

> Pyldy;/dt —my)

dms (1) Jdt = (~1/0 — Ko )ms(®) + K puma(t)ma (£)—
Kiama (t)ms(t) + Kaime{t)my (£)+
Kymp(t)my (t) — Kigms(t)ma(t)+
Ky Pia(t) + K21 Pie(t) + Ka1 Pra(t) — Ko Pos(t)~
Ki3Ps5(t) + Z Pssldy;/dt — my)
i

dmg(t)/dt = (—1/8 — Ky — Koym (t) ymeg (1) +
K roma(tyma(t) + Kiams(t)ma(t)
— K1 Pig(t) + KpaPas(t) + K2 Pos () +
Z Ps;ldy;/dt — m;)



dms(t)/dt = (=1/0 — Ky — Kama(2))me(t) + Kigms(t)ms(t) -
K31P17(t) + K13P35 + z P7J[dy:,/dt - m:.r]

dmg(t)/dt = (~1/8)ms(t) + (Kmm;( Y+ Kyymg(8)+
Kopymg(t) + Kaimz(£)ma(t) + Kpamg(t)yma(t)+
K1 Pis(t) + KnPis(t) + Ko Pig(t) + Ka P (t)+
- KipPu(t) + Z Py;{dy;/dt - my]
3

dmg(f)/dt = (—I/G)mg(f) -+ KL1m4(t)m1(t) + KL2m4(t)_mg(Zf)+
Kigms(t)ymy(t) + Keome(t)ma(t) + K Pla(t)+
K12 Poy(t) K12 Pas(8) + Koz Pao(t) + z Pyjldy;/dt — my);

dmm(t)/dt = (— l/ﬂ)mm(t) + KL1m4 (t)m1 (t) —+ KL2m4(t) X
Mo (t) -+ K13m5(t)m3 (t) ~+ K[,1P14(t) + KL2P24[t)+
K13Pss(t) + 3 Puojldy;/dt — my).

2

Here, m,(t) is the optimal estimate for Cpy, ma(t) for Cye, and 50 on up to mae(t). The ffty-five
variance component equations are similarly generated by the equations (17), however are not given
here due to place shortage.

In the simulation process, the initial conditions at ¢ = 0 are equal to zero for the state variables
Cinls -y A% to 0.5 for the estimates my (t), ..., mio(t), to 1 for the diagonal entries of the variance ma-
trix, and to zero for its other entries. The system parameter values are all set to 1: V = 1; dA,, /dt =
LK = LKy = LKy = 1Ky = 13Ky = LdA/dt = 1,dAa/dt = 1,80, /dt =1
KL'Z = I;KL:} - 1;K12 = I;Klg = I;KQQ = 1,Kd = ].;Kﬂ = I;Ktz = I;th = 1;9 = 1. The
white Ganssian noises in the equations (19) are realized as sinusoidal signals: ¢; = sint for i = 1,10.

In Figure 1, the obtained values of the state variables Cy,, ..., A}"! are given in the blue, and the
values of the bilinear optimal filter estimates m (¢}, ..., mig(t) are depicted in the red.

The performance of the optimal bilinear filter (16),(17) is compared to the performance of the
optimal linear Kalman-Bucy filter available for the linearized system. This linear filter consists of oaly
the linear terms and innovations processes in the equations (16) (or (19)) for the optimal estimates
and the Riccati equations for the variance matrix components corresponding to the equations (17):

dmi(t)/dt = (aee(t) + z ark(E)m;(t)+ ‘ (20)
z ij B[p 'ps) dys ZA'” My t)dt]
jlps
with
mi(te) = Elze(lo) | Y (t));
(t)/dt = Zahk (t) Pr;(t) + Z Pyi(t)a(t)+ (21
8




Y b ()b (t) — > Pu(t) AL () (BipBps)) ™ Ast Pry(2)-

with
Pij(to) = El(2:(to) — ma(to))(z;{te) — my{to))T | Y (t0)].

The graphs of the estimates obtained using this linear Kalman-Bucy filter are shown in Figure 1 in
the green.

Finally, the performance of the optimal bilinear filter {16),(17) is compared to the performance of
the mixed filter designed as follows. The estimate equations in this filter coincide with the equations
(16) (or (19)) from the optimal bilinear filter, and the variance equations coincide with the equations
(21) from the linear Kalman-Bucy fitter. The graphs of the estimates obtained using this mixed filter
are shown in Figure 1 in the black. The initial conditions and white Gaussian noise realizations remain
the same for all the filters involved in the simulation.

Upeon comparing all sirmulation results given in Figure 1, it can be concluded that the optimal
bilinear filter gives the best estimate in comparison to two other filters. Although this conclusion
follows from the developed theory, the numerical simulation serves as a convincing illustration.
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Abstract

This paper presents the optimal regulator for a nonlinear system state given
by a polynomial equation of degree 3 with linear contrel input and guadratic
cost criterion. The optimal regulator equations are obtainmed using the duality
principle, which is applied to the optimal filter for a polynomial system state of
degree 3 over linear observations. The obtained results are applied to solution
of the optimal control problem for a nonlinear automotive system. Simulation
results are compared for the optimal polynomial regulator given in this paper
and the linear optimal regulator.

1 Introduction

Although the optimal control (regulator) problem as well as the filtering one were-
solved in the 1960g [4, 3], the optimal control function for nonlinear systems has to be
determined by using the general principles of maximum [7] or dynamic programming [2]
which do not provide an explicit form for the optimal control in most cases. However,
taking into account that the optimal control problem can be solved in the linear case
by applying the duality principle to the solution of the optimal filtering problem, this
paper exploits the same idea for designing the optimal control in a polynomial system
with linear control input, using the optimal filter for polynomial system states over
linear observations. Based on the obtained polynomial filter of the third degree [1],
the optimal regulator for a polynomial system of degree 3 with linear control input
and gquadratic cost criterion is obtained in a closed form, finding the optimal regulator
gain matrix as dual transpose to the optimal filter gain one and constructing the
optimal regulator gain equation 25 dual to the variance equation in the optimal filter.
The results obtained by virtue of the duality principle could be rigorously verified
through the general equations of {7] or [2] applied to a specific polynomial case, although
the physical duality seems obvious: if the optimal filter exists in a closed from, the
optimal closed-form regulator should alsc exist, and vice versa. Finally, the obtained
optimal control for a polynomial system of the third degree is applied to regulation

*Mathematics Subject Classifications: 49K15, 93E11.
IDepartment of Physical and Mathematical Sciences, Autonomous University of Nuevo Leon, Mex-
ico
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of a nonlinear automotive system [5] whose state equation for car orientation angle
is nonlinear (contains tangent). To apply the polynomial regulator, the nenlinear
equation is expanded into its Taylor polynomial up to depree 3. The optimal regulator
equations for a polynomial state of third degree are written and then compared to
the optimal linear regulator for the linearized system. Simulations are conducted for
hoth polynomial and linear regulators applied to the original nonlinear system. The
simulation results show significant advantage of the polynomial regulator in comparison
to the linear one, five times in the values of the controlled variable and ten times in
the criterion performance.

This relatively simple case treated in the paper seems to be important for practical
applications, since & nonlinear state equation can usually be well approximated by a
polynomial of degree 3 and the control input is, as a rule, linear. Moreover, the optimal
control problem for a polynomial state equation of lower degree js significant itself,
because many, for example, chemical processes are described by quadratic equations
(see [6]). The quadratic state equation is, of course, a particular case of the third degree
one, as well the cubic state e¢quation is a particular case of that of fourth degree, ete.

The paper is organized as follows. Section 2 states the optimal control problem for
& polynomial systemn of degree 3 and the duality principle for a c¢losed-form situation.
For reference purposes, the optimal filtering equations for a polynomial state equation
of degree 3 and linear cbservations are briefly recalled in Section 3. The optimal con-
trol problem for a polynomial system state of degree 3 is solved in Section 4. Section
& presents application of the optimal polynomial regulator to a nonlinear automotive
system with two state variables, orientation and steering angles, with the objective
to increase the value of the orientation angle and consume the minimum contrel en-
ergy. Graphic simulation results are conducted for pelynomial control of degree 3 and
compared with those for linear control.

2 Optimal Control Problem

Consider the polynomial system
dz(t) = (ao(t) + ar{t)a(e) + ap ()2 (1) + a5 ()z’(t))dt + G(t)ult)dt, z(to) = zo, (1)

where z(i) € R™ is the system state, z2(t) = (2%(2)}, ..., 22(t)), °(t) = (&3 (8), ..., 23 (£)},
and 14(t) is the control variable. The quadratic cost function to be minimized is defined
as follows:

T
7= Gl le(T) - 4 [ (PRGN + T Gl b5, (2)

where z; is a given vector, +, R, L are positive {nonnegative) definite symmetric
matrices, and T > {3 is a certain time moment. We remark that the transpose of a
vector z is also denoted by 7, which, however, should not cause any confusion.

The optimal control problem is to find the control «(t), t € [tg, T], that minimizes
the criterion J along with the trajectory z*(t), t € [to, T], generated upon substituting
uw*(¢) into the state equation (1). To find the solution to this optimal control problem,
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the duality principle 4] could be used. For linear systems, if the optimal control exists
in the optimal control problem for a linear system with the quadratic cost function J,
the optimal filter exists for the dual linear system with Gaussian disturbances and can
be found from the optimal control problem solution, using simple algebraic transfor-
mations (duality between the gain matrices and between the gain matrix and variance
equations), and vice versa. Teking into account the physical duality of the filtering
and control problems, the last conjecture should be valid for all cases where the op-
timal control (or, vice versa, the optimal filter) exists in a closed finite-dimensional
form. This proposition is now applied to a third order polynomial system, for which
the optimal filter has already been obtained (see [1]).

3 Optimal Filter

In this section, the optimal filtering equations for a polynomial state equation of degree
3 over linear observations (obtained in [1]) are briefly recalled for reference purposes.
Let an unobservable random process ({) satisfy a polynomial equation of third degree

dx(t) = (ag(t) + a1 (D)z{t) + az (t)x?(t) + a3 ()3 (£))dt + b(t)dW: (1), z(ty) = zo, (3)
and linear observations are given by:
dy(t) = (Aa(t) + A()z(t))dt + B(t)dWa(t),

where x € R", 2(t) = (a3(t), ., 22()). 23(t) = (=3(£),...,23(2)). Wi(t) and Wa(Z)
are Wiener processes, whose weak derwatw ves are Gaussian white noises and which are
assumed independent of each other and of the Gaussian initial value zg. .

The filtering problem is to find dynamical equations for the best estimate for the
real process (1) at time £, based on the observations Y(t) = [y(s) | o < & < ¢, that is
the conditional expectation m(t) = Efx( t) \ Y( )] of the real process x(t) with respect
to the observations Y'(t). Let P(t) = El{z{t) — m{t))(=(t) — m())T | Y(#)] be the
estimate covariance (correlation function).

The following notations are used. Let mit) = (my(t},...,ma{t)) € B* be the best
estimate vector; P(t) € R™*" be the covariance matrix; p(t) € R™ be the vector whose
components are the variances of the components of z(t), i.e., the diagonal elements of
P(t); m2(t) = (m2(2), .., mi(t)); m3(t) = (m3(¢),...,m3(2)); P{£)m(t) be the conven-
tional product of a matrix P(t) by a vector m(t}; e.nd p(t) *m{t) be the product of two
vectors defined componentwise: p(t) * m(t) = [py(t)ma (£}, ..., palt)mn{2)].

The solution to the stated problem is given by the following system of filtering
equations, which is closed with respeect to the introduced variables, m(t) and P(i):

dm{t)
= (ag(t) + ar (O)mE) + az{t)p(t) + ag{t)m2(t) + as(£)(3p(t) * m{t) + m*(©)))dt
P)AT()(BIBT (1)) (dy — (Aa(t) + Alt)m(t)}dt), {4)

m(ta) = Elx(to) /y(to)].
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dF(t) = (e(8)P(t) + P{t)al (t) + 2as(t)m(t) » P(t)
+2(P(ty » mT (t))a] () + 3ag(t)(p(t) = P()) + 3(p(t) » P(1))T el (¢)
+3aa(t)(m2(8) * P(£)) + 3(2(t) x (m*())Tjaf {t) + b6 (t)
~PHAT (BB (1) T A@P))dt, (5)

Plto) = E((z{to) — m{to)){z(to) — m(to))T /y(te)),

where the product m{t) = P(t) between a vectar m(t) and a matrix P(t) is defined as
the matrix whose rows are equal to rows of P{f) multiplied by the same corresponding
element of m(t):

[ my(2) Pulty Pt - P ]
ma(t) Pult) Pu(t) - Pun(l)
m,;(t} P,,,I-(z) Pﬂﬁ;(z) . m;(t)
[ ma (8P () ma (P - () Pia(t) ]
_ Mo (t)Pgl (f) Mo (t)sz(t) R t)Pgn(t ‘
Trz,l(t}}’nl (t) mn{t);??ng {ty - - (2 )Pnﬂ(t)

The transposed matrix P(z)»m” {t}] = (m(#)# P(#})7 is definred as the matrix whose
columns are equal to columns of P(t) multiplied by the same corresponding element of
m(t):

[ Pult) Pt - Pl ]
[ mat) molt) - mat) | P”:{t) ngm sz(z)l
Pu(t) Pualt) - Pant)
[ my{t)Pri(t) ma(t)Pi2(t) ~-- ma(t)Pia(t) |
N m ()P lE)  malf)Peft) - ma(t)Pa,(t)
My Par(8) ma(t)Parlt) o+ Mt Panlt)

Thus, the equation (4) for the optimal estimate m(t) and the equation {3) for its
covariance matrix P(t) form a closed system of filtering equations in the case of a
polynomial state equation of degree 3 and linear ohservations.

4 Optimal Solution

Let us return to the optimal control problem for the polynomial state (1) with linear
cantrol input and the cost function (2}. This problem is dual to the filtering preblem
for the polynomial state {3) of degree 3 and linear observations. Since the optimal
polynomial filter gain matrix in (4) is equal to

Ky = POAT(0(B®HBT (1),



40 - Optimal Control

the gain matrix in the optimal control problem takes the form of its dual transpose

K. = (R GT(H)Q),
and the optimal control law is given by
wt{t) = Koz = (R(1)) 7' GT ()QH)=(), {6)

where the matrix function Q(t) is the solution of the following equation dual to the
variance equation ()

dR(t) = (—af (NQ() — Qt)ar(t) — 2e5 (1)Q(t) » 2T (2) — 2x{t) * Q(t)az(t)
=3aT (NQ() = 47 (t) — 3(t) » Q(t)as(t) — 3aT (1)Q(2) * ((=*(&))T}
—3(x* (1) * Q)as(t) + L(t) - QUIGWR (T QN (7)
with the terminal condition (1) = ¢. The binary operation * has been introduced in
Section 3, and ¢(t) = (¢1(t), g2(¢),-.., ¢ (t)) denotes the vector consisting of the diagonal
elements of Q(£). X

Upon substituting the optimal control (8) into the state equation (1). the optimally
controlled state equation is obtained

dz(t) = (ao(t) + a1 (t)z(t) + ag ()2’ (1) + as (D (1))dt
FGENR()) G (MQBx(t)dt,
I[to) = Iy,

Note that if the real state vector z(t) is unknown (unchservable). the optimal
controller uniting the obtained optimal filter and regulator equations, can be con-
structed using the separation principle [4] for polynomial systems, which sheuld also
be valid if solutions of the optimal filtering and control problems exist in a closed
finite-dimensional form.

The results obtained in this section by virtue of the duality principle could bhe
rigorously verified through the general equations of the Pontryagin maximum principle
(T} or Bellman dynamic programming {2).

5 Application to Automotive System

This section presents application of the obtained optimal regulator for a polynomial
system of degree 3 with linear control input and quadratic criterion to controlling the
state variables, orientation and steering angles, in the nonlinear kinematical model of
car movement (5] given by the following nonlinear equations

da(t) = voeos(@(t))dt
dy(t) = vsin{é(2))de (8
dd(t) = (v/1) tan(&(t))dt )

dé{t) = ult)dt
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Here, z(¢) and y(t) are Cartesian coordinates of the mass center of the car, ¢t} is
the orientation angle, v is the velacity, { is the longitude between the two axes of the
car, 6{f) is the steering wheel angle, and (i) is the control variable (steering angnlar
velocity).

The optimal control problem is to maximize the orientation angle ¢ using the mini-
mum energy of control %. The examined values of the velocity and longitude are v = 17,
! =2, and the motion time is T" = 0.1, which correspond to the idle engine mede of a
full-size car in the time interval of 6 seconds. The initial conditions for the angles are
#(0) = 0.1 and 6(0} = 0.1. In other words, the problem is to make the maximum turn
of the running wheels from their initial position, using the minimum steering energy.

The corresponding criterion J to be minimized takes the form

T
T30 - 5P g [ o (©)

where T' = 0.1, and ¢* = 1 is a large value of ¢{t) ¢ priori unreachable for time 7". To
apply the obtained optimal control algorithms to the nonlinear system (8), let us make
the Taylor expansion of the two last equations in (8) at the origin up to degree 3 (the
fourth degree does not appear in the Taylor series for tangent)

dg(t) = (1) stydt + (2) (22) at (10)

Now, since R = 1 and GT = [0, 1] in (9), the optimal control law (6} takes the form
w1} = go; (£) (1) + g2t }6(¢), where the elements gy, (£}, g21(£), g22(t) of the symmetric
matrix @(f) satisfy the equations

dgn (t) = —a3, (1)
dqa(t) = =323, (t) — q2(t)ga2(t) — $qu1(t) — 3 %001 (8) (11}
daaa(t) = —Fqua(t) ~ S q1a(t)gaa(t) — 62 qa{t) — g3o (1)

The system composed of the two last equations of {8) and the equations (10)
should be solved with initial conditions ¢{0) = 0.1, 6(0) = 0.1 and terminal condi-
tions g11(T) = I, q12(7") = 0, g22(T) = 0. This boundary problem is solved numerically
using the iterative method of direct and reverse passing as follows. The first initiai
conditions for ¢’s are guessed, and the system is solved in direct time with the initial
conditions at ¢ = 0, thus obtaining certain values for ¢ and § at the terminal point
T = 0.1. Then, the system is solved in reverse time, taking the obtained terminal
values for ¢ and & in direct time as the iniiial values in reverse time, thus obtaining
certain values for ¢'s at the initial point ¢ = 0, which are taken as the initial values
for the passing in direct time, and so on. The given initial conditions ¢{0) = 0.1,
6(0) = 0.1 are kept fixed for any direct passing, and the given terminal conditions
qu(T) = 1, 12(T) = 0, gaz(T) = 0 are used as the fixed initial conditions for any
reverse passing. The algorithm stops when the system arrives at values qi.{T) = 1,
q2(T) = 0, g22(T) = 0 after direct passing and at values ${0) = 0.1, §(0) = 0.1
after reverse passing. The initial conditions for ¢’s in the final direct iteration are
g11(0) = 1.32, ¢12(0) = 16, g22{0) = 1640. The obtained simulation graphs for ¢ and
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the criterion J are given in Fig. 2. These results for polynomial regulator of degree
3 are then compared to the resuits obtained using the optimal linear regulator, whose
mattix Q(¢) elements satisfy the Riccati equations

dgi1(t) = —a5a(t)
dqio(t) = —rages — Squ (12)
dﬂﬂz(t) = "QTUCIIE =43z

with terminal conditions ¢1{T) = 1,¢12(T) = 0,¢22(T) = 0. Note that in the linear
case the only reverse passing for g's is necessary, because the system (12) does not
depend on ¢ and 4, and the initial values for ¢’s at ¢ = 0 are obtained after single
reverse passing. The initial conditions for ¢’s in the direct iteration are 11 (0) = 1.025,
¢12(0) = 0.87, g22(0) = 0.74. The simulation graphs for the linear case are given in
Figure 1, which consists of the graph of the variable ¢ satisfying the original system
{8) and controlled using the optimal linear regulator defined by (12) and the graph of
the corresponding values of the cyiterion J.

L L "
] 0.0 0.0z 0.03 o.od 008 a.06 0.07 0.08 0.09 0.1
ume

Figure 1.
In Figure 2, we show the graph of the variable ¢ satisfying the original system (8)
and controlled using the optimal third order polynomial regulator defined by (11) and
the graph of the corresponding values of the criterion J.
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The obtained values of the controlled variable ¢ and the criterion J are compared for
the optimal third order polynomial and linear regulators at the terminal time 7' = 0.1
in the following table (corresponding to Figs. 1 and 2).

Linear regulator Third degree polynomial regulator
(0.1} = 01875 $(0.1) = 0.989
J =0.661 J = 0.065

Graphs of conirol functions u* (¢} corresponding to the optimal linear regulator and
the optimal third order polynomial regulator are given in Figs. 3 and 4, respectively.
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Figure 4.

6 Conclusions

The simulation results show that the values of the controlled variable ¢ at the terminal
point T = 0.1 are five times greater for the third order regulator than for the linear
one and the criterion value at the terminal point is ten times less for the third order
regulator. Thus, the third order polynomial regulator controls the system variables
significantly better than the linear one from both points of view. The ebtained results
show that the best gain matrix based on the linearized model could still be too far
from achieving the optimal performance. The considered example validates design and
implementation of the regulators based on polynomial approximations of nonlinear
Systems.

Finally note that the better performance of the cost function and controlled variable
has been achicved without changing the system dynamics (in both simulation cases, the
designed control algorithms are applied to the criginal nonlinear system (8))}, but by
assigning a better regulator gain matrix (Q{t) satisfies (11) instead of (12)). Thus, the
principal result in the considered application consists in designing a better regulator
and not in using more accurate system dynamics, as it could seemn after the first glance.
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Abstract. This paper presents the solution to the optimal controller prob-
lem for a stochastic system given by a polynomial equation of third dégree,
linear observations confused with white Gaussian noises, and a gquadratic
cost function. The obtained controller equations are applied to solution of
the state controiling problem for a nonlinear antomotive system. Simulation
results are compared for the optimal polynomial controller given in this pa-
per and the best linear controller available for the linearized system.

1 Introduction

Although the optimal controller problem for linear system states was solved
in 1960s, based on the solutions to the optimal filtering [3] and regulator
{4, 2] problems, solution to the optimal controller problem for nonlinear (in
particular, polynomial) systems has been impossible due to the absence of
the solution to the corresponding filtering and control problems for nonlinear
systems. This paper presents solution to the optimal controller problem for
unobservable third degree polymomial system states over linear observations
and quadratic criterion. Due to the separation principle for polynomial sys-
tems with linear observations and gquadratic eriterion, which is stated and
substantiated in the paper analogously to that for linear ones {see [4]}, the
original controller problem is split into the optimal filtering problem for third
degree polynomial system states over linear observations and the optimal
conirel {regulator] problem for observable third degree polynomial system
states with quadratic criterion. (The statements and solutions of both those
problems can be found in [1]).

The relatively simple case of third degree polynomial systems consid-
ered in this paper seems to be important for practical applications, since
a nonlinear state equation can usually be well approximated by a polyno-
mial of degree 3, the observations are frequently direct, that is linear, and
the cost function in the controlling problems, where the desired vaiue of the
controlled variable should be maintained or maximized using the minimum
control energy, is intrinsically quadratic. Moreover, the controlling problem



for a polynomial state equation of lower degree is significant itself, because
many, for example, chemical processes are described by quadratic eguations
(see [T])-

The obtained optimal controller for a polynomial state equation of degree
3 is applied to solution of the state controlling problem for a nonlinear auto-
motive gystem [6] whose state equation for car orientation angle is nonlinear
(contains tangent), with the objective of increasing values of the state vari-
ables and consuming the minimum control energy. To apply the developed
polynomial technique, the original state equation is expanded as a Taylor
polynomial, up to degree 3. The optimal controller equations for a polyno-
mial state of third degree are written and then compared to the best linear
controller available for the linearized system. Numerical simulations are con-
ducted for the optimal polynomial controller and also compared to those for
the linear one applied to the linearized system. The simulation results given
in the paper show a significant, more than one and half times, advantage of
the optimal polynomial controller performance in comparison to the linear
one.

The paper is organized as follows. In Section 2, the optimal controller
problem is stated and solved for unobservable third degree polynomial sys-
tem states, using the separation principle for polynomial systems with linear
observations and quadratic ¢riterion. Section 3 presents application of the
obtained results to the controlling problem for a nonlinear antomotive system
with two state variables, orientation and steering angles, over direct linear
observations confused with white Gaussian noises, with the objective of in-
creasing values of the state variables and consuming the minimum control
energy. Graphic simulation results are obtained and compared to those for
the best linear controller available for the linearized system.

2 Optimal Controller Problem

2.1 Problem statement

Let (2, F, P) be a complete probability space with an increasing right-contin-
uous family of s-algebras Fy,t > 0, and let (W1 (t), F;, 2 2 @) and (Wa{t), 3, -
t > 0) be Fi-adapted Wiener processes. Let us consider the unobservable
Fi-measurable random process z(t) governed by the third degree polynomial
state equation -

dalt) = (ao{t)+a: (t}x(t) +oa()x* () +as(t)z® (£))dt+G(t)u(t)di+b()dW (1),

.Z(to) = Ip, (])

and the linear output (cbservation) process

dy(t) = (Ap(t) + A(t)z(t))dt + B(£)dWz(2). (2)



Here, z(1) € R is the unobservable state vector, whose second and third de-
grees are defined in the componentwise sense z2(t) = (23(t), z2(¢), z3(t), ...,
22 (1), 2 (8) = (#30¢), 23(8), x3(¢). ..., z2(¢)), u{t) € RP is the control vari-
able, y(t) € R™ is the observation process, and the independent Wiener
processes Wi(¢) and Wa(t) represent randem disturbances in state and ob-
servation equations, which are also independent of an initial Gaussian vector
zg. Let A(t) be a nonzero matrix and B(£)BT (¢t} be a positive definite ma-
trix. In addition, the quadratic cost function J to be minimized s defined
as follows

7 = B3 ((T) = w] @ [x(T) - 20] + @)

T T
3 [ @R+ [ ST L)),
2 to 2 to
where zg is a given vector, K is positive definite and @, L are nonnegative
definite symmetric matrices, T > ¥#p is & certain time moment, the symbaol
E[f(x)) means the expectation {mean) of & function f of a random variable
z, and oT denoctes transpose to a vector (matrix} a.

The optimal conirol problem is to find the control w*(t), t € {to, T},
that minimizes the criterion J along with the trajectory z*(t), t € [to, T,
generated upon substitufing w*(¢) into the state equation (1).

2.2 Separation principle for polynomial sys-
tems

As well as for a linear stochastic system, the separation principle remains
valid for a stochastic system given by a third order polynomial equation,
linear observations, and a quadratic criterion. Indeed, let us replace the
unobservable system state z(f) by its optimal estimate m{#) given by the
equation (see [1j for statement and derivation)

dm(t) = (ag(t) + ay(B)m(t) + aa{t)p(t) + az(t)m? () + (4)

az(£)(3p(t) » m(t) + m3())di + G(H)u{t)+
PTOAT (BB (1)~ {dy — (Ag(t) + A{)m(2))dt),

with the initial condition m(f) = E{x{(fs) | Ff;’) Here, m(t) is the best
estimate for the unobservable process z(t) at time ¢ based on the observa-
tion process Y (t) = {y(s).t0 < s < t}, that is the conditional expectation
m(t) = B(() | FY), m(t) = my(t),ma(0),....ma(8))s P(2) = El(e(t) -
mEN{x(t) — m@ENT | Y(t)] € R is the error covariance matrix; p(t) € R?
is the vector whose components are the variances of the components of
x(t) — m(t), i.e., the diagoual elements of P(¢}; m2(¢) and m3(¢) are de-
fined as the vectors of squares and cubes of the components of m(t): m?(t) =
(mZ().mi(t),. .., mi(5), mI(t) = (mi@), mi(e),...,m3{t}); Pltym(¢) is the



conventional product of a matrix P(t) by a vector m(t); and p(t) +m(t) is the
product of two vectors by components: p(t) »m(t) = [p1(t)m1(2), p2(f)ma(t),
.+, P=(t)mn(t)]. The best estimate m(t) minimizes the criterion

H = E[(z(t) — m(t))" (z(t) — m(£))), (5)

with respect to selection of the estimate m as a function of observations y(t},
at every time moment # ([5]).

The complementary equation for the covariance matrnix P(#) takes the
form (see {1] for derivation)

dP(t) = (a1 (£)P(£) + P(t)a] (t) + 2a2(t)m{t) = P(¢)+ (6)

2(P(2) = m™ (1))a] (£) + Bag(t)(p(t) * P(t))+
3(p(t) * P(t))Tag (£) + 3as(t)(m?(1) = P{t))+
3(P(t) * (m*(2)T)aj (&) + (b()b7 () —
P{t)AT t)(B(£)BT () "L A() P(2))dt,

with the initial condition P(tg) = E((.’L‘(to) —m(ig))(x(t(_)} ‘m(to))T i y(to)),
where the product m(t) * P(t) between a vector m(t) and a matrix P(t) is
defined as the matrix whose rows are equal ta rows of P(f) multiplied by the
same corresponding element of m(t):

mat) Puft) Pualt) - Pilt)
mg(t) Pult) Paa(t) - Pa,(t) B
a(t) Parlt) Paalt) -+ Punlt)
m ()P (t) ma(t)Pie(t) - mi{t)Palt)
ma(t)Por(t)  malt)Po(t) ---  mo(t) Ponl?)
mn(t)anl(t) Tn'n(t}'})nZ(t) » mn(t)fnn(t)

It is readily verified (see {4]) that the optimal control problem for the
system state (1) and cost function (3) is equivalent to the optimal control
problem for the estimate (4) and the cost function J represented as

7= B(3 m(T) = 2l [m(T) — 2] + ™

T T
%/ uT(s)K(s)u(s)ds-i-%/: mT (5)L(s}m(s)ds

= Wty 0

T
% / tr[P(s)L{s)|ds + tr[P(T)2]},

tg



where tr[A] denotes trace of a matrix A. Since the latter part of J is inde-
pendent of control u(t) or state z(¢), the reduced effective cost function A
to be minimized takes the form

M = B3 n(T) ~ 20]” @ [m(T) ~ z0] + ®)
% ’ uT (s)K (s)u(s)ds + %/Tmr(s)L(s)m(s)ds}.

Thus, the solution for the optimal control problem specified by (1),(3)} can
be found solving the optimal control problem given by (4),{8). However, the
minimal value of the criterion J should be determined using (7). This con-
ciusion presents the separation principle in third order polynomial systems.

2.3 Optimal control problem solution

Based on the solution of the optimal control problem obtained in [1] in the
case of an observable system state governed by a third order polynomial equa-
tion, the following results are valid for the optimal control problem (4),(8),
where the system state (the estimate m(2)) is completely available and, there-
fore, observable.

The optimal control law is given by

u'(t) = K1 ()GT()QE)m(2), (9)

where the matrix function is the solution of the following equation dual to
the variance equation

dQ(t) = (~a] (NQ(E) — Q{t)a] (t) — 205 ()Q(E) * m” (1) -

2m(t) * Q(t)as(t) — 36T (Q() * a7 (t) (10)
3a(t) » Qt)as(t) — 3a] (DQ(E) » ()7 (1)) —
3(m2 () = Q) as(6) + L{E) — QOGO K- ()GT(1)Q(E) k.

with the terminal condition @Q(T) = ®. The binary operation * has been
introduced in Subsection 2.2, and ¢(t) = (g1{{), g2(%), ..., ¢ (E)) denotes the
vector consisting of the diagonal elements of @(t). In the process of derivation
of the equation {10), it has been taken into account that the last term in
the equation (4). PT{tJAT()(B(6)BT(2)) " (dy — (Ao(t) + A{t)m(t)}d1), is a
Gaussian white noise.

Upon substituting the optimal control (9) into the equation (4) for the
reconstructed system state m(t), the following optimally controlled state es-
tirnate equation is obtained

dm(t) = {ag(t) + a1 (t)m(t) +az(t)p(t) + aa(tym?(£)+ (11)



aa{t)(3p(t) * mlt} + m3())dt + GO K@) 'GT()Q(e)m{t)dt+
P AT(1)(B() BT (£)) " (dy — (Ao(t) + Altym(t))ds),
mlta) = E(z(to) | F),).

Thus, the optimally controlled state estimate equation (11), the gain ma-
trix constituent equation (10}, the optimal conirol law (9), and the variance
equation {6) give the complete solution to the optimal controller problem for
unobservable states of third degree polynomial systems.

3 Application of optimal polynomial
controller to automotive system

This section presents application of the obtained controller for a polynomial
state of degree 3 over linear observations and a quadratic cest function to
controlling the unobservable state variables, orientation and steering angles,
in a nonlinear kinematical model of car movement [6] satisfying the following
equations:

drit) = weos ¢(t)dt, : (12)

dy(t) = vsin ¢(t)dt,
deé(t) = (v/l) tan §{¢)dt,
da(t) = u(t)dt. .

Here. «tt) and y(t) are Cartesian coordinates of the mass center of the
car, @{f) is the orientation angle, u is the velocity, { is the longitude between
the two axes of the car, 6(f) is the steering wheel angle, and u(¢) is the
censrol variable \steering angular velocity). The zero initial conditions for all
variables are assumed.

The observarion process for the unobservable variables @(t) and (¢} 1s
given by direct linear observations confused with independent and identically
distributed dizturbances modelled as white Gaussian nojses. The correspond-
ing observarions equations are

dzs(t) = @(t)dE + wy (£)dt. (139

dzs(t) = 6()dt + wa(t)dt.

where z,(t} is the observation variable for ¢(t), z5(t) is the observation vari-
able for 4(¢-. and wi(t) and w,(t) are white Gaussian noises independent of
each other.

. The examined values of the velocity and longitude are v = 17, 1 = 2.
which correspond to the idle engine mode of a full-size car. In other words. the
problem is to maxe the maximum turn of the running wheels from their initial
position. using rie ninimum steering energy. For the reasons of economizing
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the fuel and reducing air pollution, the weight of the control term in the
criterion is assigned ten times more than the weight of the state terminal
term. The corresponding criterion J to be minimized takes the form

T
J=[p(t) — ]2 + 10/ u (t)dt, (14)
o

where T = 0.3. and ¢* = 10 is a large value of ¢{f) unreachable for time T.
To apply the obtained optimal controller algorithms to the nonlinear
system (12). linear observations (13), and the quadratic criterion (14), let
us make the Taylor expansion of the two last equations in (12} at the origin
up to degree 3 (the fourth degree does not appear in the Taylor series for
tangent)

v v, 83t
ao(t) = (3150 + ()Y

dé(t) = u(f)dt.

The solution to the stated optimal controller problem is given as follows.
Since X = 1 and G7 = [0.1] in (14) and (15), the optimal control *(t) =
(KN 'GT(1)Q(t)m(t) takes the form

))dt, (15)

u'(t) = lh](f)fﬂ@(i) + q'gg(t)?nd (f), (16)

and the following optimal controller equations {9)~(11) and (6) for the third
degree polynomial state (15) over the linear observations (13) and the quadratic
criterion (14) are obtained

v

35)(3195 +m3) + Pop{zg — my) + Paslzs ~ mg))dt. (17)

dimg = ((;)m[: +{

dmg = (u*(t) + psolzp — Me) + pss(2s — ms))dl,

2v 2v
dvcs = ([ 2v/D)psopss +  Paet Tmfﬁmds — phs — PLs)dt.
. v v,
Ao = (Izﬂo‘a + msPss — PosDes — pesss)dt,

dpes = (—Pae — Pis)dt,
dau1 (2) = (—g3, (t))dt,

v

dgalt) = (—?qgl — 12932 —

U 1
T fmiqu}dt,
2 2y 2v
dgax 1) = (——q12 — —q12g22 — —
{ ! i
Here, m, and —:; are the estimates for variables ¢ and 8. pgy. Pos. Pos are
elements of the svmmetric covariance matrix P; and ¢11(£). g21{#). g22(¢) are
elements of the svmmetric matrix Q{t) forming the optimal control (16).

miqiz — Gag)dt.



The following values of the input variables and initial values are as-
signed: v = 17,1 = 2,my(0) = 1,ms(0) = 0.1,6(0) = 8(0} = 0, Py (1) =
10, Pys(0) = 1. Ps5{0) = 1. Gaussian disturbances ws (%) and we(t) in (13)
are realized as sinusoidal signals: w, (2) = wa(t) = sint. The terminal con-
ditions for the matrix @ elements are: ¢;((T) = 0.1, ¢12(T) = 0,922(T) = 0,
where the final time 7" = 0.3.

Thus, the system composed of the two last equations of (12) and the
equations {17) should be solved with initial conditions m4(0) = 1,ms(0) =
0.1,4(0) = 6(0) = 0, Psg(0) = 10, Pps(0) = 1, F56{0) = 1 and terminal
conditions 11 (T} = 0.1,¢12(7") = 0,g22(T) = 0. This boundary probiem is
solved numerically using the iterative method of direct and reverse passing
as follows. The first initial canditions for ¢’s are guessed, and the system
i3 solved in direct time with the initizl conditions at ¢ = 0, thus obtaining
certain values for the other listed variables at the terminal point T = 0.3.
Then, the svstem is solved in reverse time, taking the obtained terminal
values for the other variables in direct time as their initial values in reverse
time, thus obtaining certain values for ¢'s at the initial point { = 0, which
are taken as their initial values for the passing in direct time, and so on. The
given initial conditions my(0) = 1,ms(0) = 0.1,4(0) = §(0) = 0, Pyp(0) =
10, Pps(0) = 1. Pss(0) = 1 are kept fixed for any direct passing, and the
given terminal conditions ¢1;(7T) = 0.1, q12(7) = 0, g22(T") = 0 are used
as the fixed initial conditions for any reverse passing. The algorithm stops
when the system arrives at values g11{T) = 0.1, q12(T) = 0, go2(T) = 0
after direct passing and at values m,{(0) = 1,ms(0) = 0.1, 9(0) = 4(0) =
0, Pps(0) = 10. Fo5(0) = 1, Pss{0} = 1 after reverse passing. The obtained
simmlation graphs for @, §, my, mg, the criterion J, and the optimal control
u*(t) are given in Fig. 1. These results for the polynomial controller of
degree 3 are then compared to the results obtained using the hest linear
controller available for the linearized model {oniy the linear term is present
in the Taylor expansion for tangent). The optimal control law in this linear
contreller is the same as in {16) and the optimal linear controller equations
are given by

i, = (%‘ma 1+ Posl2e — Ma) + Paslzs — ms))dE. (18)

diy = (u(t) + poelze — me) + pss(zs — ms))dt.
dpoo = [i’ﬁpdq‘: — Phs — Pas)dL.
dpes = (%Pé& = PooDsé — PosPss)di.
dpss = (—pi, ~ Pasdt.
dqu: (t) = (a3, (t))dt,

v
dqia(t) = (—qrates — 'j“hl)dtr
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29
dgaa(t} = (—TQM: ~ g3a)dt.

i Note that in the linear case the only reverse passing for ¢'s is necessary,

because the the equations for ¢’s in (18) do not depend of ¢, &, my, or ms,
and the initial values for ¢’s at t = 0 c¢an be obtained after single reverse
passing. The simulation graphs for the linear case are given in Fig. 2.

Thus, two sets of graphs are obtained.

1. Graphs of the variables ¢ and ¢ satisfying the polynomial system (15)
and controlled using the optimal linear regulator defined by (16}, (18); graphs
of the estimates mg and myg satisfying the system (18) and controlled using
the optimal linear regulator defined by (16}, {18); graphs of the corresponding
values of the criterion J: graphs of the corresponding values of the optimal
control u™ {Fig. 1).

2. Graphs of the variables ¢ and 4 satisfving the polynomial system {15)
and controlled using the optimal third order polynomial comtroller defined
by {16), (17): graphs of the estimates m, and my satisfying the system (17)
and controlled using the optimal third order polynomial controller defined
by (16), {17). graphs of the corresponding values of the criterion J; graphs
of the corresponding values of the optimal control w* (Fig. 2).

The obtained values of the controiled variable ¢ and the criterion J are
compared for the optimal third order polynomial and linear controllers at the
terminal time T = (.3 in the following table (corresponding to Figs. 1 and
23.

Lineal controller Third degree polynomial controtler
o(0.3) = 0.0545 ¢{0.3) = 0.0876
J =98.9625 J = 9083884

The simulation results show that the value of the controlled variable @ at
the terminal poinr T = 0.3 is more than one and half times greater for the
third order polvniomial controller than for the linear one, and the difference
between the init:al and final criterion values is more than one and half times
greater for the third order polynomial controller as well. Thus. the third order
polynomial conzroller regulates the system variables better than the linear
one from both points of view, thus illustrating the theoretical conclusion.

4 Conclusions

The optima. no:r.inear consroller for a stochastic system state given by a poly-
nomial equaz:orn s5i degree 3. linear observations confused with white Gaussian
noises, and a guadratic criterion has been obtained. The aptimal polyneouital
controller o7 cézree 3 has been then applied to salution of the controlling
s variables, orientation and steering angles. of 4 nonlinear
svitim describing kinematics of car movement. Application of

automotive



the obtained controller to the nonlinear antomotive system has yielded more
than one and half times better values of the criterion and greater values of
the controlled variable in comparison to the best linear controller available
for the linearized model. Although this conclusion follows from the developed
theory, the numerical simulation serves as a convincing illustration.
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Figure 1. Graphs of the variables ¢ and é satisfying the polyno-
mial system (13) and controlled bking the optimal linear regulator
defined by (16°. (18); graphs of the estimates m, and mg satisfv-
ing the system (18) and controlled using the optimal linear regu-
lator defined by {16), (18); graphs of the corresponding values of
the criterion J: graphs of the corresponding values of the optimal
control u”.
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