UNIVERSIDAD AUTONOMA DE NUEVO LEON FACULTAD DE CIENCIAS FORESTALES SUBDIRECCION DE POSTGRADO

CARACTERIZACION DE LOS SITIOS DE NACIMIENTO DE UNA POBLACION REINTRODUCIDA DE VENADO BURA

(Odoccileus bemienus crocki)

Tesis de Maestría Como requisito parcial para obtener el grado de Maestría en Ciencias Forestales

> Presenta Emma Gabriela Gutiérrez Vela

Linares, Nuevo León, México

Noviembra del 2003

TM . Z5991 FCF 2003

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE CIENCIAS FORESTALES

SUBDIRECCIÓN DE POSTGRADO

CARACTERIZACIÓN DE LOS SITIOS DE NACIMIENTO DE UNA POBLACIÓN REINTRODUCIDA DE VENADO BURA (Odocoileus hemionus crooki)

Tesis de Maestría Como requisito parcial para obtener el grado de

Maestría en Ciencias Forestales

Presenta

Emma Gabriela Gutiérrez Vela

TM 25991 FeF 2003 . 58

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE CIENCIAS FORESTALES

SUBDIRECCIÓN DE POSTGRADO

CARACTERIZACIÓN DE LOS SITIOS DE NACIMIENTO DE UNA POBLACIÓN REINTRODUCIDA DE VENADO BURA (Odocoileus hemionus crooki)

Tesis de Maestría Como requisito parcial para obtener el grado de

Maestría en Ciencias Forestales

Presenta

Emma Gabriela Gutiérrez Vela

Linares, Nuevo León, México.

Noviembre del 2003

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE CIENCIAS FORESTALES

CARACTERIZACIÓN DE LOS SITIOS DE NACIMIENTO DE UNA POBLACIÓN REINTRODUCIDA DE VENADO BURA (Odocoileus hemionus crooki)

Tesis de Maestría
Como requisito parcial para obtener el grado de

Maestria en Ciencias Forestales

Presenta:

MVZ. Emma Gabriela Gutiérrez Vela

COMITE DE TESIS

Alfoneo Martinez Iriunoz

Director

Dr. José A. Guevara González

Secretario

Dr. Mauriciø Cotera Correa

Vocal:

M. en C. José Isidro Uvalle Sauceda

Asesor externo

Linares, Nuevo León, México.

Noviembre del 2003.

AGRADECIMIENTOS

Al Consejo Nacional de Ciencia y Tecnología (CONACyT), por el apoyo con la Beca-Crédito para realizar los estudios de Postgrado.

A la Universidad Autónoma de Nuevo León, por la ayuda recibida a través del Programa de Apoyo a la realización de tesis de maestría.

Al Dr. Alfonso Martínez Muñoz por haberme dado la oportunidad de trabajar en este proyecto de venado bura, en el que tanto aprendí. Gracias también por sus comentarios, sugerencias y su paciencia. Dr. José Guevara, de manera infinita agradezco su paciencia y sus consejos tan acertados en campo. Dr. Mauricio Cotera, por aceptar ser parte del comité de tesis y sus contribuciones en la revisión del escrito. M.en C. José I. Uvalle, gracias por tu calidez humana y por todo tus enseñanzas y gracias también por las sugerencias en el escrito. Al Dr. Eduardo Estrada por su desinteresada ayuda.

A la Dra. Celia López González por su apoyo en los análisis estadísticos. Gracias Celia, por tu tiempo, tu paciencia y tu saber.

A Cementos Mexicanos (CEMEX) por todo el apoyo recibido en el Campo Santa María, durante la realización de este trabajo. De igual manera quiero agradecer a todo el personal que labora en este campo, quienes siempre tuvieron la disponibilidad y paciencia para ayudarme: Ing. José Fco. Martínez y su familia (Carmelita, José Francisco, Lorena y José Eduardo), Ing. Armando Falcón, Dan Roe, Ing. Oscar Infante, así como a Lourdes, Claudia Garza, Alejandro Adame (Gordo), Roberto Villarreal (Robe), Pedro Cortéz (Perico), Roberto Cortéz (Conejo), Don Juanito, Armado y por último a Don Richard y Don Checo. ¡Gracias por todo!.

A cada una de las personas que ayudó de manera importante en el trabajo de campo y que sin su valiosa ayuda, no sé qué habría hecho: José Uvalle, José Luis Aponte, Cecilia Romero, Antonio Calzada, Rafael Aranda, Raúl Román, Miltón Aragón, Sanjuana Guerra, Mercedes Flores, Paola Miranda, José Guevara, Albesia Montelongo, Juan Angel López (Juanito), Alejandro Garza, José Isaac, Joel González, Diana Herrera, Carlos Alfonso Muñoz y Pedro Cerda.

Al personal administrativo de la Facultad de Ciencias Forestales, especialmente a Sandra Cano. A cada uno de los maestros, a mis entrañables compañeros de generación, aquellos con quienes compartí clases, y a mis compañeros de cubículo, pero sobre todo quiero agradecer a: Mercedes Flores, Sanjuana Guerra, Paola Miranda, Carlos Alfonso Muñoz, Juan Macareno, Nahum Sánchez, Benedicto Vargas, Feliciano Heredia, Pedro Cerda, Gerardo Cuéllar, Luis Llamas, Diana Herrera, Efraín Rodríguez, Laura Rentería y Eréndira Zamudio. Gracias por las enseñanzas, por sus risas, por su energía, por su paciencia, pero sobre todo gracias por su amistad.

A cada una de las personas que se preocuparon por ver terminado éste trabajo y que no menciono su nombre, para no cometer el error de omitir alguno. Muchas gracias.

A mi familia, por el apoyo que ahora y siempre me han brindado, ¡Gracias!.

A los buritas, por supuesto.

CONTENIDO

LISTA DE FIGURAS	l
LISTA DE CUADROS	
RESUMEN	IV
SUMMARY	VI
1. INTRODUCCIÓN	1
2. HIPÓTESIS Y OBJETIVOS	3
2.1. Hipótesis	3
2.2. General	3
2.3. Específicos	3
3. ANTECEDENTES	5
3.1. Distribución del venado bura	5
3.2. Características generales	7
3.2.1. Clasificación taxonómica	7
3.3. Descripción de la especie	7
3.4. Comportamiento	9
3.5. Movimientos	10
3.6. Generalidades de la reproducción	10
3.7. Depredación y mortalidad	12
3.8. Cuidados maternos	16
3.9. Enfermedades y parásitos	16
3.10. Hábitat	17
3.11. Interacciones entre el venado bura y el venado cola blanca	21

4.	DESC	RIPCIÓN DEL ÁREA	23
	4.1.	Localización	23
	4.2.	Edafología	24
	4.3.	Geología	24
	4.4.	Fisiografía	24
	4.5.	Clima	25
	4.6.	Vegetación	25
5.	MATE	ERIALES Y METODOLOGÍA	27
	5.1 .	Traslado de los venados	29
	5.2.	Equipo utilizado	30
	5.3.	Trabajo de campo	31
	5.4.	Estaciones de lectura	31
	5.5.	Caracterización de los sitios	33
	5.6.	Análisis de los datos	34
6.	RESU	ILTADOS Y DISCUSIÓN	35
	6.1.	Características de la vegetación	38
	6.2.	Comparación de los sitios de nacimiento con los sítios selecciona	dos
		al azar	39
	6.2	2.1. Vegetación	39
	6.2	2.2. Topografía	48
	6.2	2.3. Distancia al aguaje	49
7.	CONC	CLUSIONES	56
8.	IMPLI	CACIONES PARA EL MANEJO DE LA ESPECIE	58

9. LITERATURA CITADA	59
APÉNDICES	73
Porcentaje de cobertura, altura y frecuencia de las especies arbustivas presentes en los sitios de nacimiento de 1998-2000	74
II. Porcentaje de cobertura, altura y frecuencia de las especies arbustivas presentes en los sitios elegidos al azar	83
III. Porcentaje de cobertura, altura y frecuencia de las especies herbáceas presentes en los sitios de nacimiento de 1998-2000	93
IV. Porcentaje de cobertura, altura y frecuencia de las especies herbáceas presentes en los sitios elegidos al azar	102

LISTA DE FIGURAS

Figura 1. Localización del área de estudio "Campo Santa María"	.23
Figura 2. Cerco del área en donde se encuentran los venados bura	28
Figura 3. Hembra de venado bura equipada con radio collar	30
Figura 4. Esquema de las parcelas realizadas en los sitios de muestreo	.34
Figura 5. Cervatillo encontrado en agosto del año 2000	.35
Figura 6. Distribución de los diferentes sitios de muestreo en el área de estudio	37
Figura 7. Especies arbustivas más representativas en los diferentes sitios de muestreo	.38
Figura 8. Especies herbáceas más representativas en los diferentes sitios de muestreo	
Figura 9. Cobertura promedio de arbustivas en los diferentes sitios de muestreo	.40
Figura 10. Cobertura promedio de arbustivas en los diferentes sitios de muestreo	.40
Figura 11. Cobertura de herbáceas en los diferentes sitios de muestreo	.43
Figura 12. Cobertura promedio de herbáceas en los diferentes sitios de muestreo	.43
Figura 13. Altura de arbustivas en los diferentes sitios de muestreo	.44
Figura 14. Altura promedio de arbustivas en los diferentes sitios de muestreo	.44
Figura 15. Altura promedio de herbáceas en los diferentes sitios de muestreo	.45
Figura 16. Altura promedio de herbáceas en los diferentes sitios de muestreo	.45

rigura 17. Principales arbustos presentes en los sitios de nacimiento	47
Figura 18. Pendiente de los diferentes sitios de muestreo	48
Figura 19. Pendiente promedio en los diferentes sitios de muestreo	48
Figura 20. Distancia al aguaje en los diferentes sitios de muestreo	49
Figura 21. Distancia promedio al aguaje en los diferentes sitios de muestreo	50
Figura 22. Vegetación en julio de 1998.	55

LISTA DE CUADROS

Cuadro 1. Medidas corporales del venado bura adulto	8
Cuadro 2. Registro de los venados bura que se encuentran en el área de estudio	29
Cuadro 3. Ubicación de las diferentes estaciones de lectura	31
Cuadro 4. Sitios de nacimiento del período 1998-2000 en el Campo Santa María, Lampazos, N.L	36
Cuadro 5. Características de los sitios de nacimiento en el Campo Santa M Lampazos, N.L	•
Cuadro 6. Características de los sitios elegidos al azar en el Campo Santa María, Lampazos, N.L.	42

RESUMEN

El área de distribución del venado bura ha disminuido, por lo que se requieren translocaciones. Sin embargo es importante conocer el área a donde se llevarán los animales, sobre todo los sitios de parición.

El presente trabajo tuvo como propósito principal caracterizar los sitios que eligen las hembras de venado bura al momento de parir en un sitio de reintroducción de la especie en el noreste de México.

Se eligió la técnica de telemetría para determinar los sitios de nacimiento. Esta consistió en la búsqueda directa de 23 hembras equipadas con radiocollar. La búsqueda se realizó en las épocas propicias de parto en los años de 1998 al 2000.

Los componentes de los sitios que se evaluaron fueron la cobertura y la densidad de arbustivas y de herbáceas, la pendiente y la distancia al aguaje mas cercano. Por motivos de comparación, se seleccionaron sitios al azar dentro del corral de 600 Ha, en los que no hubo parición.

Se utilizó el análisis de varianza para comparar los sitios de nacimiento con los sitios seleccionados al azar. Se encontraron 18 sitios de nacimiento durante el periodo del estudio. Se seleccionaron 20 sitios al azar. Los resultados del análisis de varianza indican que existieron diferencias estadísticamente significativas entre los sitios de nacimiento y los sitios seleccionados al azar, en relación con el

porcentaje de arbustivas (cobertura), siendo este mayor en las áreas de nacimiento (F=3.99; 0.0459). Las diferencias en el porcentaje de cobertura de herbáceas no fueron estadísticamente significativas (F=0.84; P= 0.3605). La altura de arbustivas fue estadísticamente significativa (F=12.07; P=0.0005) presentándose una altura mayor en los sitios de nacimiento. Por otra parte la altura para herbáceas no presentó diferencia significativa (F=0.27; P=0.6039). En cuanto a la pendiente, los resultados indican que no existieron diferencias significativas (F=111.13, P=0.4345) entre los sitios de nacimiento y los sitios al azar. La distancia a los aguajes no fue diferente estadísticamente (F=0.5579, P=1.02290) entre los sitios de nacimiento y los sitios seleccionados al azar.

Se encontró que la cobertura de arbustivas, así como la altura de las mismas, son las que determinan, la selección de un sitio por parte de una hembra.

SUMMARY

The population of Desert mule deer in Mexico has been declining. Restocking programs are needed in order to reestablish the species. The identification of reproduction habitat, will increase the chances of success of restocking programs.

The major objective of the present study was to identify and characterize the areas selected for fawning in a reintroduction site in northeastern Mexico.

Telemetry was used in order to find the fawning sites. 23 does were marked with radicollars. The study was conducted during 3 fawning seasons (1998-2000).

Area cover, frequency and density of the brush and grass species was determined. Besides, slope and distance to water station were registered. In order to compare plots, 20 areas were selected randomly inside the 600 Ha. corral.

Variance analysis was used in order to determine significant differences between the fawning sites and the random selected ones. 18 fawning sites were find in the three years period.

Significant statistical differences between the groups were determined in relation of the percentages of brush cover (F=3.99; 0.0459).

No significant differences were determined in the percentage of forbs and grasses cover (F=0.84; P= 0.3605) and in their height between both sites types (F=0.27;

P=0.6039). Brush was higher in the fawning sites (F=12.07; P=0.0005). Slope percentage (F=111.13, P=0.4345) and distance to water sites (F=0.5579, P=1.02290) were not different. We assume that aerial cover provides more security to the fawns.

1. INTRODUCCIÓN

Los ecosistemas están sometidos a fuertes presiones de uso, lo que ocasiona una reducción en las poblaciones de especies tanto de flora como de fauna silvestre, que en muchos de los casos las pone al borde de la extinción (Cotera et al., 1986).

El venado bura del desierto (Odocoileus hemionus crooki) se distribuía históricamente en la totalidad del Desierto Chihuahuense, que abarca las regiones áridas del sureste de Nuevo México, Arizona, y el oeste de Texas en los Estados Unidos, así como dos terceras partes de Chihuahua, grandes superficies de Coahuila y San Luis Potosí, noroeste de Hidalgo y parte de los Estados de Durango, Zacatecas y Nuevo León en México (Jaeger 1957; Shreve 1942). La cacería ilegal y la destrucción de su hábitat han sido las principales causas de la reducción masiva de sus poblaciones en México. Baker (1977) consideró al venado bura como una subespecie en peligro de extinción para toda la región del Desierto Chihuahuense en México. Recientemente el gobierno mexicano ha promovido la rehabilitación de ecosistemas en el país, como una de sus principales prioridades (Martínez et al., 2000). El venado bura tiene gran importancia no sólo desde el punto de vista ecológico, sino también por su valor cinegético. Debido a que las poblaciones de el venado bura han disminuido en gran parte de su distribución histórica, resulta necesario recurrir a programas de reintroducción. Sin embargo la información actual sobre el estado de las poblaciones de bura en México es prácticamente inexistente, por lo que se deben realizar estudios para conocer más sobre su distribución, abundancia, tendencia y selección del hábitat (Uvalle, 1998).

Para muchas especies en el momento de seleccionar un hábitat, resulta importante elegir un sitio adecuado sobre todo en la época reproductiva ya que implica la supervivencia de las crías (Canon y Bryant, 1997).

El reconocimiento del hábitat con aptitudes para el nacimiento y la crianza de los venados resulta sin duda ser uno de los elementos importantes a reconocer en las áreas seleccionadas para la repoblación.

La telemetría es una herramienta que tiende a proveer la suficiente información concerniente a los movimientos diarios, migraciones, supervivencia, uso de hábitat y densidad de poblaciones (Rodgers et al.,1996). Con la ayuda de la telemetría, el presente trabajo pretende aumentar el conocimiento del tipo de hábitat que seleccionan una población de hembras de venado bura del desierto durante la época de parición en condiciones de semicautiverio y con ello estar en condiciones de aplicar acciones de manejo al hábitat contribuyendo a incrementar el índice de sobrevivencia de esta especie.

2. HIPÓTESIS Y OBJETIVOS

2.1 Hipótesis

El hábitat seleccionado por las hembras para su parición será distinto a la generalidad del área de estudio en las siguientes características:

- a) Tendrá una mayor diversidad de especies vegetales
- b) Tendrá una mayor densidad de especies arbustivas y herbáceas
- c) Estará más cercano a las fuentes de agua superficial
- d) Presentará una topografia más accidentada (mayores pendientes)

2.2. Objetivo general.-

Caracterizar los sitios de nacimiento de una población reintroducida de venado bura del desierto.

2.3. Objetivos específicos.-

- 1. Establecer los sitios seleccionados por las hembras para el nacimiento de las crías.
- Caracterizar los sitios de nacimiento.

- 3.- Comparar los sitios seleccionados para el nacimiento con el hábitat en general.
- 4.- Determinar que variable es la que determina la selección del hábitat.

3. ANTECEDENTES

3.1. Distribución del venado bura

Los ungulados se distribuyen en todo el mundo excepto en Australia y en la Antártida. Muchos artiodáctilos, incluyendo camellos (Camelidae), chevrotains (Tragulidae), jirafas (Giraffidae), buey almizclero (Moschidae), venados (Cervidae), berrendos (Antilocapridae), vacas, ovejas, cabras y antílopes (Bovidae), son rumiantes (Vaughan, 1988). Algunas especies representativas de este orden, especialmente algunos venados y especies de antílopes, se caracterizan por sus largas migraciones en la búsqueda de alimento y agua (Wallmo, 1981).

El venado bura es miembro de la familia Cervidae, que en Norteamérica incluye al elk o wapití (*Cervus canadensis*), alce (*Alce alce*), caribú (*Rangifer tarandus*) y venado cola blanca (*Odocoileus virginianus*). Según Cowan (1956) esta especie tiene un amplio rango de distribución en Norteamérica, abarcando la porción norte del continente, desde Alberta, Canadá, hasta los desiertos principales de nuestro país: los desiertos Chihuahuense y Sonorense.

Existe una diferencia en cuanto al número de subespecies que se reconocen para el venado bura. Hall (1981) establece 11 subespecies, mientras que Wallmo (1981) las agrupa en 7 solamente y otros autores como Bauer y Bauer (1995) concuerdan con está última cifra. Para la Península de Baja California, Wallmo (1981) señala la existencia de 2 subespecies y en las islas cercanas a ella establece la presencia de 4 subespecies, con el resto del territorio distribucional

del venado bura dividido en 2 subespecies más. Recientemente Bauer y Bauer (1995) reconocen 3 subespecies para México: 2 para la península de Baja California y las islas adyacentes y 1 más para el resto del país. Sin embargo el mapa de distribución que presenta este autor incluye 3 subespecies más para México, lo que causa confusión. Entre las diferencias que se plantean los científicos en México, es de que si las poblaciones que se encuentran en el Estado de Sonora son parte de la subespecie *crooki* o pertenecen a la subespecie *eremicus*, conocida también como venado burro por Hall (1981) y si reconocen o no las subespecies de las Islas Cedros y Tiburón adyacentes a la península de Baja California como *californica* y *sheldoni* respectivamente.

La distribución del venado bura del desierto abarca el sudeste de Arizona, sur de Nuevo México, en Texas al oeste del río Pecos y la región central del altiplano de México.

La distribución del venado bura en México señalada por Leopold (1959) comprende todo el estado de Baja California, zonas desérticas de Sonora y mesetas del centro (Chihuahua y Coahuila), extendiéndose hacia el sur (parte de Durango y Zacatecas) hasta el norte de San Luis Potosí y sudoeste de Nuevo León (Sierra del Tigre). El mismo considera que la distribución histórica del venado bura del desierto fue mucho más amplia de lo que ocurría a finales de los años cincuenta y que ésta se extendía en toda el área del Desierto Chihuahuense.

3.2. Características generales

3.2.1. Clasificación taxonómica (según Leopold, 1959).

Clase: Mammalia

Orden: Artiodactyla

Suborden: Ruminantia

Superfamilia: Cervoidea

Familia: Cervidae

Género: Odocoileus

Especie: Odocoileus hemionus (Rafinesque)

Subespecie: O.h. crooki

3.3. Descripción de la especie

El venado bura también es conocido como venado mula o venado cola negra. Se describe como un venado grande, con orejas largas, cola angosta y pequeña. Tiene un color más claro que el venado cola blanca, ya que el color gris o café y blanco en lugares intermedios proviene de una adaptación física al ambiente del desierto el cual le ayuda a ocultarse de depredadores como el puma, el coyote y el águila; el macho presenta una corona obscura. La cola es blanca en su parte inferior a los lados y con la punta negruzca. Las astas de los machos se ramifican dicotómicamente. Tiene una glándula metartasal en la parte exterior de cada pierna trasera justamente debajo de la corva, que tiene una medida de alrededor

de 40 mm y una glándula preorbital en el hueco del hueso lagrimal, lo que lo distingue del cráneo de un venado cola blanca (Leopold, 1959).

Las medidas externas de los adultos, de acuerdo con Schmidly (1943) y Leopold (1959), se presentan en el cuadro 1.

Cuadro 1. Medidas corporales del venado bura adulto

	<u>Ma</u> chos	Hembras
Largo total	137-187 cm.	116-183 cm.
Cola	16-23 cm.	11-23 cm.
Extremidad posterior	33-58 cm.	32-47 cm.
Oreja	12-25 cm.	12-24 cm.
Peso	64-114 Kg.	45-70 Kg.

Mackie et al., (1982) señalan que el tamaño del venado bura varia entre las diferentes subespecies, dependiendo al mismo tiempo de la época del año, edad, estado reproductivo y de factores ambientales que afectan el crecimiento y nivel nutricional de los animales. El peso para los cervatillos recién nacidos se encuentra en un rango de 2.3-5.0 Kg. El peso para los cervatillos de las Montañas Rocallosas fue de 2.5-4.0 Kg. El crecimiento prenatal se refleja en el peso al nacer y el crecimiento postnatal es influenciado por factores fisiológicos, ambientales y ecológicos. (Mackie et al., 1982). Verme (1963) encontró que la deficiencia en la dieta de las hembras preñadas reduce substancialmente el peso fetal y el peso al nacer. Por el contrario Robinette et al., (1973) indican que la calidad de la dieta de la madre no afecta el peso de nacimiento de las crías de venado bura.

Las crías tienen un color rojizo con manchas blancas. Pueden pararse en las primeras doce horas. Durante las primeras semanas de vida las crías pueden ser vistas con la madre sólo a la hora de alimentarse. Las manchas empiezan a desaparecer al término del primer mes (Leopold, 1959).

La crías crecen rápidamente y en 5 ó 6 meses alcanzan un peso de 30 Kg. Los juveniles alcanzan un peso de 50 a 60 Kg. Los machos continúan ganando peso a través de su vida, mientras que las hembras alcanzan su peso máximo a los 8 años.

3.4. Comportamiento

El venado bura sigue un ritmo o patrón de actividad diario controlado principalmente por la temperatura. Cuando las horas más calientes de la mañana están próximas, se mueven a las mesas y llanuras, cañones, cuando la temperatura aumenta se mueven a la sombra de los árboles grandes, que los protegen del sol. El resto del día lo pasan bajo la sombra y sólo al disminuir la temperatura pueden permite alimentarse confortablemente. Rara vez están activos a mitad del día (Schmidly, 1943).

El grado de socialización en el venado bura varía de acuerdo a temporada, sexo y población. En general se puede decir que ni son altamente gregarios ni estrictamente solitarios (Mackie et al., 1982). Se les puede encontrar en manadas de hasta 23 individuos (Schmidly, 1943); sin embargo, vive la mayor parte del año en grupos más pequeños. Las hembras con sus cervatillos y animales de un año

tienden a formar unidades sociales estables de 2 a 6 individuos y los machos sólo se reúnen en pequeñas manadas del mismo tamaño; no obstante, la segregación nunca es completa. Algunos machos, especialmente los jóvenes, se asocian regularmente con las hembras y algunos venados de cualquier sexo pueden vivir solos. Cada venado o manada tiene un área de actividad la cual varía con el tipo de vegetación y la disponibilidad y distribución de alimento y agua, generalmente tiene un diámetro menor a 1 Km (Leopold, 1959).

Uno de los mecanismos de defensa que llegan a utilizar en caso de asustarse es la unión en un grupo cerrado y corren o galopan en una sola línea (Schmidly, 1943).

3.5. Movimientos

El venado bura en Texas no es migratorio, el área de actividad que se conoce para esta especie es de 5 a 10 Km². La distancia más larga recorrida durante la temporada de celo mayor a 20 Km., pero los movimientos ocurren durante todas las temporadas excepto en primavera. El tamaño del área de actividad es producto de la calidad y cantidad de hábitat (Cantú y Richardson, 1997).

3.6. Generalidades de la reproducción

La temporada de apareamiento en el estado de Texas ocurre usualmente desde la mitad del mes de noviembre hasta mediados del mes de febrero, teniendo la mayor actividad en los últimos 15 días del mes de diciembre. La duración de la

gestación es alrededor de 7 meses (205-215 días), la mayoría de los nacimientos ocurren a finales del mes de junio y durante julio. Sin embargo, esto puede ser afectado por las condiciones climáticas y la temperatura (Cantú y Richardson, 1997). Estudios reproductivos en Texas indican que el 78 % de las hembras en la región de Trans-Pecos y el 95% de las hembras de Panhandle se aparean exitosamente cada año (Brownlee, 1971; Pittman y Bone, 1987).

A diferencia de las hembras cola blanca, la hembras de venado bura raramente se aparean durante su primer invierno y la producción podría promediar menos que una cría por hembra durante su segunda temporada de crianza. La hembra de venado bura es más productiva a partir de los tres años de edad. Estas hembras frecuentemente producen dos cervatillos y cuando las condiciones son buenas pueden tener hasta 3 crías, lo que sucede en raras ocasiones (Cantú y Richardson, 1997).

A la hora del nacimiento, las madres ocultan los cervatillos en donde hay vegetación espesa; pero a las pocas semanas ya los cervatillos siguen a la madre, permaneciendo con ella todo el primer año. Conforme crecen, los machos de un año tienden a alejarse en busca de un área distinta; pero las hembras permanecen en el área que eligió la madre toman como suya (Leopold, 1959).

3.7. Depredación y mortalidad

Los más detallados acontecimientos de que las madres defienden a sus crías vienen de descripciones etológicas de grandes mamíferos, particularmente de los ungulados de Norteamérica cuando son atacados por los depredadores (Lent, 1974): venado bura (Hamlin y Schweitzer, 1979); wapití y alce (Altman, 1963) y berrendo (Marion y Sexton, 1979).

La conducta de "esconderse" invariablemente se presenta en los ungulados que viven donde existe cobertura vegetal y en donde están expuesto a pequeños y grandes depredadores. En este síndrome, las adaptaciones son llevadas a cabo por las crías a través de coloración críptica, una tendencia a esconderse y permanecer inmóvil, además de que prácticamente no producen olor (Wallmo; Alldredge et al., 1991). Durante las primeras 2 ó 3 semanas de vida al igual que otras especies como el berrendo, las crías de venado bura pasan más tiempo con las madres con poco o nulo movimiento (Fichter, 1974; Byers y Byers, 1983).

La relación entre las madres de ungulados y su linaje representa una de las más complicadas estrategias para la protección del infante de la depredación. Como las crías dependen de sus madres, para iniciar su periodo de actividad, el éxito de la estrategia de esconderse depende de la conducta coordinada entre el infante y la madre, ya que estos pueden elegir "apropiadamente" sitios de descanso y las hembras pueden permitir que la cría se mueva lejos recordando la localización del

infante y permaneciendo a una "conveniente" distancia (Byers y Byers, 1983; Fichter, 1974; Lent, 1974; Autenreith y Fichter, 1975).

En el género *Odocoileus*, los neonatos son especialmente vulnerables a la depredación (Bowyer, 1987; Kie y White, 1985). Knowlton (1968) reporta que el 90 % de la mortalidad en crías de venado cola blanca ocurre dentro de las 3 primeras semanas de vida, mientras que Cook *et al.*, (1971) establecen que el 93% de la depredación ocurre dentro del primer mes de vida y el 7 % ocurre en los siguientes 30 días. Otros estudios como el de Trainer (1975) reporta que la causa de muerte en un 55 % de 102 crías de venado bura fue por la depredación de coyote, aunque también existen otros estudios que reportan la depredación por parte del oso negro (*Ursus americanus*) pero en menor porcentaje. Por lo que la selección del sitio puede ser una respuesta conductual a la depredación (Bromley, 1977).

El principal depredador del venado bura en México es el puma, aunque sin duda, el coyote también mata a los cervatillos, pero su efecto sobre las poblaciones no son aprecíables (Leopold, 1959).

Pocos estudios han sido conducidos para determinar el impacto de la depredación que se tiene sobre las poblaciones del venado bura del desierto. Sin embargo algunos estudios realizados en el estado de Texas indican que la pérdida por depredación de venados adultos es tan alta como la cosecha que se obtiene durante la cacería (Connolly, 1981). Un estudio de control de depredadores realizado en el Black Gap Wildlife Management Area en la región de Trans-Pecos

en Texas indica que el número de venados bura adultos incrementa en un 55 %, mientras que en el Parque Nacional Big Bend, donde los depredadores no son controlados, el número de venados declina en un 33 %. En cuanto a la tasa de sobrevivencia de las crías fue más alta en el área de estudio donde se controlan los depredadores. Sin embargo otro factor a considerar en la supervivencia de las crías es la condición ambiental (Cooke, 1990).

El promedio anual de la tasa de mortalidad de los venados adultos es más alto en los machos que en las hembras, debido a que los machos tienen un área de actividad más amplia, además de que son más solitarios y se mueven en terrenos accidentados, lo que los hace más susceptible a depredación, accidentes y otros factores de mortalidad. La tasa de mortalidad en las crías es la más alta, debido a que esta es una edad susceptible. Un estudio en Arizona, indica que más del 50 % de las crías muere en los primeros 45 días de vida (Swank, 1958).

El impacto de la depredación esta relacionado directamente con la calidad del hábitat, ya que las crías necesitan de una buena cobertura vegetal para evitar la depredación. Durante la época de sequía, cuando el crecimiento de las plantas se reduce, los depredadores pueden tener un gran impacto sobre la supervivencia de las crías.

La importancia de la cobertura vegetal para escondite de las crías fue demostrada en un estudio realizado en dos áreas. La primer área de estudio, mantenía una alta cantidad de depredadores, en relación a la otra, sin embargo la producción de cervatillos era casi el doble debido a que había una mayor cobertura vegetal (Salwasser, 1975). Cuando la cobertura es limitada, la tendencia es seleccionar sitios con otras características para satisfacer ambas estructuras, tanto vertical como horizontal (Barrett, 1981). En Trans-Pecos,Texas, las crías de berrendo seleccionaron sitios cercanos a plantas u objetos que les proporcionaran cobertura vertical siendo esta la característica más importante. Las crías tendieron a dormir con su espalda hacia un objeto, donde la detección de uno de sus lados por un depredador se dificulte (Canon y Bryant, 1997).

La sobrevivencia de las crías esta influenciada por las condiciones climáticas, la depredación y la calidad de hábitat. Los incrementos en la población son asociados generalmente con una producción de cervatos por arriba del 50% y considerando un 25 % como una declinación de la población. La clave para mantener una población saludable y productiva es mantener la reproducción y la sobrevivencia (Cantú y Richardson, 1997).

El control de depredadores es una herramienta válida en el manejo del venado bura; sin embargo si la calidad del hábitat es insuficiente, resulta remoto que sólo el control de depredadores pueda resultar en una densidad alta de venados, por lo que es recomendable contemplar la calidad del hábitat (Cantú y Richardson, 1997)

3.8. Cuidados maternos

El parto y los subsecuentes cuidados maternos en mamíferos representan una inversión enorme de energía, lo que contribuye a tener una elevada demanda de está durante la lactancia (Oftedal, 1980, 1992; Sadlier, 1980; White y Luick, 1984 citados por Bowyer *et al.*, 1998).

Las hembras de cérvidos con pobre condición fisiológica tienden a dar nacimientos a crías pequeñas, débiles y que sufren una alta tasa de mortalidad. (Clutton-Brock et al.,1987; Julander et al.,1961; Reimers et al.,1983; Sams et al., 1996; Thorne et al., 1976 citados por Bowyer et al., 1998). La producción de leche declina con la baja de calidad del forraje (Loudon, 1985) y la desnutrición de las hembras puede incrementarse y ser insuficiente para proveer los cuidados maternos de los neonatos (Langenau y Lerg, 1976; Rachlow y Bowyer, 1994), sobretodo, en los climas extremosos es dónde se pueden afectar a las crías (Parker y Wong, 1987; Parker et al., 1984).

3.9. Enfermedades y parásitos

Pittman y Bone (1987) en el estado de Texas no encontraron títulos positivos de brucelosis o leptospirosis. Tampoco hay evidencia de rinotraqueitis bovina (IBR), y solo la vibriosis y la anaplasmosis se encontraron en un bajo porcentaje (0.7 y 3.3 %, respectivamente). Las enfermedades abortivas no son consideradas como un factor limitante para la reproducción. Una de las enfermedades que se han

encontrado en un alto porcentaje es la lengua azul, en 76.7 % de individuos muestreados.

Los parásitos más frecuentemente encontrados son garrapatas, piojos y gusanos en la nariz. Sin embargo el número de estos parásitos no resulta alto. Hibler y Adcock (1971) documentaron la presencia de un nemátodo, *Eleaphora schneideri*, en venado bura a lo largo del oeste de Estados Unidos, incluyendo Texas. Gray (1980) reportó la presencia de este parásito en 8 individuos colectados en el Cañón de Palo Duro en Texas. Este nemátodo disminuye la circulación sanguínea en ovejas, wapití y algunos ungulados exóticos, ya que se aloja en las arterias carótidas. El daño al tejido ocurre en el cerebro, ojos, hocico y otras porciones de la cabeza debido a una baja circulación de la sangre. Sin embargo, aunque la infección en el venado bura se presenta y no muestra alguno de los sintomas.

La mortalidad puede presentarse por causa de enfermedades o parásitos que frecuentemente pueden ser indicio de problemas nutricionales

3.10. Hábitat

El venado bura selecciona áreas más abiertas que el venado cola blanca. Las investigaciones sugieren que prefiere una cobertura de arbustivas del 40 % o menor. El venado bura prefiere cañones accidentados y altos y las laderas abiertas de vegetación (Stubblefield, 1985).

El venado bura está ampliamente adaptado a diferentes regiones, puede ser encontrado en las zonas climáticas y de vegetación más importantes del oeste de Norteamérica excepto en el ártico, en los trópicos y los desiertos extremos. Su hábitat es muy variado. Generalmente, frecuenta bosques semiáridos abiertos, de arbustivas y matorrales asociados con terreno escarpado, quebrado o ampliamente rugoso.

En el sudoeste de Texas, el venado bura está asociado con dos tipos de áreas de semidesierto, ambas son áridas, con ambiente vegetal disperso dominado por arbustivas. En el sur de Arizona, Nuevo México, oeste de Texas y partes de México se caracteriza por la dominancia de gobernadora (*Larrea* sp.), mezquite (*Prosopis* sp.), (*Scorbatus* s.) y varias especies de cactus. En otras áreas ocupadas con especies de encino (*Quercus* sp.) y la presencia del chaparral (Cantú y Hobson, 1992).

La selección de hábitat es un proceso por el cual los organismos se distribuyen solos a través del ambiente (Pedlar *et al.*,1997). La reproducción y la crianza son factores que se deben considerar en la selección del hábitat. El recién nacido es altamente dependiente de su madre para iniciar sus movimientos y actividades. La hostilidad de la madre hacia otros venados se manifiesta en excluirlos del territorio que ella seleccionó para la crianza (Ozoga *et al.*, 1982).

La relación que existe entre las madres de ungulados y sus crías representa una de las estrategias más complicadas para la protección del cervato contra la depredación. El éxito de la estrategia de refugio depende de la conducta coordinada entre la cría y la madre. Por lo que la cría puede elegir

"apropiadamente" sitios de descanso y actividades; solo si la madre permite que el infante pueda moverse, recordando la localización de su cría y permaneciendo a una "conveniente" distancia (Huegel *et al.*, 1986).

Las áreas que las hembras eligen a la hora del parto resultan difíciles de localizar, lo que ha obligado a que se realicen más investigaciones. Uno de los métodos que se han empleado son los transmisores en implantes vaginales (Bowman y Jacobson, 1998), con los cuales puedes localizar una cría a las pocas horas de su nacimiento. Sin embargo existen algunas consideraciones para que se tenga éxito. Es necesario que el lugar sea monitoreado pocas horas antes del parto y este método es más efectivo en áreas con baja densidad de vegetación.

Nelson (1984) usó implantes vaginales para localizar crías de venado cola blanca, pero sólo el 50 % de los transmisores fueron retenidos hasta el día del parto. Uno de los mayores problemas con implantes vaginales son la expulsión prematura y trauma vulvar y las hembras pueden tener posteriormente problemas reproductivos.

Aunque no fue posible encontrar antecedentes, existen métodos como la radiotelemetría que pueden ser una herramienta válida en la localización de las crías. La radiotelemetría en trabajos de vida silvestre involucra el uso de una variedad de técnicas asociadas a la obtención de medidas biológicas de animales a cierta distancia. Las ondas radiales constituyen el medio más frecuente de información, pero en aplicaciones especiales el sonido y la luz también pueden ser

utilizados. La telemetría para la localización por medio de ondas emisoras (rastreo por radio) involucra técnicas de transmisión y de recepción de ondas radiales (Cochran, 1987).

Con el diseño de los radiotransmisores a finales de los años 50's y principios de los 60's, los investigadores tuvieron la oportunidad de tener una herramienta que pudiese evaluar o estudiar la fauna silvestre a distancia y en su estado natural por primera vez. Estás técnicas tienden a proveer la suficiente información concerniente a los movimientos diarios, migraciones, supervivencia, uso de hábitat y densidad de poblaciones (Rodgers et al.,1996).

La técnica de radiotelemetría según Kenward (1987) tiene dos propósitos fundamentales: localización de los animales en campo y dar información acerca de la fisiología o comportamiento de los animales silvestres o cautivos, por lo que en las últimas décadas ha resultado ser importante en el estudio de fauna silvestre.

Uno de los métodos que se utiliza en la radiotelemetría es la triangulación que consiste en tener dos o más rumbos diferentes y el polígono formando será en donde se encuentre el animal. Los datos de las técnicas de radiotelemetría tienen ciertas limitaciones y fuentes de error. Existen algunas consideraciones que deben ser tomadas en cuenta al utilizar esta técnica: la distancia entre el sitio de lectura y el individuo rastreado, las características fisiografícas, variables de tipo climático, uso adecuado y condiciones del equipo (White y Garrot, 1990).

3.11. Interacciones entre venado bura y el venado cola blanca

Algunos reportes indican que existe un desplazamiento territorial del venado bura por parte del venado cola blanca. Se ha reportado que las áreas donde los arbustos están incrementando su altura y densidad, se convierten más adecuados para el venado cola blanca y menos deseable para el bura. Las investigaciones en Texas indican que el bura prefiere una cobertura de copa de arbustivas de 40% o menos, mientras que los números de cola blanca se incrementa dramáticamente en áreas donde la cobertura de arbustivas excede el 50% (Wiggers y Beason, 1986). Cuando las dos especies ocupan la misma área, las especies se segregan, el bura prefiere los cañones accidentados y altos y las laderas abiertas de vegetación de los cerros, mientras que los cola blanca buscan las tierras bajas con arbustivas.

Robert y Smith (1977) realizaron un estudio entre las relaciones del venado bura del desierto (Odocoileus hemionus crooki) y el venado cola blanca (Odocoileus virginianus couesi), en las montañas de San Cayetano y Dos Cabezas que se encuentran al sureste de Arizona. Ellos reportaron que existía una competencia alta en los hábitos alimenticios durante la época del invierno. En cuanto al tipo de hábitat que eligieron, había una zona de traslape para las dos especies. Sin embargo el venado bura fue asociado con tipo de vegetación escasa donde se encontró *Prosopis juliflora* y *Fouquieria splendens* mientras que el cola blanca utilizó una gran diversidad de tipos de vegetación y no apareció asociado a ningún tipo particular de especie vegetal, aunque si bien *Quercus oblongifolia*, *Dasylirion wheeleri* y *Eysenhardtia polysthachya* fueron importantes.

Donde ambas especies de venado ocurren se puede presentar la hibridación. Se ha estimado que en áreas en donde ambas especies se presentan, puede existir un 15 % de hibridación (Stubblefield, 1985) y de acuerdo con investigaciones recientes se ha demostrado que estos híbridos tienen una alta susceptibilidad a los depredadores, ya que cuando huyen utilizan una estrategia de escape que es una mezcla de efectos negativos entre el galope del cola blanca y el salto del bura. Las características de las astas, la coloración y la longitud de la oreja no son adecuadas para reconocer a los híbridos. Los híbridos pueden ser identificados por la longitud de la glándula metartasal. Esta mide alrededor de 2 cm. en los cola blanca y alrededor de 10 cm. en los bura. Los híbridos aparentemente tienen un limitado grado de fertilidad (Stubblefield, 1985).

4. DESCRIPCIÓN DEL ÁREA

4.1. Localización

El área de estudio se encuentra en el "Campo Santa María", el cual mide 12,000 Ha. y es un criadero extensivo, registrado en la SEMARNAT con clave DFYFS-CR-EX0416 NL. Está localizado en los límites de los estados de Nuevo León y Coahuila, dentro de los municipios de Lampazos, Nuevo León y Candela, Coahuila, al pie de la Sierra Pájaros Azules. Se encuentra entre las coordenadas geodésicas 27° 01'- 27° 08' de Latitud Norte y 100° 51'- 100° 56' de Longitud Oeste (Fig.1).

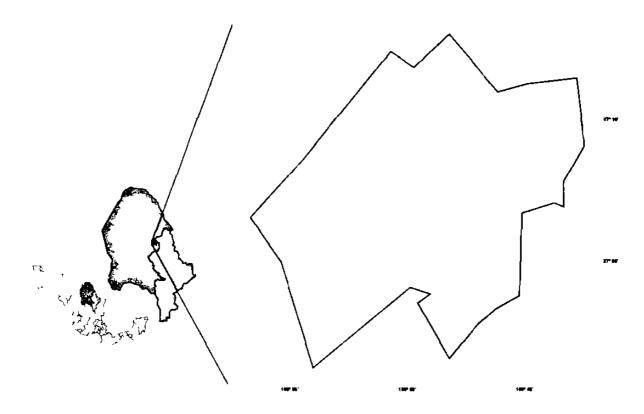


Figura 1. Localización del área de estudio "Campo Santa María"

4.2. Edafología

Los suelos del área, de acuerdo a la clasificación INEGI (1985) son xerosoles, litosoles, rendzinas y vertisoles con textura media (arcillosa), que presentan una capa petrocálcica (caliche) en el subsuelo; son de color café o gris variando de claros a obscuros, la cantidad de materia orgánica es media a baja.

4.3. Geología

Las rocas son de tipo sedimentario pertenecientes al cretácico superior, están constituidas por asociaciones lutitas y sedimentos marinos del terciario (plioceno), constituidos por sedimentos clásticos (lutitas, asociaciones lutitas-areniscas y conglomerados). Existen suelos aluviales del cuaternario; según Briones (1986) citado por Heredia (2000) la región se convirtió en tierra firme a fines del mioceno o a principios del plioceno.

4.4. Fisiografia

El rancho, con altitudes de 400 a 450 msnm, se encuentra al pie de la Sierra de Pájaros Azules (planicies y parte montañosa de Lampazos de Naranjo, N.L.) localizada en la provincia fisiográfica de la Gran Llanura de Norteamérica, en la Sierra Madre Oriental.

Es un área caracterizada por llanos interrumpidos por lomeríos dispersos, bajos, de pendientes suaves y constituidas por conglomerados. El área es homogénea en cuanto a los sistemas de topoformas, ya que presentan una gran sucesión de lomeríos y llanuras, que en raras ocasiones se ven interrumpidos por una sierra baja, una meseta o un valle.

Esta zona se localiza en la transición entre el Altiplano Mexicano y la Planicie Costera Nororiental. El área de estudio se encuentra localizada en la Provincia de la Gran Llanura de Norteamérica cercana al área de transición con la Provincia Sierra Madre Oriental.

4.5. Clima

El clima es tipo seco muy cálido (Bso (h')'hx), con oscilación térmica anual extremosa y regímenes de lluvia en otoño-invierno. El mes donde se presentan las temperaturas más elevadas es junio y el mes con más lluvias es septiembre. La precipitación pluvial anual es de 400 a 500 mm con temperatura promedios entre 20-22°C.

4.6. Vegetación

La vegetación es representativa de zonas secas tipo xerófila (Marroquín *et al.*, 1964; Rzedowski 1978; Briones 1986; Alanís *et al.*, 1996). Con algunos manchones y mezclas discontinuas de matorral desértico rosétofilo, micrófilo, nopaleras y pastizales.

Esta zona es una prolongación rumbo este del Desierto Chihuahuense, de acuerdo a Rzedowski (1978) citado por Heredia (2000). La vegetación presente es el matorral desértico rosetófilo (asociación de material subinerme, crasi-rosulifolio espinoso, nopalera, pastizal natural) en la mayor superficie del rancho (incluyendo el área del corral en donde se encuentran los venados bura), el

matorral desertico microfilo, matorral submontano (cañadas y lomeríos) y bosque de encino con matorral subinerme y chaparral (a partir de los 950-1000 msnm).

De acuerdo a Estrada et al. (en prensa), en el área se presentan 5 comunidades vegetales dominantes: matorral bajo subinerme, matorral rosetófilo, matorral submontano, bosque de encino y áreas de vegetación con características particulares, denominadas riparias.

5. MATERIALES Y METODOLOGÍA

5.1. Traslado de los animales

En marzo de 1998 se trasladó del suroeste de Texas, un grupo de 30 venados bura, 23 hembras y 7 machos. Antes de ser trasladados a cada uno de los animales antes de ser trasladados, se les tomó el peso y una muestra de sangre para análisis posteriores. A las hembras se les hizo además una prueba de preñez (determinación de progesterona en sangre). Durante 1998 se trabajó con 23 venados (cuadro 2), ya que durante los primeros meses murieron 7 venados (3 hembras y 4 machos), siendo la depredación la principal causa de muerte. Para el año 2000 se trabajó con 20 venados (17 hembras y 3 machos), la causa de muerte de las 3 hembras no pudo ser determinada.

El área donde se ubicó a los venados se seleccionó por el tipo de vegetación del lugar que pertenece al Desierto Chihuahuense, además de la topografía, ya que de acuerdo a la literatura que existe sobre la preferencia de hábitat, los animales adultos prefieren áreas accidentadas.

Esta superficie se acondicionó con bebederos, además de que se construyeron 2 represas y 7 comederos, en los que se suplementa a los animales con maíz y sorgo. Algunas de las razones para la suplementación son: la oportunidad de cosechar animales, incrementar la calidad de astas y/o incrementar la condición del animal en periodos de estrés.

El área de reintroducción corresponde a una reserva (corral) que cuenta con una superficie de 600 hectáreas. Dicha área se encuentra limitada por una cerca construida con postes metálicos y malla venadera, que tiene una altura de 2.50 m, y una profundidad de 50 cm. para dificultar la entrada de depredadores al área (Fig. 2)

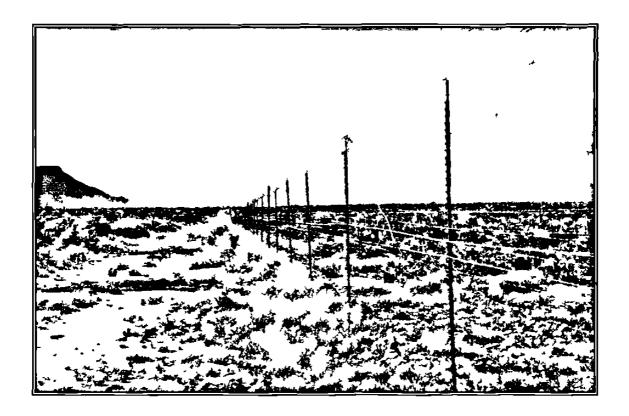


Figura 2. Cerco del área en dónde se encontraban los venados bura

Cuadro 2. Registro de los venados bura que se encuentran en área de estudio.

Venado	Frecuencia	Arete	Sexo	Procedencia
1	151.593	1	macho	Corazón de cristal*
2	151.792	2	hembra	Corazón de cristal
3	151.693	3	hembra	Corazón de cristal
4	151.372	5	hembra	Corazón de cristal
5	151.853	6	hembra	Corazón de cristal
6	151.433	7	hembra	Corazón de cristal
7	151.4 9 3	8	hembra	Corazón de cristal
8	151.673	10	hembra	Corazón de cristal
9	151.612	11	hembra	Corazón de cristal
10	151.754	12	macho	Corazón de cristal
11	151.334	14	hembra	Corazón de cristal
12	151.392	15	hembra	Sibley*
13	151.476	18	hembra	Sibley
14	151.513	19	hembra	Sibley
15	151.633	56	macho	Fort Davis Park**
16	151.293	57	hembra	Fort Davis Park
17	151.314	58	hembra	Fort Davis Park
18	151.414	59	hembra	Fort Davis Park
19	151.575	184	hembra	Fort Davis Park
20	151.272	196	hembra	Fort Davis Park
21	151.182	197	hembra	Fort Davis Park
22	151.834	198	hembra	Fort Davis Park
23	151.733	200	hembra	Fort Davis Park

^{*}Ranchos particulares; ** Parque Nacional

5.2. Equipo utilizado

El equipo de radiotelemetría utilizado (WILDLIFE MATERIALS, INC), constó de dos radios receptores TRX-1000S, dos antenas modelo F150-3FB 03297, audífonos 90-502 STEREO HEADPHONE y collares HIPM-21100 tipo CMOS 2-stage con una frecuencia de 151 MHz (Wildlife Materials, INC, Fig. 3)

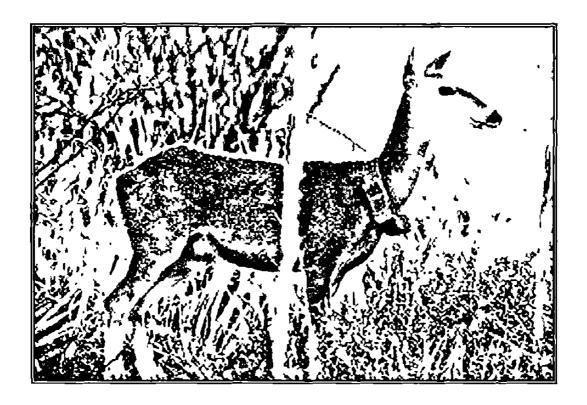


Figura 3. Hembra de venado bura equipada con radio collar.

5.3. Trabajo de campo

El trabajo de campo inició en 1998 y finalizó en el 2000, trabajando solamente durante la época de partos (durante los meses de julio a septiembre), abarcando tres temporadas de partos.

5.4. Estaciones de lectura

Para una mejor ubicación de las hembras se seleccionaron estaciones permanentes de lectura, las cuales se establecieron mediante un recorrido previo seleccionando los sitios que presentaban menor interferencia por vegetación o lomeríos con la zona de movimientos de los venados (cuadro 3). Las coordenadas están dadas en UTM (Universal Transversal Mercator).

Cuadro 3. Ubicación de las diferentes estaciones de lectura.

Estación	Nombre	Coordenadas (UTM) 14
1	н	319,988 E y 2,999,583 N
2	Guayacán	320,250 E y 3,001,959 N
3	Papalote	319,819 E y 3,001,066 N
4	Presa	321,254 E y 3,000,904 N

Las lecturas se tomaron desde los sitios antes mencionados en horario matutino (7:00-9:00 hrs.) y vespertino (18:00-20:00 hrs.) tomando simultáneamente dos lecturas en cada período, entre las cuales se dejaba un lapso de 40 minutos con el fin de saber si en ese tiempo las hembras se movían del sitio. Al término

de las lecturas se revisaba las que mostraran un pequeño desplazamiento (poca diferencia en el ángulo) y estas eran las que se revisaban primero.

La ubicación de las hembras se determinó mediante la técnica de triangulación, la cual consiste en la localización de los rumbos obtenidos al recibir la señal de los radiotransmisores, donde la localización estimada de los animales es el centro del polígono que se forma con la intersección. Se utilizó la fórmula desarrollada por White y Garrot (1990).

Las crías fueron localizadas por la búsqueda directa de las hembras cuando éstas aparentemente tenían una cría o la conducta indicaba que una cría se encontraba cerca. El marcaje de los sitios se realizó solamente si al levantarse el animal del sitio se encontraba la cría con la hembra o cerca de ella. Se registraron las coordenadas con un geoposicionador marca Magellan 2000, posteriormente la evaluación de cada sitio de nacimiento se realizó entre dos y cuatro semanas después de que fue encontrada la cría, con el fin tener la seguridad que la cría ya había abandonado el sitio y de esta manera evitar disturbios.

5.5. Caracterización de los sitios

Se realizó una colecta de vegetación con el fin de identificar las especies y tener una colección de referencia que ayude a clasificar el tipo de vegetación presente.

El procedimiento que se siguió fue el de establecer parcelas de forma rectangular 10 X 3 metros hacia cada uno de los puntos cardinales, tomando como centro el lugar donde se observó el cervatillo (Fig. 4). En cada rectángulo se determino cada una de las especies arbustivas que ahí se encontraban. Se calculó la cobertura, frecuencia y densidad relativa para cada especie en los diferentes sitios de muestreo. Además dentro de cada rectángulo se establecieron 5 parcelas al azar de 1 m² con el fin de medir las herbáceas y gramíneas presentes. Otras variables medidas fueron la pendiente con un clisimetro y la distancia al aguaje más cercano con una cinta métrica.

Con el fin de tener puntos de comparación, se eligieron 20 sitios al azar en toda el área y al igual que los sitios de nacimiento se marcaron y se georreferenciaron. En los sitios seleccionados al azar se registraron las mismas variables que en los sitios de nacimiento durante las mismas temporadas del estudio.

Figura 4. Esquema de las parcelas realizadas en los sitios de muestreo.

S

5 6. Análisis de datos

Para probar las diferencias entre los sitios de nacimiento y los sitios al azar en lo que se refiere a cobertura de arbustivas y herbáceas, altura de arbustivas y herbáceas, pendiente y distancia al aguaje más cercano se utilizó un análisis de varianza (ANOVA; Sas Inst. Inc. 1998).

6. RESULTADOS Y DISCUSIÓN

Durante el estudio se ubicaron 18 sitios de nacimiento (Fig. 5), de los cuales 4 corresponden a 1998, 6 a 1999 y 8 al año 2000 (Fig. 6; cuadro 4).

Aunque algunos autores como Cantú y Richardson (1997) mencionan que para el estado de Texas, la mayoría de los nacimientos ocurren a finales del mes de junio y durante julio. Las fechas de nacimiento que se registraron durante éste estudio, corresponden a finales del mes de julio en el 44.5 % de los sitios y al mes de agosto en el 55.5 % de los mismos.



Figura 5. Cervatillo encontrado en agosto del año 2000.

Cuadro 4. Sitios de nacimiento del año 1998-2000 en el Campo Santa María, Lampazos, N.L.

Año de parto	Coordenadas (UTM) 14	Num. Hembra	Num. Crías
1998	319687 E 3000057 N	59	1
1998	319083 E 3000285 N	196	1
1998	320138 E 2999530 N	?	1
1998	320578 E 3000943 N	?	1
1999	319191 E 3000792 N	200	2
1999	319149 E 3000302 N	?	1
1999	319707 E 3001482 N	184	2
1999	320344 E 2999939 N	2	1
1999	320467 E 3000529 N	19	1
1999	320682 E 3001715 N	58	1
2000	319390 E 3001412 N	198	2
2000	319324 E 3001312 N	5	1
2000	320358 E 2999602 N	11	1
2000	320226 E 3001821 N	3	2
2000	319060 E 3000566 N	59	2
2000	319429 E 3000416 N	196	1
2000	319292 E 3001314 N	34	1
2000	320229 E 3000322 N	6	2
media			1.33

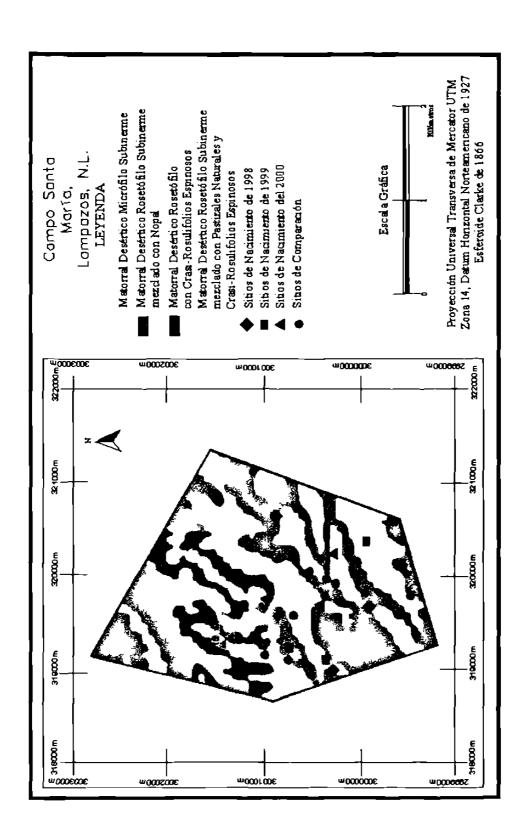


Figura 6. Distribución de los sitios de nacimiento en el área de estudio

6.1. Características de la vegetación

Dentro de los sitios de muestreo se encontraron 32 especies de arbustivas y 45 especies de herbáceas y gramíneas.

Las especies vegetales más comunes en los sitios de nacimiento en general fueron: huajillo (*Acacia berlandieri*), chaparro prieto (*Acacia rigidula*), lechuguilla (*Agave lechuguilla*), cenizo (*Leucophyllum texanum*), nopales (*Opuntia* sp). y varacuete (*Yucca truculeana*) (Fig. 7) y en cuanto a las gramíneas *Aristida* sp. (Fig. 8) fue la que se encontró en mayor número de individuos en los sitios de nacimiento.

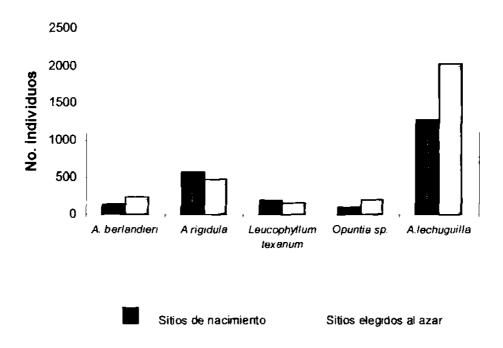


Figura 7. Especies de arbustivas más representativas en los diferentes sitios de muestreo.

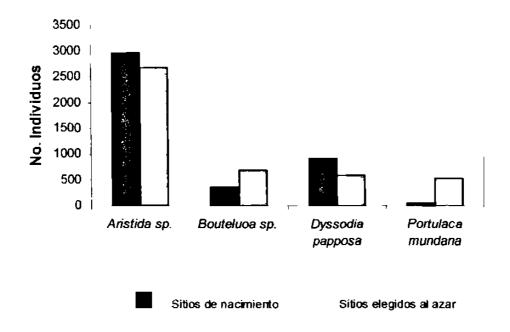


Figura 8. Especies de herbáceas más representativas en los diferentes sitios de muestreo.

6.2. Comparación de los sitios de nacimiento con los sitios seleccionados al azar

6.2.1 Vegetación

Los resultados del análisis de varianza indican que existieron diferencias estadísticamente significativas entre los sitios de nacimiento (cuadro 5) y los sitios seleccionados al azar (cuadro 6) en lo que se refiere al porcentaje de arbustivas, siendo éste mayor en las áreas de nacimiento (F=3.99; 0.0459) (Figura 9 y 10).

Figura 9. Cobertura de arbustivas en los diferentes sitios de muestreo.

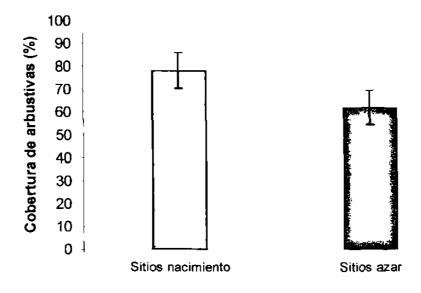


Figura 10. Cobertura promedio de arbustivas en los sitios de muestreo.

Cuadro 5. Características de los sitios de nacimiento del venado bura en el Campo Santa María, Lampazos, N.L.

Sitio	Localización	Cob. Arb	Cob. Herb	Pendiente	Dist.
					aguaje
		(%)	(%)	(%)	(mts)
1	319687 E 3000057 N	93.8	25.6	1	905
2	319083 E 3000285 N	62.0	26.0	1	423
3	320138 E 2999530 N	35.4	28.7	7	447
4	320578 E 3000943 N	87.0	2.0	3	628
5	319191 E 3000792 N	65.5	13.4	36	1033
6	319149 E 3000302 N	69.5	34.8	16	1530
7	319707 E 3001482 N	71.8	18.8	22	1083
8	320344 E 2999939 N	99.9	38.1	5	425
9	320467 E 3000529 N	87.9	35.7	20	634
10	320682 E 3001715 N	78.2	17.4	3	292
11	319390 E 3001412 N	101.2	29.5	1	990
12	319234 E 3001332 N	87.6	40.7	2	1084
13	320358E 2999602 N	97.4	50.4	1.5	591
14	320226 E 3001821 N	90.6	29.0	4	613
15	319060 E 3000566 N	96.2	32.4	10	1366
16	319429 E 3000416 N	69.3	53.9	12	1260
17	319292 E 3001314 N	42.3	34.9	1	1024
18	320229 E 3000322 N	75.3	55.4	9	643
media	-	78.37	31.48	8.91	831.72
desvest		18.93	13.80	9.38	358.51

desvest= desviación estándar

Cuadro 6. Características de los sítios elegidos al azar en el Campo Santa María, Lampazos, N.L.

Sitio	Localización	Cob. Arb	Cob. Herb	Pendiente	Dist.
		(%)	(%)	(%)	aguaje (mts)
1	319259 E 3001402 N	76.7	10.2	8	1726
2	319481 E 3001369 N	48.1	21.4	1.5	1372
3	319725 E 3001097 N	67.1	17.8	25	947
4	320057 E 3000542 N	37.0	38.8	6	552
5	319955 E 3000365 N	46.4	47.2	3.5	514
6	319188 E 3000976 N	70.1	39.3	1	1736
7	319272 E 3000966 N	122.0	4.4	26	1588
8	319611 E 3000747 N	30.3	29.8	13	1366
9	319105 E 3000749 N	58.4	15.9	1	1535
10	319417 E 3000344 N	71.3	33.4	17	1103
11	319696 E 3000335 N	107.7	18.2	1.5	876
12	320775 E 3001766 N	92.0	28.1	7	156
13	321302 E 3001085 N	45.0	59.8	5	699
14	320892 E 3000304 N	69.7	10.1	27	318
15	320679 E 3001126 N	21.4	15.8	2	66
16	319809 E 2999961 N	72.4	24.3	5	681
17	319784 E 2999641 N	18.6	10.0	1.5	965
18	320412 E 2999676 N	53.1	8.1	1	756
19	320090 E 2999674 N	70.1	8.1	4	627
20	319559 E 2999866 N	64.3	6.4	29.5	1205
media desvest		62.07 26.37	22.35 15.12	9.28 9.94	939.40 482.94

desvest= desviación estándar

Aunque la cobertura de herbáceas y gramíneas fue mayor en los sitios de nacimiento, las diferencias no fueron estadísticamente significativas (F=0.84; P= 0.3605) (Figura 11 y 12). Esto se debe quizás a la gran variación que existe entre los sitios evaluados o al número bajo de sitios encontrados.

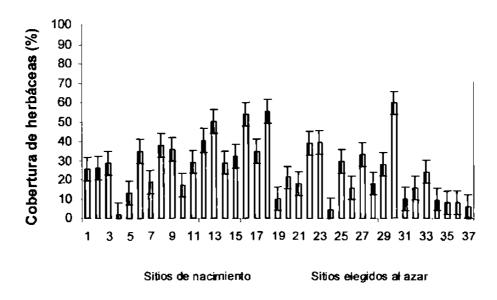


Figura 11. Cobertura de herbáceas en los diferentes sitios de muestreo.

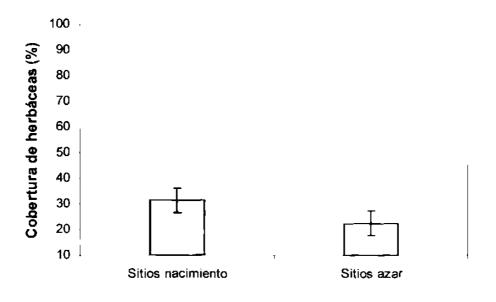


Figura 12. Cobertura promedio de herbáceas en los sitios de muestreo

La diferencia en la altura de las arbustivas fue altamente significativa (F=12.07; P=0.0005) presentándose una altura mayor en los sitios de nacimiento (Figura 13 y 14).

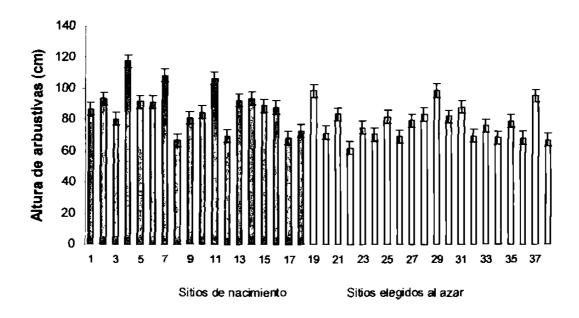


Figura 13. Altura de arbustivas en los diferentes sitios de muestreo.

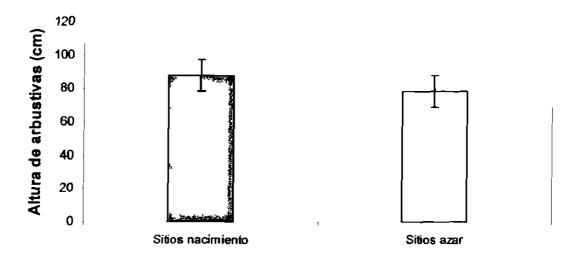


Figura 14. Altura de arbustivas promedio en los sitios de muestreo.

La altura para herbáceas no presentó diferencia significativa (F=0.27; P=0.6039) (Fig. 15 y 16). Esto puede deberse quizás a la poca variación entre los sitios evaluados.

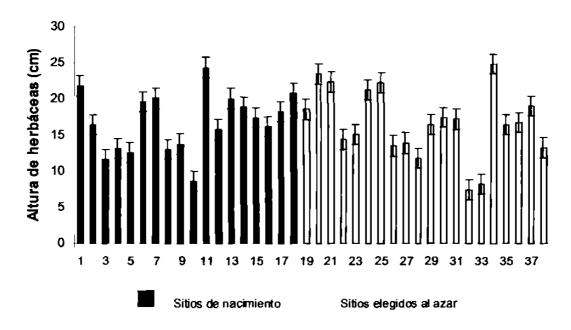


Figura 15. Altura de herbáceas en los diferentes sitios de muestreo.

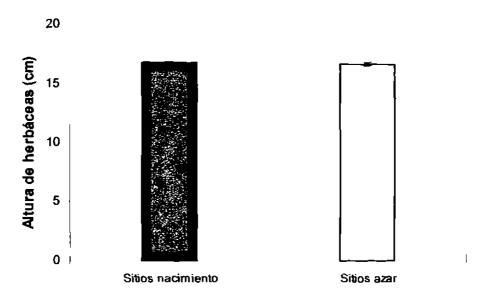


Figura 16. Altura promedio de herbáceas en los sitios de muestreo.

Los arbustos más comunes en los sitios de nacimiento fueron: huajillo (Acacia berlandieri), chaparro prieto (Acacia rigidula), lechuguilla (Agave lechuguilla), cenizo (Leucophyllum texanum), orégano (Lippia graveolens), nopal (Opuntia sp), con la característica común de ser, en general los individuos de mayor tamaño en el área circundante, lo que indica que las hembras no eligen una especie de planta en particular, sino las características fisicas individuales del arbusto (Fig. 17). Seleccionaron los sitios con mas cobertura aérea y normalmente con una mayor cobertura de herbáceas. Los resultados encontrados coinciden con Contreras (2000) que menciona que los venados cola blanca en Lampazos, N.L. eligen sitios para descansar con arbustos como mezquite, huizache y chaparro prieto y en la época de crianza utilizaron asociaciones vegetales tales como Leucophyllum-Acacia, Fluorensia cernua, Acacia-Castela, Prosopis y Acacia-Celtis que se utilizaron de acuerdo a su disponibilidad.

Villarreal (1999) afirma que debido a las características físicas, la mayoría de las especies de plantas leñosas del matorral xerófito del noreste de México ofrecen la cobertura requerida por el venado cola blanca texano, distinguiéndose como las más importantes en altura y cobertura, las siguientes: mezquite (*Prosopis glandulosa*), uña de gato (*Acacia greggi*), huizache (*Acacia famesiana*) y chaparro prieto (*Acacia rigidula*).

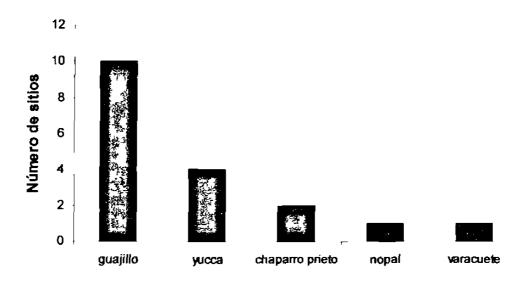


Figura 17. Principales arbustos presentes en los sitos de nacimiento.

6. 2.2. Topografía

Aunque la pendiente fue menor en los sitios de nacimiento, los resultados indican que no existieron diferencias significativas (F=111.13, P=0.4345) entre estos y los sitios seleccionados al azar (Figuras 18 y 19).

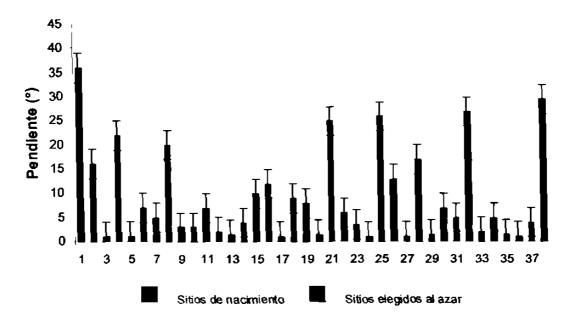


Figura 18. Pendiente de los diferentes sitios de muestreo.

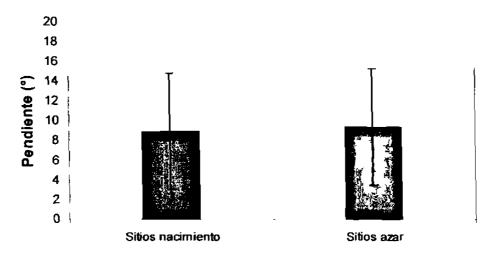


Figura 19. Pendiente promedio en los sitios de muestreo.

6.2.3. Distancia al aguaje

Aunque en promedio la distancia al aguaje fue menor en los sitios de nacimiento, la diferencia los aguajes no fue estadísticamente significativa (F=0.5579, P=1.02290); (Figuras 20 y 21). Aunque se espero que los sitios estuvieran más cerca de las represas, esto puede ser muy relativo, ya que la distancia entre estos y los sitios más alejados, es una distancia que las hembras recorrer sin ningún problema.

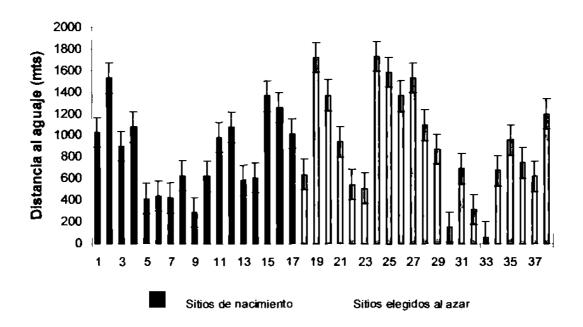


Fig. 20. Distancia al aguaje en los diferentes sitios de muestreo.

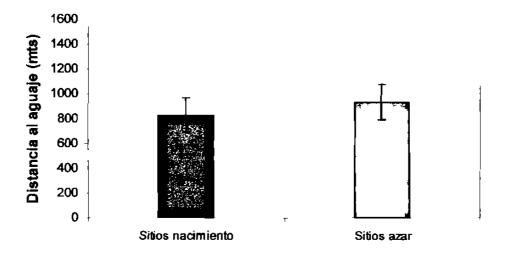


Fig. 21. Distancia promedio al aguaje en los sitios de muestreo.

Los resultados del presente estudio indican que la diferencia más notable entre los sitios de nacimiento y los sitios seleccionados al azar fue el porcentaje de cobertura y a la altura de las arbustivas. Probablemente esto está relacionado con la protección contra depredadores, que pueden llegar del aire o de la tierra, pues no sólo se reduce la visibilidad, sino que además que disminuye la probabilidad de acercarse a la presa.

La edad de las crías es importante para la selección de un sitio. Cuando las crías tienen entre una y dos semanas de vida, todavía son muy vulnerables a la depredación pero se han vuelto más activas, por lo que pueden buscar sitios que tengan mejores características como escondite. Las crías menores de una semana requieren de cobertura para esconderse, por la inmovilidad para evitar el ataque de los depredadores.

Algunos reportes han mostrado que la cobertura es importante para reducir la habilidad de los depredadores para localizar a la cría (Autenreith, 1980, 1982, McNay, 1980). Un estudio realizado con crías de gacela (*Gazella* sp.) encuentra que éstas prefieren sitios con estructura vertical (por ejemplo pastos altos, arbustos, etc) y depresiones poco profundas (Walter, 1974). De manera similar, en un estudio realizado con crías de venado cola negra se encontró que prefieren una estructura vertical a la hora de seleccionar hábitat para el descanso por lo que los resultados obtenidos en este trabajo, coinciden con los datos antes mencionados, donde la cobertura es importante para proteger a la cría. Sin embargo la altura de las arbustivas resultó más importante, lo que indica que prefieren sitios con arbustos que les proporcionen sombra para la protección contra factores climáticos (temperatura). Bromley, (1977) y Barrett (1981) encontraron un uso similar en la estructura horizontal y vertical en crías de berrendo (*Antilocapra americana*). Estos resultados concuerdan asimismo con los encontrados en el presente trabajo.

La cobertura y la altura de arbustivas en los sitios de nacimiento tuvieron valores mayores en comparación con los sitios al azar. Las hembras eligen características de hábitat que no se encuentran presentes en toda el área de que disponen. Esta selección de los sitios para parir depende principalmente de las características de la vegetación arbustiva.

La cobertura de pastos también es una de las variables que influyen en la elección del sitio por parte de la hembra, ya que es un factor que brinda

seguridad contra la depredación. Sin embargo, se puede asumir que la cobertura de pastos para algunos sitios como en 1998 no fue la adecuada, ya que fue un año de sequía. En 1999 y el 2000 los sitios presentaron mayor cobertura de pastos, además de una alta variación entre los sitios.

Huegel et al. (1986) encontraron que los echaderos de las crías de venado cola blanca tenían una estructura vegetal similar entre ellos y eran diferentes de las áreas circundantes, además de no tener un patrón de especies en particular. En general las crías seleccionaron lugares con mayor cobertura de plantas leñosas y menos herbáceas. Como resultado de la estructura seleccionada, las crías tuvieron un campo visual más amplio y menor temperatura en el echadero.

Canon y Bryant (1997) encontraron que los sitios en donde duermen las crías de berrendo tiene menos cobertura de arbustos, y al igual que en el presente estudio, tampoco se encontraron diferencias significativas en la cobertura de herbáceas en los sitios de nacimiento y los sitios que seleccionaron al azar. La selección de los sitios en diferentes hábitats aparentemente no considera la composición de las plantas individuales, pero la estructura de la vegetación del sitio fue similar entre sitios de nacimiento y diferente en las áreas seleccionadas al azar.

En general las hembras seleccionaron sitios con mayor cobertura de arbustivas y menos herbáceas. La estructura que ellas seleccionaron resultó en un gran escondite visual y generalmente con temperaturas más frescas. La importancia de la cobertura para algunas crías de berrendo (*Antilocapra americana*) es

reportada por Canon y Bryant (1997), Pyrah (1974) en Montana, Autenrieth y Fichter (1975) en Idaho y Tucker y Garner (1983) en el oeste de Texas. Aunque Barrett (1981) no considera que la cobertura de arbustos sea importante para los berrendos, él reporto que estos frecuentemente eligen sitios en depresiones o junto a objetos verticales. Walther *et al.* (1968) reportan que las crías de *Gazella* sp. maximizan su escondite en pastos cortos, ya que al igual que las crías de berrendo, seleccionan sitios en depresiones cerca de objetos verticales.

Las crías aparentemente responden a la cobertura horizontal y vertical cuando seleccionan los sitios. La importancia de la estructura vegetal y la temperatura en la selección del sitio permanece incierta, pues en este estudio no se midió la temperatura, pero hay estudios que respaldan que estos dos efectos al parecer están involucrados en la selección del sitio.

Sitios con una buena cobertura de arbustivas, además de brindarle protección contra los depredadores, les permite disminuir absorción de calor que sufrirían si recibieran la luz directa. Ockenfels y Brooks (1994) afirman que la cobertura térmica o de protección contra los efectos climáticos y la cobertura de escape o protección contra depredadores son de primordial importancia para la supervivencia de los venados, ya que les proporciona un microclima que les permite reducir el gasto de energía utilizado para la termorregulación y los mantiene ocultos de sus depredadores durante periodos de tiempo que utilizan para otras actividades como rumiar o descansar. Los arbustos más altos son los que contribuyen mayormente a la cobertura termal, y en menor proporción los pastos, herbáceas y cactáceas. En este estudio la cobertura promedio de

arbustivas en los sitios de nacimiento fue de 78%. En ambientes cálidos, los animales emplean diferentes mecanismos para reducir el calor y mantener el balance de agua (Gates 1962, Schmidt-Nielsen 1964). Los mecanismos incluyen disminuir el nivel de actividad, adaptabilidad fisiológica, evaporación del agua mediante la sudoración o el jadeo, selección de sitios para evitar la radiación directa, o la combinación de estos mecanismos (Gates, 1962; Schmidt-Nielsen, 1964).

En el territorio donde la cobertura es limitada las crías seleccionan sitios con composición diferente. (Garner et al., 1979). Por lo que respecta a la selección de los sitios en el área de estudio, se puede decir que 1998 fue un año en el que se presentó una marcada sequía (Fig. 22), por lo que esto pudo haber afectado la selección de sitios, mientras que 1999 y en año 2000 las lluvias estuvieron presentes durante los meses de julio y agosto.

Aunque la sequía parece ser el factor determinante en la sobrevivencia de las crías, debe considerarse también que durante el traslado y adaptación de los venados pudieron ocurrir reabsorción fetal y posibles abortos, a lo que puede atribuirse el bajo número de sitios de nacimiento encontrados durante el primer año de muestreo. Sin duda, con la adaptación de las venados y la presencia de lluvia durante 1999 y el 2000, el número de nacimientos pudo elevarse de manera importante.

Cabe señalar que aunque a las hembras se le hizo una prueba de preñez antes del traslado, resultando positiva, es posible que no todas las hembras resultaran preñadas en los durante los siguientes dos años del estudio, además 2 hembras que parieron durante 1999, murieron antes de la época de parto del año 2000.

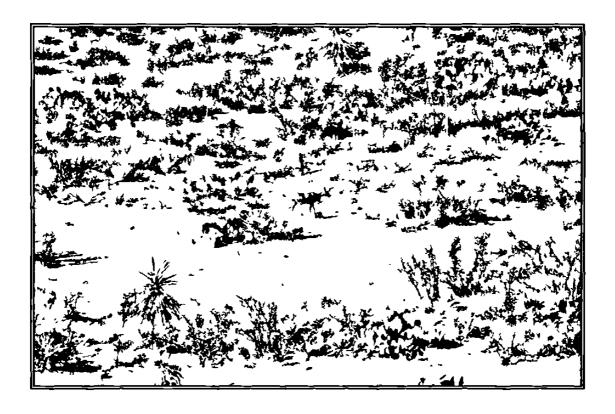


Figura 22. Vegetación en julio de 1998.

7. CONCLUSIONES

En este estudio se encontró que las hembras de venado bura seleccionan características particulares de un hábitat, las que fueron diferentes a los sitios al azar evaluados en esta área. La reducción de la exposición directa del sol, relacionada con la reducción de la temperatura y la protección contra depredadores, parecen ser las razones más importantes, para las características de los sitios que selecciona las hembras de venado bura.

Aunque los sitios de nacimiento tuvieron mayor cobertura de herbáceas y gramíneas, una menor pendiente y en promedio, una localización más cercana a los aguajes, las diferencias con los sitios seleccionados al azar no fueron significativas. Para esto sin duda influyó la elevada variabilidad entre los sitios, así como el número reducido de observaciones.

Se reconoce que el hecho de que los animales no se hayan encontrado en completa libertad. Esto puedo haber afectado el comportamiento de las hembras.

Los resultados encontrados en relación a la mayor proporción de cobertura aérea concuerdan con los encontrados en otras especies de ungulados. Es posible que el tamaño extenso del área de exclusión haya permitido que los animales se comportaran muy similares a como lo harían libremente. Así mismo se reconoce que el número de sitios de nacimientos pudo haber influido en que las diferencias encontradas en unas variables no fueran significativas. Sin

embargo dada la naturaleza complicada para la toma de este tipo de datos, el trabajo muestra información nueva y confiable que puede contribuir a un mejor manejo de la especie.

Aunque la toma de datos fue complicada, esta técnica resultó adecuada para obtener información correcta y suficiente para poder evaluar el hábitat reproductivo.

8. IMPLICACIONES PARA EL MANEJO DE LA ESPECIE

Los resultados de este estudio nos permiten afirmar que las áreas con vegetación alta y mayor cobertura deben de ser conservadas, ya que es importante la disponibilidad de sitios adecuados para parir, así como sitios de descanso y donde puedan que protegerse de las condiciones climáticas durante las temporadas críticas, además de los depredadores mientras descansan o rumian durante el día.

Los sitios seleccionados para futuras translocaciones de poblaciones deben de tomar en cuenta este aspecto. Así mismo los tratamientos que se realicen al hábitat deberán tomar en cuenta no sólo la proporción de arbustivas y herbáceas, sino además su estructura.

9. LITERATURA CITADA

- Alanís, G.J., G. Cano y Cano, y M. Rovalo. 1996. Vegetación y Flora de Nuevo León: una guía botánico-ecológica. Monterrey, N.L. México.
- Alldredge, A.W., R.D. Deblinger, and J. Peterson. 1991. Birth and fawn bed site selection by pronghorn in a sagebrush-steppe community. Journal Wildlife Management. 55:222-227.
- Altman, M. 1963. Naturalistic studies of maternal care in the moose and elk. Rheingold. 233-253. Tomado de Maternal defense in columbian white-tailde deer: When is it worth it?. 1987. The American Naturalistc. Vol. 130, No.2 310.
- Autenreith, R.E. and E. Fitcher, 1975. On the behavior and socialization of pronghorn fawns. Wildl. Monogr. 41. 111 pp.
- Autenreith, R.E. 1980. Vulnerability of pronghorn fawns to predation. Proc. Pronghorn Antelope Workshop. 9:77-79.
- Autenreith, R.E. 1982. Pronghorn fawn habitat use and vulnerability to predation. Proc. Pronghorn Antelope Workshop. 10:112-131.

- Barrett, M.W. 1981. Environmental characteristics and functional significance of pronghorn fawn bedding sites in Alberta. Journal Wildlife Management. 45: 120-131.
- Bauer, E.A. and Bauer, P. 1995. Mule deer. Behavior, ecology, conservation. Stillwater, MN. USA. 10-11.
- Bowman, J.L. and Jacobson, H.A. 1998. An improved vaginal-implant transmitter for locating white-tailed deer birth sites and fawns. Wildlife Society Bulletin. 26(2):295-298.
- Bowyer, R.T. 1987. Coyote group size relative to predation on mule deer.

 Mammalia. 515-526.
- Bowyer, R.T., J.G. Kie and V.V. Ballenberghe.1998. Habitat selection by neonatal black-tailed deer: climate, forage or risk of predation?. Journal of Mammalogy.
- Briones, O.L. 1986. Notas geográficas sobre la vegetación y flora de Lampazos del Naranjo, Nuevo León, México. Reporte científico No. 4. Fac. de Silvicultura y Manejo de Recursos Renovables. UANL. Linares, N.L. México.

- Bromley, P.T. 1977. Aspects of the behavioral ecology and sociobiology of the pronghorn (*Antilocapra americana*). Ph.D. Thesis. Univ. Calgary, Alberta. 370 pp.
- Brownlee, S.L. 1971. Conception rates and breeding potential of desert mule:

 Texas Park and Wildlife Departament. Fed. Aid Project Texas W-48-D
 21/WKPI/job 2 Final report. Austin, Texas. 9
- Byers, J.A. and Byers, K.Z.1983. Do pronghorn mothers reveal the locations of their fawns? Behav. Ecol. Sociobiol. 147-156.
- Canon, S.K. and Bryant, F.C. 1997. Bed-site characteristics of pronghorn fawns.

 Journal Wildlife Management. 61(4) 1134-1141
- Cantú , R. and Hobson, M.D. 1992. Managing desert mule deer in a private land state. 5th U.S. /Mexico Border States Conference on Recreation Parks and Wildlife. Las Cruces, New Mexico. 27-30.
- Cantú, R. and Richardson, C. 1997. Mule deer management in Texas. Texas

 Parks and Wildlife. 1-10
- Clutton-Brock, T.M., Major, M., Albon, S.D. and Guiness, F.E. 1987. Early development and population dynamics in red deer. I. Demographic

- consequences of density-depent changes in birth weight and date. The Journal of Animal Ecology. 56:53-57.
- Cochran, W.W. 1987. Telemetría en vida silvestre. En: Manual de técnicas de gestión de vida silvestre. S.D. Schemnitz (ed). The Wildlife Society. Bethesda, Maryland. 531-546.
- Connolly, G.E. 1981. Limiting factors and population regulation. Wallmo ed.

 Mule and black deer of North America. University of Nebraska. Lincoln,

 Neb. 245-286.
- Contreras, V.C. 2000. Selección de los echaderos por el venado cola blanca texano en un matorral xerófilo del noreste de México. Tesis de maestría. Instituto de Ecología, A.C. Xalapa, Veracruz.
- Cooke, J.L. 1990. Effects of predator control on desert mule deer numbers.

 Texas Park and Wildlife Departament. Fed. Aid Project Texas W-109-R
 12/job 50 Final report. Austin, Texas. 5.
- Cook, R.S., M. White, D.O. Trainer, and W.C. Glazener. 1971. Mortality of white-tailed deer fawns in south Texas. Journal Wildlife Management. 35: 47-56.

- Cotera, M.C., B. Müller-U. y E. Salinas. 1986. Introducción del venado cura (Odocoileus hemionus) en el Bosque Escuela de Iturbide, N.L. Reporte final. Facultad de silvicultura y Manejo de Recursos Renovables. U.A.N.L. México.
- Cowan, I. McT. 1956. What and where are the mule and black-tailed deer? *In*:

 The deer of North America: their history and management. W.P. Taylor

 (ed). The Stackpole Co., Harrisburg, Pennsylvania and Wildlife

 Management Institute, Washington. 668 pp.
- Estrada C., A.E., J.J. Medellín V y M.A. González B. En prensa. Vegetación y flora de Rancho Santa María, Lampazos de Narajo, Nuevo León, México.
- Fichter, E. 1974. On the bedding behavior of pronghorn fawns. In V. Geist and F. Walther,eds. The behavior of ungulates and its relation to management. II Int. Union Conserv. Nature and Nat. Resour. Publ. Ser. 24, Morges, Switerland. 352-355.
- Garner, G.W., J. Powell, and J.A. Morrison. 1979. Vegetative composition surrounding daytime bedsites of white-tailed deer fawns in southwestern Oklahoma. Proc. Annu. Conf. Southeast. Assoc. Fish and Wildl. Agencies. 33:259-266.

- Gates, D.M. 1962. Energy exchange in the biosphere. Harper and Row, New York, N.Y. 151 pp.151 pp.
- Gray, G.G. 1980. Aspects of Barbary sheep (*Ammotragus lervia*) biology in Palo Duro Canyon, Texas. Ph. D. Disss. Texas Univ. Lubbock. 175.
- Hamlin, K.L., and Schweitzer, L.L. 1979. Cooperation by coyote pairs attacking mule deer fawns. J.Mammal. 60:849-850
- Hall, E.R. 1981. The mammals of North America. John Wiley and sons. Vol. II.

 New York, 1083-1097.
- Heredia, P.J.F. 2000. Efectos de los tratamientos mecánicos sobre las aves en el matorral xerófilo en Lampazos, Nuevo León.México. Tesis de Maestría. Facultad de Ciencias Forestales. UANL. Linares, N.L. 13.pp.
- Hibler, D.E., and J.L. Adcock. 1971. Elaeophorosis in: Parasitic disease of wild animals. J.W. Davis and R.C. Anderson, eds. Iowa State Univ. 263-278.
- Huegel, C.N., Dahlgren, R.B., Gladfelter, H.L. 1986. Bedsite selection by white-tailed deer fawns in Iowa. Journal Wildlife Management. 50 (3) 474-480.
- INEGI. 1985. Síntesis Geográfica del Estado de Nuevo León. SSP. México, D.F.

- Jaeger, E.C. 1957. The North American Deserts. Stanford Univ. Press. Stanford, California.
- Julander, O., Robinette, W. and Jones, D.A. 1961. Relation of summer range condition to mule deer herd productivity. The Journal of Wildlife Management. 25:54-60.
- Kenward, R. 1987. Wildlife radio tagging. Equipment, field techniques and data analysis. Biological Series Techniques. J.E. Trehernes, P.H. Rubery (eds.) Academic Press.
- Kie, J.G. and White M. 1985. Populations dynamics of white-tailed deer (Odocoileus virginianus) on the Welder Wildlife Refuge, Texas. The Southwestern Naturalist. 105-118.
- Knowlton, F.F. 1968. Coyote predation as a factor in management af antelope in fenced pastures. Proc. Bienn. Antelope States Workshop. 3:64-73.
- Langenau, E. E. Jr. and Lerg, J.M. 1976. The effects of winter nutritional stress on maternal and neonatal behavior in penned white-tailed deer. Applied Animal Ethology.2:207-233.
- Lent, P.C. 1974. Mother infant relationships ungulates. IUCN. (Int Union Conserv. Nat. Resour.),in the behaviour of ungulates its relation to

manegement (V. Geist and F. Walther eds.) International Union for Conservationof Nature and Natural Resources, Morges, Switzerland, New Series.14-53

- Leopold, A.S. 1959. Fauna Silvestre de México. Instituto Mexicano de Recursos Naturales Renovables. México, D.F.
- Loudon, A.S.I. 1985. Neonatal mortality and lactation in mammals. Symposia of the Zoological Society of London. 54:655-664.
- Mackie, R.J., K.L. Hamlin and D.F. Pac. 1982. Mule deer. 862-877, in Wild mammals of North America: biology, management and economics. (J.A. Chapman and G.A. feldhamer, eds.). The Johns Hopkins University Press. Baltimore, Maryland. 1147 pp.
- Marion, K.P. and Sexton, O.J. 1979. Protective behavior by male pronghorn,

 Antilocapra americana (Artiodactyla) Southwest Nat. 24:709-710.
- Marroquín, J.S., G.L. Borja, R. Velázquez y J. A de la Cruz. 1964. Estudio ecológico dasonómico de las zonas áridas del norte de México.
- Martínez M., A., S. Valenzuela, J.I. Uvalle, J. Avendaño, A.E. Estrada y R. Aranda. 2000. Estudio sobre las poblaciones y el hábitat del venado bura

- en el noreste de México. Ciencia UANL. Vol. III, No. 4, octubre-diciembre 2000: 428-435. Monterrey, N.L. México
- McNay, N.E. 1980. Causes for low pronghorn fawn: doe rations on the Sheldon National Wildlife Refuege, Nevada. M.S. Thesis. Univ. Montana. Missoula. 128 pp.
- Nelson, T.A. 1984. Production and survival of white-tailed deer fawns on Crab
 Orchard National Wildlife Refuge. Thesis, South Illinois University,
 Carbondale.
- Ockenfels, R.A. and D.E. Brooks. 1994. Summer diurnal bedsites of Coues white-tailed deer. Journal Wildlife Management. 58: 70-75.
- Oftedal, O. T. 1980. Milk composition and formula selection for hand-rearing young mammals. In E. R. Maschgan, M. E. Allen, & L. E. Fisher (Eds.), Dr. Scholl Nutrition Conference .A Conference on Nutrition of Captive Wild Animals. 67-83. Chicago: Lincoln Park Zool. Gardens.
- Oftedal, O. T. 1992. Nutrition in relation to season, lactation and growth of north temperate deer. The biology of deer. (R. D. Brown ed.) Springer-Verlag. New York, 407-417.

- Ozoga, J.J., Verme, L.J. and Bienz, C.S. 1982. Parturition behavior and territoriality in white-tailed deer: impact on neonatal mortality. The Journal of Wildlife Management. 46:1-11.
- Parker, K.L. and Wong, B. 1987. Raising black-tailed deer fawns at natural growth rates. Canadian Journal Zoology. 65: 20-23
- Parker, K.L., Robbins, C.T. and Hanley, T.A. 1984. Energy expeditures for locomotion by mule deer and elk. The Journal Wildlife Management. 48:474-488.
- Pedlar, J.H., L. Fahring, H. Gray. M. 1997. Raccoon habitat use at 2 spatial scales. Journal Wildlife Management. 61: 102-112
- Pittman, M.T., and Bone, T.L. 1987. Mule deer reproduction. Texas Park and Wildlife Departament. Fed. Aid Project Texas W-109-R-10/job 51 Final report. Austin, Texas. 13
- Pyrah, D. 1974. Antelope bedding cover selection in central Montana. Porc.

 Pronghorn Antelope Workshop 6:113-121.
- Rachlow, J.L. and Bowyer, R.T. 1994. Variability in maternal behavior by Dall's sheep: environmental tracking or adoptive strategy?. Journal of Mammalogy. 75:328-337.

- Robert, G.A. and N. Smith. 1977. Ecological relationships between mule deer and white-tailed deer in southeastern Arizona. Ecological Monographs 47(3):255-277.
- Robinette, W. L., C.H. Baer, R. E. Pillmore and C.E. Knittle. 1973. Effects of nutritional change on captive mule deer. The Journal Wildlife Management. 37:312-326.
- Rodgers, A.R., R.S. Rempel, and K.F. Abraham. 1996. A GPS-based telemetry system. Wildlife Society Bulletin. 24:559-566.
- Rzedoswky, J. 1978. Vegetación de México. Ed. Limusa. México, D.F. 432 pag.
- Sadlier, R. M.K.A. 1980. Energy and protein intake in relation to growth of sucling black-tailed deer. Canadian Journal Zoology, 58:1347-1354.
- Salwasser, H.J. 1975. Interstate wildlife study: Spring 1975 collection-Interim report. University of California, Berkeley. 47
- Sams, M.G., Lochmiller, R.L., Qualls, C.W. Jr. Leslie, D.M. Jr. and Payton, M.E. 1996. Physiological correlates of neonatal mortality in a overpopulated herd of white-tailed deer. Journal of Mammalogy. 77:179-190.

- Sas Institute Inc. 1998. SAS/STAT user's guide release. Version 6.0 Sas. Inst. Inc. Cary, N.C. 1686 pp.
- Schmidly, D.J. 1943. The mammals of Trans-Pecos Texas: including Big Bend National Park and Guadalupe Mountains Nat. Texas A & M University Press. 225 pp.
- Schmidt-Nielsen, K. 1964. Desert animal: physiological problems of heat and water. Oxford Clarendon Press, London. U.K. 277 pp.
- Shreve, T. 1942. The desert vegetation of the North America. Bot. Rev. 8:195-246.
- Stubblefield, S.S. 1985. Hybridization of white-tailed deer and mule deer in Trans-Pecos region of Texas. M.S. Thesis, Texas Tech University, Lubbock. 19.
- Swank, W.G. 1958. The mule deer in Arizona chapparral and an analysis of other important deer herd: a research and management study. Arizona Game and Fish Departament, Fed. Aid Project Arizona W-71-R, Wildlife Bullentin 3, Phoenix, Ariz. 109.

- Thorne, E. T., Dean, R. E. and Hepworth, W.G. 1976. Nutrition during gestation in relation to successful reproduction in elk. The Journal of Wildlife Management. 40:330-335.
- Trainer, C. 1975. Direct causes of mortality in mule deer fawns during summer and winter periods on Steens Mountain, Oregon. West. Assoc. State Game and Fish Comm. Annu. Conf.163-170.
- Tucker, R.D., and G.W. Garner. 1983. Habitat selection and vegetational characteristics of antelope fawn bed-sites in West Texas. J. Range Manage. 36:110-113.
- Uvalle, S.J.I. 1998. Evaluación del hábitat y de las poblaciones del venado bura del desierto (*Odocoileus hemionus crooki*) en la región cinegética tres del Estado de Coahuila. Tesis de licenciatura de la Facultad de Ciencias Forestales. U.A.N.L. Linares, N.L.
- Vaughan, T.A. 1988. Mamíferos. Tercera edición. Ed. Interamericana.
- Verme, L.J. 1963. Effect of nutrition on growth of white-tailed deer fawns. Trans.

 North. Am. Wildl. and Nat. Resour. Conf. 28:431-443.

- Villarreal G., J.G. 2000. Venado cola blanca. Manejo y aprovechamiento cinegético. Unión Ganadera Regional de Nuevo León. Monterrey, N.L. 401 pp.
- Wallmo, O.C. 1981. Mule deer and black tailed deer of North distribution and habitats. Mule deer and black tailed deer of North America. O.C. Wallmo. Univ. Nebraska Press Lincoln. 1-25.
- Walther, F. 1974. Verhaltenstudien and der Gattung *Tragelaphus* deBlainvilkle 1816 in Gefangen schaft, unter besonderer Berucksichtigung des Sozialverhaltens. Z. Tierpsychol. 21: 393-467.
- Wiggers, E.P. and Beasom, S.L. 1986. Characterization of sympatric or adjacent habitats of two deer species in west Texas. The Journal of Wildlife Management. 50:129-134
- White, G.C. and Garrot, R.A. 1990. Analysis of Wildlife Radio-Tracking Data. Academic Press, Inc.
- White, R.G. and J.R. Luick. 1984. Plasticity and constraints in the lactational strategy of reindeer and caribou. Symposia of the Zoological Society of Londom, 51: 215-232.

APÉNDICES

Apéndice I. Porcentaje de cobertura, altura y frecuencia de las especies arbustivas presentes en los sitios de nacimiento de 1998-2000.

SITIO 1

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Acacia berlandieri	2.0040	183	15
Acacia rigidula	0.8346	122	45
Agave lechuguilla	0.1288	42	36
Calliandra eriophylla	0.0582	35	19
Croton torreyanus	0.0200	88	1
Eysenhardtia texana	0.0723	101	7
Forestiera angustifolia	0.1076	61	2
Jatropha dioica	0.0879	87	23
Karwinskia mollis	0.0075	92	1
Leucophyllum texanum	0.1723	120	8
Lippia graveolens	0.0727	79	10
Opuntia leptocaulis	0.0782	58	2
Porlieria angustifolia	0.0901	108	7
Salvia ballotaeflora	0.0114	41	1
Promedio	0.9364	76	
Total	3.7455		177

SITIO 2

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Acacia berlandieri	1.2820	222	9
Acacía rigidula	0.8831	92	22
Aloysia wrightii	0.0362	88	3
Calliandra eriophylla	0.0718	31	35
Dasylirion texanum	0.1636	144	2
Leucophyllum texanum	0.1189	82	7
Lippia graveolens	0.0131	57	20
Opuntia leptocaulis	0.0103	42	2
Opuntia sp.	0.1649	44	4
Yucca truculeana	0.1412	133	2
Promedio	0.7213	93	
Total	2.8853	-	106

SITIO 3

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Acacia berlandieri	0.4803	149	10
Acacia rigidula	0.3597	123	8
Eysenhardtia texana	0.0629	97	2
Karwinskia mollis	0.0334	50	2
Leucophyllum texanum	0.0616	94	4
Lippia graveolens	0.3121	63	11
Opuntia leptocaulis	0.0288	53	4
Opuntia sp.	0.0836	41	7
Promedio	0.3556	78	
Total	1.4224		48

SITIO 4

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Acacia berlandieri	0.2262	210	1
Acacia rigidula	1.7439	114	92
Agave lechuguilla	0.2434	34	76
Croton torreyanus	0.0175	129	2
Dasylirion texanum	0.0774	152	1
Eysenhardtia texana	0.4866	122	38
Forestiera angustifolia	0.0881	116	3
Jatropha dioica	0.0016	59	5
Karwinskia mollis	0.0424	27	9
Leucophyllum texanum	0.0027	98	1
Lippia graveolens	0.0531	77	6
Opuntia leptocaulis	0.0135	80	3
Opuntia sp.	0.1979	56	12
Porlieria angustifolia	0.0862	107	10
Salvia ballotaeflora	0.1129	106	10
Yucca sp.	0.0861	160	3
Promedio	0.8699	165	
Total			272

SITIO 5

Esp e cie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Acacia berlandieri	0.5203	85	11
Acacia rigidula	0.5133	110	28
Agave lechuguilla	0.1825	41	25
Croton torreyanus	0.0082	105	1
Karwinskia mollis	0.0707	57	5
Leucophyllum texanum	0.2761	100	12
Lippia graveolens	0.3180	83	19
Opuntia leptocaulis	0.0430	65	5
Yucca sp.	0.2801	136	8
Yucca truculeana	0.4076	132	1
Promedio	0.6550	78	
Total	2.6199		115

SITIO 6

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Acacia berlandieri	0.1354	195	
Acacia rigidula	1.0327	121	48
Agave lechuguilla	0.3831	28	116
Aloysia wrightii	0.0485	65	8
Calliandra eriophylla	0.1850	35	23
Croton torreyanus	0.0092	108	2
Eysenhardtia texana	0.0817	85	4
Karwinskia mollis	0.0715	88	2
Leucophyllum texanum	0.1492	86	12
Lippia graveolens	0.1300	78	11
Opuntia leptocaulis	0.0498	46	7
Opuntia sp.	0.3457	131	1
Porlieria angustifolia	0.0772	67	5
Yucca sp.	0.0804	235	1
Promedio	0.6949	81	
Total	2.7796		241

SITIO 7

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Acacia rigidula	0.0367	220	1
Condalia hookeri	0.0666	257	1
encinito	0.0072	101	3
Eysenhardtia texana	0.0641	157	1
Forestiera angustifolia	0.0286	110	1
Karwinskia mollis	0.1420	52	3
Leucophyllum texanum	0.0134	103	1
Lippia graveolens	0.0090	70	14
Opuntia leptocaulis	0.0009	37	4
Portieria angustifolia	0.0518	106	15
Prosopis glandulosa	0.8284	155	7
Yucca sp.	0.0273	28	11
Ziziphus optusifolia	0.1569	50	16
Promedio	0.3582	107	
Total	1.4329		78

SITIO 8

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Acacia berlandieri	1.2971	116	15
Acacia rigidula	0.8975	98	31
Agave lechuguilla	0.4850	32	124
Agave sp.	0.0119	66	1
Aloysia wrightii	0.0138	114	1
Calliandra eriophylla	0.2534	43	33
Karwinskia mollis	0.2361	68	4
Leucophyllum texanum	0.3507	77	22
Lippia graveolens	0.4303	80	26
Opuntia leptocaulis	0.0001	13	1
Opuntia sp.	0.0009	40	1
Yucca truculeana	0.0191	53	2
Promedio	0.9989	67	
Total	3.9958		261

SITIO 9

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Acacia berlandieri	1.3495	149	8
Acacia rigidula	0.2717	125	13
Agave lechuguilla	0.5929	34	86
Aloysia wrightii	0.0109	87	1
Condalia hookeri	0.0006	30	1
Eysenhardtia texana	0.0769	154	2
Forestiera angustifolia	0.0189	48	10
Jatropha dioica	0.1423	52	94
Karwinskia mollis	0.0089	80	1
Leucophyllum texanum	0.3293	90	24
Lippia graveolens	0.4342	94	24
Opuntia leptocaulis	0.0657	59	11
Opuntia sp.	0.0028	51	1
Porlieria angustifolia	0.1265	91	2
Yucca truculeana	0.0834	147	3
Promedio	0.9	76	
Total	3.5		281

SITIO 10

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Acacia berlandieri	0.8828	197	5
Acacia rigidula	0.7792	122	32
Agave lechuguilla	0.0193	33	10
Calliandra eriophylla	0.5600	40	46
Croton torreyanus	0.0040	102	1
Dasylirion texanum	0.1001	78	3
Karwinskia mollis	0.1225	60	6
Leucophyllum texanum	0.2309	93	15
Lippia graveolens	0.1284	67	1
Opuntia leptocaulis	0.0580	44	6
Yucca sp.	0.0841	101	1
Yucca truculeana	0.0953	113	4
Promedio	0.7662	78	
Total	3.0647		130

SITIO 11

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Acacia rigidula	1.1791	156	36
Agave lechuguilla	0.5497	47	79
Agave sp.	0.0170	70	1
Aloysia wrìghtii	0.2158	109	19
Cactácea	0.0003	18	1
Calliandra eriophylla	0.0096	53	1
Croton torreyanus	0.1151	119	17
Dasylirion texanum	0.0601	150	1
Eysenhardtia texana	0.6205	218	17
Forestiera angustifolia	0.1563	70	13
Jatropha dioica	0.1830	74	60
Karwinskia mollis	0.3088	187	13
Leucophyllum texanum	0.3205	112	16
Lippia graveolens	0.0625	99	8
Opuntia leptocaulis	0.0311	95	1
Prosopis glandulosa	0.0082	135	1
Yucca sp.	0.1410	158	5
Yucca truculeana	0.0413	130	2
Promedio	0.2871	104	
Total	4.0196		291

SITIO 12

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Acacia berlandieri	1.1256	116	12
Acacia rigidula	0.4926	97	19
Agave lechuguilla	0.8232	37	147
Aloysia wrightii	0.0055	54	2
Calliandra eriophylla	0.0848	36	22
Jatropha dioica	0.0457	66	6
Karwinskia mollis	0.0807	52	2
Leucophyllum texanum	0.1619	99	7
Lippia graveolens	0.2234	88	10
Opuntía sp.	0.4051	44	16
Yucca sp.	0.0361	66	2
Yucca truculeana	0.0199	81	2
Promedio	0.8762	63	
Total	3.5047		247

SITIO 13

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Acacia berlandieri	0.1047	200	1
Acacia rigidula	0.7242	127	37
Agave lechuguilla	0.6495	34	159
Aloysia wrightii	0.1123	99	5
Cactácea	0.0001	6	1
Jatropha dioica	0.0207	58	5
karwinskia mollis	0.1770	102	7
Leucophyllum texanum	0.0901	100	8
Lippia graveolens	0.9615	92	66
Opuntia sp.	1.0556	108	10
Promedio	0.9739	82	
Total	3.8957		299

SITIO 14

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Acacia berlandieri	0.0449	134	1
Acacia rigidula	1.5937	127	49
Agave lechuguilla	0.7462	41	120
Aloysia wrightii	0.0094	165	1
Calliandra eriophylla	0.0040	40	3
Croton torreyanus	0.0456	117	9
Eysendhartia texana	0 1905	135	17
Karwinskia mollis	0 1033	77	13
Leucophyllum texanum	0.4179	85	32
Lippia graveolens	0.0099	70	1
Portieria angustifolia	0.2096	68	24
Schaefferia cuneifolla	0.0276	43	3
Yucca sp.	0.1485	127	4
Yucca truculeana	0.0599	83	3
Promedio	0.9027	88	

SITIO 15

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Acacia berlandieri	1.1242	163	9
Acacia rigidula	0.9585	99	39
Agave lechuguilla	0.3709	37	92
Aloysia wrigtii	0.0502	79	11
Calliandra eriophylla	0 2948	39	38
Croton torreyanus	0.0074	115	1
Eysendhartia texana	0.0822	134	6
Forestiera angustifolia	0.0571	55	6
Jatropha dioica	0.0138	56	4
karwinskia mollis	0.0288	80	1
Leucophyllum texanum	0.1275	94	12
Lippia graveolens	0.1098	72	14
Opuntia leptocaulis	0.0189	90	1
Opuntia sp.	0.0009	43	1
Porlieria angustifolia	0.0477	89	5
Schaefferia cuneifolia	0.0074	53	2
Yucca sp.	0.0589	180	2
Yucca truculeana	0.4905	146	5
Promedio	0.9624	82	
Total	3.8496		249

SITIO 16

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Acacia berlandieri	0.7867	121	14
Acacia rigidula	0.4534	84	19
Agave lechuquilla	0.8819	38	202
Aloysia wrightii	0.0032	104	1
Calliandra eriophylla	0.2274	33	43
Croton torreyanus	0.0013	50	1
Dasylirion texanum	0.2710	120	9
Forestieria angustifolia	0.0945	160	2
Karwinskia mollis	0.0333	60	2
Leucophyllum texanum	0.0079	90	1
Schaefferia cuneifolia	0.0112	106	1
Promedio	0.6930	78	
Total	2.7718		295

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Acacia berlandieri	0.1736	125	5
Acacia rigidula	0.8461	89	38
Agave lechuguilla	0.0053	35	1
Calliandra eriophylla	0.0808	28	12
Jatropha dioica	0.0259	63	4
Krameria lanceolata	0.0322	36	2
Leucophyllum texanum	0.1688	76	14
Lippia graveolens	0.0211	45	3
Opuntia sp.	0.1649	56	3
Schaefferia cuneifolia	0.0138	65	1
Yucca sp.	0.1608	134	4
Promedio	0.4233	56	
Total	1.6934		87

SITIO 18

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Acacia berlandieri	0.3437	74	11
Acacia rigidula	1.1956	116	28
Aloysia wrightii	0.0214	85	2
Cactácea	0.0005	13	1
Calliandra eriophylla	0.2117	41	29
Croton torreyanus	0.0007	44	1
Jatropha dioica	0.2229	72	26
karwinskia mollis	0.0136	84	1
Leucophyllum texanum	0.0299	66	4
Lippia graveolens	0.6208	48	75
Opuntia leptocaulis	0.0344	37	9
Opuntia sp.	0.1179	73	3
Schaefferia cuneifolia	0.0202	67	2
Yucca sp.	0.1787	197	3
Promedio	0.7530	59	
Total	3.0119		195

Apéndice II. Porcentaje de cobertura, altura y frecuencia de las especies arbustivas presentes en los sitios elegidos al azar

SITIO 19

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Acacia berlandieri	0.5136	93	20
Acacia rigidula	1.0211	121	26
Calliandra eriophylla	0.0043	30	3
Croton torreyanus	0.0101	155	1
Forestiera angustifolia	0.1272	97	3
Lippia graveolens	0.4738	64	45
Opuntia leptocaulis	0.0554	76	4
Opuntia sp.	0.7040	51	15
Salvia ballotaeflora	0.0116	80	1
Yucca sp.	0.0425	151	1
Yucca truculeana	0.1062	165	4
Promedio	0.7674	99	
Total	3.0697		123

SITIO 20

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Acacia berlandieri	0.0449	130	1
Acacia rigidula	0.7028	97	52
Agave lechuguilla	0.0677	25	21
Aloysia wrightii	0.0509	115	4
Eysenhardtia texana	0.0172	74	4
Forestiera angustifolia	0.1402	45.5	18
Jatropha dioica	0.0042	56	5
Karwinskia mollis	0.0737	54	4
Leucophyllum texanum	0 0231	74	3
Lippia graveolens	0.0093	77	2
Opuntia leptocaulis	0.0786	56	9
Opuntia sp.	0.1293	58	3
Salvia ballotaeflora	0.0544	40	1
Schaefferia cuneifolla	0.0016	76	1
Yucca sp.	0.4935	101	17
Zanthoxylum fagara	0.0314	65	4
Promedio	0.4807	71	
Total	1.9227		149_

SITIO 21

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Acacia berlandieri	0.0666	123	1
Acacia rigidula	0.9991	112	31
Agave lechuguilla	1.2315	39	267
Calliandra eriophylla	0.1011	34	35
Leucophyllum texanum	0.2148	94	9
Opuntia leptocaulis	0.0304	98	1
Promedio	0.6609	83	
Total	2.6434		344

SITIO 22

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Acacia berlandieri	0.6507	71	31
Acacia rigidula	0.3449	100	14
Agave sp.	0.0990	123	1
Calliandra eriophylla	0.0110	36	2
Dasylirion texanum	0.0069	46	1
Leucophyllum texanum	0.0844	76	7
Lippia graveolens	0.1551	50	33
Opuntia leptocaulis	0.1258	40	20
Opuntia sp.	0.0004	13	3
Promedio	0.3695	62	
Total	1.4781		112

SITIO 23

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Acacia berlandieri	0.2936	105	7
Acacia rigidula	0.6452	98	45
Agave sp.	0.0723	41	8
Calliandra eriophylla	0.0421	32	6
Dasylirion texanum	0.0241	113	1
Jatropha dioica	0.0158	70	13
Karwinskia mollis	0.0052	36	1
Leucophyllum texanum	0.1352	141	3
Lippia graveolens	0.0910	36	16
Opuntia leptocaulis	0.0742	50	15
Opuntia sp.	0.4563	115	7
Promedio	0.4637	76	
Total	1.8550		122

SITIO 24

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Acacia berlandieri	0.4546	91	15
Acacia rigidula	0.4550	88	33
Agave lechuguilla	1.0052	47	161
Aloysia wrightii	0.1984	96	13
Calliandra eriophylla	0.0156	32	6
Croton torreyanus	0.0080	127	2
Forestiera angustifolia	0.0057	45	3
Jatropha dioica	0.0500	79	8
Leucophyllum texanum	0.4677	100	22
Lippia graveolens	0.0007	39	2
Opuntia leptocaulis	0.0085	32	2
Opuntia sp.	0.1349	71	3
Promedio	0.7011	71	
Total	2.8044		270

SITIO 25

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Acacia berlandieri	2.4063	140	29
Acacia rigidula	0.6496	97	33
Agave lechuguilla	0.3003	36	80
Aloysia wrightii	0.0265	88	3
Calliandra eriophylla	0.1304	30	64
Croton torreyanus	0.0397	56	4
Karwinskia mollis	0.0994	66	8
Leucophyllum texanum	0.2767	84	21
Lippia graveolens	0.0044	59	1
Opuntia leptocaulis	0.0226	58	2
Porlieria angustifolia	0.1610	80	11
Yucca sp.	0.3785	108	18
Yucca truculeana	0.3842	160_	10
Promedio	1.2199	82	
Total	4.8798		284

SITIO 26

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Acacia rigidula	0.1255	183	1
Agave lechuguilla	0.7242	35	134
Eysenhardtia texana	0.0203	144	2
Forestiera angustifolia	0.0616	24	26
Opuntia leptocaulis	0.0046	34	4
Opuntia sp.	0.0046	26	2
Prosopis glandulosa	0.1377	66	4
Ziziphus optusifolia	0.1323	42	18
Promedio	0.3027	55	
Total	1.2107		<u> </u>

SITIO 27

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Acacia berlandieri	0.8178	144	16
Acacia rigidula	0.2406	66	11
Agave lechuguilla	0.5667	34	119
Calliandra eriophylla	0.0747	35	6
Croton torreyanus	0.0048	56	2
Forestiera angustifolia	0.0172	122	1
Krameria lanceolata	0.0673	37	3
Leucophyllum texanum	0.1695	108	10
Lippia graveolens	0.0223	88	3
Opuntia leptocaulis	0.0071	70	1
Opuntia sp.	0.2168	46	3
Yucca sp.	0.1198	121	8
Yucca truculeana	0.0101	105	1
Promedio	0.5837	79	
Total	2.3347		184

SITIO 28

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Acacia berlandieri	0.8318	117	18
Acacia rigidula	0.2121	87	10
Agave lechuguilla	0.6917	35	114
Aloysia wrightii	0.0111	76	1
Calliandra eriophylla	0.2228	29	40
Dasylirion texanum	0.2882	130	10
Eysenhardtia texana	0.0402	148	1
Karwinskia mollis	0.0355	45	1
Lippia graveolens	0.0421	55	4
Opuntia sp.	0.2131	52	4
Yucca truculeana	0.2621	143	9
Promedio	0.7127	83	
Total	2.8508		212

SITIO 29

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Acacia berlandieri	0.6435	213	6
Acacia rigidula	1.0085	118	37
Agave lechuguilla	1.2280	41	265
Aloysia wrightii	0.0062	75	1
Calliandra eriophylla	0.0027	99	1
Croton torreyanus	0.0376	96	4
Eysenhardtia texana	0.1370	158	4
Jatropha dioica	0.0041	78	2
Karwinskia mollis	0.0586	66	5
Leucophyllum texanum	0.1776	85	12
Lippia graveolens	0.1233	80	11
Opuntia leptocaulis	0.0373	59	9
Opuntia sp.	0.6001	114	6
Portieria angustifolia	0.0690	87	5
Prosopis glandulosa	0.0123	97	1
Yucca sp.	0.1213	109	5
Ziziphus optusifolia	0.0182	97	1
Promedio	1.0713	98	
Total	4.2853		375

SITIO 30

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Acacia berlandieri	1.0294	145	18
Acacia rigidula	0.4771	104	29
Agave lechuguilla	0.7981	33	190
Aloysia wrightii	0.0092	65	2
Croton torreyanus	0.0005	52	1
Eysenhardtia texana	0.2499	110	6
Forestiera angustifolia	0.0644	110	2
Jatropha dioica	0.0421	62	8
Karwinskia mollis	0.0147	60	3
Leucophyllum texanum	0.2588	91	12
Lippia graveolens	0.6597	94	49
Opuntia leptocaulis	0.0755	69	10
Salvia sp	0.0004	70	1
Promedio	0.9200	82	
Total	3.6799		331

SITIO 31

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Acacia berlandieri	0.5620	109	14
Acacia rigidula	0.0556	103	2
Agave lechuguilla	0.1410	38	25
Calliandra eriophylla	0.3794	30	44
Dasylirion texanum	0.0975	147	3
Forestiera angustifolia	0.2432	151	2
Jatropha dioica	0.0238	43	11
Karwinskia mollis	0.0328	45	1
Leucophyllum texanum	0.0686	70	5
Lippia graveolens	0.0502	66	4
Opuntia leptocaulis	0.0114	68	2
Yucca sp.	0.1044	209	2
Yucca truculeana	0.0290	67	2
Promedio	0.4497	88	
Total	1.7989		117

SITIO 32

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Acacia berlandieri	0.9668	90	21
Acacia rigidula	0.4545	99	23
Agave lechuguilla	0.2509	35	72
Bernardia miracaefolia	0.0380	66	4
Calliandra eriophylla	0.2843	30	71
Croton torreyanus	0.0153	48	11
Dasylirion texanum	0.3996	107	11
Karwinskia mollis	0.1614	63	10
Leucophyllum texanum	0.1432	60	12
Lippia graveolens	0.7194	62	54
Yucca sp.	0.0180	100	1
Yucca truculeana	0.0725	77	12
Promedio	0.8810	70	
Total	3.5238		302

SITIO 33

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Acacia berlandieri	0.1900	191	1
Acacia rigidula	0.2409	129	4
Forestiera angustifolia	0.0308	49	3
Jatropha dioica	0.0268	51	6
Karwinskia mollis	0.0490	52	4
Leucophyllum texanum	0.0013	21	2
Lippia graveolens	0.0128	101	1
Opuntia leptocaulis	0.0472	31	8
Opuntia sp.	0.0609	58	1
Porlieria angustifolia	0.0601	33	6
Yucca sp.	0.1305	126	3
Promedio	0.2126	70	
Total	0.8504		39

SITIO 34

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Acacia berlandieri	1.0904	150	15
Acacia rigidula	0.7343	84	32
Agave lechuguilla	0 3638	31	129
Cactácea	0.0019	15	4
Calliandra eriophylla	0.1843	34	34
Forestiera angustifolia	0.1084	140	1
Jatropha dioica	0.0376	69	8
Leucophyllum texanum	0.1405	71	21
Lippia graveolens	0.1940	71	23
Opuntia leptocaulis	0.0233	36	6
Opuntia sp.	0.0003	10	1
Yucca truculeana	0.0188	115	1
Promedio	0.7244	69	
Total	2.8975		275

SITIO 35

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Acacia rigidula	0.1208	109	6
Agave lechuguilla	0.0706	58	13
Aloysia gratissima	0.0480	150	1
Bernardia miracaefolia	0.0138	61	1
Calliandra eriophylla	0.0016	46	1
Eysenhardtia texana	0.0765	160	1
Forestiera angustifolia	0.0450	79	4
Jatropha dioica	0.0922	59	17
Karwinskia mollis	0.0085	50	1
Lippia graveolens	0.0627	92	5
Opuntia leptocaulis	0.1592	37	24
Opuntia sp.	0.0031	19	2
Yucca sp.	0.0407	108	2
Promedio	0.1857	79	
Total	0.7428		78

SITIO 36

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Acacia berlandieri	0.1634	86	4
Acacia rigidula	0.5003	83	20
Agave lechuguilla	0.5793	30	174
Cactácea	0.0001	2	1
Eysenhardtia texana	0.2028	128	4
Jatropha dioica	0.0186	35	6
Leucophyllum texanum	0.0494	118	6
Lippia graveolens	0.0954	109	2
Opuntia leptocaulis	0.0019	35	1
Opuntia sp.	0.4353	85	6
Salvia ballotaeflora	0.0593	105	2
Yucca sp.	0.0081	65	1
Zanthoxylum fagara	0.0090	70	<u> </u>
Promedio	0.5307	73	
Total	2.1227		228

SITIO 37

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Acacia berlandieri	0.2545	149	4
Acacia rigidula	0.7095	139	35
Agave lechuguilla	0.6990	32	269
Aloysia wrightii	0.0997	123	2
Cactácea	0 0002	10	1
Eysenhardtia texana	0.1228	118	5
Jatropha dioica	0.0010	79	1
Karwinskia mollis	0.0331	89	12
Leucophyllum texanum	0.1168	1 1 3	7
Lippia graveolens	0.2566	91	23
Opuntia leptocaulis	0.0392	35	8
Opuntia sp.	0.4335	178	3
Salvia ballotaeflora	0.0394	83	1
Promedio	0.7013	95	
Total	2,8053		371

SITIO 38

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Acacia berlandieri	1.3084	144	18
Acacia rigidula	0.4807	85	40
Aloysia wrightii	0.0322	56	7
Cactácea	0.0006	13	2
Calliandra eriophylla	0.1913	34	32
Eysenhardtia texana	0.0255	100	1
Jatropha dioica	0 0265	69	2
Karwinskia mollis	0.0 4 69	74	3
Leucophyllum texanum	0.0528	106	5
Lippia graveolens	0.0647	87	5
Opuntia leptocaulis	0.0265	52	6
Opuntia sp.	0.2227	90	4
Portieria angustifolia	0.0366	49	4
Salvia sp.	0.0000	7	4
Yucca truculeana	0.0068	41	2
Promedio	0.6306	67	
Total	2.5224		135

Apéndice III. Porcentaje de cobertura, altura y frecuencia de las especies herbáceas presentes en los sitios de nacimiento de 1998-2000.

SITIO 1

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Aristida wrightii	0.0023123	22	84
Bouteloua barbata	0.000603	15	3
Buddleia scordioides	0 0000100	7	4
Dyssodia papposa	0.0000327	12	2
Heliotropium greggii	0.0000321	36	1
Heteropogon contortus	0.0001930	46	7
Panicum halli	0.0000530	15	1
Promedio	0.0006733	22	
Total	0.0026934		102

SITIO 2

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Acalypha lindherimeri	0.0002469	7	34
Aristida wrightii	0.0052744	15	200
Bouteloua barbata	0.0000164	30	1
Buddleia scordioides	0.0000121	7	2
Dyssodia papposa	0.0016254	11	113
Heliotropium greggii	0.000059	17	1
Heteropogon contortus	0.0011099	19	65
Melampodium leucanthum	0.0003361	19	32
Panicum halli	0.0018640	24	42
Promedio	0.0026228	16	
Total	0.0104912		490

SITIO 3

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Aristida wrightii	0.0063573	14	338
Bouteloua barbata	0.000617	18	3
Buddleia scordioides	0.0000224	7	6
Dalea gregii	0.0000157	8	5
Dyssodia papposa	0.0000177	4	4
Evolvulus alsinoides var. hirtella	0.0002003	13	48
Heteropogon contortus	0.0009137	20	50
Melampodium leucanthum	0.0001007	9	26
Panicum halli	0.0033712	26	26
Parthenium hysterophorus	0.0000262	9	11
Ruellia sp.	0.000015	3	1
Sida filicaulis	0.0003887	12	<u>51</u>
Promedio	0.8809603	11	
Total	0.0114771		569

SITIO 4

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Aristida wrightii	0.0000170	7	4
Buddleia scordioides	0.000033	11	2
lva ambrosaefolia	0.0000026	15	1
Macrosiphania macrosiphon	0.0000122	4	7
Melampodium leucanthum	0.000039	16	6
Panicum hallı	0.0002180	15	10
Parthenium hysterophorus	0.0000708	8	12
Perezia runcinata	0.0000931	8	6
Setaria leucophylla	0.0003951	35	9
Promedio	0.0002040	13	
Total	0.0010200		57

SITIO 5

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Aristida wrightii	0.0021801	12	290
Dalea gregii	0.0000204	9	9
Dyssodia papposa	0.0017500	11	313
Evolvulus alsinoides var. hirtella	0.0000375	14	20
Heteropogon contortus	0.0003709	23	23
Macrosiphania macrosiphon	0.0000026	10	1
Melampodium leucanthum	0.0001836	19	21
Panicum halli	0.0007661	15	23
Portulaca mundula	0.000007	2	1
Sida filicaulis	0.0000689	10	23
Promedio	0.0013452	13	
Total	0.0053808		724

SITIO 6

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Aristida wrightii	0.0126561	18	273
Bouteloua barbata	0.0000353	30	4
Buddleia scordioides	0.0001106	12	1
Heteropogon contortus	0.0044511	16	33
Macrosiphania macrosiphon	0.0000132	5	1
Melampodium leucanthum	0.0000975	11	3
Panicum halli	0.0002735	26	4
Papophorum vaginatum	0.0007124	56	1
Sida filicaulis	0.0000296	4	2
Promedio	0.0045948	19	
Total	0.0183794		322

SITIO 7

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Aristida wrightii	0.0004422	43	1
Bouteloua barbata	0.0059580	14	190
Euphorbia sp.	0.0003598	4	42
Heteropogon contortus	0.0000026	34	1
Iva ambrosaefolia	0.0006421	14	300
Parthenium hysterophorus	0.0000654	<u>1</u> 1	1_
Promedio	0.0018675	18	
Total	0.0074702		535

SITIO 8

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Aristida wrightii	0.0099994	25	60
Buddleia scordioides	0.0000134	6	6
Dalea gregii	0.000011	12	2
Dyssodia papposa	0.0001293	7	8
Evolvulus alsinoides var. hirtella	0.0000021	15	3
Heteropogon contortus	0.0007250	16	43
Melampodium leucanthum	0.0002130	15	10
Panicum halli	0.0039942	21	48
Parthenium hysterophorus	0.0001286	8	2
Sida filicaulis	0.0000260	6	6
Promedio	0.0038080	13	
Total	0.0152321		<u>1</u> 88

SITIO 9

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Aristida wrightii	0.0122985	11	390
Dyssodia papposa	0.0003485	10	144
Heteropogon contortus	0.0001186	25	6
Melampodium leucanthum	0.0000246	10	10
Panicum halli	0.0013861	23	39
Portulaca mundula	0.0000435	6	60
Sida filicaulis	0.000015	10	3
Promedio	0.0035553	14	
Total	0.0142213		652

SITIO 10

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Aristida wrightii	0.0012770	10	78
Buddleia scordioides	0.0000271	5	5
Dalea gregii	0.000002	3	1
Dyssodia papposa	0.0042320	8	143
Evolvulus alsinoides var. hirtella	0.000002	9	1
Heteropogon contortus	0.0001524	13	19
Melampodium leucanthum	0.0000495	11	10
Panicum halli	0.0010047	18	37
Perezia runcinata	0.000030	6	7
Portulaca mundula	0.000007	3	1
Sida filicaulis	0.0002343	9	20
Promedio	0.0017453	9	
Total	0.0069811		322

SITIO 11

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Abutilon sp.	0.0001472	48	1
Acalypha lindheimeri	0.0002263	14	4
Argythamnia texana	0.0000530	7	1
Aristida sp.	0.0308839	25	59
Aristida ternipes	0.0071841	19	22
Bouteloua sp.	0.0002048	20	2
Dalea gregii	0.0023386	29	5
Heliotropium greggii	0.0031302	19	11
Nissolia platycalyx	0.0001891	50	1
Panicum halli	0.0137519	25	47
Ruellia sp.	0.0054355	25	10
Setaria leucophylla	0.0522705	37	40
Tiquilla canescens	0.0004906	7	4
Tridens muticus	0.0017080	29	3
Promedio	0.0295034	25	
Total	0.1180136		210

SITIO 12

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Acalypha lindheimeri	0.0000321	7	1
Aristida sp.	0.02587 5 6	25	117
Dalea gregii	0.0082091	11	7
Dyssodia papposa	0.0032362	7	12
Evolvulus alsinoides var. hirticaulis	0.0003585	19	2
Panicum halli	0.0023171	19	9
Parthenium hysterophorus	0.0003179	8	4
Perezia runcinata	0.0022837	6	20
Setaria leucophylla	0.1201783	35	62
Zexmenia brevifolia	0.0000942	20	1
Promedio	0.0407256	16	
Total	0.1629025		235

SITIO 13

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Acalypha lindheimeri	0.0000733	- 6	5
Anoda cristata	0.000850	30	2
Aristida sp.	0.0359909	21	113
Aristida ternipes	0.0108075	49	12
Bouteloua sp.	0.0072456	1 7	72
Dyssodia papposa	0.0006869	9	4
Hedyotis sp.	0.0000236	4	1
Panicum halli	0.0037778	31	13
Perezia rucinata	0.0008844	7	16
Setaria leucophylla	0.0028927	27	7
Promedio	0.0156169	17	
Total	0.0624677		245

SITIO 14

Especie	% Cob Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Acalypha lindhermeri	0.0000512	5	3
Anoda cristata	0.0000635	9	2
Aristida sp.	0.0795853	25	76
Aristida ternipes	0.0214940	30	14
Bouteloua sp.	0.0022242	30	8
Dalea gregii	0.0005580	14	4
Dyssodya papposa	0.0004900	8	3
Euphorbia sp.	0.0052772	7	44
Hedyotis sp.	0.0000347	5	2
Heliotropium gregii	0.0062957	17	13
Nissolia platycalyx	0.0000792	55	1
Panicum halli	0.0073908	2 2	22
Psilostrophe gnaphalodes	0.0004311	12	5
Ruellia parviflora	0.0002885	22	1
Senna bauhinoides	0.0006164	8	12
Setaria leucophylla	0.0100009	19	42
Setaria macrostachya	0.0056795	62	6
Tiquila canescens	0.0093623	7	49
Promedio	0.0374805	19	
Total	0.1499221		307

SITIO 15

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Acalypha lindheimeri	0.0000628	6	5
Aristida sp.	0.0523688	18	68
Aristida ternipes	0.0157595	35	5
Dalea gregii	0.0151512	19	7
Dyssodya papposa	0.0108624	6	45
Heliotropium gregii	0.0162940	26	7
Panicum halli	0.0088332	27	8
Parthenium hysterophorus	0.0005502	12	1
Perezia rucinata	0.0002021	5	8
Psilostrophe gnaphalodes	0.000530	12	1
Ruellia parviflora	0.0001308	10	2
Setaria macrostachya	0.0092866	33	6
Promedio	0.0323887	17	
Total	0.1295546		163

SITIO 16

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Acalypha lindheimeri	0.000530	4	1
Anoda cristata	0.0000321	7	1
Aristida sp.	0.0562400	15	187
Aristida ternipes	0.0000484	3	2
Dalea gregii	0.0012096	22	4
Dyssodya papposa	0.0041049	4	23
Helioptopium gregii	0.00758 1 8	29	3
Melampodium leucanthum	0.0005364	18	2
Panicum halli	0.0345950	24	34
Setaria leucophylla	0.0652891	26	59
Tridens muticus	0.0461776	25	72
Promedio	0.0539670	14	
Total	0.2158678		388

SITIO 17

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Acalypha lindhermeri	0.0000530	5	1
Aristida sp.	0.0201581	15	85
Aristida ternipes	0.1030031	28	76
Dalea gregii	0.0005129	19	1
Dyssodya papposa	0.0058169	7	26
Panicum halli	0.0083413	23	19
Parthenium hysterophorus	0.0000765	6	2
Perezia rucinata	0.0003644	7	5
Setaria leucophylla	0.0011540	54	1
Tiquila canescens	0.0002120	18	1
Promedio	0.0349230	18	
Total	0.1396921		217

SITIO 18

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Anoda cristata	0.0001891	50	1
Aristida sp.	0.0650543	19	225
Dalea gregii	0.0002120	21	1
Dyssodya papposa	0.0156706	9	47
Evolvulus alsinoides var. hirticaulis	0.0151243	16	18
Melampodium leucanthum	0.0031184	14	7
Panicum halli	0.0325716	28	20
Parthenium hysterophorus	0.0027423	21	5
Portulaca mundana	0.0000059	5	1
Setaria leucophylla	0.0099335	39	6
Sida filicaulis	0.0000321	7	1
Tiquila canescens	0.0001106	8	1
Tridens muticus	0.0768351	33	51
Promedio	0.0553999	19	
Total	0.2215996 _		384_

SITIO 21

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Aristida wrightii	0.0013966	29	57
Bouteloua barbata	0.0001029	27	3
Buddleia scordioides	0.000017	7	3
Heteropogon contortus	0.0006518	25	34
Melampodium leucanthum	0.0000618	16	12
Panicum halli	0.0035737	37	109
Perezia runcinata	0.000022	13	2
Setaria leucophylla	0.0013427	36	26
Sida filicaulis	0.0000074	12	13
Promedio	0.0017852	22	
Total_	0.0071408		_259

SITIO 22

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Aristida wrightii	0.4776660	16	551
Bouteloua curtipendula	0.0001500	14	1
Dalea gregii	0.0018770	13	36
Dyssodia papposa	0.0012520	10	19
Echinocerus conglomeratus	0.0001340	11	3
Heteropogon contartus	0.0031500	28	9
Melampodium leucanthum	0.0019300	14	18
Panicum halli	0.0602250	31	26
Portulaça mundula	0.0021570	4	162
Sida filicaulis	0.0009700	9	25
Zinnia sp.	0.0000250	8	1
Promedio	0.1373840	18	
Total	0.5495360		851

SITIO 23

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Aristida purpurea	0.000094	14	1
Aristida wrightii	0.0173946	16	533
Dalea gregii	0.0000836	9	12
Heteropogon contortus	0.0000933	30	13
Melampodium leucanthum	0.0000185	1 1	4
Panicum halli	0.0011134	33	29
Portulaca mundula	0.0001242	5	355
Sida filicaulis	0.0000397	13	25
Zinnia sp.	0.000013	<u>6</u>	2
Promedio	0.0047195	15	
Total	0.0188781		974

SITIO 24

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Aristida purpurea	0.0000198	56	1
Aristida wrightii	0.0143501	17	155
Dalea gregii	0.0000271	14	14
Dyssodia papposa	0.0003695	12	134
Melampodium leucanthum	0.0000740	15	20
Panicum halli	0.0009009	28	30
Portulaça mundula	0.000002	7	1
Setaria leucophylla	0.000017	21	1
Promedio	0.0039358	21	
Total	0.0157433		356

SITIO 25

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Aristida purpurea	0.0002316	46	4
Aristida wrightii	0.0009396	24	74
Dalea gregii	0.000083	14	9
Dyssodia papposa	0.0000072	11	8
Heteropogon contortus	0.0000043	19	2
Melanmpodium leucanthum	0.0000336	17	10
Panicum halli	0.0005150	27	32
Setaria leucophylla	0.0000370	40	3
Sida filicaulis	0.0000020	2	3
Promedio	0.0004446	15	
Total	0.0017784		145

SITIO 26

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Aristida wrightii	0.0001343	12	11
Bouteloua barbata	0.0039204	15	118
Heteropogon contortus	0.0001748	12	5
Iva ambrosaefolia	0.0001106	6	1
Panicum halli	0.0036934	34	25
Sida filicaulis	0.0000236	5	1
Zinnia sp.	0.0014686	10	2
Promedio	0.0023814	14	
Total	0.0095256		163

SITIO 27

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Aristida wrightii	0.0160954	14	287
Bouteloua barbata	0.0001106	30	2
Dalea gregii	0.0015113	14	5
Dyssodia papposa	0.0436102	9	106
Melampodium leucanthum	0.0007935	14	2
Panicum halli	0.0015846	21	19
Portulaca mundula	0.0000164	2	1
Sida filicaulis	0.0001146	7	2
Promedio	0.0159591	14	
Total	0.0638364		424

SITIO 28

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Aristida wrightii	0.0034648	17	179
Buddleia scordioides	0.0005322	5	9
Dyssodia papposa	0.0279190	7	13
Echinocerus conglomeratus	0.0001891	11	1
Melampodium leucanthum	0.0051942	14	16
Panicum halli	0.0007112	20	27
Sida filicaulis	0.0000276	7	1
Promedio	0.0095095	12	
Total	0.0380382		246

SITIO 29

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Aristida wrightii	0.0011865	19	40
Echinocerus conglomeratus	0.0001675	6	1
Panicum halli	0.0004640	24	15
Promedio	0.0004545	16	
Total	0.0018179		56

SITIO 30

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Aristida wrightii	0.0021303	24	86
Dalea gregii	0.0001236	8	3
Dyssodia papposa	0.0010820	10	3
Melampodium leucanthum	0.0068759	16	18
Panicum halli	0.0010109	29	46
Promedio	0.0028057	17	
Total	0.0112227		156

SITIO 31

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Aristida purpurea	0.0000471	47	1
Aristida wrightii	0.0002854	22	12
Bouteloua hirsuta	0.0024695	16	49
Buddleia scordioides	0.0005116	4	8
Dyssodia papposa	0.0067399	5	30
Melampodium leucanthum	0.0001891	11	1
Panicum halli	0.0116497	28	101
Zinnia sp.	0.0020194	4	13
Promedio	0.0059779	17	
Total	0.0239116		215

SITIO 32

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Aristida purpurea	0.0004887	25	18
Aristida wrightii	0.0014410	14	6 2
Bouteloua hirsuta	0.0008427	10	42
Buddleia scordioides	0.0000236	2	1
Euphorbia sp.	0.0000185	7	2
Heliotropium gregii	0.000695	6	6
Panicum halli	0.0005222	19	9
Zinnia sp.	0.0006417	6	6
Promedio	0.0010120	11	
Total	0.0040478		146

SITIO 33

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Aristida wrightii	0.0000105	12	1
Bouteloua barbata	0.0056206	9	185
Bouteloua hirsuta	0.0002041	8	14
Dyssodia papposa	0.0000276	4	1
Melampodium leucanthum	0.0009976	8	9
Sida filicaulis	0.0000080	2	1
Zinnia sp.	0.0000198	2	1
Promedio	0.0017221	6	
Total	0.0068882		212

SITIO 34

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Aristida purpurea	0.0012992	62	3
Aristida wrightii	0.0021740	19	53
Bouteloua curtipendula	0.000530	81	1
Bouteloua hirsuta	0.0005286	23	8
Buddleia scordioides	0.0000105	6	1
Dalea gregii	0.000052	6	2
Dyssodia papposa	0.0138997	8	35
Heliotropium gregii	0.0000236	12	1
Melampodium leucanthum	0.0103116	13	5
Panicum halli	0.0006843	30	8
Sida filicaulis	0.0002126	13	2
Promedio	0.0073005	25	
Total	0.0292022		119

SITIO 35

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Bouteloua barbata	0.0027112	12	89
Buddleia scordioides	0.0005430	8	3
Eragrostis cilianensis	0.0005888	55	10
Melampodium leucanthum	0.0000321	3	1
Portulaca mundula	0.0001086	4	4
Promedio	0.0009959	16	
Total	0.0039835		107

SITIO 36

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Aristida wrightii	0.0038422	5	147
Dyssodia papposa	0.0258357	6	73
Heteropogon contortus	0.0010131	52	4
Jeffea brevifolia	0.0017839	8	4
Panicum halli	0.0000654	21	2
Sida filicaulis	0.0000321	9	1
Promedio	0.0081431	17	
Total	0.0325724		231

SITIO 37

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Aristida wrightii	0.0008854	28	22
Bouteloua barbata	0.0009724	15	25
Buddleia scordioides	0.0000236	8	1
Dyssodia papposa	0.0176005	12	35
Melampodium leucanthum	0.0099636	15	6
Panicum halli	0.0002120	43	2
Sida filicaulis	0.0000026	16	1
Verbena canescens	0.0028810	15	8
Promedio	0.0081353	19	
Total	0.0325410		100

SITIO 38

Especie	% Cob. Promedio/30 mts cuad.	Altura (cm)	Frecuencia
Aristida purpurea	0.0000105	10	1
Aristida wrightii	0.0009638	20	22
Bouteloua barbata	0.0006466	15	23
Dyssodia papposa	0.0066745	8	22
Heliotropium gregii	0.0000105	17	1
Melampodium leucanthum	0.0166121	17	31
Panicum halli	0.0001877	16	9
Sida filicaulis	0.0000942	3	1
Verbena canescens	0.0004422	13	1
Promedio	0.0064105	13	
Total	0.0256420		111

