UNIVERSIDAD AUTONOMA DE NUEVO LEON FACULTAD DE INGENIERIA MECANICA Y ELECTRICA DIVISION DE ESTUDIOS DE POSGRADO

ESTUDIOS SOBRE EL CONTROL Y LA ESTIMACIÓN DE SISTEMAS NO LINEALES EN TIEMPO CONTINUO Y DISCRETO

POR: OSCAR FRANCISCO HUERTA GUEVARA

T'ESIS
EN OPCION AL GRADO DE DOCTOR EN CIENCIAS DE LA
INGENIERIA ELECTRICA CON ESPECIALIDAD EN CONTROL

SAN NICOLAS DE LOS GARZA, N. L. NOVIEMBRE 2004

OFGH

ESTUDIOS SOBRE RE, CONTROL Y LA ESTIMACION DE SISTEMAS NO LINEALES EN TIEMPO CONTINUO Y DISCRETO

Z5853 .M2 FIME 2004 .H8

TD

UNIVERSIDAD AUTONOMA DE NUEVO LEON FACULTAD DE INGENIERIA MECANICA Y ELECTRICA DIVISION DE ESTUDIOS DE POSGRADO

ESTUDIOS SOBRE EL CONTROL Y LA ESTIMACION DE SISTEMAS NO LINEALES EN TIEMPO CONTINUO Y DISCRETO

POR: OSCAR FRANCISCO HUERTA GUEVARA


TESIS

EN OPCION AL GRADO DE DOCTOR EN CIENCIAS DE LA INGENIERIA ELECTRICA CON ESPECIALIDAD EN CONTROL

TD 25853 .M2 FIME 2004 .H8

UNIVERSIDAD AUTONÓMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA DIVISIÓN DE ESTUDIOS DE POSGRADO

ESTUDIOS SOBRE EL CONTROL Y LA ESTIMACIÓN DE SISTEMAS NO LINEALES EN TIEMPO CONTINUO Y DISCRETO

POR

OSCAR FRANCISCO HUERTA GUEVARA

TESIS

EN OPCIÓN AL GRADO DE DOCTOR EN CIENCIAS DE LA INGENIERÍA ELÉCTRICA CON ESPECIALIDAD EN CONTROL.

Copyright 2004 Por Oscar Francisco Huerta Guevara Reservados Todos Los Derechos

ESTUDIO SOBRE EL CONTROL Y LA ESTIMACIÓN DE SISTEMAS NO LINEALES EN TIEMPO CONTINUO Y DISCRETO

Jans de Reach

Los miembros del comité aprueban la Tesis Doctoral de Oscar Francisco Huerta Guevara.

Dr. Jesús de León Morales

Presidente

Dr. Marco Tulio Mata Jiménez

Secretario

Dr. Gerardo Espinosa Pérez

Vocal

Dr. René Galindo Orozco

Vocal

Dr. Alberto Cavazos González

Vocal

Vo. Bo.

Dr. Guadalupe Alan Castillo Rodríguez

División de Estudios de Posgrado

Dedicatoria:

A mis padres Francisco Huerta y Margarita Guevara, por el apoyo amoroso dado a todas las actividades de mi vida.

A mi esposa Abígail Contreras, quien llegó para darle un nuevo sentido a mi vida.

A mis hermanos Jorge, Juan y Sandra por estar pendientes de mí.

Agradecimientos:

A Jehová Dios, por la fuerza y el entendimiento necesarios para realizar este trabajo.

Al Dr. Jesús de León Morales, por la guía y dirección que me dió, las cuales en ocasiones fueron más allá de lo estrictamente académico, pues contribuyeron a mejorar mi desempeño como estudiante de posgrado y a madurar como persona.

Al Dr. Marco Tulio Mata, y a los compañeros Marcos y Manuel por su amistad y las todas tardes que comimos juntos en la Fac. de Arquitectura.

A los doctores Luc Dugard (LAG-INPG, Grenoble, Fr) 1 y Alain Gumineau (IRCCyN-ECN, Nantes, Fr) 2 por su apoyo para efectuar estancias académicas.

A los doctores René Galindo, Marco Tulio Mata, Gerardo Espinosa y Alberto Cavazos, por las sugerencias dadas durante la revisión de esta tesis.

Al CONACyT, el proyecto LAFMAA y el DIE-FIME-UANL por su apoyo económico, sin los cuales hubiera sido imposible efectuar este trabajo³.

INPG: Institut National Polytechnique de Grenoble

ECN: Ecole Centrale de Nantes

¹LAG: Laboratoire d'Automatique de Grenoble

²IRCCyN: Institut de Recherche en Communications et Cybernétique de Nantes

³LAFMAA: Laboratoire Mixte Franco-Mexicain en Automatique Appliquée

Resumen

Estudios Sobre el Control y la Estimación de Sistemas No Lineales en Tiempo Continuo y Discreto

Publicación No. ____ Oscar Francisco Huerta Guevara Universidad Autónoma de Nuevo León Facultad de Ingeniería Mecánica y Eléctrica Profesor Asesor: Dr. Jesús de León Morales Noviembre, 2004

Recientemente, la estabilidad en sistemas eléctricos de potencia (SEP), definida como la capacidad de mantener sincronía tanto en condiciones normales de operación como después de una perturbación (por ejemplo, un corto circuito y/o cambios en las condiciones de operación), ha atraído la atención de muchos investigadores. A este respecto, la implementación de técnicas de control avanzado para sistemas de potencia se percibe como una área prometedora. En esta tesis, se trata el problema de control de un sistema de potencia multimáquinas con el objeto de garantizar la estabilidad, mediante la técnica de modos deslizantes y se compara el control presentado con uno ya desarrollado basado en pasividad.

La mayoría de las estrategias de control han sido desarrolladas para sistemas no lineales en tiempo continuo, y aplicadas para propósitos de control o monitoreo. Sin embargo, tomando en cuenta el desarrollo tecnológico en el procesamiento de datos y la capacidad de las computadoras digitales, se han desarrollado e implementado algoritmos más eficientes.

Esto ha motivado el desarrollo de estrategias de control en tiempo discreto. La mayoría de estas estartegias han sido desarrolladas a partir de la discretización de sistemas continuos, generalmente basadas en el método de Euler. En esta tesis se retoman trabajos previos sobre el diseño de algoritmos de control y de observación para una clase de sistemas no lineales discretizados mediante el método de Euler. Se presenta un análisis de estabilidad para el sistema en lazo cerrado (control discreto y observador discreto) y un estudio sobre la validez de implementar un observador discreto diseñado a partir de un sistema discretizado vía Euler (Estimación Práctica).

Finalmente, en ocaciones no se dispone del vector de estados de manera completa, lo cual dificulta la implementación de una ley de control. El problema de estimación de estado para sistemas no lineales, ha atraído la atención de la comunidad de control, y varios trabajos han sido propuestos para ciertas clases de sistemas. Por otro lado, también a veces aunado al problema del desconocimiento en parte del vector de estados, se desconocen algunos parámetros del sistema. A este respecto podemos decir, que la identificación de parámetros para sistemas lineales es un área ya muy estudiada, también se han presentado algunos resultados para sistemas no lineales. Sin embargo, cuando se presenta el problema de estimación de las variables de estado y la identificación de parámetros de manera simultánea, el problema se torna más complicado. Por tal motivo, en esta tesis se propone una solución a dicho problema, mediante un observador adaptable se efectúa una estimación del estado no medible y una identificación de los parámetros desconocidos simultáneamente para la clase de sistemas no lineales afines en el estado y en los parámetros. La motivación en el uso de los observadores adaptables es su potencial aplicación en la detección de fallas, aislamiento, transmición de señales y control adaptable entre otros. Además, se presentan dos aplicaciones de este algoritmo: Sistemas Caóticos y Máquinas eléctricas.

Contenido

1	Introducción		1		
	1.1	Generalidades y Antecedentes	1		
	1.2	Objetivos de la Tesis	3		
	1.3	Organización de la Tesis	4		
2	Cor	ntrol Continuo en Modos Deslizantes para Sistemas de Potencia	5		
	2.1	Introducción	5		
	2.2	Modelo Dinámico de un Sistema de Potencia	7		
	2.3	Diseño de Control en Modos Deslizantes	8		
	2.4	Control Hamiltoniano	14		
	2.5	Aplicación a Sistemas de Potencia	16		
		2.5.1 Diseño de Control en Modos Deslizantes	17		
		2.5.2 Diseño de Control Hamiltoniano	20		
	2.6	Resultados de Simulación	23		
	2.7	Conclusiones	28		
3	Sist	emas Discretos	29		
	3.1	Introducción	29		
	3.2	Descripción del Problema			
	3.3	Ley de Control Linealizante	32		
		3.3.1 Análisis de Estabilidad (sistema - control)	34		
	3.4	Estimación del Estado	35		
		3.4.1 Análisis de Estabilidad (sistema - observador)	37		
	3.5	Esquema Control - Observador (Análisis en Lazo Cerrado)	40		
		3.5.1 Análisis de Estabilidad	43		
	3.6	Aplicación (Robot de Unión Flexible)	47		
		3.6.1 Modelo Matemático	47		
		3.6.2 Diseño del Controlador	48		
		3.6.3 Diseño del Observador	49		
		3.6.4 Resultados de Simulación	49		
	3.7	Control Mediante Modos Deslizantes	54		
		3.7.1 Análisis de Estabilidad (sistema - control mediante modos deslizantes)			

	3.8	Aplica	ción (Generador Síncrono)	60		
		3.8.1	Modelo Matemático	60		
		3.8.2	Diseño de la Ley de Control	62		
		3.8.3	Diseño del Observador	63		
		3.8.4	Resultados de Simulación	63		
	3.9	Estima	ación Práctica	68		
		3.9.1	Análisis para el Error de Estimación	69		
	3.10	Conclu	siones	75		
1	Obs	ervado	or Adaptable	76		
4.1 Introdución			ución	76		
			ados Previos e Interpretación Propuesta	78		
		4.2.1	Observador Adaptable Exponencial para SistemasLineales Varí-			
			antes en el Tiempo	78		
		4.2.2	Observador de Estado para Sistemas Afines en el Estado $\ \ldots \ \ldots$	79		
	4.3	3 Observador Adaptable para sistemas afines en el estado en el estado y en				
		los par	ámetros	80		
		4.3.1	Discusión del Observador Extendido	83		
	4.4	Aplica	ción (Sistemas Caóticos)	88		
		4.4.1	Modelo Matemático y Diseño del Observador	88		
		4.4.2	Resultados de simulación	90		
		4.4.3	Identificación de γ (caso 1)	92		
		4.4.4	Identificación de γ,ρ y σ (caso 2)	95		
		4.4.5	Identificación de $\gamma, \rho \ \sigma$ y β (caso 3)	97		
	4.5	Aplica	ción (Generador Síncrono)	100		
		4.5.1	Modelo Matemático	100		
		4.5.2	Resultados de Simulación	102		
	4.6	Conclu	siones	106		
5	Conclusiones 10					
	5.1	Contri	buciones de la Tesis	107		
	5.2	Trabaj	os Futuros	109		
A	Sist	emas d	le Potencia Multimáquinas	110		
	Δ 1	Nomer	oclatura del Sistema de Potencia MultiMéguinas	110		

В	Sistemas Discretos		111
	B.1	Equivalencia en Estabilidad Exponencial	111
B.2 Propiedades de las Matrices de Control y Estimación			112
B.3 Resultados		Resultados Aplicados al Análisis de Estabilidad para Sistemas Discretos .	114
	B.4	Función de Lyapunov Discreta	115
\mathbf{C}	Observador Adaptable		117
	C.1	Derivada de una Matriz Inversa	117
	C.2	Matriz Inversa para el Sistema Extendido	117
D	Pub	plicaciones	119

Lista de Figuras

2.1	Control de regulación	9
2.2	Control mediante modos deslizantes clásico	11
2.3	Control mediante modos deslizantes continuo	11
2.4	Sistema de potencia multimáquina	17
2.5	Ángulo de potencia del generador 1	24
2.6	Ángulo de potencia del generador 2	25
2.7	Velocidad Angular del generador 1	25
2.8	Velocidad Angular del generador 2	26
2.9	Voltaje Transitorio en el eje de Cuadratura del generador 1	26
2.10	Voltaje Transitorio en el eje de Cuadratura del generador 2	27
2.11	Leyes de control aplicadas al generador 1	27
2.12	Leyes de control aplicadas al generador 2	28
3.1	Ley de control mediante retroalimentación de estado	34
3.2	Estimación del estado	38
3.3	Estimación del estado	41
3.4	Desplazamiento del eslabón	51
3.5	Desplazamiento del eslabón (acercamiento)	51
3.6	Desplazamiento del rotor	52
3.7	Velocidad con que se desplaza el eslabón	52
3.8	Velocidad del rotor	53
3.9	Ley de control linealizante	53
3.10	Generadro Síncrono	61
3.11	Posición angular	65
3.12	Error en la posición angular con diferentes ganancias en la estimación .	65
3.13	Velocidad angular	66
3.14	Voltaje transitorio en el eje de cuadratura	66
3.15	Ley de control basada en modos deslizantes	67
3.16	Desplazamiento del eslabón en lazo abierto con $ au=1ms$	73
3.17	Desplazamiento del eslabón en lazo abierto con $\tau = 2ms$	73
3.18	Desplazamiento del eslabón en lazo abierto con $\tau = 3ms$	74
<i>1</i> 1	Esquema de comunicaciones mediante sistemas caóticos	20

4.2	$x_1 \text{ vs } \hat{x}_1 \ (\beta, \rho \text{ y } \sigma \text{ conocidos}) \ \dots $	92
4.3	x_1 vs \hat{x}_1 (acercamiento) $(\beta, \rho \text{ y } \sigma \text{ conocidos})$	93
4.4	x_2 vs \hat{x}_2 (β, ρ y σ conocidos)	93
4.5	x_3 vs \hat{x}_3 (β, ρ y σ conocidos)	94
4.6	γ vs $\hat{\gamma}$ (β , ρ y σ conocidos)	94
4.7	γ vs $\hat{\gamma}$ (β conocido)	95
4.8	ρ vs $\hat{\rho}$ (β conocido)	96
4.9	σ vs $\hat{\sigma}$ (β conocido)	96
4.10	γ vs $\hat{\gamma}$ (ningún parámetro conocido)	97
4.11	$ ho$ vs $\hat{ ho}$ (ningún parámetro conocido)	98
4.12	σ vs $\hat{\sigma}$ (ningún parámetro conocido)	98
4.13	eta vs \hat{eta} (ningún parámetro conocido)	99
4.14	Ángulo del rotor y su estimado	103
4.15	Velocidad del rotor y su estimado	103
4.16	Voltaje transitorio en el eje de cuadratura y su estimado	104
4.17	Parámetro m_1 y su estimado	104
4.18	E_q' y su estimado, bajo incertidumbre $\dots \dots \dots \dots$	105
4.19	Parámetro m_1 y su estimado, bajo incertidumbre $\dots \dots \dots$	105
4.20	Sensibilidad del observador en la estimación de m_1	106
B.1	Teorema de valor medio aplicado a la función de Lyapunov	115

Lista de Tablas

2.1	Parámetros para el sistema de potenc	cia multimáquinas	24
3.1	Parámetros del robot manipulador .		49
3.2	Parámetros del generador síncrono		62