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taron resultados via simulacién digital para estos casos de estudio, mostrando asf ¢l buen
desempeiio del observador.

5.2 Trabajos Futuros

Los temas a desarollar como trabajos de investigacion futuros, a los que consideramos
que serfa adecuado dar seguimiento son los siguientes:

Con relacion al estudio de sistemas electromecanicos, tales como el motor de induccién
y los generadores sincronos, consideramos que un aspecto importante a tomar en cuenta
es el uso de modelos mdas completos gue tomen en cuenta efectos tales como la saturacion,
las dindmicas del regulador automético de voltaje {AVR), entre otros.

Ademds, serfa deseable que las leyes de congrol desarrolladas para sistemas eléctricos
de potencia sean decentralizadas, es decir se puedan implementar sélo con mediciones
lIocales. O en los casos en el que no se dispone de todas las variables de estado necesarias
para implementacién de una ley de control, emplear un observador de estado.

En lo referente a los sistemas no lineales discretizados, en este trabajo de investigacion
se retomarén los trabajos reportados en [1, 19] y se efectué un anilisis de estabilidad
para el sistema en lazo cerrado. El estudio se efectud para la clase de sistemas no lineales
linealizables por retroalimentacién de estado, discretizados mediante el método de Euler.
Como tema de investigacién futuro nos gustarfa estudiar la estabilidad del sistema en
lazo cerrado para sistemas discretos de orden superior.

Por otra parte, se puede considerar el caso de téner un sistema continuo y un esquema
de control y observacién discreto, de modo gue un estudio de estabzhda,d para esta clase
de sistemas hibridos serfa un tema interesante a realizar.

Finalmente, para los observadores adaptables, una extensién de este trabajo consis-
tirfa en considerar una clase m4s general de sistemas afines en el estado, asf como sistemas
en cascada. Ademds, la versién en discreto de este observador adaptable para una clase

de sistemas no lineales puede ser también un tépico interesante a estudiar.



Anexo A
Sistemas de Potencia Multimaquinas

A.1 Nomenclatura del Sistema de Potencia Multi-
Maquinas

8;(t) dngulo de potencia {del generador £}, en p.u.

wi(t) velocidad relativa, en p.u.

wo = 27 fy, velocidad sincrona,

P, potencia mecdnica, en p.u.

P.,(t) potencia activa, en p.u.

D; constante de amortiguamiento, en p.u.

H; constante de inercia, en segundos

E, () voltaje transitorio en el eje de cuadratura, en p.u.

E,(t) voltaje en el eje de cuadratura, en p.u.

E (t) voltaje de excitacién, en p.u.

Vi, voltaje en terminales, en p.u. o

T}, constante de tiempo transitoria de corto circuito del eje directo, en segundos

X4, reactancia del eje directo, en p.u

X, reactancia transitoria del eje directo, en p.u.

B;; elemento ij (i denota la fila y j la columna) de la matriz de susceptancia nodal
(simétrica), en los nodos internos, después de eliminar todos los buses fisicos,
en p.u.

Qe:i(t) potencia reactiva, in p.u.

Ii(t) corriente en el eje de cuadratura, en p.u.

I4(t) corriente en el eje directo, en p.u.
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Anexo B

Sistemas Discretos

B.1 Equivalencia en Estabilidad Exponencial

La definicién formal para la estabilidad exponencial' de sistemas discretos esta dada por

Definicién B.1 Decimos que el origen % del sistema &£(k + 1) = F.(k,£(k)) sujeto a la
condicion inicial £(ko) = &y es exponencialmente estable, si existen consiantes ay,ay >0
y ag < 1 tal que la solucion del sistema £(k) salisface

6ol Sar =€) < azlléollas VE > ko >0 (B.1)

si ademds (B.1) se satisface para toda £ € R™, entonces decimos que el origen del sistema
es globalmente exponencialmente estable.

Si comparamos la definicién anterior {B.1) con la dada en la seccidn 3.2 del capitulo
3 (ver (3.2)), notamos que la principal diferencia se presenta en los términos
€ < azligolle™*)
el < aalléollas

pero, para la primera expresién tenemos

IR < aalléplle™ ) = apflgolle™ e o = Ga||€yfle™ ™

donde @ = ase** = constante, por lo tanto

af ek _ '(6~Af)k

es decir
a3 ~ e~ = constante (B.2)
Sin embargo, de la definicion A.1 para garantizar estabilidad tenemos a3 < 1, hecho
que aplicado a (B.2) resulia en
e < 1
In(e?) < In(1)
A < 0

Lyéase [49] pagina 266
23e asume sin perdida de generalidad que el equilibrio est4 en el origen

m -
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es decir, A, > 0, lo que concuerda con el requerimiento para A, dado en la definicién 3.1.

B.2 Propiedades de las Matrices de Control y Esti-
macion

La estructura de 1as matrices utilizadas en el capitulo 3 para el control y la estimacion
estdn dadas por (3.4,3.10)

QP = diag(ﬂn»' ot ”O) para p 2 1

7l
F=((¢ ... gr? con CP=_——1—
(Cn ) (n — p)'p!
Ay = dia 1 L ara 6>1
g = 1ag 6 o P -
L..cr ="
K = COl(Cn"' n) con n—m
Entonces
1
[ 0 o\{1r---0)({X 0 -0
0 n—1 D U ,-,1_ -
QA" = : . ~
0 : T : 0
\ 0 0 p 00 . 1 0O 0 %
(10 -0 1 0
0
= 01 +7p =TI+ 71pA
P 0 L
\©0 0 -1 00 - 0
7 0 -0 1] 0
0 yi—1 . E 0 0
QPB= P . = . =p =pB



Ao A, AL

CAG?

AgB

Por lo tanto

[ BT

el

=

o o ..
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0 .0 g 0 - 0
. . 0 62
0 T P 0
x 1 0 0 "
.0
_!_,rg =I+79A
1
.0
g 0
0 6
0) . =(9 0 .- 0)
00
0)=BC
0 0
0 1] 9 1
: S
1 # 1
QA Q! =1+ 7pA (B.3)
Q,B = pB '

ApA NG =T+ 7PA
cag' =0C

1

AHB = n

(B.-4)
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B.3 Resultados Aplicados al Andlisis de Estabilidad

para Sistemas Discretos

Declaracién B.1 [14] Ses A. = I + v.(A — BF), donde las mairices A y B tienen lo
estructura dado por la forma canonica controlable de Brunovsky y F' y CF son definidas
como en (3.4). Entonces, para todo v, € (0,1), la iinica matriz simétrica definida positiva

P, que satisface la siguiente ecuacidr matricial algebraica
AfPAc— Pe= =y Pe— 71 =1 )" F'F (B.5)

estd dada por P, = N'N, donde N = AE,, A. = diag (1, 1- 'yc)%, e (1= 'yc)ﬂT_l),
ademds st i y j denotan las filas y los columnas de E, respectivamente, los elementos de

E, son E.(i,7) = C?=% para § > i y E,(i,) = 0 en caso contrario.

Declaracién B.2 [14] Sea A, = I +v,(A — KC), donde las matrices A y C tienen la
estructura dade por la forma canonice controlable de Brunovsky y K y CF son definidas
como en (3.10). FEntonces, para todo v, € (0,1), la dnica matriz siméirica definida

positiva P, que satisface la siguiente ecuacion matricial algebraica

AEPOAO - F = _70P0 - 70(1 - Wo)nCrTC (Bﬁ)
esté dada por P, = MTM, donde M = A E,, A, = diag (1, (1- fyo)%, (1= 70)%),
ademds si i y § denotan las filas y los columnas de E, respectivamente, los elementos de

E, son Bo(i,5) = (=1)*C™ para j > i y E,(i,7) = 0 en caso condrario. 3

Lema B.1 [30] Si pare un sistema £(k + 1) = Fi(k, £(k)) existe un p > 0 (entero)
, Tmax > 0, > 0 y ¢; > 0 proporcional a 7-VP tal que pare todo k = ko, toda §(ko) = &g
y todo T € (0, Trax) :

maxnz(k)/n < vl

o) ifp

(Z uc*(k)up) < el (B.7)
k=kq

entonces, exislen & y Ar > 0 proporcional a 7 tal que (8.2) se cumple para todo &,.

$Para un anglisis m4s detallado de ambas declaraciones véase [14)
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B.4 Funcién de Lyapunov Discreta
Consideremos la expresién

AV, = V(z(k+1)) =V (zeg (k+1))
= V(fr (@ (k),0) +pr(z(k), ey (k) — V (fr (2 (5),0))

que en lo sucesivo por simplicidad escribiremos como
AV =V {f+p)-V(f) (B.8)

Ahora, consideremos la siguiente figura para la expresién (B.8)

Vif+qg)

v(f)

f f+g

Figura B.1: Teorema de valor medio aplicado a la funcién de Lyapunov

Por 1o tanto, por el teorema de valor medio

R R

Entonces AV, (B.8) podemos expresarla como

AV = V(f+p)-V(f) = V'(k)p

av
= =m® (h)p
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Finalmente, tomando la norma en ambos lados de la ekfaresién resulta

2l < |2 o is
< v lpl
donde Iyy = max ﬁ/— (k)

k>ko Oz (k)



Anexo C
Observador Adaptable

C.1 Derivada de una Matriz Inversa
d
0 = E(I)
d _
= —(447)
d _ d, .
- [E(A)}A L+ Az (47)
por lo tanto

Ay = - |Zw]a
1)

Guy = -t L) an

C.2 Matriz Inversa para el Sistema Extendido

A continuacién procedemos a la deduccién de la inversa para la matriz del sistema au-

mentado (4.20), mediante operaciones de renglén’

~1
s s|1 o), 1 sig]st o
ST S|o I sT s |o 1 —Si Rt By
I S8, 51 o

(—SES718, + S5) ™ Re :

O —STS78+ 8 | =SSyt I

1En lo sucesivo R; (i = 1,2) denota el mimero de reglén

117
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—S7'S Ry + Ry

I 578 St 0

O I | —(-STS{'Sy+8) "t SEST (~SPSTMSa+Ss)

- — -1
I 0| 88 (—SIS; Sa+85) " STST 487 =878 (—SF 57" S2 + Ss)

~1
o I — (—STST 8 + 5s) T STST (—STS1S2 + S5)
por lo tanto
Sil = 878y (=TS8, +8) " SIS+ 57
= STV 45718, (57571 +85) ST S

S-S5 (SgSflSz — 33)_1 sTert
= 57 (I-5(S797"5 - 8) s{s;l) (C.2)

vy ademas

S5l = —(—8TS715, + S3) 7 STS
= (STS7'S2— %) 578 (C.3)
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Abstract

In this paper, we present a conircl-observer scheme
for discrete-time nonlinear systems. A controller and
an observer are proposed for a class of discrete-time
nonlinear systems. The results obtained are applied
to a flexible robot in order o illustrate the proposed
scheme. :

Keywords: Discrete controller, Euler discretiza-
tion, Nonlinear Observer, Flexible robot.

1. Introduction

Motivated by the recent advances in digital technol-
ogy, discrete-time nonlinear systems control theory is
receiving an increasing attention in different aspects of
control and dynamic systems theory originally devel-
oped for continuous-time systems. Such is the case of
feedback linearization (see e.g. {1, 10, 11]), passivity-
based (cf. [3]), backstepping (cf. [7]). Ses also [4].

The present paper deals with the problem of
observer-based output feedback stabilization of Euler
approximate discrete-time systems under the standing
assumption that the continucus-time system is feed-
back linearizable. In particular, we will propose a con-
trol scheme which relies on the ability to make that
the closed loop system has a cascaded structure. Ear-
ler contributions in this direction include {2].

Our main contribution is an observer-based con-
troller which ensures a form of exponential stability
which has a uniforne bound on the overshoot of the sys-
tems response and a convergence rate which is linear in

*Corresponding Author

0-7803-7896-2/03/$17.00 ©2003 IEEE

the sampling period. This specific form of stability is
important since only then, one can guarantee that the
exact discrete-time and in its turn, the sampled-data
systems have certain stability properties. See (8, 9).

2. Problem statement

Notation. Given any symmetric positive definite ma-
trices P, @ we will denote by |z||% :== 2" Pz for any
z € RB" and use the constants ¢;, ¢3 in the relation
allzlr < zllg < e2llzllp. We will use ¢ for a generie
positive constant, i.e., we will write with an abuse of
notation, ¢ + ¢ = 2 = ¢. We denote by £(k) the solu-
tion of the difference equation £(k 4 1) = F,(k,£(k))
with initial conditions kg > 0 and &, = £(kq)-

We consider feedback linearizable (in continuous
time) nonlinear affine systerns. We are concermed by
the output feedback problem of the Fuler discretiza-
tion of nonlinear systems in the normal form, i.e., we
are interested in designing an observer and an output-
feedback controller for the Euler-based system

{ z(k+1) = A z(k) + 7B {alz(k)) + Bla(k) julk}}
y = Cz (k) = o1 (k) an

1 7 -~ 0
where A, = (I, + TA) = - )

0 0 T
0 0 1

01 0 0

: : 0

A= ) H B=
0o i
0 0 0 L
2359 Proceedings of the American Control Conference
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We assume that 3(x) # 0 for &ll .

We address this control problem by designing an
exponentially stabilizing observer-based controller for
the approximated linearizable system (2.1). More
precisely, we will design an observer-based controller
which guarantees the following property for the closed-
loop system:

Defipition 1. (Uniform Exponential Stability)
The origin of the system &(k + 1) = Fr(k, £(k)) is said
to be uniformly exponentially stable if there exist r,
Tumaxs & > 0 and for each 7 € (0, 7ax), Ar > 0 such
that,

£kl < v lE® < slig,lle™ ¢+ (2.2)

Yk > ko. If furthermore (2.2) holds for all £(kp) €
R™ then, the origin is said fo be uniformly globally
exponentially stable.

The property defined above is probably the most use-
ful for discrete-time systems since it imposes a bound
on the overshoots which is uniform in the initial con-
ditions and the sampling time. Moreover, in the par-
ticular case when A, is proportional to 7, this prop-
erty guarantees that the ezact discrete-time model is
{globally) asymptotically practically stable. Roughly
speaking, this means that the solutions tend to an ar-
bitrarily small ball whose size is independent of + and
can be made smaller as Tmax becomes smaller. Sec [8]
for precise definitions and the only formal framewark
we are aware of, which establishes asymptotic practical
stability of exact discrete-time nonlinear systems based
on uniform (practical) asymptotic stability of approx-
imate discrete-time systems.

=

3. Observer-based control

3.1. Conirol design

Consider the system (2.1) under the action of the static
feedhack-linearizing control law,

w= ") o) - ala)],
where a(z) and §(z) are assumed to be known, 5z} #

0 for all z € R™, and the external control input v{z) is
defined as

(31)

v(z) = -FQ .z (3.2)
where the matrices F € Rlxn ;.4 1, € Boxn gre given
by

Q, =
F o=

dmg(p“:-v.,p),

3.3
(cg On~1), p>1, (33)

n
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with C¢ = (n_—n#!W‘ Then, the resulting closed-loop
system is

2k +1)= (A, —TBFQ,)z(k). (3.4)
The following result is useful to establish our main re-
sult.

Lemma 1. There erists Tmax > 0 sufficiently
small such that the system (8.1) in closed-loop with
(3.1},(3.2), (3.3) is uniformly globally exponentiaily
stable with M. proportional to 7 € (0,Tmax) end for
all p > 0 such that pry., € (0,1).

The proof of this Lemima is based on the following
statement and is omitted here for lack of space.

Claim 1 ([6]). Let Ac = I 3 v,({A — BF) where the
malrices A and B are in the usual Brunovsky control-
lable form, and F and CP are defined as (3.3). Then,
for every vy, € (0,1), the unique symmeéric positive
definite mairiz P. salisfying the algebraic equation

Ag'PcAc -P.= "YGPc - 7::(1 - 'Tc)"FTF

is given by P. = NTN, where N = AcBe, A =
diag(1, (1 —,)%, . (1 —7,)°T ) and, letting i and j
denote the rows and columns of E, respectively, the
elements of E, are E (i,j) = CLZ; for j > i and
Ec(i,§) = 0 otherwise.

3.2. Observer design

In this section we introduce an observer for the class
of systems (£.1) which belongs to the class of systerns
with a triangular structure. This property of the non-
linearity is important because it ensures the uniform
observability of the system.

An observer for the transformed system (2.1) is given
by

2(k+1) = Az(B)+7Blo(2(k)}+ 8 {z(k))u(k)]
+TAF K [y (k) — § (k)] (3.5)
where
Ay = diag( § ) for 6>1, (3:6)
) !
K = col(C} Cr ) with c,r;:r_”ﬁ@.

The term 7A; 'K represents the observer gain.

Defining the estimation error as € = z — g, it follows
that the dynamics of the estimation error is of the form

e(k+1) = {[A —7A;'KC}e(k) (3.7)

+7BY(e(k), z(k), u(k))

Proceedings of tha American Control Conference
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where
UT(e, 1) := [ale + ) — afz) + (Ble+ x) — B(z)) o]

In order to make a statement on the stability of the
observer we need the following hypothesis.

Assumption A. The function ¥, along the trajecto-
ries of (2.1) and (3.7), driven by any admissible control
input u(k) satisfy

| BES (e(®), w(k), w(kDI < b [le(R),
VE> ko >0, Vre(l0,Tmax) -
Remark 1. Notice that this assumption holds for in-
stance if, for each compact X, and defining U, := {u €
R™ 1 u = g7 z) [v(z) — a(x)], * € A} there exists
I > 0 such that | BY (e, 2, u)|| < 11 [le||, (k) € & and
w(k) € U, for all 7 € (0, Tmax) and all & > &y > 0.

Lemma 2. Assume that the system (2.1) satisfies as-
sumption A, Then, there erist Tya > 0 sufficiently
small gnd By, > 0 sufficiently large such that the es-
timation error dynamics (5.7) is uniformliy globally ex-
ponentially stable with A, proportional to 7 € (0, Tryax),
Jor all 8 > 0y such that OninToas € (0,1).

The proof of this Lemma is based on the following
claim which is the dual of Claim 1.

Claim 2 ([6]). Let A, = I+ 4,(A— KC) where K
is defined as in (3.6). Then for every v, € (0, 1), the
unique symmelric positive definite mairiz P, satisfying
the algebraic eguation,

ATP,A, - P, = —,P,— v, (1—7,)"CTC,

is given by P, = M™M where M = AE,, A, =
diag(L, (1 — 7,07, (1 — 'yn)lf'_l) and, letéing i and
J denote the rows and columns of E, respectively,
the elements of E,, are E,(i,j) = (—1)‘”6‘;:} for
i< j<n and E,(5,7) =0 otheruise.

3.3. Main result

We can now establish the following result.

Theorem 1. Consider the discretized nonlinear sys-

lem

z(k+1) = A.z(k)+7B{a(z(k)) + Blz(k))u(k)}
y(k) = Calk)

under Assumption A. Then the observer-based output
Jeedback control law,

z(k+1) = Arz(k)+7Bofz(k)) + 5 (z (k) u(k)]
+7A7 K [y (k) - § (k)]
u(k) = B7M(2(k)) [-FQpz(k) - alz(K))],
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renders the equilibrium (x, 2) = (0, 0) of the closed-loop
system (2.1}, (3.1)-(3.3), (3.5)-(5.6) uniformly expo-
nentially stable.

Proof: The result follows if and only if the origin of
the estimation error and the observe dynamics, {e, 2} =
{0,0), is exponentially stable. In view of Lemma 2,
we only need to prove that the origin of the observer
dynamics under the control action,

z(k+1) = Az(k)+7Bofz (k) + Bz (k) u(k)]
+TAG K [y (k) - §(R)], (3.8)
is uniformly globslly exponentially stable.
To prove this, we will invoke the following result.

Lemma 3. If for a system £(k+ 1) = f-(k,£(k)) there
exist p > 0, Tmax > 0, ¥ > 0 and ¢ proportional to
717 such that for all k > ko, all £(k.) = &, and all
Te (OaTmax)a

max ekl < vl (3.9)
oo B i/p
(Z u.s(k)up) < eollél (310
k=k,

then, there exist & and A, > 0 proportional to 7 such
that (2.2) holds for all £, € R™. O

Hence, we proceed to compute the bounds (3.9),
(3.10) with £ = colle, z]. We start with the bounds
for {le(4)l- From Lemma 2, it follows that ||e{k)||, <

le(ko)llp, e~¥7*~Fe) de. |le(k)]lp, < lle(ko)lp, and
therefore, there exists ¢ > 0 such that

lleCe)l < clle(ka)ll V& = ko (3.11)

Also from Lemma 2, we obtain AV,, < —726V;,, then
evaluating the sum from kg to co on both sides of
AV;, < —728V,, , it follows that

Vg 2- O AV, > 3 #8e(R)i3,
=ky =kg

s0 using the equivalence of the norms || - || and || - ||,
we conclude that there exists ¢ > 0 such that

%o 1/2
( 3 ue(knﬁ) < —
‘/;3

k:ku

lle(ke)ll - (8.12)

Next, we proceed to compute similar bounds for
z(k). To this end, reconsider the observer dynamics un-
der the control action, and under the coordinate trans-
formation 1 = Q,z, i.e.,

k+1) = (In+7p(4d—BF))nk)
+7, AL KC AL e (k)
Aa(k) + 1O, A KCAF e(k{3.13)

i
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where A, is defined in Claim 1 with y, = 7p. Define To show contradiction, assume that V,, — oo as
V, = 0T P,o then, we get that the difference equation k — oo. From the above we see that there exists
AV, = Voo, — Vo, along the trajectories of (k+1) = &* > 0, such that AV, < 0, which implies that
Aco(k) yields (> < clln(ko}|? for all £ > &*. On the other hand,
AV = Voo —v W0 < cllm(ko)®+e* N e (ko) for all b < k*.

* Thi T Therefore, (k)" < cllnlll” + ck* N7 yax ||z ko)l

= o¥{k) [A?P cAe — P, c] a(k). for all k¥ > kg. We conclude that there exists ¢ > 0
independent of T such that
It is easy to see from Claim 1 with -y, = 7p, that
2B < efiélholt  YE20. (3.15)
AV, = —7po” (k)P.o(k) From the bounds (3.11), (3.12), (3.14), (3.15), and
—rp(1 —1p)"0T (k)FT Fo(k) invoking Lemma 3 with ¥ = ¢, p = 2 and ¢; =
AV,, < -7p ||o-(k)|[§,c c(ma.x{ 5 T})I/ ? {(which is obviously proportional to
77U2), we conclude that there exist £ > 0 and A,
Using this bound we now evaluate the difference equa- proportional to 7, such that (2.2) holds. |

tion AV, =V, _, — ¥, where ¥, = n{k)7 Fa(k)
along the tra]ectones of (3.13) to obtam
4. Application to a flexible-joint robot

Ap;?k = V’TE—L - V’i‘k
< —1p "n(‘;‘:)"%c + 72N ||e(R) uic We apply .the }‘e-sults developed above ~t.o the (-:ontrol
120N e . ()] of the flexible-joint robot. The dynamic equations of
B . Pe . a single link robot arm with a revolute elastic joint
< —1(p—1)|Ink)lfp, +TN? le(E)I B, rotating in a vertical plane are given by

where we defined N = [|R,A;"KCA;"||. Evaluating 0+ Fid + ko — @) +malsin(@) =0
the sum from kg t0 oo on both sides of the inequality JnGa+ Fnge —fln — @) = u

above, and using (3.12) we obtain that ¥y = q
= oo in which q; and ¢ are the link displacement and the ro-
> AV, Ty {(p — 1) |In(k)|%, — eN? le(k)||” Lor displacement, respectively. The link inertia J,, the
k=ko =ky motor rotor inertia .J,,, the elastic constant k, the link
oo . ||E(ko)||2 mass m, the gravity constant ¢, the center of mass {
T(p—1) E (&), — GN2T and the viscous friction coefficients F} and F,,, are pos-
= itive constant parameters. The control u is the torque
delivered by the motor. Assuming that only ¢; is mea-
sured, u is to be designed so that g; tracks a desired
reference gp1(f) where the parameters are assumed to

Z [I=2( k)" 'r(p 0 ("'fi(ko)" ||5(k0)||2) be known. Defining the state variables,
k=ko &1=q, &=q, £3=4 54 = g,

hence, setting gy, > 1 and since n = Q,2, we finally the model in state-space form is
obtain that

v

IV

which implies that

é1 = 52
o 1 .
P EOTR I (ko) | (3.14) & = -—'52 Sm(ﬁl) - —( —&)
k=kg \/_ .
€3 = &
where it is clear that ¢ is independent of 7. To deter- s Fm kL 1
mine the last bound, we recall that & = —7% € -&)+ g (41

2
AV < -Tlp -y + TN e (k) I7. - 4.1, Control design
Then, using lle()||p, < [le(ko)ll o, e¥7%9) | we ob-

. The system (4.1) is state-feedback linearizable by
tain that

means of the change of coordinates (cf. [5])
AV, < =70~ DV, +7eN (o)l e @ ER) @y = g,
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2 = &
5 = ~2-Dsine) - 5 6 - &)
£y = P—J;ij-fﬁﬁ;gls'n(&)
+ e 6= 6=
_%f_l i (§I)+—Ei—lsm§1
and feedback

u= 6" [u(z) — a(=))

where §(z) = 75— and

2
a(z) = (m—J—flsinm1+ﬂ—;;!-£cosm1+%?)mg
i
mgl k F}2
=+ 7 cos:.z'1+(J! JP ®
F {
b [7:932 + ﬂf- sinzy + %(xl — :cg)]
JEZ 1t I 1 — T3 I, a| .

The external control is given by »(x) = —F{Q,x, where
the matrices I and €, are defined as in (3.3), i.e.

F=(C € C2 C§)=(14¢6 4)and
Q, = diag(p*, 0%, 0%, ).

Then the external control is given by

v(x)

Py
—(p*x1 +4p°ca + —6pixy + dpwy).

4.2, Observer design

According to Section 3.2, the observer is given by

2k+1) = A-x(k)+7B{a(2(k) + 5 (2(k)) u(k)}
+ragtK [y(k) — §(k)]

where the observer gain is

48
60>
44°
34

rAerlK:f

with Ay = ding(d, 62, 6°,6%);
K=cld(C} €3 C} Cf)=col(46 4 1)

Therefore, the observer beconies

zi(k +1) = 2 (k) + r22(k) + 470 (z1(k) ~ 21(k))

zo(k + 1) = z(k) + 723(k) + 676 (z1 (k) ~ 2,.(k))

z3(k 4+ 1) = z3(k) + 724 (k) + 4763 (21 (k) — 7 (k))

za(k + 1) = z3(k) + To(2(k)) + 8{z(k))ulk)
+76 (21 (k) — 21 (k).

4.3. Simulation results

Numerical simulations were carried out to assess the
closed loop responses of a flexible-joint robot using
the above observer and controller algorithms was per-
formed for the following numerical values: m = (.4 Kg,
g =981 m/s?, | = 0.185 m, J; = 0.002 N-ms?/rad,
Jn = 0.0059 N-ms?/rad, k£ = 1.61 N-m-s/rad

The initial conditions for the numerical sim-
ulation were selected as follows: ko 0,
={0) col (0.1 0.2 003 004 ) and 2(0) =
col ( 02 03 015 0.25 ) . The sampling period
was set to 7 = 0.0001. The parameter of the controller
gain was set to p = 30, the parameter design of the ob-
server was chosen as # = 80 and finally, the reference
signal is ¢ (t) = &sin(4t). Figures 1-4 illustrate the
performance of the proposed scheme.

5. Conclusions

An observer-based controller for feedback linearizable
discrete-time nonlinear systems of Euler type was pre-
sented. Uniform exponential stability of the closed loop
system was established. This allows to conclude on
the practical asymptotic stability of the corresponding
sampled-data system.

The usefulness and the performance of the proposed
schieme was flustrated on the application to a flexible-
joint robot. In particular, simulations show the fast
convergence of the observer.
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Abstract

In this paper, we consider a class of nonlinear systems
which are discretized via an Euler discretization proce-
dure. A control design based on sliding-mode techniques
is proposed. Furthertnore, a discrete-time nonlinear ob-
server is used. The proposed controller-observer scheme
is applied to a synchronous generator connected to an
infinite bus. Simulations are carried out to show the
performance of the controller-observer scheme.

Keywaords

Discrete-time systems, Sliding-mode, Nonlinear ob-
server, Synchronous generator,

1. Introduction

The increasing complexity of electric power systems
demands more efficient and powerful methods to en-
sure the control and operation of such systems. One
of the strategies to improve the dynamic performance
and large disturbance stability of synchronous genera-
tors consists in the design of excitation controllers. The
main control function of excitation system is to regulate
the generator terminal voltage.

Various techniques have been recently investigated to
tackle the problem of transient stability by considering
nonlinear models (see, for example [1, 3, 6]). Alter-
natively, the sliding-mode control technique has been
extensively used when a robust control scheme is re-
quired [2, 8]. Usually these methods are developed for
continuous-time representation.

However, these controllers are implemented via digi-
tal computers, then several different methods have been
proposed to design digital controllers for continuos-time
plants. One approach, which sometimes is refered to
as the emulation method, considers a continuous-time
plant model for which a continuous-time controller is

*Corresponding Author

0-7803-7924-1/03/$17.00 ©2003 IEEE

designed, then the controller is discretized and imple-
mented using sampler and hold devices. A second ap-
proach a discrete-time controller is designed using an
exact disctre-time model of the plant. However, it
s well-known that to obtain the exact discrete-time
model iz not evident. Instead, an approximated discrete-
time model can be obtained using some numerical in-
tegration scheme, One of the simplest schemes is the
Fuler discretization. Furthermore, taking into account
the new results which guarantee, under suitable condi-
tions [7], that if a comtroller stabilizes an approximate
(Euler) discrete-time model then for sufficiently small
sampling periods the same controller will stabilize the
exact discrete-time plant model in semiglobal and prac-
tical sense.

On the other hand, when all states of a control system
are not available for feedback, an observer is necesary. In
the nonlinear continuous-time case, several results have
been proposed (see[5]). For discrete-time nonlinear sys-
tems this problem remains open. and some results have
heen proposed. In this paper, we present an observer
design for a specific class of diserete-time nonlinear sys-
tems considered here.

In this paper, we propose a stabilizing control law
based on sliding-mode methodology, which allows to
track a rotor angle reference for a synchronous gener-
ator. The controller-observer scheme is then applied to
the model of a synchronous generator and the overall
stability is shown via simulation.

The paper is organized as follows. In Section 1, we
introduce some basic notions on the structure of the
class of nonlinear systems considered in this paper. The
control and observer design proposed in this work are
also introduced is given in Section 2 and 3 respectively.
In Section 4, the controller-observer scheme is applied
to the model of the synchronous generator and numer-
ical simulations are presented. Finally, conclusions are
drawn.



2. Problem setting and definitions

We denote by £{k) the solution of the difference equation
&(k+1) = F;(k,£(k)) with initial conditions kg > 0 and
& = £(Ko)-

We consider the following class of continuous-time
nonlinear systems

Swso:{ £ 10+ ol -

using the Euler approximation under the assumption of
a sufficiently small sampling period,

[ €+ 1) = £(8) + T {FERE)) + oE(R)uk)}
Enp { (k) = h(£(k) o2
2.

where for simplicity we denote £(k) = £(k7)}, for 7 fixed.

In the sequel, the following definition can be used in
order to design a controller and an observer.
Definition 1. Let £ C R"™ be a compact set. The sys-
tem (2.2) is locally feedback linearizable if there exists
a diffeomorphism T : E — X C B such that X = T(5)
contains the origin and defining z = T(£), the system
(2.2} can be trensformed into

2k + 1) = A_z(k) -+ 7B {alz{k)) + Blz(k))u(k)}

Swrp: { y=Cz(k) =21 (k)

(2.3)
17 . D\
where A, = (I, +74) = - ,
o0 .7
0 0 1
01 -0 0
A= L B=| i,
00 .1 0
00 - 0 1
c=(10 0 ) and 7 is the sampling period,
see [4].

We will address the above mentioned control problem
by designing an observer-based controller scheme for the
system (2.3). More precisely, we will design an observer
for which the following property can be verified:
Definition 2. (Uniform exponential stability) The
origin of the system £(k + 1) = F:(k,{(k)) is said to
be uniformly exponentially stable if there exist r, Trax,
& >0 and for each 7 € (0, Trnax ). Ar > 0 such that,

lek)<r =
(2.4)

If furthermore (2.4) holds for all £(kg) € R™ then, the
origin is said to be uniformly globally ezponentially sta-
ble.

The property defined above is probably the most use-
ful for discrete-time systems since it imposes a bound
on the overshoots which are uniform in the initial condi-
tions and the sampling time. Moreover, in the particular

e < kllflew k) Wk > k.

case when A, is proportional to 7, this property guar-
antees that the ezact discrete-time model corresponding
to (2.1) (hence with a discretized control input) is (glob-
ally) asympitotically practically stable. Roughly speak-
ing, this means that the solutions tend to an arbitrarily
small ball whose size is independent of + and can be
made smaller as T,.x becomes smaller,

3. Sliding-Mode Control Design

In the sequel, a control design based on sliding mode
techniques is proposed. The main idea is to design
an asymptotically stabilizing feedback control law as-
suring the sliding motion on a (n-m) dimensional space
M c R®. Consider the following nonlinear discrete-time
dynamics

J 2k + 1) = Foz(k)) + Gr(z(k))ulk)
s.{ e e (3.1)

The objective of the sliding mode control strategy is
to steer the states of the system into a (n-m} dimensional
manifold M and te maintain the subsequent metion of
the trajectories on M, such that as k& — oo, z{k) — 0.

For this system & sliding mode control is designed by
considering the following switching surface

(k) = 8" (w(k) ~ res(k)) (3:2)

where S is a vector: & = eof (St ..., Sn ) and
Eref(k + 1) = Zyop(k) is a constant reference signal.
We assume that STG(z(k)) is invertible.

Remark 1:

i} From Definition 1, the system {2.2) can be trans-
formed into (2.3), which can be expressed as system
{3.1) by taking F,(=(k}) = A_z(k) + rBe(=z{k)} and
G (2(k)) = TBAw(k).

ii) It is clear that there exist others possibilities to
define the switching surface. The choice depends on the
control objective.

The proposed control is designed in two steps. Firstly,
the equivalent conirol u.(k) is determined when the
system motion is restricted to the switching surface
a(k + 1) = 0, so that the contro] satisfying this slid-
ing condition is given by

T

(k) = [8TG.(e(k)) " [STFo(2(k)) — STres(k + 1))

The next step is as follows. A regulation control Au
is added in order to satisfy the reaching condition. A
necessary ard sufficient. condition for assuring both slid-
ing motion and convergence onto M is the discrete-time
reaching condition which can be stated as

loth + 1)) < |o (k)]
which must be satisfied (see [2]). For that, the switching
surface can be chosen as

o(k+1) = 487 (z(k) — zreg(k)) =no(k)  (3.3)
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where 0 < 9 < 1 is a scalar weighting value. It is clear
that this choice satisfies the reaching condition, i.e.
nla(k)| < lo(k)].
Then, the regulation control Au can be designed as
follows

Auk) = [STG, (k)] [15T (2(k) — 2res(R))] -
Finally, the control law is given by
(k) = we(k) + Aulk) (3.4)

The stability properties of o(k) = 0 in (3.3) can be
studied by means of the candidate Lyapunov function
V(e(k)) = o¥ (K)o(k). It follows that

Vie(k + 1)) — V(a(k))

il

= ~(1 -7 (Kalk)
=1V (o(k))
- ()" V(o(O)).

Hence, V{o{k+ 1)) = 0 as k — 0.

To prove the stability of the elosed-loop system un-
der control action (k) it is necessary to introduce the
notion of ultimate bound for the solutions of the unper-
turbed system

or equivalently V(o (k 4 1))

£(k +1) = Fo(£(k), k) (3.5)

where F.(£(k), k) = &(k) + 7 f(£(k)), which will be used
to study the stability properties of a class of perturbed
discrete nonlinear systems when the equilibrium point
is affected by a small perturbation in some sense.
Definition 3. The solutions of system (3.5) are sqid
to be uniformly ultimately bounded if there emist positive
constants 3, and By and for every r € (0,8,) there is
& constant T = T(r), such that
Ne(kalll < 7= NE(R)| < By, VR> ko +T.
The constant f, s knoum as the ultimaie bound,
Furthermore, we introduce a result of existence of #he
ultimate bound for the solution of system (8.5).
Consider the following assumptions:

Al. There exists p > 0 such that the eguilibrium point
£ =0 is uniformiy stable on B,,.

A2, There exisis g continuous function V : By x Z, —
R such that

e €I < VEHR) < o (R
AV(ER) < —es 6

Jor 0 < p < \/g-r, for some positive constants ¢, ce

and cg, for oll k > Q and for all £ € B,.

Theorem 1. Consider the system (3.5). Assume that

Al and A2 hold, There exists o class KL function

@(.,.) = ¢()p(.) such that p is & function of class K, p

is @ decreasing function and o finite time ky, depending

on E(ko) and p, such that the solution of (3.5) satisfies
IR < (llE (ko) p(k — ko)

||¢(k)|| < \/-z?u,

i < T.

and
V> b

Jor ||& (ko

o7 (k+ Do(k +1) — o7 (K)o (k)
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Now, the system (3.7) under the action of the control
(3.4) yields the closed-loop system

2(k +1) = fo(@(k),0) + prla(k), zres(k))  (3.6)
where
Se(a(k),0) = F(a(k)

;gr(w(k)) [STG (2(k))] ™" [nST (k) — ST Fr(a(k))]
Aru
Pe(@(k), @res (k) = Cr(a(k)) [STG (2(k))] ™ x

[ST-'Eref(k +1)— "?ST-Tref(k)]
1t is clear that the closed-loop system (3.6) can
be seen as a system with a unperturbed part, repre-
sented by fr{x(k),0) and a perturbed part given by
pr(@(k), Bres(k)).
Froin the boundedness of the columns of G, (z(k)) and
the non-singularity of STG,(x(k)), it follows that the
perturbed part satisfies the following inequality

P+ (&), Eres (RN < 1 [l (oW + Lz Wt (R

for a{k), &rep{k) € By, where l; and Iz are positive con-
stants.
Now, we consider the following assumptions about the
perturbed system:
A3, The equilibrium point of z(k+ 1) = f-{z(k),0), is
locally exponentially stable.
A4, The veference signal Zrop(k) is uniformly bounded
and satisfy ||Tres ()| < b, for some positive constant b.
By a converse theorem of Lyapunov, assumption A3
assures the existence of a Lyapunov funection V(zx, k)
which satisfies

(3.7)

e llz®)IF < Ve k) < e |k

AVi(e, k) = V(2 k+1) = V2, k) < —es [l=(®)*

for some positive constants ¢1, ¢z and e3.
Then, the forward difference function AV {x, k) along
the trajectories of the closed-loop system is given by

(3.8)
(3.9)

AV(z, k) = A Vi(z, k) + AVa(z, k)
where
AVi(z,k) = V(f (2(k),0), k + 1) — V(z, k),
and
AValz, k) = V(- (2(5),0) + pr(m(k), zeos (k) k + 1)

Furthermore, from assumption A4 and (3.7), the func-
tion AV,(z, k) satisfies the following inequality

1AValz, k) € Ll)ES(2(k), 0) + pr(2(k), 2pep (k)|
Ly ()P + Lyla e s ()12
Lo (k) 1* + 1203

<

<
<

Using the condition (3.9) and the above inequality, we
have
AV(z, k) < —(e3 = Lph) llo(R)|* + Lolob?,
If I, is sufficiently small such that &, < ) < %: is
satisfied. Tt follows that



AV(2,k) < —alz(B)|* + Llob?
where a = (c3 — Ipd;).
Then, the forward difference function AV (z, k) satis-
fies

AV(@zE) < —(1—7el=E) - rale®) + Hib®
< —(1-eale®)i?,

for some -y such that 0 < ¥ < 1 and for all [|=(k)| >

Izlgba -
V “4a
It follows that o < 7% ||lw(k)[|* for lz(k)]] < (/27

in

and a bound for Iy is given by ks < i3 < %;f-‘ilrz. From

o]

Theorem 1, the ultimate bound of the solution of system

(36) is given by B = /2, /b2t

where the solutions of the slow system satisfy

le(e)ll < (/2 222, vk >k,

for some finite time ky.

To prove that the closed-loop system is locally ulti-
mately bounded, we have the following lemma.
Lemma 2. Consider the discrete-time nonlinear system
(2.2} for which a control (3.4) is designed. Suppose that
assumptions A3 and A4 hold. Then, there exist posi-
tive constants i; and Iy suck that, for any initial state
x(kg), the solutions of the closed-loop system (8.6) are
ultimately bounded.

For z,.7(k) = 0,¥k > ko; the following result can be

obtained.
Corollary 1: Consider the discrete-time nonlinear sys-
tem (2.2) for which a control (3.]) is designed. Suppose
that assumption A3 holds. Then, there ezists a positive
constant Iy such that, for any initial state =(ky), the
solutions of the closed-loop system (3.6) are uniformly
exponentially stable.

4. Observer design

In this section we introduce an observer for the class of
systems (2.8) which belongs to the class of systems with
a triangular structure. This property of the nonlinearity
is important because it ensures the uniform observability
of the system.

An observer for the transformed system (2.3} is given
by

2(k+1) = Arz(k)+7Bla(z(k)) + 8 (z (k) u(k))

+7A7 K [y (k) — 5 (k)] (4.1)
where
Ay = dieg( 3 v, ) for 621, (4.2)
_ 1 : -
K = cl(CY ,-, C) with CF w

The term TA; K represents the observer gain.

Defining the estimation error as ¢ = z — =, it follows
that the dymamics of the estimation error is of the form

e(k+1) = (A, — 7A;'KC) e (k) +1 B (e(k), x(k), u(k))
(4.3)

where ¥7(e, 7,4} := [a(e +2) — o{x) + (B(e + ) — B(=)} ).

In order to make a statement on the stability of the
observer we need the following hypothesis.
A5. The function ¥, along the trajectories of (2.3)
and (4.3), driven by any admissible comntrol input u({k)
satisfies
NBY:(e(k), (), (kDI < Ls el
Y7 € (0, Trmax) -
Remark 2. Notice that this assumption holds for in-
stance if, for each compact X, and defining

Uy = {ue R iu=[§7C,(z(k))] ' x
(ST pes(k + 1) + 187 (2(k) — Ty (k) — STF ()],
z € X'} there exists I3 > 0 such that |[BY]{e,z, )| <
I3 Jlell, z(k) € X and u(k) € U, for all T € (0, Tmax) and
all & > kp > 0.
Lemma 3. Assume that the system (2.3) salisfies as-
sumnption AB. Then, there ewist Twma, > 0 sufficiently
small end Onin > 0 sufficiently large such that the es-
timation error dynamics (4.3} is uniformly globally ex-
ponentially stable with Ay proportional to 7 € (0, 7max),
for all 8 > Onin such that BminTmax € (0, 1).

The proof of this theorem is based on the following
claim.
Claim 1. Let 4, = I +v,(A - KC) where K is de-
fined as in (.2). Then for every 7, € (0, 1), the unigue
symmetric positive definite matriz P, satisfying the al-
gebraic equation,

AZ‘POAO - F, = _7oPo - 70(1 - ,Yﬂ)ncl‘]"c’

is given by P, = MTM where M = AE,, A, =
diag(l, (1 —7,)%, ..., (1 —4,)°7") and, letting i and j
denote the rows end columns of FE, respectively, the ele-
ments of E,, are F,(i,5) = (—1)"+J'C‘;::i fori<ji<n
and F,(3,7} =0 otherwise.

VE 2k 20,

5. Application to the Synchronous Gen-
erator

In this section, we apply the previous control and ob-
server design techniques to a synchronous generator.
We consider a synchronous generator connected through
purely reactive transmission lines to the rest of the net-
work which is represented by an infinite bus, {.e. a ma-
chine ratating at a synchronous speed w, and capable of
absorbing or delivering any amount of energy [6]. Such
a generator can be modelled as

L

dtd; #

M. =Tn—F, (5.1)
e

T‘,to?t_q —_-—%E; _ (%Q)Vcos(ﬁ) + Egq
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where § = LE, — /V is the generator rotor angle re-
ferred to the infinite bus {also called power angle), w =

-

& is the rotor angular speed and E; is the stator voltage
which is proportional to flux linkages. M is the per unit
inertia constant, T}, is the constant mechanical power
supplied by the turbine, and T}, is the transient open
circuit time constant. X4 = x4+ zg is the augmented
reactance, where x4 is the direct axis reactance and zy,
is the line reactance, X} is the transient augmented re-
actance and V is the infinite bus voltage which is fixed.
P, is the generated power while F¢; is the stator equiv-
alent voltage given by field voltage vy.

P, = -)%‘,I-E;Vsin(t‘)') +1 (X—lq- - X%) V2 5in(26),

where vy is the scaled field excitation voltage, x; is the
transient direct axis reactance, x4 is the quadrature axis
reactance, My is the mutual inductance between stator
coils and R; is the field resistance. We only consider
the case where the dynamics of the damper windings
are neglected, i.e. D =0,

For a given constant field voltage Eyq = Ej, , the
generator possesses two equilibrium points - one stable
and one unstable. Throughout this work, the analy-
sis and design are made around the stable equilibrium
point eventhough similar analysis can be made around
the unstable equilibrinm point. Setting (6*,w*, E;")
as the stable equilibriinm point of (5.1), then the sys-
tem, represented in terms of the deviations variables
A6=6—6s,Aw=w—ﬁ)*, AE; =E;—E;t,ﬂ=Efd
E}; and of the following constants m; = I=, my =

2
™ = 4 (), me= —rligms =
~(F) Vo mo = o s given by
d_At.g— =A(_g}
*a; =my + {m2(AE, + E*) + mscos(8) } sin(5)
dAE,
~g = T4(AL + By )+ ms cos(8) + me(u + E7,)

(5.2)
where § = AS + &%, Defining the following change of
variable ; = A§, 29 = Aw, x5 = AE], and applying
the methodology given in section 2, it follows that the
Euler approximate model of the synchronous generator
is given by

z(k +1) = Fr(z(k)) + G- (z(k))u(k)

where F,(z(k)) = 2(k)+
z2(k)
+7 | m + {malza(k) + E*) + mgcos(%) } sin(d)
ma{zs(k) + E*) + ms cos(E1(k)) + meE},
0
Grla{k))=7] 0
mg
A, Control law design,

(5.3)

)

;i";l =$1(k)+6*.

H
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In order to regulate the power angle of the generator
(5.3}, the following switching function was chosen
o{k) 87 (w(k) — mpesk)) (54)
81 (z1(k) — Treer (B)) + S2wa(k) + Ssma(k)

where &;, & and Ss are constants that are chosen to
satisty the sliding condition and ziref(k) is a constant
reference signal.
Then the control law is given by
u(k) = ue(k) + Aulk).
B. Observer design

Consider the following change of coordi-
nates »;; = Af, 22 = Aw, x4 = m; +
{ma(AE, + E}*) + macos(6)} sin(6).  Taking  the
Euler discretization , we obtain

El(k + ]) = wl(k) + Tﬂ:z(k)

2ok 4+ 1) = z2(k) + 723(k) (5.5)

z3(k + 1) = z3(k) + T{m4(AE;(k) + E,;")
+mg cos(8) + me(ulk) + E} )}

where maE* + ms cos(6%) + mgE}, = 0.
The dynamic system described in the new coordinates
has the following structure

Ara(k) + B {o(a(k)) + B (k)u(k)
Ca(k) (5.6)

z(k+1)
y(k)

where a(z(k)) and 3(z(k)), in the original coordinates,
are given by
a(z(k)) = masin(6(k) + TAw(k)) B + AE; (k)
+Tmy(AE (k) + EF*) + Tmsg cos(8(k))
+img cos(5(k) + TAw(k)) sin{6(k) + TAw(k))
- (mg(AE;;(k) + E,*) + mg cos(6(k)) sin(5(k))
Blz(k)) = Tmams sin(5(k) + TAw(k))
Then, an observer for system (5.6) is of the form
2(k + 1) = A, 2(k) + 7B {al2(k)) + B (2(k)) u(k)}
+rA7 K [yk) - G(k)].
WhereK=cof( ci, c2, C3 ) =col( 3 3 1 ),
and the obscrver gain is given by
TAGK =col ( 378, 3r6°, 6° ).
C. Simulation results.

The simulations were done considering the follow-
ing nominal values of the generator’s parameters (per
unit) T, = 1; M = 0.033; w, = 1; Ty, = 0.033;
Xy =Xa=09; X, =03; V = 1.0. Furthermore, the
stable equilibrium point was obtained from (5.1) for a
stator equivalent field equivalent voltage E}, = 1.1773:
8 = 0.870204, w* 1, E"q* = 0.822213. The con-
trol and observer parameters are chosen as & = 5,
Sy =2,8=2,97=01, 8§ = 0.8 and 7 was chosen
as 7 =0.01.

Simulations were performed with the proposed
discrete-time controller-observer scheme. First, in order
to illustrate the performance of the cbserver, we con-
sider the open-loop case. For this set of simlations, the



initial conditions for the generator variables and the esti-
mates wete fixed to 6(0) = 0.8, w(0) = 0.1, E,(0) = 0.8,

A A
5 (0) = 0.79, & (0) = 0.0 aud E,, (0) = 0.8. Figures 1-3
show that the estimates given by the observer converge
to the state of the system in open-loop.

In Figures 4, the performance of the observer-
controller scheme is shown, where the initial conditions
of the system were fixed as : §(0) = 0.77, w(0) = 0.1,
E((0) = 0.85. From this plot, we can see that the power
angle converge to the desired reference.

6. Conclusions

In this paper a discrete-time nonlinear controller-
observer scheme has been developed and applied to the
continuous-time model of & synchronous generator. A
tracking control was designed for the generator using the
sliding-mode technigue. Furthermore, an observer was
designed to estimate the internal voltage and the angu-
lar speed, assuming that the power angle is available.
Sirmulations results have shown the good performance
of the observer-controller scheme.
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On adaptive observers for state affine systems
and application to synchronous machines !
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Abstract— A recently proposed adaptive observer for time-
varying linear systems [21] is revisited on the basts of the well-
known Kalmap-like design for state affine systems [13], [4].
This approach in particular allows to emphasize the possible
arbitrary rate of convergence in the design. The corresponding
observer is applied to a problem of state and parameter
estimation for a synchronous machine connected to an infinite
bus, and its performances are illustrated in simulation,
Keywords: State affine systems, adaptive ohservers, exponential
convergeice, synchronous machines.

1. INTRODUCTION

The problem of parameter identification has been
extensively studied in many aspects during the last decades,
including the problem of nonlinear systems, but generally
without taking care of lack of state-space measurements. In
the same time, the problem of state estimation for nonlinear
systems has aftracted a growing attention in the conirol
community, and several results have been proposed to tackle
this problem.

When dealing with the simultaneous estimation of state
variables and constant parameters, the situation becomes
more difficult, and the resulting problem of so-called
adaptive observer has also attracted the attention of various
control research groups. In short, an adaptive observer
is a recursive algorithm allowing the joint estimation of
the state and the unknown parameters in a dynamical
system. Different approaches have already been proposed,
in particular for linear systems (e.g. as in [7], [14] for early
results, and [21] for a recent conej, but also for nonlinear
ones (see e.g. [21, [15], [5] and references therein}.

Such adaptive observers are motivaied by purposes of fanlt
detection and isolation, signal transmission and adaptive
control for instance. Here we are more particularly interested
in such problems in the field of electrical power systems.
There has indeed been a growing interest in this field during
the last few years [10]. One of the problems in power
systems is to preserve stability under changes in operating
conditions, in particular due to network disturbances,
Several control techniques are alveady available, but
generally assuming that all components of the state vector

1 This work is supported by the CNRS-CONACYT inside the French-
Mexican Labaratory of Automatic (LAFMAA).
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are measurable and all the parameters are known.Such a
simation is most likely not met in practice, and in tumn
hinders the possibility 1o apply the corresponding controllers.

The purpose here is thus to take advanmage of recent
developments in adaptive observers to discuss some
algorithm for both state and parameter estimation for a
class of noulinear systems which can in particular be found
in power systems: the considered class of systems is that
of state-affine systems, and an illustration is given by the
case of a synchronous generator connected to a infinite bus.
The basic ingredients of our discussion are that of adaptive
observer for linear time-varying systems as in [21] on the
one hand, and that of state observers for siate-affine systems
as in [13], [4] on the other hand. Basically we show that
by choosing a time-varying gain in the adaptive design of
[21] (roughly as in [20]), we end up with an observer which
actually corresponds to the well-known Kalman-like design
for state-affine systems. This in turn yields a design with
arbitrarily tunable rate of convergence. These results are
illustrated in simulation for a synchronous machine.

The paper is thus organized as follows: in section II,
previous results on adaptive observers for linear time-varying
systems on the one hand. and state observers for state affine
systems on the other hand, are recalled, highlighting the
relationship between the two approaches. As an illustrative
application, the case of a synchronous generator model is
then considered in section HI, where simulation results for
the state estimation and simultaneously the identification of
the mechanical power, are presented. Finally, some conclu-
sions are given.

II. BACKGROUND RESULTS AND PROPOSED
INTERPRETATION
A. Exponential adnptive observer for linear time-varying
systems
Let us tecall here the basic result of [21] on adaptive ob-
server design for linear time-varying systems of the following
form:
z (1)
u(2)

nn

A(t)z(2) + B(thu(t) + B(t)d (1)
C(t)z(t)
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where z,u,y classically denote the state, the input and
the measured output vectors respectively, and @ some vec-
tor of unknown parameters. A, B,C,® are assumed 1o be
known matrices of appropriate dimensions, continuous and
uniformly bounded in time.

The main result of {21] can be summarized as follows:

If the following assumptions hold,

(Al) There exists a bounded time-varying matrix K (¢} such
that: 7 (&) = (A(®) — K(A)C()n(t) is exponentially
stable. R

(A2) The solution A(%) of A (t) = [A(t) — K{#)C(H)]A@D) +
& (¢} is persistently exciting in the sense that there exist
a, 3, T such that:

t+T
af < f A(DTCTS(CEANdT < BT ()
i

for some bounded positive definite matrix ..
Then, the system (3) below {s an exponential observer for
systern (1}, in the sense that for any set of initial conditions,
&(t) — z(¢) and 6(f) — @ exponentially decay io zero:

A = (A0 - K®CWIAD + 2()

2(t) = AQE(E) + B{E)ult) + (L))

+ K@)+ ARTATEHCT (2] () - CR)E)
8t) = TATHCTHD(B)(H - CD)E()]

3)

Taking advantage of classical recursive least square
algorithms, an adaptation law for the parameter gain T" of
the above observer can obviously be obtained as follows
(e.g. as in [20]):

r (&) ~T(ATECT ()2 CERADTE) + /\I‘(t)(:t)

for A > 0.

Our purpose here is to discuss such a design at the light of

available results on observers for state-affine systems {13,

[4]).

B. Kalman-like interpretation of the adaptive observer
Let us first recall the result on state observer design for

so-called state-affine systems of the following form [13]):

z = Alu,y)x+ p{u,y)
y = C=z

where the components of matrix A(u,y) and vector {u,y)
are continuous functions depending on u and y, uniformly
bounded.

The result is as follows:

If the input is persistently exciting, in the sense that there
exist o, B, T such thai:

(5)

i+T
al < f ¥ U, (t, ) TCTR(TICUL(t, T)dr < BI, (6)
i

where ¥,, denotes the transition matrix for the system Z=
Alu,p)z, y = Cz, and ¥ some positive definite bounded
malrix.

Then, an exponential observer for system (5) is given by:

» Hre

Alu, )i+ p(u,y) + STICTT@Y-C) (D

g = Cf

where S is the solution of the equation:

S= —pS ~ A(w,y)7S - SA(w,y) + CTEZC, $(0) >0 ()

for some positive constant p sufficiently large.
Defining indeed the estimation error as e =& — x , the error
system is given by:

e={Alw,y) - 57'CTEC} e ©)

and from (6), V'(e) = e7 Se is a Lyapunov function for this
*
system satisfying V< —pV [13].

Now, in the case of a system affine in the siate and
depending on unknown parametess in an affine way, 8 model
can be given as follows:

»*
T

y =

"

Ay, )z + ofu, y) + &(u, y)d
Cz

(10

where @ satisfies the same properties as A, .

Assuming excitation condition (6) for state estimation on the
one hand, and some additional one of the form (2) with K =
8-1CT and § as in (8) for parameter estimation on the other
hand, an adaptive observer can be proposed as follows {where
5y corresponds to T~ of (4)):

g = Alw, )2 + o(w,y) + B(u, y)f ay
+{ASPATCT +8;1CT By - C2) (12)

6.3 = S;'ATCTn(y - C3) (13)

A = {A®p) -S2CTCYA+ 2(u,p) (14)

Ss = —puSe—Alt,)TSs ~SpAlu,y) +CTEC (15)
Sy = —psSs+ATCTECA, 5,(0) > 0, S5(0) > (16)

where p, and py are sufficiently large positive constants (and
% 18 as in (2)). X
With e, := £ — x and ¢ '= # — 8, we indeed get:

& = {Alu,y)-AS;'ATCTEC-571CTEC) e,
+<I’(uay)63
& = —S;'ATCTECe,

and following the same idea as in [21], the transformation:

€ = e — Agy,
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yields:
€ = {A(w,3)~AS;*ATCTEC - §;1CTEC) e,
+®(u,y)eg— A s — A és -

Replacing the suitable expressions in the above equation,
we finally get:

& = {A(u,y)—S;'CTEC)s, (1D
—S;tATCTEC (e + Aca) (18)

Now noting that under the considered excitation conditions,
8, and .Sy are positive definite matrices [4], one can choose:

V{ez ,€0) = €L Sz, + €5 Spep

as a Lyapunov function. Then, the time derivative of V' is
given by:

L ]
€ =

I

T {A(w, y) ~ S71CTECY Sae,
+ €88 {A(u,y) - S71CTEC ¢,

— (e2+Aeo)T {S7IATCTEC)T Seeo
— €58 {S ATETECY (ex + Aco)

» o
+ e S entel Ssen

‘} (Ez ,63)

and subsiituting the appropriate expressions, we obtain:

V(e 10) = —pi€lSuer — poch Spes — L CTECE,
—elCTECAep — L ATCTTC,
—eTATCTEC A

Since —elCTRCe, —elCTECAey —ZATCTECe,
~TATCTECAey
=—(cz+ Aeg)T CTTC (e, + Aeg) << 0, it follows that:

.
1% (Ez €8) S _Pzegswﬁz - Pe€gsaee

which finally gives:
L]
4 (Ea: )fﬂ) S _pV(EJ: )59): for a= mjn(Px,Pﬂ)
(19)
As a conclusion, e; and €y exponentially go to zero with a
rate driven by p, and so does ¢,.

Discussion onr observer (12)-{16);
First of all, in view of the form of the considered system
(10), it is clear that extending the state vector by the vector

of constant parameters #, into X := « ), the state affine

a
structure is preserved:

o Aluy) B(u,y) o(uy)
x= ( 0 0 X+{o
= F(u,y)X + G(u,y)
y=(C 0 JX=HX
Obviously if the condition (6) is satisfied for this extended
system, an observer of the form (7) can be designed for X,

(20

providing an adaptive observer for the original system.
Now our point is that observer (12)-(16) is acmally the
same as observer (7) for (20):

Proposition 2.1: The adaptive observer design (i2}-
(16) for system (10} coincides with observer (7} for system
(20) when p, = pa.

Proof. Let 5 denote the solution of Riccati equation

{8) for extended system (20), and consider a partition
S 82
ST 5,
(namely 5y is of same dimensions as A4).

Then we can show that for the corresponding initialization,

Sz, Se, A of (12)-(16) are related to S through:

corresponding to the partition in = and @ of

Sz = Sl
Sp =8 — 83575, 2n
A= —51_152

From (8) and ¢20) indeed, we first have:

S1 = ~o51 - AT(wy)S: — SiAlu,y) + CTEA2Y
S = —pS— AT(w,1)S2 - S13(u,y) 3
S5 = —pS;— 8T(w, )5 — STo(u,y) 24)

and clearly from (22), 5 satisfies the same equation (15) as
S, (for p; = p).
By using (22), (23), one can check that:

%(s;!sg) — (A(s,y) — ST CTEC)(STS5) — Blu,y)

and thus —S; 'S, satisfies the same equation (14} as T.
In the same way, durect computations show that from (22)-
(24}, we get:

485 —STSTIS) = —p(S3 - SIS )

+8T871CTBCS81 8,
namely, with A = —S7 8.}, S3 — §T87'S; satisfies the
same equation (16) as Sp (for g = p).

Finally, the gain in observer (7) is given by S"1HTX (with
H frome (209), and from matrix manipulation, one can check
that $~! takes the following form:

o1 _ ( (51— 5a8718) ¥
TN (875718, — S5 STST «
Le.
S_IHTE _ (S] - Sgsglsg‘)'_lcrz
(538,18, — 83)71S75, 1CTe
By using again some matrix manipulations, one can check
that:
(81~ 58281~ 1¢"xn (25)
87 - 528,187 5, )0 s (26)
87U - 83[87 87185 ~ 851 8T8 HYCTER)

1l
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and

(TS558, — S3)- 18757 CTs
= (83— STS[I8)[-STS TS

From (21), the term (27) reads as (S;1CT + AS;'ATCT)T
which is the gain in the & equation (12) of observer
(12)-(16), while the term (28) is S;'ATCTE, namely the
gaip in the 8 equation (13) of observer (12)-(16), and the
conclusion follows, 0

(28)

At this point, we can conjeclure that excitation condiiions
(6) and (2) for system (10} should be equivalent to some
condition of the form (6) for the extended system (20).

From the discussion of this section, it resulis that choosing
a time-varying gain as in (4) in the adaptive design (3)
leads to the same design as the usual Kalman one for the
system extended with the parameter vector. This increases
the on-line computation burden, but as a counterpart, from
the above computations (e.g. equation (19)), it allows to
tune the rate of convergence of the observer for both state
and parameter estimation, by simple tuning of p; and py
(or only p).

An example of practical use of such an adaptive observer is
presented in next section.

II1. APPLICATION TO SYNCHRONOUS MACHINES

As an illustrative example of adaptive state affine ob-
servation, let us consider here the problem of monitoring
synchronous machines.

A. Muchine model and observer design

Let us consider 2 nominal flux decay model of a single
machine connected to an infinite bus through purely reactive
transmission lines to the rest of the network, which is
represented by an infinite bus ( i.e. a machine rotating at
constant synchronous speed wy and capable of absorbing or
delivening anty amount of energy). Such a generator can be
modelled by the following differential equations:

Mechanical equation

ME +D§+P, = Pn
Electrical equation

X X -X
Xf ( dX' d)VcoS((S)+Ef¢

where § = iE; — £V is the generator rotor angle referred

to the infinite bus (power angie), w = 5 is the rotor
angular speed and E; is the transient voltage (transient
electromagneric force). M is the per umnit inertia constant,
D is the per unit damping constant, P, is the constant
mechanical power supplied by the turbine, and T is the
open circuit transient time constant. X4 = x4+ xz is the
augmented reaciance, where x4 is the direct axis reactance

L
20 By + 57 Eq =

and zr, is the line reactance, X is the transient augmented
reactance and V is the infinite bus voltage which is fixed.
P, is the generated power while F;4 is the field excitation
voitage respectively given by:

Py = % BV + (% - #) Visin(20m)
wa M
E‘fd = \_/'2rf Ut

where vy is the field excitation voltage, <j is the transient
direct axis reactance, z, is the quadrawre axis reactance
and X,; the quadrature axis angmented reactance, M is
the mutual inductance between stator and totor windings,
from phase windings to the field winding and r; is the field
resistance, Finally, a state~-space model reads as:

§ = w-—uwo 29)

& = ;"—;P ;}';, (;)sm(a) E, G0y

-8 (m,, l,d ) cos (5) sin (3) G1)
—%(M—wo)

B = '(i%;) Ej,+(§%)mos(5)+é-03f

The equilibrium points of the above sysiem are solutions of:

wr—wy = 0

my — Mysin (6} E *~

—mmg cos (%) sin (§*) — my (w* — wo)
-mzE" + mgeos{(d) +mE} = 0

where the parameters m; depend on the machine type, the
transmission line parameters, the rotor inertia and the infinire
bus constant voltage, and which are constant at only one

operating point. These constants are all positive and are given
by:

P, v IZCHF A S | D
ml:_ﬁ’m2=m§’m3:_ﬁ :Y_q_i_:; ,m4=§{'7
X _ X:—- X} _ 1
ms‘T:,aX;’”""( o M

For a given constant field voltage Ejs = Ej,. the
generator possesses two equilibriom points - one stable and
one unstable. In what follows, the analysis and design is
made around the stable equilibrium point, which we denote
by coljd*,w*, E;*] . Then, the system equations in terms
of the set point error variables §=8-8 0 =w~uw",
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E;:E;-—E;* and u = Epq — B}, are:

5= @ 32

G = mi—masin(§+5) (B, +E) 69
—%sm(z(s + ) - mu@

175; = -ms (E’g + Ef,) + mg cos (S + 6") (34)

+my (u+ E}y)

Let us assume that the rotor angle is available for measure-
ment, and that w and E, are bounded, while all parameters
are known except the mechanical power Fyji.e. the param-
eter m; which represents the acceleration provided by the
turbine is assumed to be unknowm.

Then with the notations:

a:1=3, T2 =W, :l:3=E;, &=my
system (32) is of a state affine form (10) as follows:
[ ]
&1 01 G Y
;?:2 = 0 —my —mgsin (x1 + 5*) Za
5.3 00 —mg r3
0

+ | ~mosin(x; + ¢*)E,* — Bsin{2(x; +§7))
~msEy* + mgeos(xy +6%) + my (1 + Efy)

0
+| 118
0
y=o1

(35)
From this, an observer (12)-(16) can be designed to estimate
z and €, with:

01 ¢
Alu,y) = 0 —my -masin(x;+48) |, ¢ =
0 0 k113
0
(10 0);3(u,y)= (1] s plu,y) =

0
—mesin(x; +8%)Ey* — B2sin(2(x, +8*)) ),
—msE;* + mGCOS(X1 4+ 6*) +my (u + E?d)

and here with X = 1.

B. Simulation results

The purpose here is to illustrate the results obtained with
the proposed adaptive cbserver via digital simulations, The
numerical values for the generator parametess (per unit) here
considered are:

X7=0408 Xg =107, H =668, T, =54, X; =
0415, Ef = 1.3, P =1 and w, = J77.

Under this choice the stable equilibrium position of the
generaior is:

8 =112, w* = 0, B}* = 0.91469.

The inittal value of state variables in all simulations are:
8(0) = 1.17, w(0) = 0.01 and E(0) = 0.91, while the
initial conditions cf the adaptive observer are % (0) = 1.0,
£2(0) = 0.05, £5{0) = 1.0. The observer gain is initialized
at §,(0) = I for &, and 5p(0) = 10 for &, and simulations
were performed for various choices of p, and pg. 50 as to
illustrate the effect of the tuning parameters on the observer
performances.

The pictures of Figure | depict the dynamical behavior
of both real and estimated state variables for p, = 5 and
ps = 5, as well as the ¢stimated value for mny versus its
actual constant value. A good converging performance of
the estimated variables can be observed. In the pictures of
Figure 2 are shown the responses of each variable under
parametric variation of parameier n,in order to emphasize
the performance of the adaptive law. From those pictures it
can be seen that all state variables are still well estimated,
while the parameter estimation tracksits actual value under
step changes.

Finally, in order to illustrate how the convergence of the
adaptive observer can be affected by parameters p, and pg,
simulation results are shown for different values: it can be
seen how for larger values, the convergence speed increases
(inducing in turn some overshoots). In figore 3 we show the
performance of the adaptive observer for p, and py taking
the following values: p; = pp = 5, 10, 13, It is clear that the
corresponding time of convergence of the adaptive observer
is improved.

IV. CoNCLUSIONS

The problem of adaptive observer for the class of state

affine systems has been discussed at the light of recent results
on adaptive observers for time-varying linear systems and
available state observers for state affine systems. In particular
it has been shown how an adaptive design with a purpose of
arbitrarily tunable rate of convergence is equivalent to a state
affine observer for an extended system.
The practical interest of such observers has been illustrated in
simulation by the example of a single synchronous machine
connected to an infinite bus, for which the state vector and
some parameter have been jointly estimaied.
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Abstract

This paper is concerned with the control of multi-machine power systems, We propose a continuous sliding-mo-
de control design. The designed controller is smooth: in that sense, it differs from classical sliding mode contro-
llers subject to chattering phenomena. Two versions of the sliding-mode countroller are then applied to the con-
trol of a multimachine power system. The practical implementation of these two controllers leads to a fully de-
centralized control schemes. Simulations results demonstrate better performances of these two controllers com-
pared to a Hamiltonian passive controller.
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1. Introduction

The stability of an electrical power system (EPS) may
be defined as the ability to remain in synchronous oper-
ation under normal operating conditions as well as after
a disturbance (a default like a short-cut or a change of
operating conditions for example).

Ensuring the transient stability under different op-
erating conditions in order to maintain synchronism
between generators is an important issue in power sys-
tem control and we will focus our attention on this
prablem hereafter,

Excitation control, that is one of the possible ac-
tions to maintain transient stability of power systems
under disturbed conditions, will be considered in this
paper.

The use of advanced control techniques for power
system control has been one of the more promising ap-
plication areas of automatic control. To enhance tran-
sient stability of power systems, a great attention bas
been paid to the application of nonlinear control the-
ory.

To improve the robustness of closed-loop power sys-
tems, different approaches based on nonlinear control

lthis work was sponsored in part by PAICYT-UANL, MEX-
ICO

2c0rr%Punding; author. e-mail: drjleon@botmail.com

theory have been proposed; for example, those based
on variable structure, singular perturbation methods,
control Lyapunov function (Bazanella, 1997}, Hamilto-
nian function method (Masschke et al., 1998, Ortega
et al., 1998) or adaptive control.

Recently, port-controlled Hamiltonian systems have
been introduced in (Masschke et al., 1998, Ortega et
al,, 1998). For this class of systems the Hamiltonian
function is considered as the total energy and play the
role of Lyapunov function for the system. The key fea-
ture of this technique is to express the electrical power
system dynamics under the form of a port-controlled
Hamiltonian representation. This method has already
been applied for improving the transient stability of a
multi-machine power system by means of decentralized
nonlinear excitation control (Xi, 2002).

Angther technique for improving robustness under
parameter uncertainties and external disturbances is
sliding-mode control design which has attracted a nurm-
ber of researches (see De Carlo et al,, 1988, Utkin,
1992). It can be viewed as a high-speed switching
controller that provides a robust means of controlling
nonlinear systams by forcing the trajectories to reach
g, sliding manifold n finite time and to stay on the
manifold for all time.



2, Dynamical model of a multi-machine power
system

Now we consider & power system made of n generators.
Under some standard assumptions, the motion of the
interconnected generators can be described by the clas-
sical model with flux decay dynamics. The generator
is modeled by the voltage behind direct axis transient
reactance. The angle of the voltage coincides with the
mechanical angle relative to the synchronous rotating
frame. The network has been reduced to internal bus
representation. The dynamical model of the i-th ma-
chine is represented by (Bergen, 1986, Paj et al., 1989):

»

8 = wi—uwp (1

. 1

wi = o (D (wi—wo) + @ (P — Fe))

o’ 1

Eq,- = 'ﬁ (E.fs - Eq;)
where

"
P, = E, Y EjBjsin(8—35)
J=Li#F

E, = — (X4 — X5,) Z E,_B,; cos (6; — §;)

F=Li#j

and 5;(t) is the power angle of the é-th generator, w;(t)
represents the relative speed, Ej (t) is the transient
EMF in the quadrature axis

We consider that the Fj,(t), i = 1,..,n are the
cantrol inputs and the &;(t) are measurable outputs,
together with the F., and V;,, where V;, represents the
terminal voltage at generator i. The B,,, are supposed
to be constant (standard assumption}.

Then, the state representation of a n-machine power
system is given by

.;3.51 = X2 %.'-—-1,...,1’!. (2)

"
- .
s = —eirim b — i Z @j3Biy sin(z — z1)

i=1

L)
L
T3z = —eZatd Z-Tstij cos(z;y — Tn) s

i=1
wherea, Dif2H;, b = (wo/2H; )Py, 6 = (wo/2H)),
= (Xa, — Xy ) T5,, e = 1/Ty,, are the systems pa-

ramet.em, [£:1, 22, 23] = [B:(t), wi(t), E,’;,-(t)]T repre-
sents the state vector, and the control input is given
by u; = (1/T5 Ykaitsi(s)

Tiz
filz)= | —@x2+b —awis Z T35 By sinfx;1 — 251)

—eiTia + i E,ﬂ :c,sB cos(%i1 — ;1)

g=[0 0 1]

We will now present our controller design based on
the idea of continuous sliding mode control. In the

same time, we present a controller design based on pas-
sivity theory in order to compare the performances of
these two methodologies.

3. A continuous sliding-mode contreller design

We consider the class of affine nonlinear systems de-
scribed in the state space by

= f(=x)+g(z)u,  x(t) = =g, (3)

where tg > 0, x € B, C R" is the stafe vector, u €
R" is the control input vector , f and g are assumed
to be bounded with their components being smooth
functions of x. B, denotes a closed and bounded subset
centered at the origin.

‘The continuous sliding-mode control for the system
(3), is designed as follows. Consider the following (n—
r)-dimensional nonlinear sliding surface defined by

o (z—2)" =0 (4

where z* is equilibrium point and each function o; :
B.xB.,—R,i=1,..,r isa C! function such that
:(0) = 0.

The so-called equivalent control method (see De Car-
lo, 1988, Utkin, 1992} is used to determine the system
motion restricted to surface #{z — x*) = 0, leading to
the equivalent control

o= — [%;g(m)] B [‘;—;f(m)] %)

where the matrix [8o/8z|g(z) is assumed to he non-
singular for all z,z* € B,.

In order to complete the control design an addi-
tional control term uy is added to the control input:

o(z = ) = (0,(z — 2, .

U=t tuy (6,)

where u, is the equivalent control (5), which acts when
the system is restricted to ¢{z —x*) = 0, while ¢, acts
when oz — z*) £ 0.

The control zx is selected as

wn =g Lol —2") (D)

where L is an r x 7 positive definite matrix.

We can easily check that the system trajectory z(t)
is such that the following stable ordinary differential
equation

5(z - 3) = ~Lo(z - 27) (®)

is satisfied for all t. This means that the system tra-
jectory reaches the sliding surface asymptotically, since
o(z(t) — z*) = e~ L0 a(x(tg) — *), ¥ty > 0, then,
a(z(t) — 2*) — 0, when ¢t — 4oo0. In fact, the input-
output behavior of the closed-loop system (with the
output ¥ = o{x(t) — =*) is given by equation (8).



On the basis of the continuous sliding-mode control
described above, the resulting the composite control is
given by

=~ [%fgg(m)]_l 5@+ Loa=3)]. @

When the composite control (9} is applied to (3],
one obtains the closed-loop nonlinear system

5: = fe(“q:) 2,) + p(a:I 17*) (10)

where -1
Jel@,2%) = { haxn — 9(2) [320(2)]  (§) } (@),
and
* aﬂ -1 *
Pz, 2°) = —gl@)lgo(o)l Lotz — 2*).
Now, in order to study the stability properties of

the closed-loop system, we introduce the following ag-
sumption.

Assumption 1. The eguilibrium point =* of T =
fe(z, %) is locally exponentially stable,

By use of Lyapunov’s converse theorem (see Khalil,
1996), Assumption 1 ensures the existence of a Lya-
punov function V{e) with ¢ = » — z* which satisfies
the following inequalities

|

8V (e)
Je

2O <anllell, allel® < Vie) < ez flel?

{Jele+2*,2*) +ple+2°,2)} < —aa|leff®
(1)

for some positive constants ay,ag, oz and oy,

Let consider V{e} as a Lyapunov function candi-
date to investigate the stability of the origin ¢ =0 as
an equilibrium point for the system (10). From both
Assumption 1 and equation (11), the time derivative
of V along the trajectories of (10) satisfies

Vie) < —e el (12)

then the system (10) is exponentially stable,

The Lyapunov function candidate V is instrumental
to investigate the stability properties of the closed-loop
system obtained when the composite control « is used.
Then the following proposition can be statad.

Proposition 1: Consider the nonlinesr system (8)
Jor which a composite control (5), (6), (7) is designed
such that Assumption 1 is satisfied. Then, the closed-
loop nonlinear system (10) is locally exponentially sta-
ble.

4. Hamiltonian controller design

Now we derive an excitation controller using the method-
ology based on the notions of energy function and port-
controlled Hamiltonian systems (PCHS).

We onsider the following affine nonlinear systeim

fz) + glz)u (13)
h(z)

-
o}

y:

wherer € IR” is the state vector of the system, « € RB™
is the control vector and y € K" is the output vector.
In this paper we are interested in the class of systems
that can be equivalently represented in a Hamiltonian
form with dissipative terms in the following way

T
2= U@ -REI s ()
y = gT(mlagf

where 1 , %, ¥ are the energy variables, H (%1, ..., %r)
R" — R represents the total stored energy and the in-
terconnection structure is captured in the n x n matrix
J(z) and the 7 x m matrix g{z). The matrix J(z) is
skew-symmetric, ie.

J(z) = —JT(I), Yz e B®

and R(zx) is a non-negative symmetric matrix depend-
ing on x, i.e

R(x)=RT(z) >0, VzeR".

The main advantage of this kind of representation
is that the total energy function can be considered as
a Lyapunov function. Moreover, from (14), we obtain
the power-balance eguation

dH  BH_ 8HT .
T T ey Y

with uTy the power externally supplied to the system
and —%—’}R(x)%’; representing the energy-dissipation
due to the resistive elements. As it is well known (see
Maschke et al., 1998), the equality above establishes
the passivity properties of the system in the following
sense.

Definition 1: System (18) is passive with respect
the outpul y = h(x) if there exists a smooth non-
negative function H(x), such that H(0) = 0 and the
Jollowing irequality holds

Ha(2)) - H(2(0)) < fﬂ w(s)y(s)ds. (15

If in addition, the system satisfies the detectability
properties stated in the next definition

Definition 2: The system (13) i3 zero-state de-
tectable if w(t) = 0, y(t) = 0 Vi = 0, implies that
lim (t)=0.

Then it is possible to formulate the following result,
that is fundamental concerning the stability properties
of the considered class of systems.



Theorem 1: Consider the class of systems defined
by (14}, Assume that the system is zero-state detectable
and that the generalized Hamiltonian has o sivict local
minimurm. Then ot follows that ©* is « Lyapunou stable
equilibrium point of the unforced dynamics. Moreover,
the following output feedback

SHT

u=—Fy —FgT(z) (16)

renders the equilibrivm poing asymptoti.cally stable,
5. Application to a multi-machine power system

& three-machine power system is now introduced to
demonstrate the effectiveness of the continuous sliding
mode controller. In this system, generator 3 is consid-
ered as an infinite bus, then generator 3 is used as the
reference, 4. e (E; = const = L{O")

The system has the following state-space represen-
tation

T = 112, T = T3 (17)

512 = [ Dyxyg 4wy (P, — Py

;:22 = '-'_ [—.Dzﬂ)zz +uwy (Pma - ezH

. 1

Ty = (Bf, — By ), 323 = 2 (B — Egp)

le T;}Q 2 &

where #13 = 81, 21 = &g, T1o = wy, Zpp = Wy, Tz =
Eals Iy = E;.z

5.1 Sliding-mode control design

In this paper we introduce two continuous sliding
mode controllers corresponding to two particular choices
of the sliding surface:

Stiding-Mode Conirol 1

We consider the following nonlinear switching sur-
face defined by

o(z,2%) = (0, (z,2"),0,(z,2"))" =0
where
o (2,2} = iy (za ~ 27) + sz —
fori = 1,2 and af = {xfy, 2%, x%), for i = 1,2, is an

equilibrium point of system (17).
Then, the equivalent condrol is given by

= - [.g—z-g‘-(:r)] B [-gi;ffs(x)]
e+ d E %53 )

&
|

;1% + 53 =1
1 Bi; cos{xiy — zj1)
Py ”-—&'ﬂ:ez + b — ciry
+8iz 3 z;3Bi5 sin(zi — 241)
i=1

wly) + izl — al5)

On the other hand, the control uy; is selected as

wn, = O] Liosle, )

— __{’i sidZa — i) + siplwmig — 2f)
53 +8i3(Ti3 — 35)

Stiding-Mode Conirol £
Now, let us consider the following nonlinear switch-
ing surface given by

- L 1]
o(r,2%) = s; % + 8i0Fi + 83Ty

where £ =2y ~ 2],
This is equivalent to

o (z,2") 8532 — 25) + sinin
—a;zis+ b — T
o | S .
E 23'33,'3' Slll(&g]_ - z‘_,‘l)
j=1
where
der: n=3
—--—'-g,(:z:) = —8ia0; nggB,J sin(ziy ~ 47)
=1
for all x; € B,,.
Remarks:

1. The coefficients s;;, 7 = 1,2,3 of sliding mode
controller 1 must be chosen m order Assumption
1 is werified.

2. We can notice that the sliding surface of con-
troller 2 differs from the surface of controller 1 by

L1l
only one term: &;3—%;; is replaced by ;. In this
case, when the s;; are some positive constants,
the sliding surfaces can be viewed as some sta-
ble second-order ordinary differential equations
in the power angle &;, ensuring convergence of the
power angles to their equilibrium values, when
the system trajectory remains on the sliding sur-

face.

3. Furthermore the equivalent control », can be
viewed as an output linearizing controller render-
ing the system dynamics equivalent to the linear
dynamics

...
g, Sz, x*) = s,1$,1+s.21:,1 tsg =0

The relaiive degree of each output (power angle)
is equal to 3, thus the system has no zero dy-
namics In this case. Furthermore, stability ean
be stated by using stability analysis arguments
{L-asalle theorem (¥Khalil, 1996}] apart from Lya-
punov function candidate V(z - z*) = Lo7(x ~
oz — ).



5.2 Hamiltonian Control design

Now we design a control law based on passivity the-
ory and energy function. The system is described in a
Hamiltonian representation providing that the stability
of the system can be guaranteed.

Consider system (2) and the following energy func-
tion

1 bi &i
n=3 2 — &1 + __mz
S I
1 Hh=3
=1 —aw,-g =1 2385 cos(zn — Z41)

(18)

It follows that the system dynamics can be writ-

ten as a generalized Hamiltonian control system with
dissipation according to what follaws

-7:0.'1 Q i 0 aH 0
) = —c —c¢a; 0 8? + O Jw
5'.3 0 0 d; £ 1

{(19)
where
0 G 0
z; = col(zy,we,23), fKlz)=] - 0 0
0 0 0
00 0 0
Rfz) = | 0 —a; O |,ql@)=| 0
00 d; 1

Let (xf), 2, %}5) be the equilibrium point of (2),
obtained from the fallowing equations
T =
n=3
—axly + b — arl Z T By sin(xf, —2},) =0
3=l

ki
—85.’1::3 -+ d;z I}aBij COS(:I::l - ﬂ:;l) + ﬁz =0 (20)
F=1
Defining the constant excitation control i, it fol-
lows that
n=3
% =ery —d; ngaBij cos{z; — T51)-
=1

(21)

Now, defining the energy function which includes
the equilibrium point of the following form

n=3
1 b; e;
He = Y (5esh— B -ei)+ prloa— i)
J.Z:; 2¢; G 24; ’

=3
+ nz: ( Tia 3y T3 Bij cos(@iy — xj1) )
T
S\ H2as 2o 25 By cos(a, — 75)

Then, system {19) can be represented by the Harilto-
nian system with dissipation as

[

Zi) 0 G 0 0

. aH,

] = - —&04 0 6(3? + 0 Vi,
i ¢ 0 di : 1

Since H, is bounded from below, because of z;; €
[-®, 7], and VI > 0 the set {5 : H.(x) < I} is com-
pact. Thus H.(%) has a strict local minimum at (]},
¥, Th).

Then, a.control law which stabilizes the multi-machi-
ne power system is given by

= 8 + v
where
8H,
v = —figl &:
i
-yt By | el o) |
= —fi =1 —255 cos(%}, — =7,)
L -
+E($i3 —z5h)
e
I, + 33

= —f =3 ‘

f +l ( d; Z?;-'=1 Bijziy )

d; \ cos(zy, — "'";1) — Tl

€ 1

= —J; I 4 + = i3 — ——Tl-
f { a0+ 3 %3 dsu‘}
where @#; = e;z}; — d; E?j‘ *33Bij cos(x]; — a3, ). Next,
using E,, = E{],— + (Xd.- _-X:I,) Iy, and d; = (X4, —

. €5

X4 )/Ts,, e = /T, it follows that Fi m

Finally, the controlier can be expressed only in terms
of loeal measurable signals:

. i 1.
u = ui—fi{mEq._Zm}

— iy ﬁ*__ fi Qe.Xd,)
= Gt i (dexéi)(v,ﬁ 7

where E,, =V, + Q—?,lﬁﬂ Consequently, the resulting
controller is a decentralized static output feadback.

6. Simulation results

The effectiveness of the here-proposed sliding-mode con-
troller design has been validated through computer sim-
ulations.

The numerical values of the generator parameters
(in per unit) were D, = 5, Dy = 3, X, = 0.252,
X}, =0319, Xa, = 1863, Xz, = 2.36, Hy =1, Ho =
2, T; = 6.9, Tég = 796, Ef, = 13, P,, = 0.35,
P, = 0.35 and w, = 377, Byp = 0.56, B3 = 0.53,
By = 0.6,

With this parameter choice, the stable equilibrium
state of the generator is

55?1 = 0.6654, -"ITQ =0, xfs =1.03
:’:?2 = 064.25, $§2 = 0, 353 =101
The initial value of the states variables are
211(0) = 0.8, Z:2(0) =03, 1253(0)=15
212{0) = 0.5, 292(0) =-0.3, x23(0) =05

The controller parameters are chosen as follows



Control 1

su=10, s12=15 83=8, IL,=25
Control 2
891 =10, 829=15, 23 =8, L;=—25

The system responses obtained for the rotor angle
are shown in figures 1-3. From the different figures, we
can see that the dynamic response of the rotor angle is
such that their equilibrium position is reached.

From these figures, it can be also seen that the slid-
ing mode controller 2 can provide better transient per-
formances than the sliding mode controller 1. However,
the transient respomse of the two confinuous sliding
mode controllers is significantly better than the one of
the Hamiltonian controller. We suggest than an expla-
nation can be found in the fact that the sliding con-
troller 2 has no zero dynamics due to the particular
choice of the sliding surface whose time-derivative cor-
responds to a equivalent linear system obtained via an
input-output linearization technique, without zero dy-
pamics in this case.

7. Conclusions

A nonlinear control strategy for a class of nonlinear
systems has been developed and successfully applied
to multi-machine power system control. Two new con-
trollers have been designed using continuous sliding-
mode techniques. This controller design has been suc-
cessfully applied to a three-machine power system, where
two different switching surfaces have been considered.
The overall methodology can be obviously extended to
a more general system made of 7 geperators. Closed-
loop performance of these two controllers appears to
be better than the one chtained with a port-controlled
Hamiltonian design.
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