y a partir de (3.11), z(k) se define como z(k) = e(k) + x(k), por lo que la dinámica del error queda expresada como

$$e(k+1) = (A_{\tau} - \tau \Delta_{\theta}^{-1} KC) e(k)$$

$$+ \tau B[\alpha(e(k) + x(k)) - \alpha(x(k)) + \{\beta(e(k) + x(k)) - \beta(x(k))\} u(k)]$$

Además, definiendo el siguiente término

$$\Psi_o(e(k), u(k)) = \alpha(e(k) + x(k)) - \alpha(x(k)) + \{\beta(e(k) + x(k)) - \beta(x(k))\}u(k),$$

finalmente se tiene

$$e(k+1) = (A_{\tau} - \tau \Delta_{\theta}^{-1} KC) e(k) + \tau B \Psi_{\theta}(e(k), u(k))$$
(3.12)

Hipótesis 3.1 La función $\Psi_o(e(k), u(k))$ a lo largo de las trayectorias de (3.1) y (3.12), bajo la acción de una entrada de control admisible u(k) satisface

$$||B\Psi_o(e(k), u(k))|| \le b_1 ||e(k)||$$

Nota 3.1 Observe que la hipótesis anterior se satisface si, para cada conjunto compacto \mathcal{X} y definiendo $\mathcal{U}_{\tau} = \{u \in \mathbb{R}^n : u = \beta^{-1}(x(k))[v(x(k)) - \alpha(x(k))], x \in \mathcal{X}\}$, existe una constante $b_1 > 0$ tal que $\|B\Psi_o(e(k), u(k))\| \le b_1 \|e(k)\|$, $x(k) \in \mathcal{X}$ y $u(k) \in \mathcal{U}_{\tau}$ para todo $\tau \in (0, \tau_{\max})$ y para todo $k \ge k_0 \ge 0$

Lema 3.2 [19] Asuma que el sistema (3.1) satisface la hipótesis 3.1. Entonces existen $\tau_{\text{max}} > 0$ suficientemente pequeño y $\theta_{\text{min}} > 0$ suficientemente grande tal que el error de estimación (3.12) es globalmente uniformemente exponencialmente estable con λ_{τ} proporcional a $\tau \in (0, \tau_{\text{max}})$ para todo $\theta > \theta_{\text{min}}$ tal que $\theta_{\text{min}}\tau_{\text{max}} \in (0, 1)$

Prueba

Definiendo la siguiente transformación de coordenadas

$$\varepsilon(k) = \Delta_{\theta} e(k) \tag{3.13}$$

la dinámica del error se representa en las nuevas coordenadas como

$$\varepsilon(k+1) = \Delta_{\theta}e(k+1)$$

$$= \Delta_{\theta}[(A_{\tau} - \tau \Delta_{\theta}^{-1}KC)e(k) + \tau B\Psi_{o}(e(k), u(k))]$$