Ahora, el sistema (3.31) bajo la acción de la ley de control (3.35) nos lleva al sistema en lazo cerrado

$$x(k+1) = f_{\tau}(x(k), 0) + p_{\tau}(x(k), x_{ref}(k))$$
(3.37)

donde

$$f_{\tau}(x(k),0) = \mathcal{F}_{\tau}(x(k)) + \mathcal{G}_{\tau}(x(k)) \left[\mathcal{S}^{T} \mathcal{G}_{\tau}(x(k)) \right]^{-1} \left[\tilde{\eta} \mathcal{S}^{T} x(k) - \mathcal{S}^{T} \mathcal{F}_{\tau}(x(k)) \right]$$
$$p_{\tau}(x(k), x_{ref}(k)) = \mathcal{G}_{\tau}(x(k)) \left[\mathcal{S}^{T} \mathcal{G}_{\tau}(x(k)) \right]^{-1} \left[\mathcal{S}^{T} x_{ref}(k+1) - \tilde{\eta} \mathcal{S}^{T} x_{ref}(k) \right]$$

Es claro que el sistema en lazo cerrado (3.37) puede verse como un sistema con una parte sin efecto de perturbaciones representada por $f_{\tau}(x(k), 0)$ y una parte perturbada dada por $p_{\tau}(x(k), x_{ref}(k))$.

Además, de las cotas sobre las columnas de $\mathcal{G}_{\tau}(x(k))$ y la no singularidad de $\mathcal{S}^{T}\mathcal{G}_{\tau}(x(k))$, se puede concluir que la parte perturbada satisface la siguiente desigualdad

$$||p_{\tau}(x(k), x_{ref}(k))|| \le l_1 ||x(k)||^2 + l_2 ||x_{ref}(k)||^2$$
(3.38)

para $x(k), x_{ref}(k) \in B_r$, donde $l_1 y l_2$ son constantes positivas.

Ahora, considere las siguientes hipótesis para la parte del sistema perturbado

Hipótesis 3.3 El punto de equilibrio del sistema $x(k+1) = f_{\tau}(x(k), 0)$, sistema que en lo sucesivo llamaremos $x_{eq}(k+1)$, es localmente exponencialmente estable.

Hipótesis 3.4 La señal de referencia $x_{ref}(k)$ es uniformemente acotada y satisface $||x_{ref}(k)|| \leq l_3$, para alguna constante positiva l_3 .

Por un teorema inverso de Lyapunov, la hipótesis 3.3 asegura la existencia de una función de Lyapunov V(x(k), k), la cual satisface

$$c_{1}||x(k)||^{2} \leq V(x(k)) \leq c_{2}||x(k)||^{2}$$

$$\Delta V_{1}(x(k)) = V(x_{eq}(k+1)) - V(x(k)) \leq -c_{3}||x(k)||^{2}$$
(3.39)

para algunas constantes positivas c_1, c_2 y c_3 .

Entonces, la diferencia bacia adelante de la función $\Delta V(x(k))$ a lo largo de las trayectorias del sistema en lazo cerrado está dada por

$$\Delta V(x(k)) = V(x(k+1)) - V(x(k))$$
$$= \Delta V_1(x(k)) + \Delta V_2(x(k))$$