where

$$\Psi_{\alpha}^{\tau}(e,x,u) := [\alpha(e+x) - \alpha(x) + (\beta(e+x) - \beta(x))u].$$

In order to make a statement on the stability of the observer we need the following hypothesis.

Assumption A. The function Ψ_o along the trajectories of (2.1) and (3.7), driven by any admissible control input u(k) satisfy

$$||B\Psi_{o}^{\tau}(e(k), x(k), u(k))|| \le l_1 ||e(k)||,$$

$$\forall k > k_0 > 0, \quad \forall \tau \in (0, \tau_{\text{max}}).$$

Remark 1. Notice that this assumption holds for instance if, for each compact \mathcal{X} , and defining $\mathcal{U}_{\tau} := \{u \in \mathbb{R}^n : u = \beta^{-1}(x) [v(x) - \alpha(x)], x \in \mathcal{X}\}$ there exists $l_1 > 0$ such that $||B\Psi_{\sigma}^{\tau}(e, x, u)|| \le l_1 ||e||, x(k) \in \mathcal{X}$ and $u(k) \in \mathcal{U}_{\tau}$ for all $\tau \in (0, \tau_{\max})$ and all $k \ge k_0 \ge 0$.

Lemma 2. Assume that the system (2.1) satisfies assumption A. Then, there exist $\tau_{\max} > 0$ sufficiently small and $\theta_{\min} > 0$ sufficiently large such that the estimation error dynamics (3.7) is uniformly globally exponentially stable with λ_{τ} proportional to $\tau \in (0, \tau_{\max})$, for all $\theta > \theta_{\min}$ such that $\theta_{\min} \tau_{\max} \in (0, 1)$.

The proof of this Lemma is based on the following claim which is the dual of Claim 1.

Claim 2 ([6]). Let $A_o = I + \gamma_o (A - KC)$ where K is defined as in (3.6). Then for every $\gamma_o \in (0,1)$, the unique symmetric positive definite matrix P_o satisfying the algebraic equation,

$$A_o^T P_o A_o - P_o = -\gamma_o P_o - \gamma_o (1 - \gamma_o)^n C^T C,$$

is given by $P_o = M^T M$ where $M = \Lambda_o E_o$, $\Lambda_o = diag(1, (1-\gamma_o)^{\frac{1}{2}}, ..., (1-\gamma_o)^{\frac{n-1}{2}})$ and, letting i and j denote the rows and columns of E_o respectively, the elements of E_o , are $E_o(i,j) = (-1)^{i+j} C_{j-1}^{i-1}$ for $i \leq j \leq n$ and $E_o(i,j) = 0$ otherwise.

3.3. Main result

We can now establish the following result.

Theorem 1. Consider the discretized nonlinear system

$$x(k+1) = A_{\tau}x(k) + \tau B\left\{\alpha(x(k)) + \beta(x(k))u(k)\right\}$$

$$y(k) = Cz(k)$$

under Assumption A. Then the observer-based output feedback control law,

$$\begin{aligned} z\left(k+1\right) &= A_{\tau}z\left(k\right) + \tau B\left[\alpha(z\left(k\right)) + \beta\left(z\left(k\right)\right)u(k)\right] \\ &+ \tau \Delta_{\theta}^{-1}K\left[y\left(k\right) - \widehat{y}\left(k\right)\right] \\ u(k) &= \beta^{-1}(z(k))\left[-F\Omega_{\phi}z(k) - \alpha(z(k))\right], \end{aligned}$$

renders the equilibrium (x, z) = (0, 0) of the closed-loop system (2.1), (3.1)-(3.3), (3.5)-(3.6) uniformly exponentially stable.

Proof: The result follows if and only if the origin of the estimation error and the observe dynamics, (e, z) = (0,0), is exponentially stable. In view of Lemma 2, we only need to prove that the origin of the observer dynamics under the control action,

$$z(k+1) = A_{\tau}z(k) + \tau B\left[\alpha(z(k)) + \beta(z(k))u(k)\right] + \tau \Delta_{\theta}^{-1} K\left[y(k) - \widehat{y}(k)\right], \qquad (3.8)$$

is uniformly globally exponentially stable.

To prove this, we will invoke the following result.

Lemma 3. If for a system $\xi(k+1) = f_{\tau}(k,\xi(k))$ there exist p > 0, $\tau_{\text{max}} > 0$, $\nu > 0$ and c_{τ} proportional to $\tau^{-1/p}$ such that for all $k \geq k_{\text{o}}$, all $\xi(k_{\text{o}}) = \xi_{\text{o}}$ and all $T \in (0, \tau_{\text{max}})$,

$$\max_{k \ge k_0} \|\xi(k)\| \le \nu \|\xi_0\| \tag{3.9}$$

$$\left(\sum_{k=k_0}^{\infty} \|\xi(k)\|^p\right)^{1/p} \leq c_{\tau} \|\xi_0\| \qquad (3.10)$$

then, there exist κ and $\lambda_{\tau} > 0$ proportional to τ such that (2.2) holds for all $\xi_0 \in \mathbb{R}^m$.

Hence, we proceed to compute the bounds (3.9), (3.10) with $\xi := \operatorname{col}[e,z]$. We start with the bounds for $\|e(k)\|$. From Lemma 2, it follows that $\|\varepsilon(k)\|_{P_o} \le \|\varepsilon(k_0)\|_{P_o} e^{-\delta \tau(k-k_0)}$, i.e. $\|\varepsilon(k)\|_{P_o} \le \|\varepsilon(k_0)\|_{P_o}$ and therefore, there exists c > 0 such that

$$||e(k)|| \le c||e(k_0)|| \quad \forall k > k_0.$$
 (3.11)

Also from Lemma 2, we obtain $\Delta V_{\varepsilon_k} \leq -\tau 2\delta V_{\varepsilon_k}$, then evaluating the sum from k_0 to ∞ on both sides of $\Delta V_{\varepsilon_k} \leq -\tau 2\delta V_{\varepsilon_k}$, it follows that

$$V_{arepsilon_{k_0}} \geq -\sum_{k=k_0}^{\infty} \Delta V_{arepsilon_k} \geq \sum_{k=k_0}^{\infty} au \delta \left\| arepsilon(k)
ight\|_{P_o}^2$$

so using the equivalence of the norms $\|\cdot\|$ and $\|\cdot\|_{P_o}$ we conclude that there exists c>0 such that

$$\left(\sum_{k=k_0}^{\infty} \|e(k)\|^2\right)^{1/2} \le \frac{c}{\sqrt{\tau\delta}} \|e(k_0)\|. \tag{3.12}$$

Next, we proceed to compute similar bounds for z(k). To this end, reconsider the observer dynamics under the control action, and under the coordinate transformation $\eta = \Omega_{\rho}z$, *i.e.*,

$$\eta(k+1) = (I_n + \tau \rho (A - BF)) \eta(k)
+ \tau \Omega_\rho \Delta_\theta^{-1} K C \Delta_\theta^{-1} \varepsilon(k)
= A_c \eta(k) + \tau \Omega_c \Delta_\theta^{-1} K C \Delta_\theta^{-1} \varepsilon(k) (3.13)$$