2. Problem setting and definitions

We denote by £{k) the solution of the difference equation
&(k+1) = F;(k,£(k)) with initial conditions kg > 0 and
& = £(Ko)-

We consider the following class of continuous-time
nonlinear systems

Swso:{ £ 10+ ol -

using the Euler approximation under the assumption of
a sufficiently small sampling period,

[ €+ 1) = £(8) + T {FERE)) + oE(R)uk)}
Enp { (k) = h(£(k) o2
2.

where for simplicity we denote £(k) = £(k7)}, for 7 fixed.

In the sequel, the following definition can be used in
order to design a controller and an observer.
Definition 1. Let £ C R"™ be a compact set. The sys-
tem (2.2) is locally feedback linearizable if there exists
a diffeomorphism T : E — X C B such that X = T(5)
contains the origin and defining z = T(£), the system
(2.2} can be trensformed into

2k + 1) = A_z(k) -+ 7B {alz{k)) + Blz(k))u(k)}

Swrp: { y=Cz(k) =21 (k)

(2.3)
17 . D\
where A, = (I, +74) = - ,
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00 - 0 1
c=(10 0 ) and 7 is the sampling period,
see [4].

We will address the above mentioned control problem
by designing an observer-based controller scheme for the
system (2.3). More precisely, we will design an observer
for which the following property can be verified:
Definition 2. (Uniform exponential stability) The
origin of the system £(k + 1) = F:(k,{(k)) is said to
be uniformly exponentially stable if there exist r, Trax,
& >0 and for each 7 € (0, Trnax ). Ar > 0 such that,

lek)<r =
(2.4)

If furthermore (2.4) holds for all £(kg) € R™ then, the
origin is said to be uniformly globally ezponentially sta-
ble.

The property defined above is probably the most use-
ful for discrete-time systems since it imposes a bound
on the overshoots which are uniform in the initial condi-
tions and the sampling time. Moreover, in the particular

e < kllflew k) Wk > k.

case when A, is proportional to 7, this property guar-
antees that the ezact discrete-time model corresponding
to (2.1) (hence with a discretized control input) is (glob-
ally) asympitotically practically stable. Roughly speak-
ing, this means that the solutions tend to an arbitrarily
small ball whose size is independent of + and can be
made smaller as T,.x becomes smaller,

3. Sliding-Mode Control Design

In the sequel, a control design based on sliding mode
techniques is proposed. The main idea is to design
an asymptotically stabilizing feedback control law as-
suring the sliding motion on a (n-m) dimensional space
M c R®. Consider the following nonlinear discrete-time
dynamics

J 2k + 1) = Foz(k)) + Gr(z(k))ulk)
s.{ e e (3.1)

The objective of the sliding mode control strategy is
to steer the states of the system into a (n-m} dimensional
manifold M and te maintain the subsequent metion of
the trajectories on M, such that as k& — oo, z{k) — 0.

For this system & sliding mode control is designed by
considering the following switching surface

(k) = 8" (w(k) ~ res(k)) (3:2)

where S is a vector: & = eof (St ..., Sn ) and
Eref(k + 1) = Zyop(k) is a constant reference signal.
We assume that STG(z(k)) is invertible.

Remark 1:

i} From Definition 1, the system {2.2) can be trans-
formed into (2.2), which can be expressed as system
{3.1) by taking F,(=(k}) = A_z(k) + rBe(=z{k)} and
G (2(k)) = TBAw(k).

ii) It is clear that there exist others possibilities to
define the switching surface. The choice depends on the
control objective.

The proposed control is designed in two steps. Firstly,
the equivalent conirol u.(k) is determined when the
system motion is restricted to the switching surface
a(k + 1) = 0, so that the contro] satisfying this slid-
ing condition is given by

T

(k) = [8TG.(e(k)) " [STFo(2(k)) — STres(k + 1))

The next step is as follows. A regulation control Au
is added in order to satisfy the reaching condition. A
necessary ard sufficient. condition for assuring both slid-
ing motion and convergence onto M is the discrete-time
reaching condition which can be stated as

loth + 1)) < |o (k)]
which must be satisfied (see [2]). For that, the switching
surface can be chosen as

o(k+1) = 487 (z(k) — zreg(k)) =no(k)  (3.3)
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