where 0 < 9 < 1 is a scalar weighting value. It is clear
that this choice satisfies the reaching condition, i.e.
nla(k)| < lo(k)].
Then, the regulation control Au can be designed as
follows

Auk) = [STG, (k)] [15T (2(k) — 2res(R))] -
Finally, the control law is given by
(k) = we(k) + Aulk) (3.4)

The stability properties of o(k) = 0 in (3.3) can be
studied by means of the candidate Lyapunov function
V(e(k)) = o¥ (K)o(k). It follows that

Vie(k + 1)) — V(a(k))

il

= ~(1 -7 (Kalk)
=1V (o(k))
- ()" V(o(O)).

Hence, V{o{k+ 1)) = 0 as k — 0.

To prove the stability of the elosed-loop system un-
der control action (k) it is necessary to introduce the
notion of ultimate bound for the solutions of the unper-
turbed system

or equivalently V(o (k 4 1))

£(k +1) = Fo(£(k), k) (3.5)

where F.(£(k), k) = &(k) + 7 f(£(k)), which will be used
to study the stability properties of a class of perturbed
discrete nonlinear systems when the equilibrium point
is affected by a small perturbation in some sense.
Definition 3. The solutions of system (3.5) are sqid
to be uniformly ultimately bounded if there emist positive
constants 3, and By and for every r € (0,8,) there is
& constant T = T(r), such that
Ne(ka)ll < = NE(R)I < By, VR> ko +T.
The constant f, s knoum as the ultimaie bound,
Furthermore, we introduce a result of existence of #he
ultimate bound for the solution of system (8.5).
Consider the following assumptions:

Al. There exists p > 0 such that the eguilibrium point
£ =0 is uniformiy stable on B,,.

A2, There exisis g continuous function V : By x Z, —
R such that

e €I < VEHR) < o (R
AV(ER) < —es 6

Jor 0 < p < \/g-r, for some positive constants ¢, ce

and cg, for oll k > Q and for all £ € B,.

Theorem 1. Consider the system (3.5). Assume that

Al and A2 hold, There exists o class KL function

@(.,.) = ¢()p(.) such that p is & function of class K, p

is @ decreasing function and o finite time ky, depending

on E(ko) and p, such that the solution of (3.5) satisfies
IR < (llE (ko) p(k — ko)

||¢(k)|| < \/-z?u,

i < T.

and
V> b

Jor ||& (ko

o7 (k+ Do(k +1) — o7 (K)o (k)
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Now, the system (3.7) under the action of the control
(3.4) yields the closed-loop system

2(k +1) = fo(@(k),0) + prla(k), zres(k))  (3.6)
where
Se(a(k),0) = F(a(k)

;gr(w(k)) [STG (2(k))] ™" [nST (k) — ST Fr(a(k))]
Aru
Pe(@(k), @res (k) = Cr(a(k)) [STG (2(k))] ™ x

[ST-'Eref(k +1)— "?ST-Tref(k)]
1t is clear that the closed-loop system (3.6) can
be seen as a system with a unperturbed part, repre-
sented by fr{x(k),0) and a perturbed part given by
pr(@(k), Bres(k)).
Froin the boundedness of the columns of G, (z(k)) and
the non-singularity of STG,(x(k)), it follows that the
perturbed part satisfies the following inequality

P+ (&), Eres (RN < 1 [l (oW + Lz Wt (R

for a{k), &rep{k) € By, where l; and Iz are positive con-
stants.
Now, we consider the following assumptions about the
perturbed system:
A3, The equilibrium point of z(k+ 1) = f-{z(k),0), is
locally exponentially stable.
A4, The veference signal Zrop(k) is uniformly bounded
and satisfy ||Tres ()| < b, for some positive constant b.
By a converse theorem of Lyapunov, assumption A3
assures the existence of a Lyapunov funection V(zx, k)
which satisfies

(3.7)

e llz®)IF < Ve k) < e |k

AVi(z,k) = V{z,k+1) = V(2,k) < —es lz(®)I*

for some positive constants ¢1, ¢z and e3.
Then, the forward difference function AV {x, k) along
the trajectories of the closed-loop system is given by

(3.8)
(3.9)

AV(z, k) = A Vi(z, k) + AVa(z, k)
where
AVi(z,k) = V(f (2(k),0), k + 1) — V(z, k),
and
AValz, k) = V(- (2(5),0) + pr(m(k), zeos (k) k + 1)

Furthermore, from assumption A4 and (3.7), the func-
tion AV,(z, k) satisfies the following inequality

1AValz, k) € Ll)ES(2(k), 0) + pr(2(k), 2pep (k)|
Ly ()P + Lyla e s ()12
Lo (k) 1* + 1203

<

<
<

Using the condition (3.9) and the above inequality, we
have
AV(z, k) < —(e3 = Lph) llo(R)|* + Lolob?,
If I, is sufficiently small such that &, < ) < %: is
satisfied. Tt follows that



