where $0 < \eta < 1$ is a scalar weighting value. It is clear that this choice satisfies the reaching condition, i.e.

$$\eta |\sigma(k)| < |\sigma(k)|$$
.

Then, the regulation control Δu can be designed as follows

$$\Delta u(k) = \left[\mathcal{S}^T \mathcal{G}_\tau(x(k)) \right]^{-1} \left[\eta \mathcal{S}^T \left(x(k) - x_{ref}(k) \right) \right].$$
 Finally, the control law is given by

$$u(k) = u_e(k) + \Delta u(k) \tag{3.4}$$

The stability properties of $\sigma(k) = 0$ in (3.3) can be studied by means of the candidate Lyapunov function $V(\sigma(k)) = \sigma^{T}(k)\sigma(k)$. It follows that

$$V(\sigma(k+1)) - V(\sigma(k)) = \sigma^{T}(k+1)\sigma(k+1) - \sigma^{T}(k)\sigma(k)$$
$$= -(1 - \eta^{2})\sigma^{T}(k)\sigma(k)$$

or equivalently $V(\sigma(k+1)) = \eta^2 V(\sigma(k))$ $= \left(\eta^2\right)^k V(\sigma(0)).$ Hence, $V(\sigma(k+1)) \to 0$ as $k \to \infty$.

To prove the stability of the closed-loop system under control action u(k) it is necessary to introduce the notion of ultimate bound for the solutions of the unperturbed system

$$\xi(k+1) = F_{\tau}(\xi(k), k)$$
 (3.5)

where $F_{\tau}(\xi(k), k) = \xi(k) + \tau f(\xi(k))$, which will be used to study the stability properties of a class of perturbed discrete nonlinear systems when the equilibrium point is affected by a small perturbation in some sense.

Definition 3. The solutions of system (3.5) are said to be uniformly ultimately bounded if there exist positive constants β_1 and β_2 and for every $r \in (0, \beta_2)$ there is a constant T = T(r), such that

$$\|\xi(k_0)\| < r \Rightarrow \|\xi(k)\| < \beta_1, \quad \forall k > k_0 + T.$$

The constant β_1 is known as the ultimate bound.

Furthermore, we introduce a result of existence of the ultimate bound for the solution of system (3.5).

Consider the following assumptions:

A1. There exists $\mu > 0$ such that the equilibrium point $\xi = 0$ is uniformly stable on B_{μ} .

A2. There exists a continuous function $V: B_r \times Z_+ \rightarrow$ R such that

$$c_1 \|\xi(k)\|^2 \le V(\xi, k) \le c_2 \|\xi(k)\|^2$$

 $\Delta V(\xi, k) \le -c_3 \|\xi(k)\|^2$

for $0 < \mu < \sqrt{\frac{c_1}{c_2}}r$, for some positive constants c_1, c_2 and c_3 , for all k > 0 and for all $\xi \in B_r$.

Theorem 1. Consider the system (3.5). Assume that A1 and A2 hold. There exists a class KL function $\varphi(.,.) = \phi(.)\rho(.)$ such that ρ is a function of class \mathcal{K} , ρ is a decreasing function and a finite time k_1 , depending on $\xi(k_0)$ and μ , such that the solution of (3.5) satisfies

$$\|\xi(k)\| \le \phi(\|\xi(k_0)\|)\rho(k-k_0)$$

and

$$\|\xi(k)\| \leq \sqrt{\frac{c_2}{c_1}}\mu, \qquad \forall k \geq k_1$$

for
$$\|\xi(k_0)\| < \sqrt{\frac{c_1}{c_2}}r$$
.

Now, the system (3.1) under the action of the control (3.4) yields the closed-loop system

$$x(k+1) = f_{\tau}(x(k), 0) + p_{\tau}(x(k), x_{ref}(k))$$
 (3.6)

where

$$f_{\tau}(x(k), 0) = \mathcal{F}_{\tau}(x(k)) + \mathcal{G}_{\tau}(x(k)) \left[\mathcal{S}^T \mathcal{G}_{\tau}(x(k)) \right]^{-1} \left[\eta \mathcal{S}^T x(k) - \mathcal{S}^T \mathcal{F}_{\tau}(x(k)) \right]$$

and
$$p_{\tau}(x(k), x_{ref}(k)) = \mathcal{G}_{\tau}(x(k)) \left[\mathcal{S}^{T} \mathcal{G}_{\tau}(x(k)) \right]^{-1} \times \left[\mathcal{S}^{T} x_{ref}(k+1) - \eta \mathcal{S}^{T} x_{ref}(k) \right]$$
It is clear that the closed-loop system (3.6) can

be seen as a system with a unperturbed part, represented by $f_{\tau}(x(k),0)$ and a perturbed part given by $p_{\tau}(x(k), x_{ref}(k)).$

From the boundedness of the columns of $\mathcal{G}_{\tau}(x(k))$ and the non-singularity of $\mathcal{S}^T\mathcal{G}_{\tau}(x(k))$, it follows that the perturbed part satisfies the following inequality

$$||p_{\tau}(x(k), x_{ref}(k))|| \le l_1 ||x(k)||^2 + l_2 ||x_{ref}(k)||^2$$
 (3.7)

for $x(k), x_{ref}(k) \in B_r$, where l_1 and l_2 are positive con-

Now, we consider the following assumptions about the perturbed system:

A3. The equilibrium point of $x(k+1) = f_{\tau}(x(k), 0)$, is locally exponentially stable.

A4. The reference signal $x_{ref}(k)$ is uniformly bounded and satisfy $||x_{ref}(k)|| \le b$, for some positive constant b.

By a converse theorem of Lyapunov, assumption A3 assures the existence of a Lyapunov function V(x,k)which satisfies

$$c_1 \|x(k)\|^2 \le V(x,k) \le c_2 \|x(k)\|^2$$
 (3.8)

$$\Delta V_1(x,k) = V(x,k+1) - V(x,k) \le -c_3 \|x(k)\|^2$$
 (3.9)

for some positive constants c_1, c_2 and c_3 .

Then, the forward difference function $\Delta V(x,k)$ along the trajectories of the closed-loop system is given by

$$\Delta V(x,k) = \Delta V_1(x,k) + \Delta V_2(x,k)$$

where

$$\Delta V_1(x,k) = V(f_{\tau}(x(k),0),k+1) - V(x,k),$$

and

$$\Delta V_2(x,k) = V(f_{\tau}(x(k),0) + p_{\tau}(x(k),x_{ref}(k)), k+1) - V(f_{\tau}(x(k),0), k+1).$$

Furthermore, from assumption A4 and (3.7), the function $\Delta V_2(x,k)$ satisfies the following inequality

$$|\Delta V_2(x,k)| \leq l_p ||\pm f_{\tau}(x(k),0) + p_{\tau}(x(k),x_{ref}(k))||$$

$$\leq l_p l_1 ||x(k)||^2 + l_p l_2 ||x_{ref}(k)||^2$$

$$\leq l_p l_1 ||x(k)||^2 + l_p l_2 b_1^2$$

Using the condition (3.9) and the above inequality, we have

$$\Delta V(x,k) \le -(c_3 - l_p l_1) \|x(k)\|^2 + l_p l_2 b^2.$$

If l_1 is sufficiently small such that $l_1 < \tilde{l}_1 < \frac{c_3}{l}$ is satisfied. It follows that