$$\Delta V(x,k) \leq -a \left\|x(k)\right\|^2 + l_p l_2 b^2$$
 where $a = (c_3 - l_p \tilde{l}_1).$

Then, the forward difference function $\Delta V(x, k)$ satis-

$$\Delta V(x,k) \leq -(1-\gamma)a \|x(k)\|^2 - \gamma a \|x(k)\|^2 + l_p l_2 b^2$$

$$\leq -(1-\gamma)a \|x(k)\|^2,$$

for some γ such that $0 < \gamma < 1$ and for all $||x(k)|| \ge$

It follows that $l_2 \leq \frac{\gamma_a}{l_p b^2} \|x(k)\|^2$ for $\|x(k)\| < \sqrt{\frac{c_1}{c_2}} r$, and a bound for l_2 is given by $l_2 \leq \tilde{l}_2 < \frac{\gamma a}{l_1 h^2} \frac{c_1}{c_2} r^2$. From Theorem 1, the ultimate bound of the solution of system (3.6) is given by $B = \sqrt{\frac{c_2}{c_1}} \sqrt{\frac{l_p \bar{l}_2 b^2}{\gamma a}}$ where the solutions of the slow system satisfy $\|x(k)\| < \sqrt{\frac{c_2}{c_1}} \sqrt{\frac{l_p \bar{l}_2 b^2}{\gamma a}}, \qquad \forall k \geq k_1,$

$$||x(k)|| < \sqrt{\frac{c_2}{c_1}} \sqrt{\frac{l_p \overline{l_2} b^2}{\gamma a}}, \quad \forall k \ge k_1,$$

for some finite time k_1 .

To prove that the closed-loop system is locally ultimately bounded, we have the following lemma.

Lemma 2. Consider the discrete-time nonlinear system (2.2) for which a control (3.4) is designed. Suppose that assumptions A3 and A4 hold. Then, there exist positive constants l_1 and l_2 such that, for any initial state $x(k_0)$, the solutions of the closed-loop system (3.6) are ultimately bounded.

For $x_{ref}(k) = 0, \forall k > k_0$; the following result can be obtained.

Corollary 1: Consider the discrete-time nonlinear system (2.2) for which a control (3.4) is designed. Suppose that assumption A3 holds. Then, there exists a positive constant l_1 such that, for any initial state $x(k_0)$, the solutions of the closed-loop system (3.6) are uniformly exponentially stable.

4. Observer design

In this section we introduce an observer for the class of systems (2.3) which belongs to the class of systems with a triangular structure. This property of the nonlinearity is important because it ensures the uniform observability of the system.

An observer for the transformed system (2.3) is given by

$$z(k+1) = A_{\tau}z(k) + \tau B\left[\alpha(z(k)) + \beta(z(k))u(k)\right] + \tau \Delta_{\theta}^{-1}K[y(k) - \widehat{y}(k)]$$
(4.1)

where

$$\begin{array}{lll} \Delta_{\theta} & = & diag\left(\begin{array}{ccc} \frac{1}{\theta} & , \cdots, & \frac{1}{\theta^n} \end{array}\right) & \text{for} & \theta \geq 1, & (4.2) & & \frac{d\delta}{dt} = \omega - \omega_s \\ K & = & col\left(\begin{array}{ccc} C_n^1 & , \cdots, & C_n^n \end{array}\right) & \text{with} & C_n^p = \frac{n!}{(n-p)!p!}. & & M\frac{d\omega}{dt} = T_m - P_g \end{array}$$

The term $\tau \Delta_{\theta}^{-1} K$ represents the observer gain.

Defining the estimation error as e = z - x, it follows that the dynamics of the estimation error is of the form

$$e\left(k+1\right) = \left(A_{\tau} - \tau \Delta_{\theta}^{-1} KC\right) e\left(k\right) + \tau B \Psi_{o}^{\tau}\left(e(k), x(k), u(k)\right) \tag{4.3}$$

where $\Psi_{\alpha}^{\tau}(e,x,u) := [\alpha(e+x) - \alpha(x) + (\beta(e+x) - \beta(x)) u].$

In order to make a statement on the stability of the observer we need the following hypothesis.

A5. The function Ψ_0 along the trajectories of (2.3) and (4.3), driven by any admissible control input u(k)satisfies

 $||B\Psi_{0}^{\tau}(e(k),x(k),u(k))|| \leq l_{3} ||e(k)||, \quad \forall k \geq k_{0} \geq 0,$ $\forall \tau \in (0, \tau_{\max})$.

Remark 2. Notice that this assumption holds for instance if, for each compact X, and defining

$$\begin{aligned} &\mathcal{U}_{\tau} := \left\{u \in R^n : u = \left[\mathcal{S}^T \mathcal{G}_{\tau}(x(k))\right]^{-1} \times \\ \left[\mathcal{S}^T x_{ref}(k+1) + \eta \mathcal{S}^T \left(x(k) - x_{ref}(k)\right) - \mathcal{S}^T \mathcal{F}_{\tau}(x(k))\right], \\ &x \in \mathcal{X}\right\} \text{ there exists } l_3 > 0 \text{ such that } \|B\Psi_o^{\tau}(e, x, u)\| \leq \\ &l_3 \|e\|, \ x(k) \in \mathcal{X} \text{ and } u(k) \in \mathcal{U}_{\tau} \text{ for all } \tau \in (0, \tau_{\text{max}}) \text{ and } \\ &\text{all } k \geq k_0 \geq 0. \end{aligned}$$

Lemma 3. Assume that the system (2.3) satisfies assumption A5. Then, there exist $\tau_{max} > 0$ sufficiently small and $\theta_{min} > 0$ sufficiently large such that the estimation error dynamics (4.3) is uniformly globally exponentially stable with λ_{τ} proportional to $\tau \in (0, \tau_{\text{max}})$, for all $\theta > \theta_{\min}$ such that $\theta_{\min} \tau_{\max} \in (0, 1)$.

The proof of this theorem is based on the following

Claim 1. Let $A_o = I + \gamma_o (A - KC)$ where K is defined as in (4.2). Then for every $\gamma_o \in (0,1)$, the unique symmetric positive definite matrix Po satisfying the al-

 $A_o^T P_o A_o - P_o = -\gamma_o P_o - \gamma_o (1 - \gamma_o)^n C^T C$, is given by $P_o = M^T M$ where $M = \Lambda_o E_o$, $\Lambda_o =$ $diag(1,(1-\gamma_o)^{\frac{1}{2}},...,(1-\gamma_o)^{\frac{n-1}{2}})$ and, letting i and j denote the rows and columns of Eo respectively, the elements of E_o , are $E_o(i,j) = (-1)^{i+j} C_{j-1}^{i-1}$ for $i \leq j \leq n$ and $E_o(i, j) = 0$ otherwise.

5. Application to the Synchronous Generator

In this section, we apply the previous control and observer design techniques to a synchronous generator. We consider a synchronous generator connected through purely reactive transmission lines to the rest of the network which is represented by an infinite bus, i.e. a machine rotating at a synchronous speed ω_s and capable of absorbing or delivering any amount of energy [6]. Such a generator can be modelled as

$$\frac{d\delta}{dt} = \omega - \omega_s$$

$$M\frac{d\omega}{dt} = T_m - P_g$$

$$T'_{do}\frac{dE'_q}{dt} = -\frac{X_d}{X_d'}E'_q - \left(\frac{X'_d - X_d}{X'_d}\right)V\cos(\delta) + E_{fd}$$
(5.1)