AV(2,k) < —alz(B)|* + Llob?
where a = (c3 — Ipd;).
Then, the forward difference function AV (z, k) satis-
fies

AV(@zE) < —(1—7el=E) - rale®) + Hib®
< —(1-eale®)i?,

for some -y such that 0 < ¥ < 1 and for all [|=(k)| >

Izlgba -
V “4a
It follows that o < 7% ||lw(k)[|* for lz(k)]] < (/27

in

and a bound for Iy is given by ks < i3 < %;f-‘ilrz. From

o]

Theorem 1, the ultimate bound of the solution of system

(36) is given by B = /2, /b2t

where the solutions of the slow system satisfy

le(e)ll < (/2 222, vk >k,

for some finite time ky.

To prove that the closed-loop system is locally ulti-
mately bounded, we have the following lemma.
Lemma 2. Consider the discrete-time nonlinear system
(2.2} for which a control (3.4) is designed. Suppose that
assumptions A3 and A4 hold. Then, there exist posi-
tive constants i; and Iy suck that, for any initial state
x(kg), the solutions of the closed-loop system (8.6) are
ultimately bounded.

For z,.7(k) = 0,¥k > ko; the following result can be

obtained.
Corollary 1: Consider the discrete-time nonlinear sys-
tem (2.2) for which a control (3.]) is designed. Suppose
that assumption A3 holds. Then, there ezists a positive
constant Iy such that, for any initial state =(ky), the
solutions of the closed-loop system (3.6) are uniformly
exponentially stable.

4. Observer design

In this section we introduce an observer for the class of
systems (2.8) which belongs to the class of systems with
a triangular structure. This property of the nonlinearity
is important because it ensures the uniform observability
of the system.

An observer for the transformed system (2.3} is given
by

2(k+1) = Arz(k)+7Bla(z(k)) + 8 (z (k) u(k))

+7A7 K [y (k) — 5 (k)] (4.1)
where
Ay = dieg( 3 v, ) for 621, (4.2)
_ 1 : -
K = cl(CY ,-, C) with CF w

The term TA; K represents the observer gain.

Defining the estimation error as ¢ = z — =, it follows
that the dymamics of the estimation error is of the form

e(k+1) = (A, — 7A;'KC) e (k) +1 B (e(k), x(k), u(k))
(4.3)

where ¥7(e, 7,4} := [a(e +2) — o{x) + (B(e + ) — B(=)} ).

In order to make a statement on the stability of the
observer we need the following hypothesis.
A5. The function ¥, along the trajectories of (2.3)
and (4.3), driven by any admissible comntrol input u({k)
satisfies
NBY:(e(k), (), (kDI < Ls el
Y7 € (0, Trmax) -
Remark 2. Notice that this assumption holds for in-
stance if, for each compact X, and defining

Uy = {ue R iu=[§7C,(z(k))] ' x
(ST pes(k + 1) + 187 (2(k) — Ty (k) — STF ()],
z € X'} there exists I3 > 0 such that |[BY]{e,z, )| <
I3 Jlell, z(k) € X and u(k) € U, for all T € (0, Tmax) and
all & > kp > 0.
Lemma 3. Assume that the system (2.3) salisfies as-
sumnption AB. Then, there ewist Twma, > 0 sufficiently
small end Onin > 0 sufficiently large such that the es-
timation error dynamics (4.3} is uniformly globally ex-
ponentially stable with Ay proportional to 7 € (0, 7max),
for all 8 > Onin such that BminTmax € (0, 1).

The proof of this theorem is based on the following
claim.
Claim 1. Let 4, = I +v,(A - KC) where K is de-
fined as in (.2). Then for every 7, € (0, 1), the unigue
symmetric positive definite matriz P, satisfying the al-
gebraic equation,

AZ‘POAO - F, = _7oPo - 70(1 - ,Yﬂ)ncl‘]"c’

is given by P, = MTM where M = AE,, A, =
diag(l, (1 —7,)%, ..., (1 —4,)°7") and, letting i and j
denote the rows end columns of FE, respectively, the ele-
ments of E,, are F,(i,5) = (—1)"+J'C‘;::i fori<ji<n
and F,(3,7} =0 otherwise.
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5. Application to the Synchronous Gen-
erator

In this section, we apply the previous control and ob-
server design techniques to a synchronous generator.
We consider a synchronous generator connected through
purely reactive transmission lines to the rest of the net-
work which is represented by an infinite bus, {.e. a ma-
chine ratating at a synchronous speed w, and capable of
absorbing or delivering any amount of energy [6]. Such
a generator can be modelled as

L

dtd; #

M. =Tn—F, (5.1)
e

T‘,to?t_q —_-—%E; _ (%Q)Vcos(ﬁ) + Egq
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