2, Dynamical model of a multi-machine power
system

Now we consider & power system made of n generators.
Under some standard assumptions, the motion of the
interconnected generators can be described by the clas-
sical model with flux decay dynamics. The generator
is modeled by the voltage behind direct axis transient
reactance. The angle of the voltage coincides with the
mechanical angle relative to the synchronous rotating
frame. The network has been reduced to internal bus
representation. The dynamical model of the i-th ma-
chine is represented by (Bergen, 1986, Paj et al., 1989):
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and 5;(t) is the power angle of the é-th generator, w;(t)
represents the relative speed, Ej (t) is the transient
EMF in the quadrature axis

We consider that the Fj,(t), i = 1,..,n are the
cantrol inputs and the &;(t) are measurable outputs,
together with the F., and V;,, where V;, represents the
terminal voltage at generator i. The B,,, are supposed
to be constant (standard assumption}.

Then, the state representation of a n-machine power
system is given by
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wherea, Dif2H;, b = (wo/2H; )Py, 6 = (wo/2H)),
= (Xa, — Xy ) T5,, e = 1/Ty,, are the systems pa-

ramet.em, [£:1, 22, 23] = [B:(t), wi(t), E,’;,-(t)]T repre-
sents the state vector, and the control input is given
by u; = (1/T5 Ykaitsi(s)
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We will now present our controller design based on
the idea of continuous sliding mode control. In the

same time, we present a controller design based on pas-
sivity theory in order to compare the performances of
these two methodologies.

3. A continuous sliding-mode contreller design

We consider the class of affine nonlinear systems de-
scribed in the state space by

= f(=x)+g(z)u,  x(t) = =g, (3)

where tg > 0, x € B, C R" is the stafe vector, u €
R" is the control input vector , f and g are assumed
to be bounded with their components being smooth
functions of x. B, denotes a closed and bounded subset
centered at the origin.

‘The continuous sliding-mode control for the system
(3), is designed as follows. Consider the following (n—
r)-dimensional nonlinear sliding surface defined by

o (z—2)" =0 (4

where z* is equilibrium point and each function o; :
B.xB.,—R,i=1,..,r isa C! function such that
:(0) = 0.

The so-called equivalent control method (see De Car-
lo, 1988, Utkin, 1992} is used to determine the system
motion restricted to surface #{z — x*) = 0, leading to
the equivalent control

o= — [%;g(m)] B [‘;—;f(m)] %)

where the matrix [8o/8z|g(z) is assumed to he non-
singular for all z,z* € B,.

In order to complete the control design an addi-
tional control term uy is added to the control input:

o(z = ) = (0,(z — 2, .

U=t tuy (6,)

where u, is the equivalent control (5), which acts when
the system is restricted to ¢{z —x*) = 0, while ¢, acts
when oz — z*) £ 0.

The control zx is selected as

wn =g Lol —2") (D)

where L is an r x 7 positive definite matrix.

We can easily check that the system trajectory z(t)
is such that the following stable ordinary differential
equation

5(z - 3) = ~Lo(z - 27) (®)

is satisfied for all t. This means that the system tra-
jectory reaches the sliding surface asymptotically, since
o(z(t) — z*) = e~ L0 a(x(tg) — *), ¥ty > 0, then,
a(z(t) — 2*) — 0, when ¢t — 4oo0. In fact, the input-
output behavior of the closed-loop system (with the
output ¥ = o{x(t) — =*) is given by equation (8).



