On the basis of the continuous sliding-mode control
described above, the resulting the composite control is
given by

=~ [%fgg(m)]_l 5@+ Loa=3)]. @

When the composite control (9} is applied to (3],
one obtains the closed-loop nonlinear system

5: = fe(“q:) 2,) + p(a:I 17*) (10)

where -1
Jel@,2%) = { haxn — 9(2) [320(2)]  (§) } (@),
and
* aﬂ -1 *
Pz, 2°) = —gl@)lgo(o)l Lotz — 2*).
Now, in order to study the stability properties of

the closed-loop system, we introduce the following ag-
sumption.

Assumption 1. The eguilibrium point =* of T =
fe(z, %) is locally exponentially stable,

By use of Lyapunov’s converse theorem (see Khalil,
1996), Assumption 1 ensures the existence of a Lya-
punov function V{e) with ¢ = » — z* which satisfies
the following inequalities
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for some positive constants ay,ag, oz and oy,

Let consider V{e} as a Lyapunov function candi-
date to investigate the stability of the origin ¢ =0 as
an equilibrium point for the system (10). From both
Assumption 1 and equation (11), the time derivative
of V along the trajectories of (10) satisfies

Vie) < —e el (12)

then the system (10) is exponentially stable,

The Lyapunov function candidate V is instrumental
to investigate the stability properties of the closed-loop
system obtained when the composite control « is used.
Then the following proposition can be statad.

Proposition 1: Consider the nonlinesr system (8)
Jor which a composite control (5), (6), (7) is designed
such that Assumption 1 is satisfied. Then, the closed-
loop nonlinear system (10) is locally exponentially sta-
ble.

4. Hamiltonian controller design

Now we derive an excitation controller using the method-
ology based on the notions of energy function and port-
controlled Hamiltonian systems (PCHS).

We onsider the following affine nonlinear systeim

fz) + glz)u (13)
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wherer € IR” is the state vector of the system, « € RB™
is the control vector and y € K" is the output vector.
In this paper we are interested in the class of systems
that can be equivalently represented in a Hamiltonian
form with dissipative terms in the following way

T
2= U@ -REI s ()
y = gT(mlagf

where 1 , %, ¥ are the energy variables, H (%1, ..., %r)
R" — R represents the total stored energy and the in-
terconnection structure is captured in the n x n matrix
J(z) and the 7 x m matrix g{z). The matrix J(z) is
skew-symmetric, ie.

J(z) = —JT(I), Yz e B®

and R(zx) is a non-negative symmetric matrix depend-
ing on x, i.e

R(x)=RT(z) >0, VzeR".

The main advantage of this kind of representation
is that the total energy function can be considered as
a Lyapunov function. Moreover, from (14), we obtain
the power-balance eguation

dH  BH_ 8HT .
E— = —ER(I)'@}E— +u'y

with uTy the power externally supplied to the system
and —%—’}R(x)%’; representing the energy-dissipation
due to the resistive elements. As it is well known (see
Maschke et al., 1998), the equality above establishes
the passivity properties of the system in the following
sense.

Definition 1: System (18) is passive with respect
the outpul y = h(x) if there exists a smooth non-
negative function H(x), such that H(0) = 0 and the
Jollowing irequality holds

Ha(2)) - H(2(0)) < fﬂ w(s)y(s)ds. (15

If in addition, the system satisfies the detectability
properties stated in the next definition

Definition 2: The system (13) i3 zero-state de-
tectable if w(t) = 0, y(t) = 0 Vi = 0, implies that
lim (t)=0.

Then it is possible to formulate the following result,
that is fundamental concerning the stability properties
of the considered class of systems.



