5.2 Hamiltonian Control design

Now we design a control law based on passivity the-
ory and energy function. The system is described in a
Hamiltonian representation providing that the stability
of the system can be guaranteed.

Consider system (2) and the following energy func-
tion
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It follows that the system dynamics can be writ-

ten as a generalized Hamiltonian control system with
dissipation according to what follaws
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Let (xf), 2, %}5) be the equilibrium point of (2),
obtained from the fallowing equations
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Defining the constant excitation control i, it fol-
lows that
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Now, defining the energy function which includes
the equilibrium point of the following form
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Then, system {19) can be represented by the Harilto-
nian system with dissipation as
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Since H, is bounded from below, because of z;; €
[-®, 7], and VI > 0 the set {5 : H.(x) < I} is com-
pact. Thus H.(%) has a strict local minimum at (]},
¥, Th).

Then, a.control law which stabilizes the multi-machi-
ne power system is given by
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Finally, the controlier can be expressed only in terms
of loeal measurable signals:
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where E,, =V, + Q—?,lﬁﬂ Consequently, the resulting
controller is a decentralized static output feadback.

6. Simulation results

The effectiveness of the here-proposed sliding-mode con-
troller design has been validated through computer sim-
ulations.

The numerical values of the generator parameters
(in per unit) were D, = 5, Dy = 3, X, = 0.252,
X}, =0319, Xa, = 1863, Xz, = 2.36, Hy =1, Ho =
2, T; = 6.9, Tég = 796, Ef, = 13, P,, = 0.35,
P, = 0.35 and w, = 377, Byp = 0.56, B3 = 0.53,
By = 0.6,

With this parameter choice, the stable equilibrium
state of the generator is

55?1 = 0.6654, -"ITQ =0, xfs =1.03
:’:?2 = 064.25, $§2 = 0, 353 =101
The initial value of the states variables are
211(0) = 0.8, Z:2(0) =03, 1253(0)=15
212{0) = 0.5, 292(0) =-0.3, x23(0) =05

The controller parameters are chosen as follows



