UNIVERSIDAD AUTONOMA DE NUEVO LEON FACULTAD DE CIENCIAS BIOLOGICAS

REGENERACION in viiro DEL PIRON AZUL Pinus maximartinezii (Rzed)

POR
MA. DEL CARMEN OJEDA ZACARIAS

Como requisito parcial para obtener el Grado de DOCTOR EN CIENCIAS con Especialidad en Biotecnología

Z5320 FCB 2007 .033

TD

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN. FACULTAD DE CIENCIAS BIOLÓGICAS

REGENERACIÓN in vitro DEL PIÑÓN AZUL Pinus maximartinezii (Rzed)

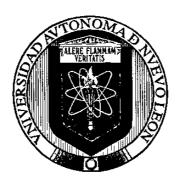
Por

MA. DEL CARMEN OJEDA ZACARÍAS

Como requisito parcial para obtener el Grado de

DOCTOR EN CIENCIAS

con Especialidad en Biotecnología


Diciembre de 2007

7 D 25320 FCR 2007 • O33

4- Septembre . 08 Decasaraje 2. 1 Truy.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN. FACULTAD DE CIENCIAS BIOLÓGICAS

REGENERACIÓN in vitro DEL PIÑÓN AZUL Pinus maximartinezii (Rzed)

Por

MA. DEL CARMEN OJEDA ZACARÍAS

Como requisito parcial para obtener el Grado de

DOCTOR EN CIENCIAS

con Especialidad en Biotecnología

Diciembre de 2007

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN.

FACULTAD DE CIENCIAS BIOLÓGICAS SUBDIRECCIÓN DE ESTUDIOS DE POSTGRADO

REGENERACIÓN in vitro DEL PIÑÓN AZUL Pinus maximartinezii (Rzed)

TESIS

Como requisito parcial para obtener el Grado de **DOCTOR EN CIENCIAS**

Con Especialidad en Biotecnología

Presenta

MA. DEL CARMEN OJEDA ZACARÍAS

COMISIÓN DE TESIS

Dr. Hugo Alberto Luna Olvera

Director

Dra. Lilia Hortensia Morales Ramos

Secretario

Dra. Teresa Elizabeth Torres Cepeda

Vecal

Ph.D. Emilio Olivares

Director externo

Dra. María Julia Verde Star

: Il: Vine St

Vocal

Dr. Benito-Pereyra Alférez

Vocal

Dra. Elizabeth Cardenas cerda

Vocat

AGRADECIMIENTOS

A todas aquellas personas e instituciones que de alguna manera, intervinieron en la realización de esta investigación.

Al Instituto Tecnológico de Nuevo León por el apoyo otorgado y las facilidades brindadas para la realización de mis estudios doctorales.

Al Consejo Nacional de Ciencia y Tecnología (CONACYT), por haberme otorgado la beca para la realización del programa doctoral.

Al Dr. Hugo Alberto Luna Olvera, asesor principal, de la presente investigación. Por su confianza y apoyo brindado en la realización de esta investigación, así como su valiosa dirección en el desarrollo del trabajo.

A los siguientes Doctores integrantes de mi comité de tesis, Dra. Lilia Hortensia Morales Ramos, Dra. María Julia Verde Star, Dra. Teresa Elizabeth Torres Cepeda y Dr. Benito Pereyra Alférez, por su participación en la revisión y sugerencias aportadas al presente trabajo.

Al Dr. Luís Galán Wong por sus sugerencias y apoyo durante mi estancia en el Instituto de Biotecnología de la Facultad de Ciencias Biológicas de la Universidad Autónoma de Nuevo León.

A la Dra. Ma. Elizabeth Cárdenas Cerda, por su valiosa dirección en el desarrollo de la presente investigación, además, por su confianza y apoyo siempre brindado, y agradecerle infinitamente haberme compartido sus conocimientos relacionados con el cultivo de tejidos vegetales; los cuales han sido de gran utilidad en el desarrollo de mi vida profesional.

Al Ph.D. Emilio Olivares Sáenz, por la asesoría brindada en la interpretación de los análisis estadísticos de la presente investigación y sus acertadas recomendaciones.

Al M.C. Raúl Porfirio Salazar Sáenz por las facilidades brindadas para la realización del trabajo en el laboratorio a su cargo de la Facultad de Agronomía de la Universidad Autónoma de Nuevo León.

Al Ing Isaac Quintero Quintero por su valiosa colaboración en la donación del germoplasma vegetal, para la realización de esta investigación. Así como, por su disponibilidad en los recorridos de campo al lugar de origen de la especie.

Al M.C. Raúl René Ruíz Garduño, por su colaboración incondicional en la gestión de las visitas y los recorridos de campo al cerro piñones.

DEDICATORIAS

A mis Padres, Margarita Zacarías de Ojeda y Juan Isaías Ojeda Lázaro (†). por su gran amor y comprensión.

A mis Hermanos; Por el apoyo moral, que siempre me han brindado. Así como a todos mis sobrinos por ser la alegría de la familia.

LISTA DE TABLAS

Tabla	I	Página
I.	Componentes inorgánicos de los medios DCR y GD	37
11.	Componentes orgánicos adicionados a los medios DCR y GD	38
III.	Tratamientos a los que se sometieron cotiledones y embriones cigótico	os
	maduros de Pinus maximartinezii para estudiar su respuesta in vitro e	n
	las diferentes etapas	42
IV.	Componentes inorgánicos de los medios DCR, GD, MS y SH	45
V.	Número de yemas promedio de Pinus maximartinezii que presentaron	2
	primordios foliares a las seis semanas en la etapa de alargamiento	52
VI.	Análisis de varianza para la variable número de brotes de Pinus	
	maximartinezii obtenidos a las 8 semanas de cultivo in vitro	53
VII.	Análisis de varianza para la variable longitud de brotes obtenidos a la	s
	8 semanas en la triple interacción en Pinus maximartinezii	56
VIII.	Promedios obtenidos a las 8 semanas en la variable longitud de brotes	
	de Pinus maximartinezii	56
IX.	Análisis de varianza de la variable capacidad de formación de Pinus	
	maximartinezii obtenidos a las 8 semanas	57
X.	Promedios obtenidos a las 8 semanas en la variable capacidad de	
	formación de brotes de Pinus maximartinezii	58
XI.	Número de brotes de Pinus maximartinezii que no formaron raíz, con	
	una raíz y con dos raíces en los medios DCR y GD	. 60
XII.	Prueba de Ji-cuadrada para la comparación de medios de cultivo en	
	cuanto al número de raíces formados en Pinus maximartinezii	60

X	III.	Número de brotes de Pinus maximartinezii que no formaron raíz, con	
		una raíz y dos raíces con diferentes concentraciones de sales minerales.	61
X	IV.	Prueba de Ji-cuadrada para comparación de concentraciones de medios	
		en cuanto al número de raíces formadas en Pinus maximartinezii	61
X	۲V.	Número de brotes de Pinus maximartinezii que formaron raíz, con una	
		raíz y con dos raíces expuestos a tres tiempos de pulso	62
X	VI.	Prueba de Ji-cuadrada para la comparación de tres tiempos de pulso en	
		Pinus maximartinezii	62
X	VII.	Análisis de varianza para la comparación de medios de cultivo	
		utilizados para crecimiento de raíz in vitro de Pinus maximartinezii	64
XV	VIII.	Medias de crecimiento de raíz (mm) de Pinus maximartinezii obtenidas	
		en dos medios de cultivo a las 8 semanas del cultivo in vitro	64
X	XIX.	Análisis de varianza para la comparación de concentraciones en medios	
		de cultivo en crecimiento de raíz de Pinus maximartinezii in vitro	64
X	XX.	Medias de crecimiento de raíz (mm) de Pinus maximartinezii obtenidas	
		en dos concentraciones de medios de cultivo a las 8 semanas del	
		cultivo in vitro	65
X	XXI.	Análisis de varianza para la comparación de tiempos al pulso en	
		cuanto al crecimiento de raíz en Pinus maximartinezii	65
X	XII.	Medios de crecimiento de raíz (mm) en tres tiempos de exposición al	
		pulso en Pinus maximartinezii	65

LISTA DE FIGURAS

Figura		Página
1.	Material vegetal de Pinus maximartinrezii	. 32
2.	Semillas maduras de <i>Pinus maximartinezii</i> en estratificación	32
3.	Proceso de desinfección de las semillas de Pinus maximartinezii	. 35
4.	Obtención de embrión maduro a partir del megagametofito de	
	Pinus maximartinezii	. 36
5.	Obtención de cotiledones de Pinus maximartinezii a partir de	
	embrión maduro	36
6.	Unidades del experimento en condiciones controladas	. 39
7.	Brotes enraizados in vitro	. 47
8.	Plantas aclimatadas de Pinus maximartinezii después de 8	
	semanas del establecimiento en esta etapa	48
9.	Respuesta observada en el establecimiento in vitro de Pinus	
	maximartinezii	. 50
10.	Formación de estructuras nodulares en embriones cigóticos y	
	cotiledones de Pinns maximartinezii a las 6 semanas de la	
	transferencia in vitro	51
11.	Alargamiento de yemas en embriones cigóticos y cotiledones de	
	pinus maximartinezii a las 2, 4 y 6 semanas de la transferencia en	
	los medios de cultivo	52
12.	Número de brotes de Pinus maximartinezii obtenidos a las 8	
	semanas de cultivo in vitro en los medios DCR y GD	54

13.	Número de brotes de Pinus maximartinezii obtenidos a las 8	
	semanas de cultivo in vitro en dos concentraciones de BAP	55
14.	Proceso de formación de brotes de Pinus maximartinezii a las 8	
	semanas de cultivo	58
15.	Respuesta de los brotes de Pinus maximartinezii a las 8 semanas	
	en medios de cultivo para promover enraizamiento in vitro	59
16.	Brotes de Pinus maximartinezii	59
17.	Número de brotes de Pinus maximartinezii que formaron raíces	
	en tres tiempos de exposición al pulso	63
18.	Brotes con raíces después de 8 semanas en los medios de	
	enraizamiento de Pinus maximartinezii	66
19.	Plántulas de Pinus maximartinezii aclimatadas después de 8	
	semanas en condiciones controladas y de invernadero	67

TABLA DE CONTENIDO

Sección págin	na
AGRADECIMIENTOS	i
LISTA DE TABLAS	iv
LISTA DE FIGURAS	vi
TABLA DE CONTENIDO	viii
LISTA DE SÍMBOLOS Y NOMENCLATURA	хi
RESUMEN	xiv
ABSTRACT	χV
i. INTRODUCCION	1
2. IPÓTESIS	2
3. OBJETIVOS	3
3.1 Objetivo general	3
3.2 Objetivos particulares	3
4. ANTECEDENTES.	4
4.1 Importancia económica de las Pináceas	4
4.2 Características de las Pináceas	5
4.3 Distribución Geográfica.	5
4.4 Clasificación Botánica de la Especies	6
4.5 Historia y origen del <i>Pinus maximartinezii</i> (Rzedowski)	7
4.6 Descripción botánica de la especie	7
4.7 Importancia económica de la especie en estudio	8
4.8 Importancia mundial de la diversidad genética	9
4.9 Impacto de la biotecnología vegetal	11
4.10 Propagación de las pináceas	11
4.11 Técnicas del cultivo de tejidos vegetales en coníferas	12

	4.12	Micro	propagación en coníferas	13
	4.13	Factor	es que influyen en la respuesta in vitro	14
		4.13.1	Luz	14
		4.13.2	Especie	15
		4.13.3	Inóculo o explante	16
		4.13.4	Influencia de la sacarosa en el medio de cultivo	17
		4.13.5	Medio de cultivo	18
			4.13.5.1 Efectos de las sales inorgánicas en la respuesta in vitro	18
			4.13.5.2 Respuesta a los reguladores de crecimiento del cultivo in	
			vitro	19
			4.13.5.3 Organogénesis en coníferas	20
			4.13.5.3.1 Etapas de la ruta Organogénetica en coníferas	21
5.	ΜÉ	TODO	s	31
	5.1	Materi	al vegetal	31
		5.1.1	Estratificación de la semilla	32
		5.1.2	Desinfección de la Semilla	33
		5.1.3	Desinfección de lo megagametogitos	34
		5.1.4	Explante o inóculo.	35
	5.2	Medio	os de cultivo	36
	5.3	Condi	ciones controladas del cultivo in vitro	38
	5.4	Mode	lo estadístico	39
	5.5	Etapa	s de la organogénesis	40
		5.5.1	Etapa de establecimiento aséptico.	40
		5.5.2	Etapa de inducción de primordios yemas	41
		5.5.3	Etapa de alargamiento de yemas	42
		5.5.4	Etapa de formación de brotes	43
		5.5.5	Etapa de enraizamiento de brotes	44
		5	5.5.5.1 Enraizamiento in vitro	44
		5	5.5.5.2 Enraizamiento de brotes <i>in vivo</i>	46

5.5.6 Aclimatación de las plantas	48	
6. RESULTADOS	49	
6.1 Variables evaluadas en la etapas de organogénesis	49	
6.1.1 Establecimiento aséptico de los explantes	49	
6.1.2 Inducción de primordios de yemas	50	
6.1.3 Alargamiento de yemas	51	
6.1,4 Formación de brotes	53	
6.1.5 Longitud de brotes.	55	
6.1.6 Capacidad de formación de brotes	57	
6.1.7 Enraizamiento de brotes	58	
6.1.7.1 Enraizamiento de brotes in vivo	66	
6.1.8 Aclimatación de plantas	67	
7. DISCUSIÓN	68	
7.1 Establecimiento aséptico de los explantes	68	
7.2 Inducción de primordios de yemas	68	
7.3 Alargamiento de yemas	70	
7.4 Formación de brotes.	71	
7.5 Longitud de brotes	72	
7.6 Capacidad de formación de brotes	73	
7.7 Enraizamiento de brotes in vitro	73	
7.8 Enraizamiento de brotes in vivo	75	
7.9 Aclimatación de plantas	75	
8. CONCLUSIONES Y RECOMENDACIONES	77	
LITERATURA CITADA		
RESUMEN BIOGRÁFICO	89	

LISTA DE SÍMBOLOS

NOMENCLATURA

---- Sin valor

% Porcentaje

μM Micro molar

ABA Ácido abscísico

atm Atmósfera

BAP Bencilaminopurina

B₅ Tambor *et al.*, (1965)

CM Cuadrado medio del error

Cm Centímetros

°C Grados centígrados

DCR Gupta y Durzan (1885)

DOF Diario Oficial de la Federación

E R Erisson (1965)

F F- calculada

FV Fuentes de variación

g Gramos

g/l Gramos por litro

GD Gresshoff y Doy (1972)

GL Grados de libertad

h Horas

(H₂0₂) Peróxido de hidrógeno

Ha Hectáreas

HE Hellers (1953)

IBA Ácido indolbutírico

Kg Kilogramos

M Metros

mgl Miligramos por litro

min Minutos

ml Mililitros

mM Mili molar

mm Milímetros

MS Murashige y Skoog (1962)

msnm Metros sobre el nivel del mar

NAA Ácido naftalenacético

NaOCl Hipoclorito de sodio

SC Suma de cuadrados

seg Segundos

SEMARNAT Secretaría de Medio Ambiente y Recursos Naturales

SH Schenk y Hildebrand (1972)

Sig Significan cía

SPSS Stadistical Products for Social Sciences

TE Tang y Ouyang (1999)

Tween-20 Poliexietileno sorbitan monolaurato

UANL Universidad Autónoma de Nuevo León

(v/v) Volumen sobre volumen

Wh Whiter (1943)

X² Ji- cuadrada

RESUMEN

Pinus maximartinezii (Rzedowski) es una especie endémica de pino en peligro de extinción, confinada a una población de aproximadamente 2000 a 2500 árboles maduros en una superficie de 400 ha. al sur de Zacatecas, México. El éxito del cultivo de tejidos vegetales para conservación de germoplasma, depende fundamentalmente de la tasa de regeneración. En base a esto se planteó como objetivo desarrollar un protocolo para la micropropagación de Pinus maximartinezii mediante la técnica de organogénesis. En la etapa de inducción de yemas fueron cultivados embriones cigóticos y cotiledones en los medios de cultivo DCR y GD adicionados con 0.3 mgl⁻¹ ó 0.5 mgl⁻¹ de BAP; 0.01 mgl⁻¹ de ANA y vitaminas. Los explantes fueron cultivados a 26 °C bajo un fotoperiodo de 16 h. Los explantes fueron transferidos cada 15 días a los mismos medios de cultivo (DCR y GD) sin reguladores de crecimiento durante 6 semanas, para el desarrollo de brotes. El análisis fue un factorial 2³ con 8 repeticiones. La variable evaluada fue el número de explantes que formaron yemas. Después de la inducción de yemas, los explantes fueron transferidos a los medios básicos sin hormonas, adicionados con 0.1 % de carbón activado. Se evaluó el número de brotes por embrión, capacidad de formación de brotes y longitud de brotes a las 8 semanas del cultivo. Se seleccionaron brotes de 10 mm que fueron utilizados en diversos medios de enraizamiento. Se encontró diferencia significativa entre medios de cultivo, concentración de reguladores de crecimiento y capacidad de formación de brotes. La máxima frecuencia de formación de brotes se presentó en el medio DCR adicionado con 0.5 mgl-1 BAP y 0.01 mgl-1 de ANA. La frecuencia más alta de inducción de raíces in vitro fue de 17 % en el tratamiento de 24 h de pulso y 23 % con la inoculación de hongos micorrízicos in vivo.

Abreviaturas: BAP= Bencilaminopurina; ANA= Acido Naftalenacético; DCR= (Gupta y Durzan 1985); GD= (Gresshoff y Doy, 1972); mgl⁻¹ =miligramos por litro, h =horas.

ABSTRACT

Pinus maximartinezii (Rzedowski) is an endemic species of pine endangered, confined to a single population of approximately 2000 to 2500 mature trees, covers about 400 ha in southern Zacatecas, Mexico. The success of tissue culture techniques for germplasm preservation depends fundamentally on rate of regeneration. The objective of this study was to achieve an in vitro proliferation protocol of Pinus maximartinezii using organogenesis technique. For bud induction stage, isolated cotyledons and zygotic embryos were cultured on DCR and GD media, supplemented with 0.3 or 0.5 mgl⁻¹ BAP; 0.01 mgl⁻¹ NAA and vitamin solution. Explants were incubated at 26 °C under a 16 h photoperiod. The explants were transferred every 15 days to hormone-free medium (DCR and GD) for a period of 6 wk for development of shoots. The statistical analysis was a factorial 2³ with 8 replications. The parameter evaluated was the number of explants forming buds. After induction of buds, the explants were transferred to hormone-free basal medium to which 0.1% activated charcoal was added. After 8 wk were evaluated the number of shoots per embryo, shoot formation capacity index and length of shoots. Elongated shoots (10 mm length) were exposed to several root initiation media. Basal media, plant growth regulators concentration and shoot formation capacity index were significantly different. The maximum frequency of shoot formation occurred on DCR medium containing 0.5 mgl⁻¹ BAP and 0.01 mgl⁻¹ NAA. The highest root induction frequency was 17% on 24 h pulse treatment and 23 % with in vivo mycorrhizal fungi.

Abbreviation: BAP= bencil amino purine; NAA= Naftalen acetic acid; DCR= Gupta & Durzan, 1985; GD= Gresshoft & Doy, 1972; mgl⁻¹= milligrams by liter; h= hours.