UNIVERSIDAD AUTONOMA DE NUEVO LEON FACULTAD DE CIENCIAS BIOLOGICAS

DOSIS DIAGNOSTICO Y ENSAYOS BIOQUIMICOS PARA MONITOREO DE RESISTENCIA EN POBLACIONES DEL MOSQUITO Asdes Gegypti (L.) DE CINCO ESTADOS DEL NORTE DE MEXICO

POR: GUADALUPE DEL CARMEN REYES SOLIS

Como requisito parcial para obtener el Grado de DOCTOR EN CIENCIAS BIOLOGICAS con acentuación en ENTOMOLOGIA MEDICA

TD Z5320 FCB 2007 .R49

TD 25320 FCB 2007 .R49

4- Septembre 08 Drackshift a Cong.

UNIVERSIDAD AUTONOMA DE NUEVO LEON FACULTAD DE CIENCIAS BIOLOGICAS

DOSIS DIAGNOSTICO Y ENSAYOS BIOQUIMICOS PARA MONITOREO DE RESISTENCIA EN POBLACIONES DEL MOSQUITO Aedes aegypti (L.) DE CINCO ESTADOS DEL NORTE DE MEXICO.

Por

GUADALUPE DEL CARMEN REYES SOLIS

Como requisito parcial para obtener el Grado de DOCTOR EN CIENCIAS BIOLOGICAS con acentuación en ENTOMOLOGÍA MÉDICA

DOSIS DIAGNOSTICO Y ENSAYOS BIOQUIMICOS PARA MONITOREO DE RESISTENCIA EN POBLACIONES DEL MOSQUITO Aedes aegypti (L.) DE CINCO ESTADOS DEL NORTE DE MEXICO

Comité de Tésis

Director: Dra Adriana Elizabeth Flores Suárez

Secretario: Dr. Gustavo Ponce García

Vocal: Dr. Ildefonso Fernández Salas

Vocal: Dr. Raúl Torres Zapata

Vocal: Dr. Raúl Torres Zapata

TABLA DE CONTENIDO

Sección Pá	gina
INDICE DE FIGURAS	viii
INDICE DE TABLAS	х
AGRADECIMIENTOS	xiv
DEDICATORIA	xv
RESUMEN	xvii
ABSTRACT	xviii
INTRODUCCION	1
HIPÓTESIS	2
OBJETIVOS	3
ANTECEDENTES	
4.1. Aedes aegypti (Linnaeus, 1762)	4
4.1.1. Clasificación sistemática.	6
4.1.2. Ciclo de vida	7
4.1.2.1. Huevo	7
4.1.2.2. Larva	8
4.1.2.3. Pupa	9
4.1.2.4. Adultos	10
4.2.2. Biorritmo de picadura	12
4.2.3. Ciclo gonotrófico	13
4.2.4. Métodos para estimar la densidad de vectores y su importancia p	oara el
control	13
4.2. Enfermedades transmitidas por Ae. aegypti	
4.2.1. Dengue y fiebre hemorrágica de dengue	14
4.2.1.1. Historia de la enfermedad del dengue	17
4.2.1.2. Incidencia de dengue y fiebre hemorrágica de dengue a nivel m	undial
en los últimos años	18
4.2.1.3. Incidencia de dengue y fiebre hemorrágica del dengue en Méxic	o 19
A 2 1 A Estatus de vacuna	20
4.2.1.5. Mosquito tigre asiático Aedes albopictus	20
4.3.1. Fiebre amarilla	21
4.3.1. Febre amarina 4.3.1. Febre amarina 4.3.1. Febre amarina 4.3.1. Febre amarina 4.3.1. Febre amarina	22

4.3.2. Virus de Chinkungunya	22
4.3.2.1. Estatus de vacuna	23
4.4. Erradicación, un paradigma.	
5.1. Plaguicidas	24
5.1.1. Organoclorados	25
5.1.2. Organofosfatos	25
5.1.3. Carbamatos	25
5.1.4. Piretroides	26
5.1.4.1. Resistencia a piretroides	28
5.1.5. Plaguicidas en México.	29
5.2. Resistencia a plaguicidas	
5.2.1. Concepto de resistencia	
5.2.2. Resistencia cruzada y resistencia múltiple	32
5.2.3. Mecanismos de resistencia	33
5.2.3.1. Mecanismos de resistencia metabólicos	34
5.2.3.2. Citocromo P450 monooxigenasas (P450)	34
5.2.3.3. Esterasas no específicas	35
5.2.3.4. Glutatión s-transferasas	36
5.2.3.5. Insensibilidad en el sitio de acción	36
5.3. Monitoreo, detección y manejo de resistencia	39
5.3.1. Técnicas de detección y monitoreo de resistencia	40
5.3.1.1. Métodos estándares	40
5.3.1.2. Métodos tentativos	41
5.3.1.3. Otros métodos	42
5.3.1.4. Bioensayos	42
5.3.1.5. Dosis diagnóstico (concentración) para monitorear r	esistencia
vectorial	43
5.3.1.5.1. Técnica de la WHO (1981)	43
5.3.1.5.2. Bioensayo CDC (1998)	45
5.3.1.2. Técnicas bioquímicas para detección de resistencia	46
5.3.1.2.1. Ensayo para acetilcolinesterasa alterada	47
5.3.1.2.2. Ensayo para actividad elevada de esterasas	47
5.3.1.2.3. Ensayos para actividad elevada de esterasas	sa 48
5.3.1.2.4. Ensayos para citocromo P450 monooxigenasas (P450s)	49
5.3.1.2.5. Comparación entre bioensayos y ensayos con microplac	as 49
5.3.1.2.5. Comparación entre bioensayos y ensayos con interopiac	43 17
6. MÉTODOS	50
6.1. Área de estudio.	50
6.1.1. Estado de Baja California Norte	50
6.1.2. Estado de Baja California Sur	51
6.1.3. Estado de Coahuila	52
6.1.4. Estado de Coaudia	53
6.1.4. Estado de Sonora	

4.2 Matadalagía	55
6.2. Metodología	
6.2.2. Mantenimiento y cría de mosquitos adultos	
6.2.3. Determinación de dosis diagnóstico (DD) en larvas y adultos	
6.2.4. Bioensayos	
6.2.5. Análisis bioquímico	
6.2.5.1. Enzayos enzimáticos de α y β-esterasas	
6.2.5.2. Enzayos enzimáticos de oxidasas	
6.2.5.3. Enzayos enzimáticos de glutatión s-transferasa	
6.2.5.4. Enzayos enzimáticos de acetilcolinesterasa	59
6.2.5.5. Enzayos enzimáticos de acetilcolinesterasa insensible	
6.2.6. Análisis de resultados	59
ESULTADOS	62
7.1. Dosis diagnóstico para los estados de Baja California Norte y Sur, Co	
Sonora y Tamaulipas	
7.2. Actividad enzimática y umbral de tolerancia	63
7.3. Análisis y comparaciones de los resultados enzimáticos obtenidos en	tre las
poblaciones estudiadas.	
7.3.1. Comparación de α esterasas entre los individuos que sobrevivieron	
poblaciones de los estados de Baja California Norte y Sur	
7.3.2. Comparación de α esterasas entre los individuos que no sobrevivie	
las poblaciones de los estados de Baja California Norte y Sur.	
7.3.3. Comparación de β esterasas entre los individuos que sobrevivieron	
poblaciones de los estados de Baja California Norte y Sur	
7.3.4. Comparación de β esterasas entre los individuos que no sobrevivie	
las poblaciones de los estados de Baja California Norte y Sur	
7.3.5. Comparación de oxidasas entre los individuos que sobrevivieron	
poblaciones de los estados de Baja California Norte y Sur	
7.3.6. Comparación de oxidasas entre los individuos que no sobrevivieron	
poblaciones de los estados de Baja California Norte y Sur	
·	
7.3.7. Comparación de glutatión s-tranferasa entre los individuo	-
sobrevivieron de las poblaciones de los estados de Baja California Norte	•
7.3.8. Comparación de glutatión s-tranferasa entre los individuos q	
sobrevivieron de las poblaciones de los estados de Baja California Norte	
sobjectivition de las poblaciones de los estados de Daja Camorina Norte	•
7.3.9. Comparación de acetilcolinesterasa entre los individuos	que
sobrevivieron de las poblaciones de los estados de Baja California Norte	y Sur.
7.3.10. Comparación de acetilcolinesterasa entre los individuos q	
sobrevivieron de las poblaciones de los estados de Baja California Norte	
sobjectivitation de las poblaciones de los estados de Daja Cambilha Norte	y Sui.

7.3.11. Comparación de acetilcolinesterasa insensible entre los individuos que
sobrevivieron de las poblaciones de los estados de Baja California Norte y Sur.
7.3.12. Comparación de acetilcolinesterasa insensible entre los individuos que
no sobrevivieron de las poblaciones de los estados de Baja California Norte y
Sur
estado de Coahuila
7.3.14. Comparación de \beta esterasas entre los individuos de la población del
estado de Coahuila
7.3.14. Comparación de oxidasas entre los individuos de la población del estado
de Coahuila
7.3.15. Comparación de glutatión s-transferasa entre los individuos de la
población del estado de Coahuila
7.3.16. Comparación de acetilcolinesterasa entre los individuos de la población
del estado de Coahuila
7.3.17. Comparación de acetilcolinesterasa insensible entre los individuos de la
población del estado de Coahuila
7.3.18. Comparación de a esterasas entre los individuos de las poblaciones que
sobrevivieron del estado de Sonora
7.3.19. Comparación de a esterasas entre los individuos de las poblaciones que
no sobrevivieron del estado de Sonora
7.3.20. Comparación de \(\beta \) esterasas entre los individuos de las poblaciones que
sobrevivieron del estado de Sonora
7.3.21. Comparación de β esterasas entre los individuos de las poblaciones que
no sobrevivieron del estado de Sonora
7.3.22. Comparación de oxidasas entre los individuos de las poblaciones que
sobrevivieron del estado de Sonora
7.3.23. Comparación de oxidasas entre los individuos de las poblaciones que no
sobrevivieron del estado de Sonora
7.3.24. Comparación de glutatión s-transferasa entre los individuos de las
poblaciones que sobrevivieron del estado de Sonora
7.3.24. Comparación de glutatión s-transferasa entre los individuos de las
poblaciones que sobrevivieron del estado de Sonora79
7.3.25. Comparación de acetilcolinesterasa entre los individuos de las
poblaciones que sobrevivieron del estado de Sonora
7.3.26. Comparación de acetilcolinesterasa entre los individuos de las
poblaciones que no sobrevivieron del estado de Sonora
7.3.27. Comparación de acetilcolinesterasa insensible entre los individuos de las
poblaciones que sobrevivieron del estado de Sonora
7.3.28. Comparación de acetilcolinesterasa insensible entre los individuos de las
poblaciones que no sobrevivieron del estado de Sonora
7.3.29. Comparación de α esterasas entre los individuos de las poblaciones que
sobrevivieron del estado de Tamaulipas
7.3.30. Comparación de α esterasas entre los individuos de las poblaciones que
no sobrevivieron del estado de Tamaulipas

7.3.31. Comparación de β esterasas entre los individuos de las poblaciones o	_
sobrevivieron del estado de Tamaulipas	
7.3.32. Comparación de β esterasas entre los individuos de las poblaciones o	
no sobrevivieron del estado de Tamaulipas.	
7.3.33. Comparación de oxidasas entre los individuos de las poblaciones o	
sobrevivieron del estado de Tamaulipas.	
7.3.34. Comparación de oxidasas entre los individuos de las poblaciones que	
sobrevivieron del estado de Tamaulipas.	
7.3.35. Comparación de glutatión s-transferasa entre los individuos de	
poblaciones que sobrevivieron del estado de Sonora	
7.3.36. Comparación de glutatión s-transferasa entre los individuos de	
poblaciones que no sobrevivieron del estado de Sonora	
7.3.37. Comparación de acetilcolinesterasa entre los individuos de	
poblaciones que sobrevivieron del estado de Tamaulipas	
7.3.38. Comparación de acetilcolinesterasa entre los individuos de	
poblaciones que no sobrevivieron del estado de Tamaulipas	
7.3.39. Comparación de acetilcolinesterasa insensible entre los individuos de	
poblaciones que sobrevivieron del estado de Tamaulipas	
7.3.40. Comparación de acetilcolinesterasa insensible entre los individuos de	
poblaciones que no sobrevivieron del estado de Tamaulipas	. 83
DISCUSION	. 87
CONCLUSIONES	. 91
APENDICES	. 93
LITERATURA CITADA 1	137
RESUMEN BIOGRÁFICO	146

INDICE DE FIGURAS

Figura Página
Figura 1. Distribución mundial de vectores del dengue
Figura 3. a. Huevo de Ae. aegypti; b. llantas en vulcanizadora; c. floreros
Figura 4. a. Larva de Ae. aegypti; b. tazón de cerámica con larvas; c. larva
alimentándose a diferentes alturas de la columna de agua
Figura 5. a. Pupa de Ae. aegypti; b. pupa de mosquito donde se señalan partes de cuerpo
Figura 6. a. Escamas en forma de lira en el mesonoto de Ae. aegypti; b. hembra
adulta de Ae. aegypti; c. macho adulto de Ae. aegypti
Figura 7. Distribución mundial del virus de dengue en 2006
Figura 8. Ciclo de transmisión de dengue
Figura 9. Historia filogenético del virus dengue. El subtipo se muestra cerca de
grupo relevante y los estimados de edad de los más recientes antecesore
comunes se muestran por las llaves (con intervalos en los paréntesis)
Figura 10. Distribución del virus de dengue en el Hemisferio Americano
Figura 11. Distribución del virus dengue en África, Asia, Europa y Oceanía
Figura 12. Distribución mundial del virus de la fiebre amarilla en 2005
Figura 13. Distribución de casos del virus de Chikungunya en 2006
Figura 14. Fórmula de Abbot
Figura 15. Mapa del estado de Baja California Norte que muestra las localidades de
Tecate y Tijuana en donde fueron colectadas las poblaciones de Ae. aegypti 50
Figura 16. Mapa del estado de Baja California Sur que muestra las localidades de
Comondú (Ciudad Constitución) y Loreto en donde se colectaron la
poblaciones de Ae. aegypti
Figura 17. Mapa del estado de Coahuila que muestra la localidad Torreón en dond
se colectaron las poblaciones de Ae. aegypti
Figura 18. Mapa del estado de Sonora que muestra las localidades de Hermosillo
Sonoita en donde se colectaron las poblaciones de Ae. aegypti
Figura 19. Mapa del estado de Tamaulipas que muestra las localidades de Reynosa
Matamoros y Nuevo Laredo en donde se colectaron las poblaciones de Ae aegypti
Figura 20. Floreros de cementerios y llantas de una vulcanizadora
Figura 21. Valores de absorbancia de hembras adultas de Ae. aegypti que
sobrevivieron a la exposición de la DD del insecticida permetrina de la
poblaciones del estado de Baja California Norte en estudio y la cepa Nev
Orleans obtenidas en los ensayos bioquímicos
Oricans optimizas on ios chisayos proquimicos

Figura 22. Valores de absorbancia de hembras adultas de Ae. aegypti que no
sobrevivieron a la exposición de la DD del insecticida permetrina de las
poblaciones del estado de Baja California Norte en estudio y la cepa New
Orleans obtenidas en los ensayos bioquímicos
Figura 23. Valores de absorbancia de hembras adultas de Ae. aegypti que
sobrevivieron a la exposición de la DD del insecticida permetrina de las
poblaciones del estado de Baja California Sur en estudio y la cepa New Orleans
obtenidas en los ensayos bioquímicos75
Figura 24. Valores de absorbancia de hembras adultas de Ae. aegypti que no
sobrevivieron a la exposición de la DD del insecticida permetrina de las
poblaciones del estado de Baja California Sur en estudio y la cepa New Orleans
obtenidas en los ensayos bioquímicos75
Figura 25. Valores de absorbancia de hembras adultas de Ae. aegypti que
sobrevivieron a la exposición de la DD del insecticida permetrina de las
poblaciones de los estados de Coahuila comparados con la población de
Monterrey y la cepa New Orleans obtenidas en los ensayos bioquímicos 76
Figura 26. Valores de absorbancia de hembras adultas de Ae. aegypti que no
sobrevivieron a la exposición de la DD del insecticida permetrina de las
poblaciones de los estados de Coahuila comparados con la población de
Monterrey y la cepa New Orleans obtenidas en los ensayos bioquímicos 76
Figura 27. Valores de absorbancia de hembras adultas de Ae. aegypti que
sobrevivieron a la exposición de la DD del insecticida permetrina de las
poblaciones del estado de Sonora comparados la cepa New Orleans obtenidas
en los ensayos bioquímicos
Figura 28. Valores de absorbancia de hembras adultas de Ae. aegypti que no
sobrevivieron a la exposición de la DD del insecticida permetrina de las
poblaciones del estado de Sonora comparados la cepa New Orleans obtenidas
•
en los ensayos bioquímicos
Figura 29. Valores de absorbancia de hembras adultas de Ae. aegypti que no
sobrevivieron a la exposición de la DD del insecticida permetrina de las
poblaciones del estado de Tamaulipas comparados la cepa New Orleans
obtenidas en los ensayos bioquímicos
Figura 30. Valores de absorbancia de hembras adultas de Ae. aegypti que no
sobrevivieron a la exposición de la DD del insecticida permetrina de las
poblaciones del estado de Tamaulipas comparados la cepa New Orleans
obtenidas en los ensayos bioquímicos86

INDICE DE TABLAS

Tabla	Página
Tabla 1. Mutaciones genéticas asociadas con enzimas y receptores que pue como resultado diferentes tipos de resistencia.	
Tabla 2. Comparación entre las técnicas de la WHO (1981) y del CDC (199 obtención de la dosis diagnóstico.	8) para
Tabla 3. Dosis diagnóstico del insecticida permetrina para las poblaciones	
aegypti de los estados de Baja California Norte, California Sur, Co Sonora y Tamaulipas.	oahuila,
Tabla 4. Dosis diagnóstico de tres diferentes insecticidas para las poblaciones aegypti del estado de Tamaulipas	s de <i>Ae</i> .
Tabla 5. Dosis diagnóstico de los insecticidas DDT, malatión, propoxur, t	emefos,
bifentrina, cipermetrina y lambdacihalotrina, para poblaciones de Ae.	
de los estados de Baja California Norte y Sur	
Tabla 6. Porcentaje de hembras de Ae. aegypti seleccionadas con la permetrina de Baja California Norte que sobrepasaron el umbral de res	
establecido por la cepa susceptible New Orleans.	
Tabla 7. Porcentaje de hembras de Ae. aegypti seleccionadas con la	
permetrina de Baja California Sur que sobrepasaron el umbral de res	
establecido por la cepa susceptible New Orleans	
permetrina del estado de Coahuila que sobrepasaron el umbral de res	
establecido por la cepa susceptible New Orleans.	
Tabla 9. Porcentaje de hembras de Ae. aegypti seleccionadas con la	
permetrina del estado de Sonora que sobrepasaron el umbral de res	
establecido por la cepa susceptible New Orleans	
permetrina del estado de Tamaulipas que sobrepasaron el umb	
resistencia establecido por la cepa susceptible New Orleans.	
Tabla 11. Media y desviación estándar de las absorbancias obtenidas en cada	ensayo
bioquímico en las población de hembras adultas de los estados de	
California Norte y Sur expuestas a la DD de permetrina	
Tabla 12. Media y desviación estándar de las absorbancias medidas en cada bioquímico en la población de hembras adultas del estado de C	•
expuestas a la DD de permetrina comparadas con la población de Monte	
Tabla 13. Media y desviación estándar de las absorbancias medidas en cada	
bioquímico en la población de hembras adultas del estado de Sonora ex	
a la DD de permetrina	
Tabla 14. Media y desviación estándar de las absorbancias medidas en cada bioquímico en la población de hembras adultas del estado de Tam	
expuestas a la DD de permetrina	
•	

Tabla 15. Comparación de medias y análisis de varianza de α- esterasas en individuos que sobrevivieron de las poblaciones de Baja California Norte y
Sur
individuos que no sobrevivieron de las poblaciones de Baja California Norte y Sur
Tabla 17. Comparación de medias y análisis de varianza de β esterasas en individuos que sobrevivieron de las poblaciones de Baja California Norte y Sur
Tabla 18. Comparación de medias y análisis de varianza de β esterasas en
individuos que no sobrevivieron de las poblaciones de Baja California Norte y Sur
Tabla 19. Comparación de medias y análisis de varianza de oxidasas en individuos
que sobrevivieron de las poblaciones de Baja California Norte y Sur 98
Tabla 20. Comparación de medias y análisis de varianza de oxidasas en individuos
que no sobrevivieron de las poblaciones de Baja California Norte y Sur 99 Tabla 21. Comparación de medias y análisis de varianza de glutatión s-transferasa
en individuos que sobrevivieron de las poblaciones de Baja California Norte y
Sur
Tabla 22. Comparación de medias y análisis de varianza de glutatión s- transferasa
en individuos que no sobrevivieron de las poblaciones de Baja California Norte
y Sur 101
Tabla 23. Comparación de medias y análisis de varianza de acetilcolinesterasa en
individuos que sobrevivieron de las poblaciones de Baja California Norte y
Sur
individuos que no sobrevivieron de las poblaciones de Baja California Norte y
Sur,
Tabla 25. Comparación de medias y análisis de varianza de acetilcolinesterasa
insensible en individuos que sobrevivieron de las poblaciones de Baja
California Norte y Sur
Tabla 26. Comparación de medias y análisis de varianza de acetilcolinesterasa
insensible en indivíduos que no sobrevivieron de las poblaciones de Baja California Norte y Sur 105
Tabla 27. Comparación de medias y análisis de varianza de α- esterasas en
individuos que sobrevivieron y muertos de las poblaciones de Coahuila y
Monterrey
Tabla 28. Comparación de medias y análisis de varianza de β esterasas en
individuos que sobrevivieron y muertos de las poblaciones de Coahuila y
Monterrey
Tabla 29. Comparación de medias y análisis de varianza de β esterasas en
individuos que no sobrevivieron y muertos de las poblaciones de Coahuila y Monterrey
Tabla 30. Comparación de medias y análisis de varianza de oxidasas en individuos
que sobrevivieron y muertos de las poblaciones de Coahuila y Monterrey 109

Tabla 31. Comparación de medias y análisis de varianza de glutatión s-transferasa
en individuos que sobrevivieron y muertos de las poblaciones de Coahuila y
Monterrey 110
Tabla 32. Comparación de medias y análisis de varianza de acetilcolinesterasa en
individuos que sobrevivieron y muertos de las poblaciones de Coahuila y
Monterrey
Tabla 33. Comparación de medias y análisis de varianza de acetilcolinesterasa
insensible en individuos que sobrevivieron y muertos de las poblaciones de
Coahuila y Monterrey
Tabla 34. Comparación de medias y análisis de varianza de α- esterasas en
individuos que sobrevivieron de las poblaciones de Sonora
Tabla 35. Comparación de medias y análisis de varianza de α- esterasas en
individuos que no sobrevivieron de las poblaciones de Sonora114
Tabla 36. Comparación de medias y análisis de varianza de β esterasas en
individuos que sobrevivieron de las poblaciones de Sonora
Tabla 37. Comparación de medías y análisis de varianza de β esterasas en
individuos que no sobrevivieron de las poblaciones de Sonora 116
Tabla 38. Comparación de medias y análisis de varianza de oxidasas en individuos
que sobrevivieron de las poblaciones de Sonora117
Tabla 39. Comparación de medias y análisis de varianza de oxidasas en individuos
que no sobrevivieron de las poblaciones de Sonora118
Tabla 40. Comparación de medias y análisis de varianza de glutatión s-transferasa
en individuos que sobrevivieron de las poblaciones de Sonora 119
Tabla 41. Comparación de medias y análisis de varianza de glutatión s- transferasa
en individuos que no sobrevivieron de las poblaciones de Sonora120
Tabla 42. Comparación de medias y análisis de varianza de acetilcolinesterasa en
individuos que sobrevivieron de las poblaciones de Sonora
Tabla 43. Comparación de medias y análisis de varianza acetilcolinesterasa en
individuos que no sobrevivieron de las poblaciones de Sonora
Tabla 44. Comparación de medias y análisis de varianza de acetilcolinesterasa
insensible en individuos que sobrevivieron de las poblaciones de Sonora 123
Tabla 45. Comparación de medias y análisis de varianza de acetilcolinesterasa
insensible en individuos que no sobrevivieron de las poblaciones de Sonora. 124
Tabla 46. Comparación de medias y análisis de varianza de α- esterasas en
individuos que sobrevivieron de las poblaciones de Tamaulipas 125
Tabla 47. Comparación de medias y análisis de varianza de α- esterasas en
individuos que no sobrevivieron de las poblaciones de Tamaulipas 126
Tabla 48. Comparación de medias y análisis de varianza de β esterasas en
individuos que sobrevivieron de las poblaciones de Tamaulipas 127
Tabla 49. Comparación de medias y análisis de varianza de β esterasas en
individuos que no sobrevivieron de las poblaciones de Tamaulipas 128
Tabla 50. Comparación de medias y análisis de varianza de oxidasas en individuos
que sobrevivieron de las poblaciones de Tamaulipas129
Tabla 51. Comparación de medias y análisis de varianza de oxidasas en individuos
que no sobrevivieron de las poblaciones de Tamaulipas130
der en nontaillean an en homestonen na remedithen emmenement montain roa

Tabla 52. Comparación de medias y análisis de varianza de glutatión s-transfera en individuos que sobrevivieron de las poblaciones de Tamaulipas	
Tabla 53. Comparación de medias y análisis de varianza de glutatión s- transfera en individuos que no sobrevivieron de las poblaciones de Tamaulipas 1	ısa
Tabla 54. Comparación de medias y análisis de varianza de acetilcolinesterasa individuos que sobrevivieron de las poblaciones de Tamaulipas	en
Tabla 55. Comparación de medias y análisis de varianza acetilcolinesterasa individuos que no sobrevivieron de las poblaciones de Tamaulipas	
Tabla 56. Comparación de medias y análisis de varianza de acetilcolinestera insensible en individuos que sobrevivieron de las poblaciones de Tamaulipa	as.
Tabla 57. Comparación de medias y análisis de varianza de acetilcolinestera insensible en individuos que no sobrevivieron de las poblaciones Tamaulipas	asa de

AGRADECIMIENTOS

A CONACyT por el apoyo otorgado a través de la beca 176884, convenio 52049; CONACyT Ciencia Básica, convenio 54023 y a la UANL PAICYT 2007.

A la Dra. Adriana Elizabeth Flores Suárez, mi maestra y amiga, gracias por sus consejos, porras, confianza y regaños; gracias por compartir sus conocimientos conmigo y darme la oportunidad de crecer como profesional a su lado.

Al Dr. Ildefonso Fernández Salas, gracias por la oportunidad de ser parte del Laboratorio de Entomología Médica, pero sobretodo gracias por permitirme aprender gracias a su guía.

A mi comité de tesis y tutores, Dr. Raúl Torres Zapata, Dr. Gustavo Ponce García, Dr. Humberto Quiroz Ramírez, Dra. María Luisa Tovar y Dr. Filiberto Reyes Villanueva, por sus consejos y correcciones.

A mis profesores y amigos, M. en C. María Eugenia Castillo Herrera, M. en C. Leticia Téllez Sánchez, M. en C. José Andrés Trejo Rivera, M. en C. Julián Everardo García Rejón, Prof. Silvia Castro Espinoza, Ing. Irlanda Espinoza (†), M. en C. Juan Rodríguez Sánchez, Lic. Rita Fleites Hun, Ing. Genny Manzanero Durán y M. en C. Juan Bautista Chablé Santos, gracias por enseñarme el camino de la ciencia.

A mis comadres, Dra. María Haydeé Loaiza Becerra y Dra. Nydia Aída Rodríguez Neaves, con quienes compartí grandes momentos, gracias por acompañarme cuando me sentí solita, por ayudarme a recoger los pedazos de mi roto corazón, gracias por ser parte de mi vida.

A mis amigas Q.B.P. Rosa Maria Sánchez Casas, Biol. Dulce Elizabeth Tovar Martínez, Q.B.P. Brenda Silva, Dra. Dora Lilia García Elizondo, Q.B.P. Maricela Laguna Aguilar y Q.B.P. Marcela Selene Alvarado Moreno, gracias por su apoyo.

A la familia Sánchez Casas, Doña Elida y Don Samuel, quienes mi acogieron en su familia y me brindaron cariño, siempre estaré en deuda con ustedes.

A mis amigos, Shidoshi Prof. Armando Cantú Reyna, Shidoshi Ho Lic. Mario Solórzano y Shidoshi Ho César Olivares, de quienes reafirme el valor de creer en uno mismo, la solidaridad, la confianza, pero sobretodo la amistad verdadera.

A la familia Lozano Saavedra, Saúl, Karla e Isacc, quienes mi brindaron su casa y me enseñaron una de las más valiosas lecciones de vida, gracias.

DEDICATORIA

A mi familia: mi padre José Antonio Reyes Cua, el faro de luz que guía mis pasos; mi madre Teresita del Niño Jesús Solís Bojórquez, el abrazo que cobija mis sueños; mi hermana María Teresa Reyes Solís, mi cómplice, amiga y compañera de vida. Gracias porque permanecer siempre a mi lado, ayudándome a crecer, enfrentar mis batallas diarias y vencer mis miedos, por creer en mí a ciegas, pero sobretodo gracias porque son lo mejor de mi vida.

A mis hermanitos: Gerardo Humberto y Gonzalo Adolfo Coronado Gutiérrez, Diego André Guzmán Pineda (Eusebio), quienes le dan alegría a mi vida con sus sonrisas y juegos.

A mis seres queridos que ya partieron al viaje eterno: mis abuelos Víctor Reyes Cauich y Tránsito Solís Perera, mis abuelas Agustina Cua Cen y Beatriz Bojórquez Bojórquez.

A mi tío, Dr. Miguel Solís Bojórquez y mi prima C.P.T. Gabriela Concepción Carrillo Solís; mil gracias por apoyarme para realizar mis sueños.

A quien fue parte de mi vida y su recuerdo lo guardaré por siempre en mi corazón.

DEDICATORIA

A mi familia: mi padre José Antonio Reyes Cua, el faro de luz que guía mis pasos; mi madre Teresita del Niño Jesús Solís Bojórquez, el abrazo que cobija mis sueños; mi hermana María Teresa Reyes Solís, mi cómplice, amiga y compañera de vida. Gracias porque permanecer siempre a mi lado, ayudándome a crecer, enfrentar mis batallas diarias y vencer mis miedos, por creer en mí a ciegas, pero sobretodo gracias porque son lo mejor de mi vida.

A mis hermanitos: Gerardo Humberto y Gonzalo Adolfo Coronado Gutiérrez, Diego André Guzmán Pineda (Eusebio), quienes le dan alegría a mi vida con sus sonrisas y juegos.

A mis seres queridos que ya partieron al viaje eterno: mis abuelos Víctor Reyes Cauich y Tránsito Solís Perera, mis abuelas Agustina Cua Cen y Beatriz Bojórquez Bojórquez.

A mi tío, Dr. Miguel Solís Bojórquez y mi prima C.P.T. Gabriela Concepción Carrillo Solís; mil gracias por apoyarme para realizar mis sueños.

A quien fue parte de mi vida y su recuerdo lo guardaré por siempre en mi corazón.

RESUMEN

Dosis diagnóstico (DD) de permetrina fueron determinadas para diez poblaciones de Aedes aegypti (L.) de cinco estados del norte de México: Baja California Norte y Sur, Coahuila, Sonora y Tamaulipas. Después de exponer 10 grupos de 100 hembras a la DD y producir la mortalidad del 50%, los individuos fueron divididos en dos categorías: sobrevivientes y muertos. Cada uno de estos grupos fue disectado para separar la cabeza, tórax y abdomen. Ensayos bioquímicos fueron realizados en cabeza y tórax para determinar resistencia relacionada con actividad enzimática incluyendo: α y β-esterasas, glutatión s-transferasa, acetilcolinesterasa, acetilcolinesterasa insensible y oxidasas de función múltiple (OFM). Los resultados fueron comparados con los obtenidos para la cepa susceptible de referencia New Orleans. Todas las poblaciones estudiadas mostraron la presencia consistente de actividad enzimática relacionada con α esterasas así como también con el mecanismo de acetilcolinesterasa insensible en las poblaciones de los individuos sobrevivientes. En las poblaciones de Baja California Norte y Sur, es el mecanismo α esterasas el que encontramos como el principal medio de resistencia enzimática, así mismo GST esta presente en estas poblaciones como uno de los principales mecanismos de resistencia en individuos sobrevivientes a la exposición de DD de permetrina.La población de Coahuila mostró que acetilcolinesterasa insensible es el mecanismo que sobrepaso el umbral de resistencia establecido con los resultados obtenidos de la cepa susceptible. En cuanto a las poblaciones de Sonora, son α y β esterasas, así como OFM las que encontramos como los principales mecanismos detoxificativos. En relación a las poblaciones de Tamaulipas, es el mecanismo acetilcolinesterasa insensible el que se encontró presente en los individuos sobrevivientes a la DD de permetrina. También se determinaron los valores de DD para los insecticidas DDT, malatión, propoxur, temefos, bifentrina, cipermetrina y lambdacihalotrina en las poblaciones de Tecate y Tijuana del estado de Baja California Norte así como para Ciudad Constitución y Loreto, poblaciones pertenecientes al estado de Baja California Sur. En las poblaciones de Tamaulipas, las DD para los insecticidas malatión, bifentrina y cipermetrina también fueron obtenidas.

ABSTRACT

The diagnostic dose (DD) of permethrin was determined in 10 populations of Aedes aegypti (L.) from three states in the north of Mexico: Baja California Norte, Baja California Sur, Coahuila, Sonora and Tamaulipas. After we exposed 10 groups of 100 females to the DD and after producing 50% mortality, individuals were divided into two categories: killed and survivors. Each of these groups was dissected to separate the head, thorax and abdomen. Biochemical tests were performed on the head and thorax to determine resistance-related enzyme activities including α and β-esterases, glutathione-Stransferase, acetylcholinesterase, insensitive acetyl cholinesterase, and mixed-function oxidases. The results were compared with those for the susceptible New Orleans strain. All the populations studied showed the consistent presence of enzymatic activity for a esterases as well as iAChE in surviving populations. However, in the Sonora population, α and β esterases and MFO were found to represent the main detoxifying mechanisms. The population of Tamaulipas and Coahuila showed iAChE as the only enzyme activity that surpassed the threshold established with the susceptible strain. DD values were also determined for the insecticides DDT, malathion, propoxur, temephos, bifenthrin, cypermethrin and lambda-cyhalothrin in the populations of Tecate and Tijuana in the state of Baja California Norte and Ciudad Constitucion and Loreto in the state of Baja California Sur. In the populations of Tamaulipas, the DD of the insecticides malathion, bifenthrin and cypermethrin was also ascertained.

INTRODUCCION

El dengue representa actualmente una de las enfermedades más importantes transmitidas por mosquitos en México. La tendencia al incremento de la enfermedad hasta alcanzar la mayoría de los estados de nuestro país, la presencia de los 4 serotipos, además del potencial de resistencia del vector a los insecticidas aplicados para su control, hacen aún más grave la situación de esta enfermedad en México. La resistencia a los insecticidas tradicionales para el control de larvas y adultos (temefos y malatión) se ha incrementado en países caribeños vecinos. En México, se utilizó un esquema similar en los años 60's para malaria y dengue, y desde los 80's, cuando el dengue resurgió en nuestro país. Por lo tanto, se sospecha que tal presión de selección sobre las poblaciones de Aedes aegypti y la aparición de cepas resistentes, pueden eventualmente hacer inefectivo el control químico. Por otro lado, el uso de insecticidas para el control de vectores en todo el país ha sido regulado por la norma NOM-032-SSA2-2002 que establece la necesidad del uso de piretroides para el control del adulto del mosquito a partir del 2000. Considerando el conocimiento actual sobre mecanismos de resistencia y la eventual aparición de resistencia cruzada, surge la necesidad de evaluar la susceptibilidad y/o resistencia, niveles y mecanismos principales de las poblaciones del mosquito a los insecticidas autorizados, además de históricos y alternativos para su control.

La resistencia a insecticidas es una de las mayores problemáticas a los que se enfrenta los programas de control de *Aedes aegypti* en el norte de México y el resto del país, por lo que la detección de resistencia a un determinado grupo toxicológico nos permitiría establecer un programa eficaz en control de vectores, ya que esta nos capacita para hacer un manejo racional de la resistencia basado en la rotación de insecticidas con énfasis en mantener poblaciones susceptibles.

HIPÓTESIS

La aplicación continua de insecticidas en las campañas de control del vector del dengue *Aedes aegypti*, determina el tipo y grado de resistencia en las poblaciones seleccionadas.