UNIVERSIDAD AUTONOMA DE NUEVO LEON

FACULTAD DE INGENIERIA CIVIL

DEL PAVIMENTO, EN LA CAPACIDAD VIAL

DE LAS CARRETERAS MULTICARRILES

POR:

RAFAEL GALLEGOS LOPEZ

COMO REQUISITO PARCIAL PARA OBTENER
EL GRADO DE:
MAESTRIA EN INGENIERIA DE TRANSITO

MAYO DE 1997.

R. G SERVICE DE LAS CONDÍCIONES SUBREILA NTO EN LA CAPACIDAL TM TE145 G3

c.1

UNIVERSIDAD AUTONOMA DE NUEVO LEON

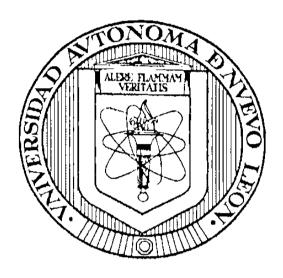
FACULTAD DE INGENIERIA CIVIL

MEGIO DE LES CONDIGIONES SUPERECUALES DEL FAMILIATO, EN LA CAPACIDAD MAI. DE LAS CAREFLERAS MULTICARRILES

POH:

RARAEL GALLEGOS LOREZ

COMO REQUISITO PARCIAL PARA OBTENER.
EL GRADO DE:


MAESTRIA EN MICERCELA DE TRANSITO

MAYIO DE 1997

TM + E145

UNIVERSIDAD AUTONOMA DE NUEVO LEON FACULTAD DE INGENIERIA CIVIL

EFECTO DE LAS CONDICIONES SUPERFICIALES DEL PAVIMENTO, EN LA CAPACIDAD VIAL DE LAS CARRETERAS MULTICARRILES

Por:

RAFAEL GALLEGOS LOPEZ

Como requisito parcial para obtener el grado de: MAESTRIA EN INGENIERIA DE TRANSITO

Mayo de 1997

UNIVERSIDAD AUTONOMA DE NUEVO LEON FACULTAD DE INGENIERIA CIVIL

DIVISION DE EST JO OS DE POSTGRADO

EFECTO DE LAS CONDICIONES SUPERFICIALES DEL PAVIMENTO, EN LA CAPACIDAD VIAL DE LAS CARRETERAS MULTICARRILES

Aprobación de la Tesis:
Asesor de la Tesis: ING. ANASTACIO VAZQUEZ VAZQUEZ
SECRETARIA DE ESTUDIOS DE POSTGGO DO
Secretario de Estudios de Postgrado: ING. OSCAR MANUEL ROBLES SANCHEZ

UNIVERSIDAD AUTONOMA DE NUEVO LEON FACULTAD DE INGENIERIA CIVIL

DIVISION DE ESTUDIOS DE POSTGRADO

COMPROBANTE DE CORRECCION

Tesista:	ING. RAFAEL GALL	EGOS LOPEZ		
Tema de la	a tesis: EFECTO [E LAS CON	IDICIONES SUP	ERFICIALES
DEL PAV	IMENTO, EN LA C	APACIDAD \	JIAL DE LAS C	ARRETERAS
MULTICA	RRILES			
	nento certifica la correc		finitiva	
	o de tesis arriba i ico y estilístico.	identificado, e	en los aspectos	: ortográfico,
Recomend	aciones adicionales: (NIWGUNA)	
				
				
				
The Maria				
Nombre w	> Sirma de quien corrigió: No de Postgrado:	<u>w</u>	dongorial	
ENSecretar	io de Postgrado:	ARQ. RAI	YION JONGORIA CAR M. ROBLES	SECRETARIA DE PO
	Ciudad Univ		.de <u>Å b vi</u>	

ING. OSCAR M. ROBLES SANCHEZ Secretario de Estudios de Postgrado de la Facultad de Ingeniería Civil de la Universidad Autónoma de Nuevo León

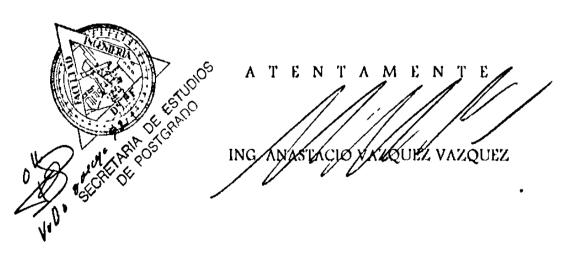
Estimado Ing. Robles:

Por medio de la presente solicito la tramitación correspondiente para sustentar mi examen de grado, ya que he concluido con la elaboración de mi tesis, la cual lleva por nombre: "Efecto de las condiciones superficiales del pavimento, en la capacidad vial de las carreteras multicarriles".

Sin otro particular, me es grato enviarle un cordial saludo y agradecerle de antemano la atención que se me brinde a dicha solicitud.

ATENTAMENTE

ING. RAFALL GALLEGOS LOPEZ


San Nicolás de los Garza, N.L., Abril 24 de 1997.

ING. OSCAR M. ROBLES SANCHEZ Secretario de Estudios de Postgrado de la Facultad de Ingeniería Civil de la Universidad Autónoma de Nuevo León

Estimado Ing. Robles:

Por medio de esta presente me permito informar a usted, en calidad de Asesor de tesis, que el Ing. Rafael Gallegos López, pasante de la Maestría en Ciencias con especialidad en Ingeniería de Tránsito, ha concluido con la tesis titulada: "Efecto de las condiciones superficiales del pavimento, en la capacidad vial de las carreteras multicarriles", por lo que puede continuar con los trámites para su Examen de Grado, con los requisitos que exige el reglamento de exámenes de nuestra Universidad.

Agradezco de antemano las atenciones que se le brinde para la tramitación de dicho examen.

San Nicolás de los Garza, N.L., Abril 24 de 1997.

RESUMEN

RAFAEL GALLEGOS LOPEZ

Fecha de obtención de Grado: Mayo de 1997

Universidad Autónoma de Nuevo León

Facultad de Ingeniería Civil

Título de estudio: EFECTO DE LAS CONDICIONES SUPERFICIALES

DEL PAVIMENTO. EN LA CAPACIDAD VIAL DE LAS

CARRETERAS MULTICARRILES

Número de páginas: 245

Candidato para el Grado de Maestría en Ingeniería de

Tránsito.

Area de Estudio: Capacidad Vial

Propósito y Método de Estudio: Para hacer más exacto el cálculo de la capacidad vial de algunas carreteras multicarriles, se realizó un estudio exploratorio que determinase la relación entre estas dos variables: las condiciones superficiales del pavimento y la capacidad vial. Se estableció una hipótesis inicial, se cuantificaron las situaciones de diversos escenarios y se efectuaron diversas mediciones, cuyos resultados recibieron tratamiento estadístico. Distintas verificaciones del procedimiento confirman la veracidad.

Contribuciones y Conclusiones: La contribución más importante de esta tesis está dedicada a los ingenieros planificadores de infraestructura vial, quienes, en adelante fincarán sus decisiones sobre la capacidad vial de las carreteras multicarriles no solamente en la aplicación de las fórmulas del Manual de Capacidad Vial; sino que deberán de efectuar ciertos ajustes al cálculo, debidos a factores referentes al estado superficial del pavimento.

Tirma del Asesor: .

ING. ANASTACIÓ VAZQUEZ VAZQUEZ

AGRADECIMIENTO

- A **Dios**, principio y fin de todas las cosas.
- A la Facultad de Ingeniería Civil, donde he aprendido, entre otras cosas, a quererla y a servir a mis semejantes.
- Al Ing. Francisco Gámez Treviño, Director de esta Facultad, por su constante estimulo para la realización de esta tesis, su incondicional y valioso apoyo.
- Al Ing. Anastacio Vázquez Vázquez, de quien he recibido un cúmulo de experiencias, pero sobre todo su gran amistad.
- Al personal del Departamento de Estudios de Ingeniería de Tránsito del Instituto de Ingeniería Civil, por su colaboración y lealtad a toda prueba.
- Al Ing. Oscar M. Robles Sánchez, Secretario de Estudios de Postgrado de esta Facultad, por su valioso apoyo.
- A mi familia, que ha inspirado la fuerza moral que me sostiene.

DEDICATORIA

A mi madre, Elvira López Aguilar principal artifice de mi formacion, que nunca ha escatimado esfuerzos para mi bien.

A mi esposa, Edith Amara Perzabal Cortez cuyo amor me ha moldeado.

A mis hijos, Estefanía y Rafael, anhelo y prenda de mi vida.

A mis tíos, de cuyo sabio vivir aprendí tanto.

TABLA DE CONTENIDO

Capít		Página:
I.	INTRODUCCION	1
	Antecedentes	2
	Situación actual	2
	El problema, su importancia e implicaciones	3
II.	OBJETIVOS	4
III.	HIPOTESIS	5
IV.	DEFINICION DE CONCEPTOS DE CAPACIDAD VIAL	6
IV.1.	Tipo de vías	6
IV.2.	Conceptos de capacidad y Nivel de servicio	7
IV.3.	Principios básicos sobre el flujo del tránsito	11
IV.4.	Características de la circulación continua	14
IV.5.	Características de la circulación discontinua	18
IV.6.	Factores que afectan la capacidad	23
IV.7.	Niveles de Análisis	28
V.	DEFINICIONES DE CONCEPTOS SOBRE	
	PAVIMENTOS · · · · · · · · · · · · · · · · · · ·	31
V.1.	Pavimentos asfálticos (flexible)	31
V.2.	Pavimento rígido	31
V.3.	Indice internacional de rugosidad	33
VI.	ANALISIS DE CAPACIDAD EN CARRETERAS	
	MULTICARRILES	37
VI.1.	Características, tipos de carreteras y flujo ideales	37
VI.2.	Aiustes de velocidad de fluio libre	42
VI.3.	Factores de volumen	46
VI.4.	El Método	47
VI.5.	Procedimientos de aplicación	60
VI.6.	Ejemplos	73
VII.	DETERMINACION DE LA INFLUENCIA DEL ESTADO	
	SUPERFICIAL DEL PAVIMENTO EN LA CAPACIDAD	
	VIAL DE LAS CARRETERAS MULTICARRILES	104
VII.1.	Estudios de Ingeniería de Tránsito	104
a)	Inventario	104
Ь)	Indice internacional de rugosidad	120
c)	Velocidad de nunto	123
d)	Información Fotográfica	131

VII.2.	Proceso de la información	147
	Análisis de la información	150
VII.4.		154
VIII.	ANALISIS DE LA CAPACIDAD VIAL DE LAS	
	CARRETERAS MULTICARRILES TOMANDO EN	
	CUENTA EL ESTADO SUPERFICIAL DEL	
	PAVIMENTO	167
IX.	CONCLUSIONES Y RECOMENDACIONES	183
X.	BIBLIOGRAFIA	185
XI.	APENDICES	187
	Apéndice A	188
	Apéndice B	189

LISTA DE TABLAS

Nº.		Página:
1.	Distintas vías y su eficiencia	10
2.	Descripción de los niveles de servicio	48
VI.1.	Criterio del nivel de servicio para carreteras multicarriles	98
VI.2.	Ajuste por tipo de faja separadora	99
VI.3.	Ajuste por ancho de carril	99
VI.4.	Ajuste por obstáculos laterales	99
V1.5.	Ajuste por densidad de puntos de acceso	100
	Número de puntos de acceso según el nivel de desarrollo	
	esperado	100
VI.7.	Vehículos ligeros equivalentes en un tramo de carretera	
	multicarril	100
VI.8.	Vehículos ligeros equivalentes para autobuses y camiones en	
	pendientes ascendentes (E_T)	101
VI.9.	Vehículos ligeros equivalentes para vehículos recreativos en	
	pendientes ascendentes (E_R)	102
VI.10.	Vehículos ligeros equivalentes para vehículos pesados	
,	(camiones) en pendiente descendentes (E_T)	102
VI.11.	Flujo vehicular por carril según el nivel de servicio, usado para	
	el análisis de planeación (Proyecto)	103
VII.1.	Deflexiones transversales sobre el pavimento	121
	Tratamiento estadístico para obtener el IIR	122
	Desviaciones normales de velocidad de punto, para la	
	determinación del tamaño de la muestra	128
VII.4.	Constante correspondiente al nivel de confiabilidad	128
	Cálculos para determinar el IIR (m/km)	149
VII 6	El IIR como factor de menor velocidad	158
	The second impletion of the second	
VIII.1.	Resultado del ejemplo 1	172
VIII.2.	Resultado del ejemplo 2	180

LISTA DE FIGURAS

Nº.		Página:
IV.1. IV.2.	Relaciones entre velocidad, flujo y densidad	16 20
V.2. V.3.	Capas de un pavimento flexible típico	32 32 34 36
VI.1.	Relación Flujo-Velocidad en Carreteras Multicarriles	40
VI.2.	Relación Flujo-Densidad en Carreteras Multicarriles	40
	Curvas Flujo-Velocidad para criterio de niveles de servicio	48
VI.4.	Ejemplo usando la gráfica con curvas Flujo-Velocidad	59
VI.5.	Hoja de trabajo, Análisis operacional y diseño	69
VI.6.	Hoja de trabajo, Análisis de planeación	71
VI.7.A.	Solución del cálculo Nº 1	76
VI.7.B.	Solución del cálculo Nº 1 (Segmento general)	77
	Solución del cálculo Nº 1 (Segmento con pendiente)	78
VI.8.B.	Gráfica de la figura anterior	79
VI.9.A.	Solución del cálculo Nº 2 (Segmento en nivel)	82
	Gráfica del cálculo anterior	83
	Solución del cálculo Nº 2 (Segmento con pendiente)	84
	Gráfica del cálculo anterior	85
	Ilustración de la solución del cálculo № 3	87
И.11.B.	Gráfica del cálculo anterior	88
VI.12.A.	Solución del cálculo Nº 4	92
	Gráfica del cálculo Nº 4	93
V/13	Solución del cálculo Nº 5	97

Contínua...

Nº.		Página:
VII.1.	Localización de carretera Monterrey-Linares	107
	Dimensiones de carretera Monterrey-Linares	108
	Dimensiones de carretera Monterrey-Linares	109
VII.4.	Localización de carretera Monterrey-Reynosa	110
VI.5.	Dimensiones de carretera Monterrey-Reynosa	11
	Dimensiones de carretera Monterrey-Reynosa (libre)	112
VII.7.	Localización general de varias carreteras	113
VI I.8.	Dimensiones de carretera Monterrey-Nuevo Laredo	114
VI I.9.	Dimensiones de carretera Monterrey-Colombia	115
VII.10.	Dimensiones de carretera Monterrey-Cadereyta (cuota)	116
VII.11.	Dimensiones de carretera Monterrey-Cadereyta (cuota)	117
VII.12.	Localización de la carretera Monterrey-Villa de García	118
VII.13.	Dimensiones de carretera Monterrey-Villa de García	119
VII.14 .	Forma impresa para anotar observaciones de velocidad de	
	punto, efectuados con pistola radar	129
VI I.15.	Forma impresa para anotar otras observaciones de velocidad	
	de punto	130
VII.16.	Fotografías de pavimento en buenas condiciones	132
VII.17.	Capa asfáltica en buen estado	133
	Recarpeteo de uno de los carriles de circulación	134
	Comienza a notarse el desgaste de capa asfáltica	135
VII.20.	Carretera Monterrey-Reynosa, Km.15+000	136
VII.21.	Deterioro en capa asfáltica	137
	Dos sentidos de carretera Monterrey-Laredo	138
	Desgaste en carretera Monterrey-Laredo, Km. 14	139
	Ambos sentidos de la carretera Monterrey-Colombia	140
	Deterioro en carretera Monterrey-Colombia	141
	Excelencia de la autopista Monterrey Cadereyta	142
	Buen estado de la autopista Monterrey-Cadereyta	143
	Fotos de la carretera Monterrey-Villa de García	144
	Deflexiones en el pavimento, carretera de lámina anterior	145
VII.30.	Deterioro en carretera Monterrey-Villa de García	146

Continua...

Nº.		Página:
VII.31.	Gráfica de la relación: Velocidad-Superficie pavimentada	151
	Otra gráfica Velocidad-Superficie pavimentada	153
VI I.33.	Gráfica de reducción de la velocidad por el estado superficial	
	del pavimento	155
VII.34.	Gráfica de reducción de la velocidad por efecto del estado	
	superficial del pavimento	157
VII.35.	Fotos de pavimentos con diferentes grados de nivel de	
	servicio	159
VII.36 .	Otras fotos de pavimentos con diferentes grados de nivel de	
	servicio	160
VII.37.	Otras fotos de pavimentos con diferentes grados de nivel de	
	servicio	161
	Fotos de pavimentos con diverso índice de rugosidad	162
	Fotos de dos distintas calidades de pavimento	163
	Dos diferentes calidades de superficies pavimentadas	164
	Pavimentos con diferentes niveles de servicio	165
VII.42.	Forma impresa para registrar datos de un análisis operacional	166
V∭1A	Forma para registrar datos de análisis operacional y diseño,	
АШ.13 С	ejemplo 1	170
VIII.1.B.	Gráfica del análisis operacional, ejemplo 1	171
	Forma para registrar datos de análisis operacional utilizando	
	Fp. ejemplo 1	173
VIII.2.B.	Gráfica del análisis operacional, utilizando Fp, ejemplo 1	174
	Forma para registrar datos de análisis operacional y diseño,	
	ejemplo 2	178
VIII.3.B.	Gráfica del análisis operacional ejemplo 2	179
	Forma para registrar datos de análisis operacional utilizando	
	Fp. ejemplo 2	181
VIII.4.B.	Gráfica del análisis operacional utilizando Fp. ejemplo 2	182

LISTA DE SIMBOLOS

Densidad (veh/mill).

FD Proporción del tránsito en la hora de máxima demanda en el sentido de máxima demanda.

DMR 95 Percentil de las desviaciones máximas.

E (En estadística) Error permitido en la estimación.

ER Equivalencia de vehículos ligeros.ET Equivalencia de vehículos ligeros.

FA Aiuste por puntos de acceso.

FFS Velocidad en flujo libre estimada (mph).

fHV Factor de ajuste para vehículos pesados.

FLC Ajuste por obstáculos laterales.

FLW Ajuste por el ancho de carriles.

Fm Ajuste por faja separadora.

FMZ Ajuste por ancho de carril y el FLC.

Fp Ajuste por estado superficial del pavimento.

IIR Estado superficial del pavimento (m/km).

K Porción de TPDA que ocurren en el sentido de máxima demanda.

K (En estadística) Constante correspondiente al nivel de confiabilidad deseado.

LCI Distancia lateral de la orilla izquierda (en pies).

LCr Distancia lateral de la orilla derecha (en pies).

MSF Valor de flujo de servicio máximo.

Número de carriles.

N (En estadística) Tamaño mínimo de la muestra.

PFH Factor horario de máxima demanda.

PT Porcentaje de camiones + porcentaje de autobuses.

S Velocidad global de flujo (mill/h).

S (En estadística) Desviación normal de la muestra.

TLC Distancia lateral total (en pies).
TPDA Tránsito promedio diario anual.

V Volumen (número de vehículos que pasan por un punto o sección de la vía en 1 hora).

Vol. Valor de flujo (veh/h).

Vel. (En estadística) Constante correspondiente a la velocidad estadística deseada.

Vhm Volumen horario (horario de máxima demanda).

VHP Volumen horario de proyecto direccional.

Vp Valor de Ilujo de servicio en vl/h/carr.