UNIVERSIDAD AUTONOMA DE CHIHUAHUA

UNIVERSIDAD AUTONOMA DE NUEVO LEON

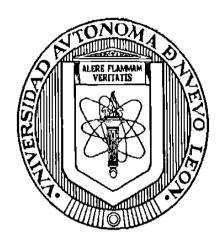
FACULTAD DE INGENIERIA CIVIL

ESPESAMIENTO DE LOS LODOS DE LIN SEDIMENTADOR PRIMARIO POR MEDIO DE HIDROCICLONES EN UNA PLANTA DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS

Por HILDA PATRICIA MEDINA CABALLERO

Como Requisito parcial para obtener el Grado de MAESTRIA EN CIENCIAS con Especialidad en Ingeniería Ambiental

Febrero, 1997.


TM M J

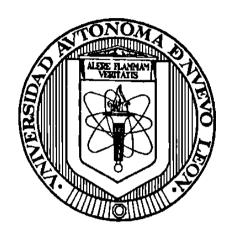
UNIVERSIDAD AUTONOMA DE CHIHUAHUA

UNIVERSIDAD AUTONOMA DE NUEVO LEON

FACULTAD DE INGENIERIA CIVIL

ESPESAMIENTO DE LOS LODOS DE UN SEDIMENTADOR PRIMARIO POR MEDIO DE HIDROCICLONES EN UNA PLANTA DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS

P o r HILDA PATRICIA MEDINA CABALLERO


Como requisito parcial para obtener el Grado de MAESTRIA EN CIENCIAS con Especialidad en Ingeniería Ambiental

TM T21540 M4

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA CIVIL

PRIMARIO POR MEDIO DE HIDROCICLONES EN UNA PLANTA DE TRATAMIENTO DE AGUAS RESIDUALES DOMÉSTICAS

Por

HILDA PATRICIA MEDINA CABALLERO

Como requisito parcial para obtener el Grado de MAESTRÍA EN CIENCIAS con Especialidad en Ingeniería Ambiental

UNIVERSIDAD AUTONOMA DE NUEVO LEON FACULTAD DE INGENIERIA CIVIL

DIVISION DE ESTUDIOS DE POSTGRADO

ESPESAMIENTO DE LOS LODOS DE UN SEDIMENTADOR PRIMARIO POR MEDIO DE HIDROCICLONES EN UNA PLANTA DE TRATAMIENTO DE AGUAS RESIDUALES DOMÉSTICAS

Presenta: IBQ Hilda Patricia Medina Caballero

Aprobación de la Tesis:

Asesor interno
Ing. Omar Huerta Granados

Asesor externo

Dr. Enrique Ortega Rivas

Universidad Autónoma de Chihuahua

Secretario de Posgrado Ing. Oscar Manuel Robles S.

SECRETA A E

TUDIOS

UNIVERSIDAD AUTONOMA DE NUEVO LEON FACULTAD DE INGENIERIA CIVIL

DIV SION DE ESTUDIOS DE POSTGRADO

COMPROBANTE DE CORRECCION.

Ciudad Universitaria, a 20 de enero de 1997.

Ing. Oscar Manuel Robies Sánchez Secretario de Posgrado Facultad de Ingeniería Civi Universidad Autónoma de Nuevo León

Ingeniero Robles

Por medio de la presente me permito solicitarle su autorización para iniciar los trámites correspondientes al examen de grado de mi trabajo de tesis titulado "Espesamiento de los lodos de un sedimentador primario por medio de hidrociclones en una planta de tratamiento de aguas residuales domésticas", como requisto para obtener el grado de Maestro en Ciencias con especialidad en Ingeniería Ambiental

Dicho trabajo ya está terminado y cuenta con las aprobaciones del asesor interno, ling. Omar Huerta Granados del asesor externo, Dr. Enrique Ortega Rivas (Universidad Autónoma de Chihuahua), así como del Arq. Ramón Longoria, cuyas autorizaciones anexo.

Sin otro particular por el momento y agradeciendo su atención prestada a la presente

Atentamente

IBQ Hi da Patricia Medina Caballero

While D Mila C

Ing. Oscar Manuel Robles Sanches Secretario del Instituto de Ingenieria Civil U. A. N. L.

Febrero 10 de 1997

Ing. Robles:

Por medio de la presente hago de su conocimiento que la tésis realizada por el Ing. Hilda Patricia Medina Caballero, titulada "Espezamiento de los lodos de un sedimentador primario por medio de hidrociclones en una planta de aguas residuales domésticas" ha sido revisada en forma total cubricindo integramente todos los puntos manifestados en el íncice inicial y cuyo texto también ha sido revisado y editado para ser someudo para su evaluación final.

Sin mas por el momento quedo de usted.

ATENTAMENTE

Ipg Omar A. Huerta G.

UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA

Facultad de Clencias Químicas Apdo. 1542-C; Chihuahua, Chih. México Tel.: (14) 139024 Fax: (14) 144492

27 de Encro de 1997

Ing. Oscar Manuel Robles Sánchez Secretario de Posgrado de la Facultad de Ingeniería Civil Universidad Autónoma de Nuevo León Cd. Universitaria. Apdo. Postal 58-F San Nicolás de los Garza, N.L.

Estimado Ing. Robles:

Por medio de la presente me permito comunicarle que he concluido la revisión y auscultación detallada de la tesis titulada: "Espesamiento de los Lodos de un Sedimentador Primario por Medio de Hidrociclones en una Planta de Tratamiento de Aguas Residuales Domésticas", presentada por la IBQ Hilda Patricia Medina Caballero. Considero que la citada tesis cumple con los requisitos de calidad necesarios para ser considerada una tesis de grado y personalmente la calificaría como un muy buen trabajo de investigación.

Sin otro particular por el momento me es grato despedirme, poniéndome a sus apreciable órdenes para cualquier aclaración.

Atontamente

Dr. Enrique Ortega Rivas Investigador Nacional Nivel I Académico Titular "C"

SECRETAR A OF TOT DOS

Autonoma de Chih	teórico y experimo uahua, bajo la aseson Posgrado de la Facul	ría del Dr.Enrique 🛚	se realizó en la Ur Ortega Rivas, en la S micas.	iversidad Secretaría

Dedicado en memoria de mi padre, Carlos Medina Zárate y a mi madre Hilda Caballero de Medina como ofrenda de agradecimiento

AGRADECIMIENTOS

- ▲A mi esposo, Javier, por su amor, comprensión y apoyo incondicional
- A mis hermanos, Jorge, Carlos y Nelly; a mi abuelita Emestina y tías
- ▲A la familia Ríos Hernández, que me brindaron un segundo hogar
- A mi asesor, Dr. Enrique Ortega Rivas, Profesor Investigador de la Facultad de Ciencias Químicas de la Universidad Autónoma de Chihuahua, por confiar en mí para la realización del presente trabajo y por su invaluable ayuda
- A todo el personal docente, administrativo y de servicios pertenecientes a la Secretaría de Investigación y Posgrado de la Facultad de Ciencias Químicas de la Universidad Autónoma de Chihuahua, por brindarme todas las facilidades para la elaboración de este trabajo. Especialmente a la Dra. Guadalupe Virginia Nevárez M., M.C. Javier H. Gasson L., M.C. Ramón Olivas V., M.C. Ma. Guadalupe Gastélum F., M.C. Armando Quintero R., Dr. Víctor M. Santana R.; al personal de los Laboratorios de Investigación John Dalton y Luis Pasteur, Laboratorios de Análisis Bromatológicos y de Ingeniería Química.
- Al Ing,. Ricardo Burciaga por su ayuda durante la etapa experimental del proyecto
- A los Ingenieros Javier González Cantú y Soledad Hurtado, de Atlatec Chihuahua, S.A de C.V., por su valiosa colaboración
- Al Ing. Omar Huerta Granados, por sus consejos durante la revisión de este trabajo
- ▲A mis compañeros, Angélica, Gabriela, Ma. de los Angeles,Francisco, Mónica, Esther, Sonia, Alicia, Nerla, Elizabeth, Montserrat, Ia, Marco Antonio, Georgina, V. G. Cobian, A. S. Múzquiz, Alejandro, Pedro y Antonio Santillán.
- **▲ A** mis maestros

TABLA DE CONTENIDO

Capítulo		Página
1. INTE	RODUCCIÓN	1
1.1	Generalidades Acerca del Espesamiento de los Lodos	1
	1.1.1 Clasificación de los lodos	3
	1.1.2 Métodos de Espesamiento	3
1.2	Actividades Correspondientes al Presente Trabajo	5
2. PRIN	CIPIOS TEÓRICOS Y DE OPERACIÓN DE LOS	
HII	DROCICLONES	7
2.1	Aspectos Generales y Usos de los Hidrociclones	7
2.2	Principio de Operación de los Hidrociclones	10
2.3	Características de Funcionamiento	12
	2.3.1 Punto de Corte	12
	2.3.1.1 Análisis de las Partículas por Tamaños	13
	2.3.1.1.1 Representación Gráfica de los	
	Tamaños de las Partículas	13
	2.3.1.1.2 Representación Matemática de las	
	Distribuciones de las Partículas	
	por Tamaños	18
	2.3.1.1.3 Métodos para Medir los Tamaños	24
	de las Partículas	24
	2.3.1.2 Eficiencia del Proceso de Separación 2.3.1.2.1 Eficiencia Total, E _T	29 29
	2.3.1.2.2 Eficiencia Reducida Total, E' _T	31
	2.3.1.2.3 Eficiencia Parcial, E _p	33
	2.3.1.2.4 Nivel de Eficiencia, G(x)	34
	2.3.1.2.5 Nivel Reducido de Eficiencia, G'(x)	36
	2.3.1.2.6 Punto de Corte, X ₅₀	39
	2.3.1.2.7 Punto de Corte Reducido, X'50	40
	2.3.1.2.8 Limite Aproximado de la	
	Separación, X ₉₈	41
	2.3.1.2.9 Índice de Exactitud de la	
	Separación, H _{25/75}	41
	2.3.1.3 Obtención del Punto de Corte a Partir de la	
	Evaluación de la Curva de Eficiencia	42

Capítulo]	Página
		2.3.1.3.1 Método Gráfico Sugerido por	
		Trawinsky	42
		2.3.1.3.2 Método Analítico Propuesto por Svarovsky	45
	2.3.1.4	Métodos Alternativos para el Cálculo del	46
		Punto de Corte	46
		2.3.1.4.1 Método Rápido Desarrollado por Trawinsky	46
		2.3.1.4.2 Método Alternativo Presentado	70
		por Svarovsky	50
		2.3.1.4.3 Método Nuevo Desarrollado por	
		Svarovsky que no Requiere	
		la Medición de los Flujos	51
		2.3,1.4.4 Cálculo del Punto de Corte a Través	
		de una Relación Lineal Obtenida	
		por Doheim y Colaboradores	53
		2.3.1.4.5 Correlaciones que no Consideran la	
		Concentración de la Alimentación	
		para la Evaluación del Punto de	
		Corte	54
		2.3.1.4.6 Correlaciones que Toman en Cuenta	
		la Concentración de la Alimentación	
		para la Evaluación del Punto de	F.C
	222 Compaid	Corte	56 57
2.4		lad de un Hidrociclón riables de Operación y de Diseño en el	31
2.4		to de un Hidrociclón	58
		es de Operación	58
		es de Diseño	60
2.5		ón de Hidrociclones	60
2.5	-	niento Adimensional	62
		Definición de los Grupos Adimensionales	
		Involucrados	62
	2.5.1.2	Escalamiento a Concentraciones Bajas	66
	2.5.1.3	Escalamiento para Concentraciones Altas	67
	2.5.1.4	Consideraciones para el Comportamiento	
		no Newtoniano	68
		2.5.1.4.1 Fluidos Newtonianos y no Newtonianos	s 68
		2.5.1.4.2 Expresión del Número de Reynolds	
		para Fluidos no Newtonianos	72

Capítulo				Página
			2.5.1.4.3 Deducción de la Expresión para el	
			Coeficiente de Rozamiento C _D Den	itro
			de la Región de Flujo Laminar	75
			2.5.1.4.4 Deducción de la Ecuación de la Veloc	
			Terminal de Sedimentación	76
			2.5.1.4.5 Ecuación Generalizada para el Númer	
		2515	de Stokes	78 80
		2.3.1.3	Modelos Empíricos	80
3. MAT	TERIALE	ES Y MÉT	ODOS	83
3.1	Caract	terización i	Reológica de los Lodos Primarios	85
•••	3.1.1		on de Viscosidad, Velocidad de Deformación y	
			erzo Cortante	85
	3.1,2	Análisis	de Datos	85
3.2	Deterr	ninación d	e Sólidos Totales en Lodos	86
3.3	Deterr	ninación d	el Peso Específico de los Lodos	87
3.4	Obten	ción del M	odelo de Escalamiento Adimensional	88
	3.4.1	Análisis	de Regresión Lineal Múltiple	88
4. RES	ULTAD(OS Y DISC	CUSIÓN	90
4.1	Caract	erización l	Reológica de los Lodos Primarios	90
	4.1.1	Análisis	de Regresión no Lineal	91
4.2			Correlaciones del Modelo de Escalamiento para Hidrociclones a Partir de las Muestras	
		odos Prin	-	103
	4.2.1		de los Grupos Adimensionales Involucrados	103
			Número de Reynolds	103
			Número de Euler	104
		4.2.1.3	Número de Stokes	104
	4.2.2	Elección	n de las Ecuaciones a Utilizar de los Modelos de	
		Escal	amiento Adimensional	104
	4.2.3	Análisis	de Regresión Lineal Múltiple	105
		4.2.3.1	Análisis de Regresión Lineal Múltiple para	
			la Función Eu =f(Re*, C_f)	105
		4.2.3.2	Análisis de Regresión Lineal Múltiple para	
			la Función R_f =f[(D_u/D_c), Eu]	110
			4.2.3.2.1 Segundo Análisis de Regresión	

Lineal Múltiple para la Función

112

 $R_f = \mathbf{f}[(D_u D_c), Eu]$

Capítulo			Págin a
		4,2,3,2,2 Análisis de Regresión Lineal Múltiple	:
		de la Función R_f =f[(D_{ν}/D_c) ,Re*, C_f]	116
		4.2.3.2.3 Análisis de Regresión Lineal Múltiple	-
		de la función R_f =f[(D_u/D_c) ,Re*]	117
		4.2.3.3 Correlación que Involucra el Punto de Corte	120
	4.2.4	Correlaciones Obtenidas	126
4.3	Eficien	icia del Proceso de Separación	129
5. CON	ICLUSIO	NES	135
REFERENC	CIAS		139

LISTA DE FIGURAS

Figura	ı	Página
1	Former de les Demes de un Uidensielén	11
1. 2.	Esquema de las Partes de un Hidrociclón Patrón de Flujo en un Hidrociclón	11
2. 3.	Escala de Probabilidad	15
4.	Esquema que Muestra la Relación entre las Distribuciones de	13
₹.	Frecuencias no Acumuladas y las Acumuladas	16
5.	Histograma y Gráficas Acumuladas	17
6 .	Ejemplos de Medianas del Tamaño de Partícula Expresadas en	• •
٠.	Número y en Masa	19
7.	Función de Error	21
8.	Esquema de un Separador	30
9.	Curva de Nivel de Eficiencia, donde G(x) es la Función que	
	Representa el Nivel de Eficiencia	35
10.	Curva de Eficiencia y Curva Reducida de Eficiencia para un	
	Hidrociclón	37
11.	Curva de Nivel de Eficiencia para el Caso de una Separación Ideal	40
12.	Distribuciones por Tamaños de las Tres Corrientes, Mostrándose	
	Varios Diámetros de Referencia	43
13.	Ejemplo que Muestra la Forma de Trazar la Curva de Nivel de	
	Eficiencia	44
	Curva de Eficiencia Reducida y Punto de Corte Reducido	45
15.	Diagrama que Muestra la Función ϕ y la Forma de Determinar el	
	Punto de Corte	47
16.	Gráfica de la Función ϕ en la cual se Observa un Máximo en	
	X=10 micrones	49
	Definición de Viscosidad	69
18.	Gráfica de Esfuerzo Cortante Frente al Gradiente de Velocidad	
	para Fluidos Newtonianos y no Newtonianos	70
	Curva de Flujo General	73
20.	Fuerzas que Actúan sobre una Partícula que cae a Través de un	
	Fluido	76
	Esquema del Equipo Experimental	84
22.	Gráfica que Muestra la Tendencia de la Viscosidad en Función	01
	de la Velocidad de Corte	91
23,	Diagrama de Esfuerzo Cortante vs. Velocidad de Corte para	00
0.4	T=22.5°C	92
24.	Diagrama de Esfuerzo Cortante vs. Velocidad de Corte para	0.2
	T=25°C	93

Figura		Página
25.	Diagrama de Esfuerzo Cortante vs. Velocidad de Corte para T=24.5°C	93
26 .	Diagrama de Esfuerzo Cortante vs. Velocidad de Corte para T=25°C	93
27.	Diagrama de Esfuerzo Cortante vs. Velocidad de Corte para T=25°C	94
28.	Diagrama de Esfuerzo Cortante vs. Velocidad de Corte para T=25°C	94
29.	Diagrama de Esfuerzo Cortante vs. Velocidad de Corte para T=25°C	94
30.	Diagrama de Esfuerzo Cortante vs. Velocidad de Corte para T=19.3°C	95
31.	Diagrama de Esfuerzo Cortante vs. Velocidad de Corte para T=19°C	95
32.	Diagrama de Esfuerzo Cortante vs. Velocidad de Corte para T=19.9°C	95
33.	Diagrama de Esfuerzo Cortante vs. Velocidad de Corte para T=20.2°C	96
34.	Diagrama de Esfuerzo Cortante vs. Velocidad de Corte para T=19.6°C	96
35.	Diagrama de Esfuerzo Cortante vs. Velocidad de Corte para T=18.3°C	96
36.	Diagrama de Esfuerzo Cortante vs. Velocidad de Corte para T=18°C	97
37.	Diagrama de Esfuerzo Cortante vs. Velocidad de Corte para T=20.5°C	97
38.	Diagrama de Esfuerzo Cortante vs. Velocidad de Corte para T=18.8°C	97
39.	Diagrama de Esfuerzo Cortante vs. Velocidad de Corte para T=19.5°C	98
40.	Diagrama de Esfuerzo Cortante vs. Velocidad de Corte para T=18.4°C	98
41.	Diagrama de Esfuerzo Cortante vs. Velocidad de Corte para T=18.8°C	98
42.	Diagrama de Esfuerzo Cortante vs. Velocidad de Corte para T=20.6°C	99
43.	Diagrama de Esfuerzo Cortante vs. Velocidad de Corte para T=21°C	99
44.	Diagrama de Esfuerzo Cortante vs. Velocidad de Corte para T=19.8°C	99
45.	Diagrama de Esfuerzo Cortante vs. Velocidad de Corte para T=18.2°C	100

Figura F	Página
46. Gráfica de Probabilidad Normal de Residuales para la Ec.(4-4)	109
47. Gráficas de Residuales para la Ec.(4-4)	110
48. Gráfica de Residuales de Probabilidad Normal para la Ec.(4-6)	114
49. Gráficas de Residuales para la Ec.(4-6)	115
50. Gráfica de Residuales de Probabilidad Normal para la Ec.(4-9)	119
51. Gráficas de Residuales para la Ec.(4-9)	120
52. Algunas Distribuciones por Tamaños Ajustadas con la Función Log-normal	123
53. Correlación entre el producto Stk_{50} \sqrt{Eu} y C_f Reportada en (Svarovsky, 1992)	124
54. Gráfica que Muestra la Relación entre el Producto Stk_{50} \sqrt{Eu} y la Concentración de la Alimentación C_f Obtenida Experimentalment	e 125
55. Gráficas de Residuales para la Ecuación $Stk_{50} \sqrt{Eu} =$	
$-0.000054085 C_{f} + 0.03861791$	126
56. Comparación entre los Valores Obtenidos Experimentalmente	
y los Valores Predichos por el Modelo	127
57. Gráfica que Muestra la Correlación entre los Números Adimensionales Eu y Re* dada por la Ec.(4-4) para Concentraciones entre	e
0.4 y 2.4% Expresadas en Volumen	128
58. Gráficas que Muestran las Correlaciones entre R _f y el Número	
Adimensional Re* dada por la Ec.(4-9)	128

LISTA DE TABLAS

Tabla]	Página
1.	Valores de la Función erf (z)	22
2.	Análisis por Tamaños de las Partículas Presentes	22
	en los dos Efluentes del Hidrociclón	48
3.	Cálculo de la Función ϕ	49
4.	,	• • •
	los Sólidos en la Alimentación para la Evaluación del Punto	
	de Corte	55
5 .	Correlaciones que si Consideran la Concentración de los Sólidos	
	en la Alimentación para la Evaluación del Punto de Corte	56
6.	Familias de Hidrociclones Geométricamente Similares	62
7.	Valores para el Factor de Corrección por Temperatura F	88
8 .	Valores de los Parámetros Reológicos k,n Obtenidos del Análisis	3
	de Regresión no Lineal	101
9.	Valores de los Coeficientes de Determinación R ² y de Correlació	n
	R Obetnidos para cada Experimento	102
	Análisis de Varianza para la Significación de la Regresión	107
11	ANOVA para la Significación de los Coeficientes Individuales de	
	Regresión	107
	. Valor Extremo	108
	ANOVA para Probar la Significación de la Regresión	111
14	ANOVA para la Significación de los Coeficientes Individuales de	
1.5	Regresión	111
	ANOVA para Probar la Significación de la Regresión	113
10	ANOVA para la Significación de los Coeficientes Individuales de	113
17	Regresión ANOVA para Probar la Significación de la Regresión	116
	. ANOVA para la Significación de los Coeficientes Individuales de	
10.	Regresión	117
10	ANOVA para Probar la Significación de la Regresión	119
	ANOVA para la Significación de los Coeficientes Individuales de	
20.	Regresión	119
21	Puntos de Corte Experimentales	121
	Resumen del Análisis de Regresión no Lineal Realizado a las	
	Distribuciones por Tamaños de las Partículas Presentes en	
	los Lodos Alimentados al Hidrociclón	122
23.	Resumen de los Valores de los Parámetros Obtenidos	127
	Diseño Factorial Completo 2 ³ con 2 Réplicas	130

Tabla	Página
25. Análisis de Varianza para el Experimento Factorial 3 ²	131
26. Valores de F para Varios Niveles de Significancia ∝	131
27. Concentraciones Obtenidas Usando D _u =0.5 cm	133
28 Concentraciones Obtenidas Usando D = 1 0 cm	134

SIMBOLOS

constante

a

	Constante
A	área de la sección transversal del hidrociclón
b_0	constante
b ₁	constante
b_2	constante
C_D	coeficiente de rozamiento
C_f	concentración de sólidos (% vol) alimentados
Co	concentración de sólidos (% vol) en el efluente superior
$C_{\mathbf{u}}$	concentración de sólidos (% vol) en el efluente inferior
Cw_f	concentración de sólidos (% peso) alimentados
Cw₀	concentración de sólidos (% peso) en el efluente superior
Cw_u	concentración de sólidos (% peso) en el efluente inferior
df	grados de libertad
D	diámetro de la tubería
D_c	diámetro del cuerpo del ciclón
D_{t}	diámetro de entrada
D_o	diámetro del conducto superior de salida
D_u	diámetro de la boquilla de salida del espesado
E_p	eficiencia parcial
$\dot{E_T}$	eficiencia total
E'_T	eficiencia reducida total
Eu	número de Euler
f	coeficiente de fricción de Fanning
F	parámetro estadístico (prueba F)
F_D	fuerza de rozamiento
F_{G}	fuerza externa
F_{B}	fuerza de flotación o empuje
f(x)	distribución de frecuencias
F(x)	distribución de frecuencias acumuladas
$F_{c}(x)$	porcentaje acumulado "menor que" de los sólidos separados
$F_{f}(x)$	porcentaje acumulado "menor que" de los sólidos no separados
g	aceleración de la gravedad
G(x)	función que representa el nivel de eficiencia
G'(x)	función que representa el nivel reducido de eficiencia
h	distancia entre la superficie del líquido y el extremo inferior de la pipeta
Н	profundidad del tanque
$H_{25/75}$	indice de exactitud de la separación
k	constante de la ecuación de esfuerzo cortante vs. velocidad de deformación
K'	índice de consistencia de flujo
t	longitud del formador del vórtice
	Č

L	longitud del hidrociclón
L_1	longitud de la sección cilíndrica
L_t	longitud de la tubería
m	parámetro de forma
M	cantidad de sólidos en la alimentación
$M_{\rm c}$	cantidad de sólidos en el espesado
MS	flujo másico de los sólidos alimentados
MS_{c}	flujo másico de los sólidos separados
MS_{f}	flujo másico de los sólidos no separados
\boldsymbol{n}	pendiente de la ecuación linealizada para fluidos que siguen la ley de la
	potencia
n'	índice de comportamiento de flujo
0	flujo volumétrico de la suspensión en el efluente superior
p	probabilidad de que los coeficientes de la ecuación tengan valor de cero
Q	flujo volumétrico de la suspensión alimentada
r	coeficiente de correlación
R	coeficiente de correlación múltiple
\mathbb{R}^2	coeficiente de determinación múltiple
R_f	fracción del flujo volumétrico alimentado que sale a través del efluente
,	inferior
Re	número de Reynolds
Re*	número de Reynolds para fluidos que siguen la ley de la potencia
Rep	número de Reynolds de la partícula
RS_U	recuperación de sólidos en el efluente inferior
Stk	número de Stokes
Stk*	número de Stokes para fluidos que siguen la ley de la potencia
$Stk*_{50}(R)$	
1	tiempo
l_d	tiempo de retención
1,	tiempo de sedimentación
\ddot{T}	probabilidad para cada intervalo de tamaño de partículas
1/	velocidad del fluido dentro del hidrociclón
U	flujo volumétrico de la suspensión en el efluente inferior
ν	velocidad lineal del fluido
$v_{\rm g}$	velocidad de sedimentación debido a la fuerza de gravedad
v_r	velocidad relativa partícula-fluido
$v_{\rm t}$	velocidad tangencial
v	volumen de retención
V_p	volumen de la partícula
w .	velocidad angular
W	ancho del tanque
\overline{x}_a	media de la distribución normal
x	tamaño de partícula
x_{g}	mediana de la distribución log-normal
X ₅₀	punto de corte
X' ₅₀	punto de corte reducido

X_{98}	límite aproximado de la separación
$X_{m\acute{a}x}$	tamaño máximo de partícula
y	variable dependiente
\overline{y}	promedio de las variables de respuesta experimentales
ŷ	variables de respuesta predichas por el modelo
y_i	variables de respuesta experimentales
Δp	caída de presión
ρ	densidad específica del líquido
ρ_f	densidad de la suspensión
$ ho_{\scriptscriptstyle \! B}$	densidad específica de los sólidos
Ø	coeficiente de viscosidad para fluidos que siguen la ley de la potencia
Ġ	velocidad de corte o de deformación
σ	desviación estándar de la distribución normal
$\sigma_{\!\scriptscriptstyle {f g}}$	desviación estándar de la distribución log-normal
μ	viscosidad del líquido
μ_{a}	viscosidad absoluta
τ	esfuerzo cortante
$ au_o$	esfuerzo cortante inicial
τ_w	esfuerzo cortante sobre la pared de la tubería
θ	ángulo de la sección cónica del hidrociclón