UNIVERSIDAD AUTONOMA DE NUEVO LEON FACULTAD DE INGENIERIA CIVIL

EFECTOS DEL DIOXIDO DE CARBONO EN LOS MORTEROS DE CEMENTO HIDRAULICO CON CENIZA VOLANTE

POR:
PEDRO LEOBARDO VALDEZ TAMEZ

COMO REQUISITO PARCIAL PARA OBTENER EL GRADO DE MAESTRIA EN CIENCIAS CON ESPECIALIDAD EN INGENIERIA AMBIENTAL

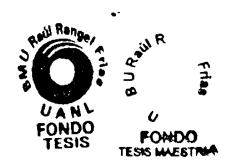
OCTUBRE DE 1998

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA CIVIL

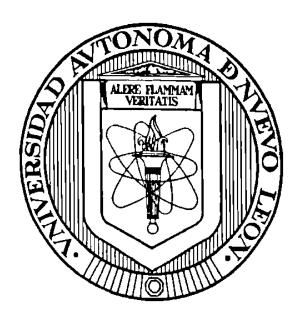
MORTEROS DE CEMENTO
CON CENIZA VOI

NC EN LO

POR


PEDRO LEOBARDO VALDO

Como requisito parcial para obtener e MAESTRÍA EN CIENCIAS con Espera Ingeniería Ambiental



Octubre de 1998

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA CIVIL

EFECTOS DEL DIÓXIDO DE CARBONO EN LOS MORTEROS DE CEMENTO HIDRÁULICO CON CENIZA VOLANTE

POR

PEDRO LEOBARDO VALDEZ TAMEZ

Como requisito parcial para obtener el grado de MAESTRÍA EN CIENCIAS con Especialidad en Ingeniería Ambiental

Octubre de 1998

DR. RICARDO GONZÁLEZ ALCORTA SECRETARIO DE ESTUDIOS DE POSGRADO FACULTAD DE INGENIERÍA CIVIL UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN Presente. —

23 de octubre de 1998

Estimado Dr. González:

Sirva la presente para solicitar de la manera mas atenta, los trámites necesarios para sustentar mi examen de grado de Maestro en Ciencias con Especialidad en Ingeniería Ambiental, ya que el pasado 19 de octubre termine mi trabajo de tesis titulado "Efectos del Dióxido de Carbono en los Morteros de Cemento Hidráulico con Ceniza Volante" el cual fue aprobado por mi asesor el Dr. Raymundo Rivera Villarreal y en los aspectos ortográfico, metodológico y estilístico por el Arq. Ramón Longoria Ramírez.

Sin más por el momento y agradeciendo de antemano sus atenciones, quedo de usted.

Atentamente

ING. PEDRO L. VALDEZ TAMEZ

UNIVERSIDAD AUTONOMA DE NUEVO LEON

FACULTAD DE INGENIERIA CIVIL

EFECTOS DEL DIÓXIDO DE CARBONO EN LOS MORTEROS DE CEMENTO HIDRÁULICO CON CENIZA VOLANTE

Aprobación de la Tesis:

Asesor de la Tesis

Dr. Ing. Raymundo Rivera Villarreal

Secretario de Estudios de Posgrado Dr. Ricardo González Alcorta

UNIVERSIDAD AUTONOMA DE NUEVO LEON

FACULTAD DE INGENIERIA CIVIL

COMPROBANTE DE CORRECCION

Tesista: PEDRO LEOBARD	O VALDEZ	TAMEZ	
Tema de la tesis: EFECTOS DE CE MORTEROS DE CE VOLANTE.	EL DIOXIDO D	E CARBONO RAULICO CO	EN LUS
Este documento certifica la corrección del trabajo de tesis arriba identificado,			o y estilístico
Recomendaciones adicionales:	IINGUNA)		
Nombre y firma de quien corrigió:	Arq. R	avn gorial	nirez
El Secretario de Postgrado:	Dr. Rio	cardo González Alc	orta
Ciudad Universitaria, a 23	de <u>octubre</u>	de `	199 <u>8</u> .

INSTITUTO DE INGENIERIA CIVIL

FACULTAD DE INGENIERIA CIVIL U.A.N.L.

DEPARTAMENTO DE TECNOLOGIA DEL CONCRETO

SECRETARIO DE ESTUDIOS DE POSGRADO FACULTAD DE INGENIERÍA CIVIL UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

Presente.-

Estimado Dr. González:

Por medio de la presente, comunico a usted que el Ing. Pedro L. Valdez Tamez, quien es pasante de la Maestría en Ciencias con especialidad en Ingeniería Ambiental, ha terminado su tesis titulada "Efectos del Dióxido de Carbono en los Morteros de Cemento Hidráulico con Ceniza Volante", lo anterior de acuerdo a los lineamientos del Reglamento de Exámenes Profesionales de Nuestra Universidad. Favor de continuar con los tramites necesarios para que el Ing. Valdez realice su examen de grado, en el cual no tengo inconveniente en participar.

Sin más por el momento y agradeciendo de antemano sus atenciones, me es grato suscribirme de usted.

Atentamente,
"Alere Flammam Veritatis"

Ciudad Universitaria, a 19 de octubre de 1998

DR. ING. R'AYMUNDO RIVERA VILLARREAL

Asesor de la Tesis

INSTITUTO DE INGENIERIA CIVIL FACULTAD DE INGENIERIA CIVIL U.A.N.L.

DEPARTAMENTO DE TECNOLOGIA DEL CONCRETO ICARDO GONZALEZ ALCORTA

SECRETARIO DE ESTUDIOS DE POSGRADO FACULTAD DE INGENIERÍA CIVIL UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

Presente. -

Estimado Dr. González:

Por medio de la presente, comunico a usted que el Ing. Pedro L. Valdez Tamez, quien es pasante de la Maestría en Ciencias con especialidad en Ingeniería Ambiental, ha terminado su tesis titulada "Efectos del Dióxido de Carbono en los Morteros de Cemento Hidráulico con Ceniza Volante", lo anterior de acuerdo a los lineamientos del Reglamento de Exámenes Profesionales de Nuestra Universidad. Favor de continuar con los tramites necesarios para que el Ing. Valdez realice su examen de grado, en el cual no tengo inconveniente en participar.

Sin más por el momento y agradeciendo de antemano sus atenciones, me es grato suscribirme de usted.

Atentamente,

"Alere Flammam Veritatis"

Ciudad Universitaria, a 19 de octubre de 1998

DR. ING. R'AYMUNDO RIVERA VILLARREAL

Asesor de la Tesis

AGRADECIMIENTOS

Mi más sincero agradecimiento al Dr. Ing. Raymundo Rivera Villarreal, por haber invertido parte de su tiempo y conocimientos en la realización de la presente investigación, a la Secretaría Académica de la UANL, así como al Consejo Nacional de Ciencia y Tecnología por el apoyo económico para llevar a cabo mis estudios y elaboración de esta tesis.

A todo el departamento de Tecnología del Concreto y aquellas personas que de alguna forma intervinieron en la realización de este trabajo.

DEDICADA A:

Mi padre

Leobardo Valdez Cano

La memoria de mi madre

Ma. Isidra Tamez

Mi esposa

Verónica Berumen

La memoria de mis abuelos

Hermenegildo Valdez Ma. del Carmen Cano e Inés Tamez

RESUMEN

Pedro Leobardo Valdez Tamez Fecha de Terminación: Diciembre de 1994

Universidad Autónoma de Nuevo León

Facultad de Ingeniería Civil

Titulo de la Tesis: EFECTOS DEL DIÓXIDO DE CARBONO EN LOS

MORTEROS DE CEMENTO HIDRÁULICO CON

CENIZA VOLANTE

Número de páginas: 80 Candidato para el grado de Maestría en Ciencias

con Especialidad en Ingeniería Ambiental

Área de Estudio: Ingeniería Ambiental

Propósito y Método del Estudio: La presente tesis consistió en investigar la influencia de la carbonatación sobre morteros utilizando como parte del material cementante ceniza volante. Se determinó la porosimetría y el potencial de hidrógeno (pH), tanto para morteros no carbonatados y carbonatados y para cuatro relaciones Agua/Cementante (0.35, 0.45, 0.55 y 0.65), sustituyendo (en masa) el 25% del cemento por ceniza volante tipo "F" de MICARE (Minera Carbonifera de Río Escondido). Para acelerar el proceso se utilizó una cámara de carbonatación. Se analizaron los resultados tanto de los morteros con y sin ceniza y se observo que en el caso de la resistencia a la compresión a los 28 días de edad, para las cuatro relaciones Agua/Cementante (A/C) los valores permanecen muy similares, gracias a la potencialidad puzolánica de la ceniza. Como los morteros con y sin ceniza fueron sometidos a las mismas condiciones atmosféricas y a la misma concentración de CO₂, se pudo comparar las velocidades de carbonatación y los resultados de pH indicaron que en los morteros que contienen ceniza, la velocidad de carbonatación es más lenta que en aquellos que contienen solo cemento portland. En lo que respecta a la porosimetría, se observó que para las cuatro relaciones A/C con y sin ceniza, el efecto de la carbonatación tendió a disminuir la porosidad. No obstante que al utilizar ceniza volante la porosidad inicial a los 28 días de edad es mayor que en los morteros sin ceniza, al carbonatarse, la porosidad disminuyó en ambos morteros, siendo mucho más significativa en los morteros con ceniza, contribuyendo para esto la reacción puzolánica. Para morteros carbonatados, con y sin ceniza, la forma de los poros tiende a modificarse al igual que su interconexión, lo anterior se puede observar en los análisis porosimétricos presentados en las graficas de la 8 a la 11.

TABLA DE CONTENIDO

Capítulo		Página	
1.	Introducción	1	
2.	Efectos relevantes que influyen en la corrosión		
	del acero de refuerzo.	7	
	2.1 Corrosión del acero inducida por la carbonatación	7	
	2.2 Permeabilidad y porosimetría del concreto	9	
3.	El uso de la ceniza volante en el concreto	15	
4.	Justificación del uso de morteros en la investigación	17	
5.	Materiales	18	
6.	Metodología utilizada	19	
7.	Resultados y discusión	21	
8.	Conclusiones	23	
9.	Recomendaciones	25	
	Bibliografia Bibliografia	26	
	Tablas	27	
	Gráficas	47	
	Anexo fotográfico	60	
	Apéndice	72	
	Resumen autobiográfico	80	

LISTA DE TABLAS

Tabla #		Página
I	Datos estadísticos sobre las condiciones ambientales de Nuevo León en 1997	27
II	Concentración del monóxido de carbono (CO) en el área metropolitana de Monterrey	28
Ш	Propiedades fisicas del cemento	29
IV	Propiedades físicas de la ceniza volante	30
V	Composición química del cemento	31
VI	Composición química de la ceniza volante	32
VII	Propiedades físicas del agregado fino	33
VIII	Proporciones por metro cúbico de mortero para las cuatro relaciones A/C empleadas	34
IX	Propiedades del mortero en estado fresco y endurecido	35
X	Relaciones entre los materiales y los resultados de resistencia a la compresión	36
XI	Coeficiente de permeabilidad (K) en morteros no carbonatados	37
XII	Potencial hidrógeno en morteros no carbonatados y	
	carbonatados	38
XIII	Resultados porosimétricos de muestras no carbonatadas	39
XIV	Resultados porosimétricos de muestras carbonatadas	40
XV	Promedios de los análisis porosimétricos	41
XVI	Reducción en la porosidad total por efecto de la carbonatación	
	acelerada	42
XVII	Distribución del radio del poro por intervalos en morteros no	
	carbonatados	43
XVIII	Distribución del radio del poro por intervalos en morteros	
	carbonatados	44
XIX	Promedios de la distribución del radio promedio del poro por intervalos	45
XX	Relación de los análisis porosimetricos de los morteros no carbonatados y carbonatados sin ceniza y con ceniza volante tipo	
	"F" de MICARE (los datos de los morteros sin ceniza provienen de la tesis del Ing. A. Durán)	46

LISTA DE GRÁFICAS

Gráfica #		Página
1.	Concentración de CO en el área metropolitana de Monterrey de 1996 a 1998	47
2.	Granulometría del agregado calizo empleado	48
3.	Consumo de cementante vs resistencia a la compresión (fc)	49
4.	Relación A/C vs. Resistencia a la compresión a los 28 días	50
5.	Relación A/C vs. Peso volumétrico saturado superficialmente seco	51
6.	Relación A/C vs. Coeficiente de permeabilidad (K) para morteros no carbonatados	52
7.	Relación A/C vs. Potencial hidrógeno (pH), para morteros no carbonatados y carbonatados	53
8.	Presión vs. Volumen de poros en morteros no carbonatados y carbonatados con y sin ceniza volante (A/C=0.35)	54
9.	Presión vs. Volumen de poros en morteros no carbonatados y carbonatados con y sin ceniza volante (A/C=0.45)	55
10.	Presión vs. Volumen de poros en morteros no carbonatados y Carbonatados con y sin ceniza volante (A/C=0.55)	56
11.	Presión vs. Volumen de poros en morteros no carbonatados y carbonatados con y sin ceniza volante (A/C=0.65)	57
12.	Relación A/C vs. Porosidad total en morteros no carbonatados y carbonatados con y sin ceniza volante	58
13.	Relación A/C vs. Superficie especifica de los poros en morteros no carbonatados y carbonatados con y sin ceniza volante	59

LISTA DE FIGURAS

Figura #		Página
1.	Representación esquemática de la neutralización del hidróxido de calcio y la formación de la frontera de carbonatación	8
2.	Celda galvánica que genera la corrosión del acero embebido en el concreto	8
3.	Proceso electroquímico de corrosión del acero de refuerzo en humedad y concreto permeable	9
4.	Aumento en la porosidad debido a una alta relación A/C	11
5.	Comportamiento del mercurio en un análisis porosimétrico para definir el tipo de poros	13
6.	Ilustración esquemática de la porosidad y la permeabilidad	14