UNIVERSIDAD AUTONOMA DE NUEVO LEON

FACULTAD DE INGENIERIA CIVIL

SOLUCIONES DE INGENIERIA AMBIENTAL PARA EL CONTROL DE PARTICULAS EN UNA PLANTA INDUSTRIAL CERAMICA

POR

MARIA CRISTINA da COSTA SILVEIRA

Como requisito parcial para obtener el grado de MAESTRIA EN CIENCIAS con Especialidad en Ingeniería Ambiental

Esta Tesis corresponde a los estudios realizados con una beca otorgada por el Gobierno de México, a través de la Secretaría de Relaciones Exteriores

SEPTIEMBRE DE 2000

TM TD884 2000 c.1

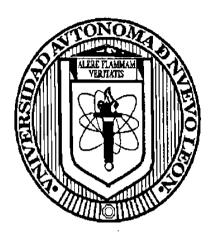
UNIVERSIDAD AUTONOMA DE MUEVO LEON

PACULTAD DE INGENIERIA CIVIL

COLOCUE LE CARANTA DE DARTICOLAS DI DAM PLANTA INDUSTRIAL CHALOCA

POR MARIA CRISTINA da COSTA SILVEIRA

Como requisito parcial para obtener el grado de MAESTRIA EN CIENCIAS con Especialidad en Ingeniería Ambiental


Esta Tesis corresponde a los estudios realizados con una beca otorgada por el Gobiemo de México. a través de la Secretaria de Relaciones Exteriores

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

FACULTAD DE INGENIERÍA CIVIL

SOLUCIONES DE INGENIERÍA AMBIENTAL PARA EL CONTROL DE PARTÍCULAS EN UNA PLANTA INDUSTRIAL CERÁMICA

POR:

MARÍA CRISTINA da COSTA SILVEIRA

Como requisito parcial para obtener el grado de MAESTRÍA EN CIENCIAS con Especialidad en Ingeniería Ambiental

Esta Tesis corresponde a los estudios realizados con una beca otorgada por el Gobierno de México, a través de la Secretaría de Relaciones Exteriores

SETIEMBRE DE 2000

SOLUCIONES DE INGENIERÍA AMBIENTAL PARA EL CONTROL DE PARTÍCULAS EN UNA PLANTA INDUSTRIAL CERÁMICA

Dr. Juan Manuel Barbarín Castillo

Evaluadores de la Tesis:

M.C. Jimmy Loaiza Navia

M.C. Juan Manuel Chapa Guerrero

San Nicolás de los Garza, N.L., noviembre de 2000.

DR. RICARDO GONZÁLES ALCORTA

Secretario de Estudios de Posgrado

Facultad de Ingeniería Civil

Universidad Autónoma de Nuevo León

Presente.-

Estimado Dr. Gonzáles Alcorta:

Habiendo concluido mi trabajo de tesis titulado

"Soluciones de ingeniería ambiental para el control de partículas en una planta

industrial cerámica", elaborado como requisito para obtener el grado de Maestro en

Ciencias con Especialidad en Ingeniería Ambiental, y habiendo sido aprobado en el

aspecto técnico por mi asesor, el Dr. Juan Manuel Barbarín Castillo y en los aspectos

ortográficos, metodológico y estilístico por el Arq. Ramón Longoria Ramírez; por medio de

la presente solicito de la manera más atenta, se sirva efectuar los trámites

correspondientes para sustentar mi examen de grado.

Sin más por el momento y agradeciendo de antemano sus

atenciones a la presente, quedo de Usted.

Atentamente

ING. MARÍA CRISTINA da COSTA SILVEIRA

San Nicolás de los Garza, N.L., noviembre de 2000.

DR. RICARDO GONZÁLES ALCORTA
Secretario de Estudios de Posgrado
Facultad de Ingeniería Civil
Universidad Autónoma de Nuevo León
Presente. –

Estimado Dr. Gonzáles Alcorta:

Por éste conducto, me permito manifestarle que, de acuerdo a mi criterio y como director de la tesis, la Ing. María Cristina da Costa Silveira ha terminado de manera satisfactoria el trabajo denominado "Soluciones de ingeniería ambiental para el control de partículas en una planta industrial cerámica", como parte de los requisitos para optar al grado de Maestro en Ciencias con Especialidad en Ingeniería Ambiental que otorga la Universidad Autónoma de Nuevo León, a través de la Facultad de Ingeniería Civil.

De acuerdo con el Protocolo Oficial para la Aprobación de Tesis de Maestría, anexo a la presente encontrará Usted el original y dos copias de la tesis mencionada, para que sea turnado al Comité de Maestría para su evaluación.

Agradeciendo las atenciones que tenga a la presente, quedo de Usted.

DR. JUAN MANUEL BARBARÍN CASTILLO

AGRADECIMIENTOS

A Dios por haberme dado la vida, y por darme los medios necesarios para concluir mis estudios

A mi padre el Sr. Olis da Costa Silveira, por ser un trabajador incansable y sobre todo por alentarme y apoyarme en mis estudios

A mi madre la Sra. Esther Silveira Silveira, por brindarme sus sabios consejos, su amor, respeto y comprensión infinitos

A mi hermano el Sr. Olis Ma. da Costa Silveira, por su apoyo y comprensión como hermano y amigo

A la Secretaría de Relaciones Exteriores de México, por el apoyo otorgado para la realización de mis estudios

A la Empresa LAMOSA REVESTIMIENTOS S.A. de C.V. por brindarme su apoyo técnico y económico. Al personal de los distintos departamentos que me orientaron y colaboraron en la realización de éste trabajo, en particular al Departamento Médico y de Seguridad Industrial

Al Ing. Rodolfo Ramírez Manuel, gerente de planta de LAMOSA REVESTIMIENTOS S.A. de C.V., por su apoyo intelectual y por haberme impulsado a culminar satisfactoriamente con mi tesis

Al Dr. Juan Manuel Barbarín Castillo y a la Dra. Cecilia Rodríguez de Barbarín, por su orientación como asesores y su comprensión como amigos

Al personal académico y administrativo de la División de Estudios de Posgrado del Instituto de Ingeniería Civil de la Universidad Autónoma de Nuevo León

A todos mis amigos, especialmente, deseo reconocerle a la familia Soler Echeverz el haberme acompañado y alentado incondicionalmente durante toda mi vida

A Rodolfo, mi amor

INDICE

CAPÍTULO		
1. INTROI	DUCCIÓN	1
1.1 Ger	neralidades	1
1.2 Las	Nomas ISO 14 000	3
1.3 Ante	ecedentes	6
1.3.	1 La cerámica en la historia	6
1.3.	2 Ventajas de los recubrimientos cerámicos	8
1.3.	.3 Proceso de fabricación de los recubrimientos	
	cerámicos	11
1.4 Co	ntaminación del aire	12
1.4	.1 Partículas	16
1.4	.2 Efectos de las partículas en la atmósfera	
	sobre los materiales, la vegetación y los	
	animales	18
1.4	.3 Efectos de las partículas en el aire sobre la	
	salud humana	23
1.4	I.4 Fuentes de materia particulada	24
1.4	1.5 Normas Oficiales Mexicanas de emisión para	
	el control de la calidad del aire	26

2.	MARCO TEÓRICO	32
	2.1 Eficiencia de la colección de partículas	32
	2.2 Mecanismos de colección de las partículas	34
	2.3 Equipo de control de partículas	36
	2.3.1 Filtros de tela	38
	2.4 Puertos de muestreo	42
3.	GENERACIÓN DE POLVOS EN LA INDUSTRIA CERÁMICA	46
	3.1 Desarrollo	46
	3.2 Generalidades de la empresa donde se realizó el estudio	49
	3.2.1 Aspectos geográficos de la zona	49
	3.2.2 Aspectos de la planta industrial cerámica	51
	3.3 Proceso de fabricación de pisos y azulejos	51
	3.4 Proceso de fabricación de ladrillos	56
	3.5 Análisis realizados en la planta para la determinación	
	de la concentración de partículas	61
	3.6 Condiciones en las cuales se encuentran los sistemas	
	de colección de polvos existentes en la planta	64
	3.7 Determinación de los puntos críticos	66
	3.8 Objetivos del trabajo	67
	3.9 Hipótesis	68
4	. DISEÑO DE LOS SISTEMAS DE COLECCIÓN DE POLVOS	;
	EN EL MICRO AMBIENTE DE UNA PLANTA DE	
	PRODUCTOS CERÁMICOS	69
	4.1 Introducción	69
	4.2 Métodos de cálculo para un sistema de colección	
	de polvos	70
	4.2.1 Método A: Balance de flujo sin válvulas de ajuste	71

	4.2.2	Método B: Balance de flujo con válvulas de ajuste	71
	4.2.3	Comparación de ambos métodos	72
	4.3 Descr	ipción del procedimiento de cálculo por el	
	Métod	do B	73
	4.4 Diseñ	o del sistema de colección de polvos para el	
	micro	ambiente del área de molienda de ladrillería	82
	4.4.1	Resultados de las hojas de cálculos	84
	4.4.2	Selección del colector	87
	4.4.3	Características del colector seleccionado	93
	4.4.4	Selección del ventilador	100
	4.4.5	Instalación de los puertos de muestreo	104
	4.4.6	Resumen de los resultados para la eliminación de	
		polvos en la sección de molienda de ladrillería 105	
	4.5 Disei	ño del sistema de colección de polvos para el micro	
	ambi	iente de la sección de prensas de muros lado oriente	106
	4.5.1	Resultados de las hojas de cálculos	106
	4.5.2	2 Selección del colector	111
	4.5.3	B Selección del ventilador	112
	4.5.4	Instalación de los puertos de muestreo	113
	4.5.5	Resumen de los resultados para las prensas de	
		muros lado oriente	114
5.	DISEÑO	D DE UN SISTEMA DE CONTROL DE POLVOS	
	EN LOS	S ALMACENAMIENTOS DE MATERIA PRIMA	115
	5.1 Intro	oducción	115
	5.2 Pro	puesta de reubicación de la materia prima	116
	5.2.	1 Almacenamientos en el área de servicio directo	116
	5.2.	2 Almacenamientos en el área de molienda de	
		ladril le ría	119
	5.3 Def	inición y carpeteo de las rutas de tránsito	122
	5.4 Pro	cedimientos de maniobra de la materia prima en los	
	con	finamientos de servicio directo y molienda de ladrillería	122

	5.4.1	Reglamento para el transportista	123
	5.4.2	Reglamento interno para el manejo de la pala	
		Mecánica	124
	5.5 Diseñ	o de un sistema de aspersión por niebla de agua,	
	para l	os almacenamientos de materia prima en servicio	
	direct	o	124
	5.5.1	Selección de los aspersores	124
	5.5.2	Ubicación de las líneas de aspersión	129
	5.53	Origen y características del agua a utilizar	130
	5.5.4	Cálculo Hidráulico	134
	5.5.5	Cálculo de la estructura de soporte	159
	5.5.6	Selección del filtro	160
	5.5.7	Determinación del tiempo de secuenciado	161
	5.5.8	Equipo secuenciador	162
	5.6 Propi	uesta de control de polvos en los almacenamientos de	
	mate	ria prima en la molienda de ladrillería	165
6.	CONCLU	JSIONES	167

ANEXO 1: LÁMINAS

- 4.1 Extracción en tolvas
- 4.2 Elevador de cangilones
- 4.3 Extracción en la banda de transferencia
- 4.4 Extracción en tamices

ANEXO 2: CATÁLOGOS

Catálogo de colectores de polvo modelo KNC

Catálogo del ventilador modelo MAC-SIZE 55

Catálogo del ventilador modelo MAC-SIZE 60

Catálogo del aspersor QAPA-PP-10-2.5W- de SPRAYING SYSTEMS CO.

Catálogo del aspersor FOGJET de SPRAYING SYSTEMS CO.

Catálogo del filtro de agua

Catálogo del equipo secuenciador

ANEXO 3: PLANOS

Plano en planta de la sección de Molienda de Ladrilleria

Plano en elevación de la sección de Molienda de Ladrillería

Plano en planta de la sección de las prensas en Muros lado oriente

Plano en elevación de la sección de las prensas en Muros lado oriente

Plano en planta del sistema de aspersión en el área de servicio directo

LISTA DE TABLAS

TABLAS		PÁGINA
1.1	Composición química del aire atmosférico seco	14
1.2	Clasificación general de los contaminantes gaseosos del	
	aire	15
1.3	Tamaños y tipos de partículas	17
1.4	Efectos de los polvos en diferentes plantas	19
1.5	Efectos de los polvos en diferentes árboles	20
1.6	Principales fuentes industriales de contaminación por	
	partículas	25
1.7	Resumen de las Normas Oficiales Mexicanas, actualmente en	
	Vigencia, en materia de control de emisiones a la atmósfera	28
2.1	Equipos colectores mecánicos	37
3.1	Análisis químico del agua de los pozos ubicados en la empresa	50
3.2	Fórmula utilizada en cuerpo rojo	52
3.3	Fórmula utilizada en cuerpo blanco	52
3.4	Fórmula utilizada en la fabricación de ladrillos	58
3.5	Determinación de los contaminantes en el ambiente laboral	61
3.6	Determinación de la concentración de partículas suspendidas	
	totales	63

4.1	Hoja de cálculo utilizada en el Método B	75	
4.2	Diámetros y secciones normalizadas para ductos	76	
4.3	Longitudes equivalentes de accesorios	78	
4.4	Valores porcentuales de resistencia, para cada tramo de		
	tubería	79	
4.5	Hoja de cálculo para el área de molienda de ladrillería	85	
4.6	Relaciones de filtración recomendadas en términos de flujo		
	de aire sobre área de tela filtrante	88	
4.7	Determinación del tamaño y carga de partículas	90	
4.8	Comportamiento de algunos materiales frente a algunos		
	factores adversos	95	
4.9	Hoja de cálculo para el área de las prensas en muros lado		
	Oriente	108	
5.1	Características fisicoquímicas del agua de las pilas de		
	sedimentación de Servicio Directo	131	
5.2	Características fisicoquímicas del agua de las pilas de		
	sedimentación de Muros	132	
5.3	Largo equivalente representativo en diámetro de tubería (L/D)		
	de varias válvulas y ajustes	137	
5.4	Valores promedio de secado de las distintas tierras utilizadas	162	

LISTA DE FIGURAS

FIGURAS		PÁGINA
2.1	Curva hipotética de la eficiencia colectora, como función del diámetro de la partícula	33
2.2	Tres mecanismos para la eliminación mecánica de partículas	35
2.3	Casa típica de bolsas con sacudimiento mecánico	40
2.4	Croquis de una casa de bolsas con limpieza por impulsos	41
2.5	Vista lateral y frontal del puerto de muestreo y sus dimensiones	43
2.6	Vista lateral y frontal de la escalera marina	44
2.7	Vista lateral y frontal de la disposición de los puertos de muestreo, de la plataforma de trabajo y de la escalera marina	45
3.1	Diagrama de flujo del proceso de fabricación de azulejos y Pisos cerámicos	53
3 2	Diagrama de fluio del proceso de fabricación de ladrillos	57

4.1	Colector de polvos modelo KNC	93
4.2	Detalle mostrando el cabezal de aire comprimido y válvulas para operación de limpieza	94
4.3	Partes de un colector modelo KNC	97
5.1	Esquema indicativo de la ubicación de la materia prima en los almacenamientos de servicio directo	117
5.2	Esquema indicativo de la ubicación sugerida para la materia prima en los almacenamientos de servicio directo	118
5.3	Esquema indicativo de la ubicación de la materia prima en los almacenamientos de molienda de ladrillería	120
5.4	Esquema indicativo de la ubicación sugerida para la materia prima en los almacenamientos de molienda de ladrillería	121
5.5	Esquema indicativo de la constitución de la carpeta antipolvo	123
5.6	Esquema indicativo de la precipitación de las partículas de polvo debido a la presencia de la niebla de agua	125
5.7	Esquema del área de cobertura del aspersor QAPA-PP-10-2.5W	127
5.8	Cálculo trigonométrico de la altura recomendada	127
5.9	Alcance de los aspersores seleccionados a 30° de inclinación. Vista desde arriba	128
5.10	Alcance de los aspersores seleccionados a 30° de inclinación. Vista lateral	129

5.11	Diagrama unifilar del sistema alimentado por la Bomba 3	135
5.12	Resistencia debida a ensanchamientos o contracciones bruscas	142
5.13	Aspereza relativa como una función del diámetro, para tuberías de varios materiales	144
5.14	El factor de fricción como una función del número de Reynolds, con asperezas relativas como parámetro	145
5.15	Planilla de cálculo de la Bomba 3	149
5.16	Gráfico de selección de la Bomba 3	150
5.17	Diagrama unifilar del sistema alimentado por la Bomba 2	151
5.18	Planilla de cálculo de la Bomba 2	152
5.19	Gráfico de selección de la Bomba 2	153
5.20	Diagrama unifilar del sistema alimentado por la Bomba 1	154
5.21	Planilla de cálculo de la Bomba 1	155
5.22	2 Gráfico de selección de la Bomba 1	156
5.23	B Esquema explicativo del tanque elevado	157
5.24	Perspectiva de la fundación	159
5.2	5 Vista lateral de la fundación	160

LISTA DE SIGLAS Y SÍMBOLOS

SÍMBOLOS

INE Instituto Nacional de Ecología

NAFTA The North American Free Trade Agreement

PIB Producto Bruto Interno

CONACYT Comisión Nacional de Ciencia y Tecnología

LGEEPA Ley General de Equilibrio Ecológico y Protección al Ambiente

LFPA Ley Federal de Procedimiento Administrativo

ISO International Standardization Organization

EMS Environmental Management System

ppm Partes Por Millón

μm Micrómetros

pH Potencial de Hidrógeno

NOM Norma Oficial Mexicana

Gas L.P. Gas Licuado de Petróleo

η_o Eficiencia Total de Colección

STPS Secretaría del Trabajo y Previsión Social

NMX Norma Mexicana

NAP Nivel de Aspiración Deseado de Polvos

CFM Pies Cúbicos por Minuto

FPM Pie por Minuto

FPS Pie por Segundo

MAIN Ducto Principal

DBO Demanda Bioquímica de Oxígeno

DQO Demanda Química de Oxígeno

N_{RE} Número de Reynolds

V_{DC} Tensión de corriente continua

RESUMEN

La industria cerámica, por su naturaleza, utiliza como materias primas: tierras, arcillas, minerales, vidrios y agua. Tierras y arcillas de distintos tipos se mezclan en proporciones adecuadas, constituyendo lo que llamamos FÓRMULAS. La composición de las fórmulas dependerá del producto que se desee obtener.

Toda parte del proceso en donde se maneje materia prima seca implica una generación de polvos o partículas suspendidas; concretamente, en los espacios de almacenamiento a cielo abierto, en donde debido a la acción de los vientos y al transporte y mezclado de materia prima, se generan polvos que se dispersan en la zona o quedan suspendidos en el aire.

Dentro de la planta, en algunas partes del proceso en donde existe transporte de materia prima, o en las moliendas de las mismas, se producen *derrames* en las bandas transportadoras o fugas en los molinos. Esto trae como consecuencia un ambiente inadecuado de trabajo, en el cual se hace imprescindible el uso de mascarillas con filtros y otras medidas de protección. Así mismo, el hecho de que exista materia prima dispersa en varias zonas de la planta implica una pérdida económica.

La estrategia más sensata, desde el punto de vista ambiental, es más que solucionar el problema de polvos una vez que se han generado, tratar de abatirlos en la fuente misma de generación. Es por ello que se considera óptima la colocación de extractores de polvos en algunas partes del proceso, en las cuales se generan mayores cantidades de polvos. De la misma forma, y teniendo en cuenta las dimensiones de los almacenamientos de materia prima a cielo abierto, se propone un sistema adecuado de aspersión con agua, como solución factible al problema de generación de polvos en la

zona de *servicio directo*, mientras que el confinamiento sería una solución en la zona de *molienda de ladrilleda*.

En este trabajo se propone y ejecuta el diseño de distintos sistemas de control de polvos; en los ambientes interior y exterior de la planta. Se describen los métodos de cálculo para cada uno de los sistemas propuestos y se indican los recursos con los cuales se llevará a cabo el proyecto. Se incluye un apartado en el cual se ilustra el criterio utilizado para seleccionar agua residual sedimentada como alimentación del sistema de aspersión, así como también el resultado de los análisis físicoquímicos de la misma. Estos análisis indican que esta agua puede utilizarse, siempre y cuando sea tratada antes por medio de un filtro malla N° 100. También se definen los lugares específicos para el almacenamiento de los distintos tipos de materia prima y se hace un planteamiento de las rutas óptimas para la transportación de las materias primas hacia el proceso. Finalmente, se incluye un listado de recomendaciones para la adecuación de equipos, accesorios, sistemas de control seleccionados y procedimientos, para optimizar el funcionamiento de las medidas de control.

La aplicación de las recomendaciones planteadas en este trabajo traerá como consecuencia que se sanee la atmósfera del medio estudiado, evitando así: enfermedades respiratorias en los trabajadores, fuga de material y quejas de los vecinos por la contaminación del aire.