UNIVERSIDAD AUTONOMA DE NUEVO LEON FACULTAD DE INGENIERIA MECANICA Y ELECTRICA DIVISION DE ESTUDIOS DE POST-GRADO

COMPARACION DE LA SOLUCION DE ECUACIONES DIFERENCIALES USANDO DIFERENCIAS FINITAS Y ELEMENTO FINITO

TESIS

EN OPCION AL GRADO DE MAESTRO EN CIENCIAS DE LA INGENIERIA MECANICA CON ESPECIALIDAD

EN TERMICA Y FLUIDOS

QUE PRESENTA EL: M.C. RAUL ACOSTA LANDIN

CD. UNIVERSITARIA

NOVIEMBRE DE 1999

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

UNIVERSIDAD AUTONOMA DE NUEVO LEON Paculitad de Ingenieria mecanica y filicipica division de estudios de post-grado

OUE PRESENCA DE: M.C. RAUL ACOSTA LANDIN

CO. DAMERSIDARIA NOTONISE

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA

DIVISIÓN DE ESTUDIOS DE POST-GRADO

COMPARACIÓN DE LA SOLUCIÓN DE ECUACIONES DIFERENCIALES USANDO DIFERENCIAS FINITAS Y ELEMENTO FINITO

UNIVERSIDAD AUTÓRESISMA DE NUEVO LEÓN

EN OPCIÓN AL GRADO DE MAESTRO EN CIENCIAS DE LA INGENIERÍA MECÁNICA CON ESPECIALIDAD EN TÉRMICA Y FLUIDOS

QUE PRESENTA EL

M.C. RAÚL ACOSTA LANDÍN

CD. UNIVERSITARIA

NOVIEMBRE DE 1999

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA

DIVISIÓN DE ESTUDIOS DE POST-GRADO

EN OPCIÓN AL GRADO DE MAESTRO EN CIENCIAS DE LA INGENIERÍA MECÁNICA CON ESPECIALIDAD EN TÉRMICA Y FLUIDOS

QUE PRESENTA EL

M.C. RAÚL ACOSTA LANDÍN

CD. UNIVERSITARIA

NOVIEMBRE DE 1999

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA DIVISIÓN DE ESTUDIOS DE POST-GRADO

Los miembros del comité de tesis recomendamos que la tesis "COMPARACIÓN DE LA SOLUCIÓN DE ECUACIONES DIFERENCIALES USANDO DIFERENCIAS FINITAS Y ELEMENTO FINITO," realizada por MC. Raúl Acosta Landín, sea aceptada para su defensa como opción al grado de Maesto en Ciencias de la Ingeniería Mecánica con especialidad en Térmica y fluidos.

El comité de Tesis Asesor M.C. Guadalupe E. Cedillo Garza. Coasesor sesor Co M.C. Benito S. Garza Espinosa. M.C. Røberto Villarreal Garza.

M.C. Roberto Villarreal Garza. División de Estudios de Post-grado.

San Nicolás de los Garza, N.L. a 5 de Noviembre de 1999.

DEDICATORIAS

A mi padre: Sr. José Acosta Nuñez a quien ya nuestro señor llamo a su reino, a mi

madre, Sra. Inés Landín Cortes, por la ternura, entendimiento y apoyo que me brindaron.

A mi esposa: Lic. Martina Bache García por su amor, su comprensión y sus palabras de aliento que siempre me animaron a terminar la tesis.

A mis hijos: Erika Nastenka, Raúl Enrique por el tiempo que no les pude dedicar mientras estuve elaborando la tesis.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓI

A mis hermanos: Juan José Acosta, Esmeralda Acosta, Alfredo Acosta con cariño y respeto.

A todos mis familiares y amigos, con agradecimiento y admiración

A quienes fueron mis maestros en todos los niveles de mi educación escolar y en los estudios de Maestría especialmente: M.C. Guadalupe E. Cedillo Garza, por todo el apoyo que me brindo.

AGRADECIMIENTOS

Al M.C. Guadalupe E. Cedillo Garza por su ayuda incondicional y asesoría tan valiosa que de él recibí para la elaboración de mi tesis.

Al Ing. Jose H. Ramírez guerra por su ayuda incondicional para llevar a cabo mi meta.

A mis amigos de la facultad: M.C. Juan Antonio Franco Quintanilla, M.C. Joel González

Marroquin, M.C. Benito Sergio Garza Espinosa, M.C José Eloy Vargas Rocha, M.C.

Homero Estrada Cortinas.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

PROLOGO

La importancia de los métodos numéricos ha aumentado en la enseñanza de la ingeniería y la ciencia, lo cual refleja el uso actual y sin precedentes de las computadoras. Al aprender los métodos numéricos, nos volvemos aptos para:

1) Entender esquemas numéricos a fin de resolver problemas matemáticos.

2) Deducir esquemas numéricos básicos

3) Escribir programas y resolverlos en una computadora.

4) Usar correctamente el software existente para dichos métodos.

El aprendizaje de los métodos numéricos no solo aumenta nuestra habilidad para el

uso de computadoras, también amplia la pericia matemática y la comprensión de los

principios científicos básicos.

DIRECCION GENERAL DE BIBLIOTECAS En esta tesis se analizaran básicamente dos técnicas numéricas, el método de

elemento finito y el método de diferencias finitas.

Entre los objetivos de la tesis están los siguientes puntos:

1) Dependiendo del tipo de problema: en estado estable, en estado transitorio en dos

dimensiones, que método numérico proporciona una mejor aproximación a la solución

analítica.

2) Que criterios se deben de tomar para mejorar la aproximación a la solución analítica.

SINTESIS

La tesis se escribió considerando un orden lógico, para que cualquier persona que incursione en el estudio de los métodos del elemento finito y las diferencias finitas, no tenga problemas en el entendimiento y comprensión de los diferentes aspectos que se tratan en esta. Así teniendo los conocimientos obtenidos al consultar esta tesis podrán ahondar en el estudio de los métodos antes mencionados.

Los resultados que se obtuvieron al solucionar cada uno de los ejemplos son presentados en cada uno de los capítulos de la tesis.

En seguida se da una breve descripción del contenido de cada uno de los capítulos.

CAPITULO 1.- En este capitulo se describen los pasos básicos para la solución de problemas utilizando el método de elemento finito.

CAPITULO 2.- En este capitulo se resuelven algunos ejemplos en estado estable en una dimensión utilizando el método de elemento finito.

CAPITULO 3.- En este capitulo se resuelven algunos ejemplos en estado transitorio en una dimensión utilizando el método de elemento finito.

CAPITULO 4.- En este capitulo se resuelven algunos ejemplos en estado estable en dos dimensiones.

CAPITULO 5.- En este capitulo se resuelven todos los ejemplos de los capítulos anteriores utilizando el método de diferencias finitas.

CAPITULO 6.- En este capitulo se comparan los resultados obtenidos al utilizar los métodos de elemento finito y diferencias finitas.

CAPITULO 7.- En este capitulo se especifica el método a utilizar diferencias finitas o elemento finito dependiendo del tipo de problema.

INDICE

Prologo	i	
Sintesis	ü	
Introducción	1	
Capitulo 1 METODO DEL ELEMENTO FINITO 1.1 Pasos básicos del análisis de elemento finito	3	
1.2 Problema modelo con valores en la frontera	5	
UNIVERSIDAD AUTÓNOMA DE NUEVO LI	EÓN	
Capitulo 2 PROBLEMAS EN ESTADO ESTABLE METODO DE ELEMENTO		
FINITO	29	
Ejemplo 2.1.a	29	
1. Para dos elementos lineales	29	
Comparación de resultados elemento finito solución analítica	36	
Ejemplo 2.1.b	37	
2. Para un elemento cuadrático	37	
Comparación de resultados elemento finito solución analítica	42	

Ejemplo 2.2.a	43
1. Para dos elementos lineales	44
Comparación de resultados elemento finito solución analítica	50
Ejemplo 2.2.b	51
2. Para un elemento cuadrático	51
Comparación de resultados elemento finito solución analítica	58
Ejemplo 2.3	59
Comparación de resultados elemento finito solución analítica	69
STONOMA	
Ejemplo 2.4.a	71
1. Para cuatro elementos lineales	71
Comparación de resultados elemento finito solución analítica	78
Ejemplo 2.4.b	79
2. Para dos elementos cuadráticos	79
Comparación de resultados elemento finito solución analítica	86 N
ECUACIÓN DE CUARTO ORDEN EN UNA DIMENSIÓN	87
Ejemplo modelo	87
Ejemplo 2.5	95
Comparación de resultados elemento finito solución analítica	100
Ejemplo 2.6	101
Comparación de resultados elemento finito solución analítica	107
Ejemplo 2.7	108
Comparación de resultados elemento finito solución analítica	113

Capitulo 3 PROBLEMAS EN ESTADO TRANSITORIO METODO DE

ELEN	MENTO FINITO	114
	3.1 Introducción	114
	3.2 Modelos del elemento finito	116
	3.3 Aproximaciones en el tiempo	118
Ejem	plo 3.1	122
	1. Para un elemento lineal	124
	Comparación de resultados elemento finito solución analítica	127
	2. Para un elemento cuadrático	128
<u>F</u>	Comparación de resultados elemento finito solución analítica	131
TKSI	3. Para dos elementos cuadráticos	132
	Comparación de resultados elemento finito solución analítica	136
Ејеп	plo 3.2	137
	1. Para un elemento lineal	139
UNI	Comparación de resultados elemento finito solución analítica	EÓAN /
	D2. Para un elemento cuadrático AL DE BIBLIOTECAS	143
	Comparación de resultados elemento finito solución analítica	146
	3. Para dos elementos cuadráticos	148
	Comparación de resultados elemento finito solución analítica	152

Capitulo 4 PROBLEMAS EN DOS DIMENSIONES METODO DE ELEMENTO

4.2	Problemas con valores en la frontera	155
	4.2.1 Ecuación modelo	155
	4.2.2 Discretizacion del elemento finito	155
	4.2.3 Forma débil	156
	4.2.4 Modelo del elemento finito	156
	4.2.5 Funciones de interpolación	157
	4.2.6 Evaluación de los elementos de la matriz y vector	160
	4.2.7 Ensamble de las ecuaciones del elemento	165
Ejem	plo 4.1 OMA	167
8	1. Para tres elementos triangulares	167
TCX	Comparación de resultados elemento finito solución analítica	174
	2. Para cuatro elementos rectangulares	175
X	Comparación de resultados elemento finito solución analítica	181
	Comparación triángulos rectángulos elemento finito solución analítica	182

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

Capitulo 5 EL METODO DE DIFERENCIAS FINITAS	183
Ejemplo 2.1	1 84
Comparación de resultados diferencias finitas solución analítica	1 87
Ejemplo 2.2	188
Comparación de resultados diferencias finitas solución analítica	190
Ejemplo 2.3	191
Comparación de resultados diferencias finitas solución analítica	195
Ejemplo 2.4	196

Comparación de resultados diferencias finitas solución analítica	199
Ejemplo 2.5.a	200
1. Retícula i=1	201
Comparación de resultados diferencias finitas solución analítica	202
Ejemplo 2.5.b	203
2. Retícula i=1,2,3	204
Comparación de resultados diferencias finitas solución analítica	205
Ejemplo 2.5.c	206
3. Retícula i=1,2,3,4,5,6,7	206
Comparación de resultados diferencias finitas solución analítica	208
Ejemplo 2.6.a	209
1. Para aristas suaves	212
Comparación de resultados diferencias finitas solución analítica	213
2. Para variación uniforme	214
Comparación de resultados diferencias finitas solución analítica	215
Ejemplo 2.6.b DIRECCIÓN GENERAL DE BIBLIOTECAS	216
3. Para variación uniforme	216
Comparación de resultados diferencias finitas solución analítica	220
Ejemplo 3.1	221
1. Retícula i=1	223
Comparación de resultados diferencias finitas solución analítica	224
2. Retícula i=1,2	225
Comparación de resultados diferencias finitas solución analítica	226
3. Retícula i=1,2,3,4	227

Comparación de resultados diferencias finitas solución analítica	228
Ejemplo 3.2	229
1. Retícula i=0,1	232
Comparación de resultados diferencias finitas solución analítica	233
2. Retícula i=0,1,2	234
Comparación de resultados diferencias finitas solución analítica	235
3. Retícula i=0,1,2,3,4	236
Comparación de resultados diferencias finitas solución analítica	237
Ejemplo 4.1	238
Comparación de resultados diferencias finitas solución analítica	242
Capitulo 6 COMPARACIÓN DE RESULTADOS DE LOS METODOS	
ELEMENTO FINITO Y DIFERENCIAS FINITAS CON LA SOLUCIÓN	
ANALÍTICA	243
UNIVERSIDAD AUTÓNOMA DE NUEVO LI	EÓN
Capitulo 7 CONCLUSIONES NERAL DE BIBLIOTECAS	252
Bibliografías	254
Lista de tablas	257
Lista de gráficas	259
Autobiografía	261

INTRODUCCIÓN

El objetivo de este trabajo es la solución de algunas ecuaciones diferenciales utilizando métodos numéricos. Para determinar que método numerico utilizar tomando en cuenta la geometria del problema, las condiciones iniciales y las condiciones de frontera, los criterios que se deben de tomar para la exactitud de la solucion de la ecuacion diferencial.

Los métodos numéricos a utilizar son el método del elemento finito y el método de diferencias finitas.

Virtualmente cualquier fenómeno en la naturaleza puede ser descrito con la ayuda de leyes físicas, en términos de ecuaciones algebraicas, o de ecuaciones diferenciales.

La mayoría de los ingenieros y científicos estudian los fenómenos fisicos de dos maneras.

a) Formulación del proceso físico. ERAL DE BIBLIOTECAS

b) Análisis numérico del modelo matemático.

La formulación matemática de un proceso físico requiere conocimientos relacionados a las leyes físicas y a menudo, herramientas matemáticas.

Desarrollar el modelo matemático de un proceso es logrado a traves de las suposiciones de como trabaja el proceso. En una solución numérica, usamos un método numérico y una computadora para evaluar el modelo matemático y estimar las características del proceso. Mientras que la obtención de la ecuación que gobierna la mayoría de los procesos no es complicada, su solución por el método exacto de análisis es muy difícil. En tales casos, métodos de análisis aproximados proporcionan alternativas más fáciles para encontrar las soluciones. Entre estos, el método de diferencias finitas y los métodos variacionales como el método de Rayleigh-Ritz y Galerkin son los mas frecuentemente usados en la literatura.

En la aproximación por diferencias finitas de una ecuación diferencial, las derivadas son remplazadas por funciones en expansión de serie de Taylor.

En la aproximación por método variacional, la ecuación diferencial es puesta en su forma equivalente (Integral Pesada) y entonces la solución aproximada sobre el dominio se supone ser una combinación lineal $\left(\sum_{j} c_{j} \phi_{j}\right)$ de funciones de aproximación (ϕ_{j}) y coeficientes indeterminados, (c_{j}) . Los coeficientes (c_{j}) son determinados tal que la integral declarada equivalente a la ecuación diferencial es satisfecha. El método del elemento finito supera la desventaja de los métodos variacionales tradicionales porque proporciona un procedimiento sistemático para la derivación de las funciones de aproximación sobre una subregion del dominio . El método cuenta con tres características que la hacen superior sobre los demás métodos.

Primero. Un dominio con una geometría compleja es representado como una colección de subdominios de geometría simple, llamados elementos finitos.

DIRECCIÓN GENERAL DE BIBLIOTECAS

Segundo. Sobré cada elemento finito las funciones de aproximación son derivadas usando la idea básica de que cualquier función continua puede ser representada por una combinación lineal de polinomios algebraicos.

Tercero. Las relaciones algebraicas entre los coeficientes indeterminados (valores nodales) son obtenidas satisfaciendo la ecuación gobernante, a menudo en forma de integral pesada sobre cada elemento.

Las funciones de aproximación son derivadas usando conceptos de teoría de interpolación, y son por lo tanto llamadas funciones de interpolación.

CAPITULO 1

METODO DE ELEMENTO FINITO

1.1) PASOS BÁSICOS DEL ANÁLISIS DE ELEMENTO FINITO

1) Discretización (representación) del dominio dado en una colección de elementos finitos. (Este paso puede ser pospuesto hasta que la formulación de la ecuación del elemento finito este completa).

a) Construir la malla de los elementos finitos preseleccionados.

U b) Numerar los nodos y elementos. ONOMA DE NUEVO LEON

c) Generar las propiedades de la geometría (e.g., coordenadas y área de sección Transversal) necesarios para el problema.

 Derivación de las ecuaciones del elemento para todos los elementos típicos en la malla.

a) Construir la formulación variacional de la ecuación diferencial sobre un típico elemento.

b) Suponer que una variable dependiente (u) de la forma ($u = \sum_{i=1}^{n} u_i \psi_i$) y sustituirla

en el paso (2 a) para obtener la ecuación del elemento de la forma

 $\left[K^{e}\right]\left\{u^{e}\right\} = \left\{F^{e}\right\}$

c) Seleccione la función de interpolación para el elemento (ψ_i) y calcule los elementos de la matriz.

3) Ensamble las ecuaciones de cada uno de los elementos para obtener las ecuaciones del problema completo.

a) Identificar las condiciones de continuidad entre los elementos también las variables primarias (relaciones entre los grados de libertad locales, grados de libertad globales y conectividad de los elementos) para relacionar los nodos del elemento a los nodos globales.

b) Identificar las condiciones de equilibrio entre las variables secundarias

(relaciones entre las fuentes locales o componentes de fuerzas y las componentes de fuentes globalmente especificadas).

c) Ensamble las ecuaciones de los elementos usando los pasos (3 a) y (3 b).

4) Imposición de las condiciones frontera del problema.

- a) Identificar los grados de libertad de la variable primaria globalmente.
- b) Identificar los grados de libertad de la variable secundaria globalmente.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

5) Solución de las ecuaciones ensambladas.

DIRECCIÓN GENERAL DE BIBLIOTECAS

6) Postprocesamiento de los resultados.

a) Calcule el gradiente de la solución o otras cantidades deseadas de los grados de libertad de la variable primaria calculada en el paso (5).

b) Represente los resultados en forma tabular o en forma gráfica.

1.2) PROBLEMA MODELO CON VALORES EN LA FRONTERA

Considere el problema de encontrar la función u(x) que satisface la ecuación diferencial.

$$-\frac{d}{dx}\left(a\frac{du}{dx}\right)+cu-q=0\qquad \Omega=(0,L)$$
(1.1)

y las condiciones frontera:

$$\frac{u(0) = u_0}{\left(a \frac{du}{dx}\right)_{x=L}} = Q_0$$
(1.2)

donde a = a(x), c = c(x), q = q(x), $u_0 y Q_0$ son los datos del problema.

La ecuación (1.2) puede representar una descripción analítica de algunos procesos físicos. Por ejemplo transferencia de calor por conducción y convección en una pared plana o aleta (transferencia de calor 1-D), flujo a traves de canales y tubos, defección transversal de cables, deformación axial de barras y otros procesos físicos descritos por la table (1.1).

Figura 1.1 Elemento finito dominio en una dimensión

PASO 1: DISCRETIZACION

Representación del dominio dado en una colección de elementos finitos preseleccionados.

u = Variable primaria del elemento

Q = Variable secundaria del elemento

PASO 2: DERIVACION DE LAS ECUACIONES DEL ELEMENTO

La derivación de las ecuaciones del elemento finito, son ecuaciones algebraicas que relacionan la variable primaria con la variable secundaria en los nodos del elemento, involucra tres pasos.

a) Construir la forma débil.

b) Suponer la forma de la solución aproximada sobre el elemento finito.

c) Derivar las ecuaciones del elemento finito para sustituir la solución aproximada en la forma débil.

Integrando por partes la primera integral de la ecuación (1.3 b). DRECCIÓN GENERAL DE BIBLIOTECAS $\int_{x_A}^{x_B} w \left[\frac{d}{dx} \left(\frac{du}{dx} \right) \right] dx = wa \frac{du}{dx} \Big|_{x_A}^{x_B} - \int_{x_A}^{x_B} a \frac{du}{dx} \frac{dw}{dx} dx$

Sustituimos el resultado de la integral en la ecuación (1.3 b) para obtener la forma débil de la ecuación diferencial (1.1).

$$0 = \int_{x_A}^{x_B} \left[a \frac{du}{dx} \frac{dw}{dx} + cuw - wq \right] dx - \left[w \left(a \frac{du}{dx} \right) \right]_{x_A}^{x_B}$$
(1.4)

Nota:

Los coeficientes de la función de peso (w) son llamadas variables secundarias, y sus especificaciones constituyen condiciones de frontera natural ($a \frac{du}{dr} = Q$).

La variable dependiente en las condiciones de frontera son llamadas variables primarias, sus especificaciones constituyen las condiciones de frontera esencial (u).

$$0 = \int_{x_A}^{x_B} \left[a \frac{du}{dx} \frac{dw}{dx} + cuw - wq \right] dx - \left[w \left(a \frac{du}{dx} \right) \Big|_{x_B} - w \left(a \frac{du}{dx} \right) \Big|_{x_A} \right]$$
(1.5)

$$0 = \int_{x_A}^{x_B} \left[a \frac{du}{dx} \frac{dw}{dx} + cuw - wq \right] dx - w(x_B)Q_B - w(x_A)Q_A$$
(1.6)

b) Suponer la forma de la solución aproximada.

1) La solución aproximada debe ser continua sobre el elemento, y diferenciable, como es requerido por la forma débil.

2) Debe ser un polinomio completo, que incluya los términos desde el menor orden hasta el de mayor orden.

3) Debe ser una función de interpolación de la variable primaria en los nodos del elemento finito.

I) Aproximación Lineal

$$U^e = a + bx \tag{1.7}$$

donde a y b son constantes.

$$U^{e}(x_{A}) = u_{1}^{e}$$

$$U^{e}(x_{B}) = u_{2}^{e}$$
(1.8)

invirtiendo la matriz (1.9 b), obtenemos

$$a = \frac{1}{h_e} \left(u_1^e x_B - u_2^e x_A \right)$$

$$b = \frac{1}{h_e} \left(u_2^e - u_1^e \right)$$
(1.9 c)

donde $h_e = x_A - x_B$. Sustituimos (1.9 c) en (1.7)

$$U^{e} = \begin{pmatrix} x_{B} - x \\ h_{e} \end{pmatrix} u_{I}^{e} + \begin{pmatrix} x - x_{B} \\ h_{e} \end{pmatrix} u_{2}^{e}$$
(1.9 d)

La ecuación (1.9 d) es una forma estándar del elemento finito. Los valores nodales son multiplicados por funciones lineales de (x), que son llamadas funciones de forma o funciones de interpolación. Estas funciones son denotadas por (ψ_i) con un subíndice que indica el nodo donde es especificada la función de forma. Las funciones de forma en (1.9 d) son denotadas por (ψ_1^e, ψ_2^e).

UN La aproximación lineal expresadas en coordenadas locales UEVO LEÓN

x = x - x_A DIRECCIÓN GENERAL DE BIBLIOTECAS

$$U^{e} = \left(1 - \frac{x}{h_{e}}\right)u_{1}^{e} + \left(\frac{x}{h_{e}}\right)u_{2}^{e}$$
(1.10 b)

donde las funciones de forma serán:

$$\psi_1^e(\bar{x}) = \begin{pmatrix} 1 - \frac{x}{h_e} \end{pmatrix}$$

$$\psi_2^e(x) = \begin{pmatrix} x \\ h_e \end{pmatrix}$$
(1.10 c)

Figura 1.4 Funciones de interpolación lineales en coordenadas locales

Sustituyendo las funciones de interpolación en la ecuación (1.7) obtenemos la forma que tendrá la aproximación lineal.

$$U^{e} = \psi_{1}^{e}(x)u_{1}^{e} + \psi_{2}^{e}(\bar{x})u_{2}^{e}$$

$$U^{e} = \sum_{i=1}^{2} \psi_{i}^{e}(\bar{x})u_{1}^{e}$$

$$U^{e} = \sum_{i=1}^{2} \psi_{i}^{e}(\bar{x})u_{1}^{e}$$

$$U^{e} = \sum_{i=1}^{2} \psi_{i}^{e}(\bar{x})u_{1}^{e}$$

UNIVERŽĮVI AUTÓNOMA DE NUEVO LE(Ĺ10,d) ® DIRECCIÓN GENERAL DE BIBLIOTECAS II) Aproximación Cuadrática.

$$U^* = a + bx + cx^2 \tag{1.11}$$

Donde a, b y c son constantes.

$$U^{e}(x_{1}^{e}) = u_{1}^{e}$$

$$U^{e}(x_{2}^{e}) = u_{2}^{e}$$

$$U^{e}(x_{3}^{e}) = u_{3}^{e}$$
(1.12)

Figura 1.5 Elemento cuadrático asociado con funciones de interpolación (a),(b).

Expresando la ecuación (1.11) en términos de $(u_1^e), (u_2^e)$ y (u_3^e)

$$u_{1}^{e} = a + bx_{1}^{e} + c(x_{1}^{e})^{2}$$

$$u_{2}^{e} = a + bx_{2}^{e} + c(x_{2}^{e})^{2}$$

$$u_{3}^{e} = a + bx_{3}^{e} + c(x_{3}^{e})^{2}$$
(1.13 a)

o en forma matricial,

$$\begin{cases} u_1^e \\ u_2^e \\ u_3^e \\ u_3^e \end{cases} = \begin{bmatrix} 1 & x_1^e & (x_1^e)^2 \\ 1 & x_2^e & (x_2^e)^2 \\ 1 & x_3^e & (x_3^e)^2 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ c \end{bmatrix}$$
(1.13 b)

solucionando el sistema de ecuaciones para a, b, c.

$$a = \frac{1}{D^{e}} \sum_{i=1}^{3} \alpha_{i}^{e} u_{i}^{e} \quad \text{donde} \quad \alpha_{i}^{e} = x_{j}^{e} (x_{k}^{e}) - x_{k}^{e} (x_{j}^{e})^{2} \quad \text{y} \quad D^{e} = \sum_{i=1}^{3} \alpha_{i}^{e} \quad (1.14 \text{ a})$$

$$b = \frac{1}{D^{e}} \sum_{i=1}^{3} \beta_{i}^{e} u_{i}^{e} \quad \text{donde} \quad \beta_{i}^{e} = (x_{j}^{e})^{2} - (x_{k}^{e})^{2} \quad (1.14 \text{ b})$$

$$c = \frac{1}{D^{e}} \sum_{i=1}^{3} \gamma_{i}^{e} u_{i}^{e} \quad \text{donde} \quad \gamma_{i}^{e} = -(x_{j}^{e} - x_{k}^{e}) \quad (1.14 \text{ c})$$

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

La ecuación (1.11) toma la forma

DIRECCIÓN GENERAL DE BIBLIOTECAS

$$U^{e}(x) = \psi_{1}^{e}(x)u_{1}^{e} + \psi_{2}^{e}(x)u_{2}^{e} + \psi_{3}^{e}(x)u_{3}^{e}$$
$$U^{e}(x) = \sum_{j=1}^{3} \psi_{j}^{e}(x)u_{j}^{e}$$
(1.15)

donde las ψ_j^e son las funciones de interpolación de lagrange cuadraticas.

$$\psi_i^e(x) = \frac{1}{D^e} \left(\alpha_i^e + \beta_i^e x + \gamma_i^e x^2 \right), \qquad i = 1, 2, 3$$
(1.16)

Los subíndices usados en las ecuaciones (1.14) permutan en orden natural.

si
$$i=1$$
 entonces $j=2$ y $k=3$
si $i=2$ entonces $j=3$ y $k=1$ (1.17)
si $i=3$ entonces $j=1$ y $k=2$

Las funciones de interpolación cuadráticas pueden ser expresadas en términos de coordenadas locales (x), con el origen fijo en el nodo (1). Las coordenadas globales (x) están relacionadas con las coordenadas locales (\bar{x}) por la relación $(x = x_1^e + x)$ donde $(x_1^e = x_A)$ que es la coordenada global del primer nodo del elemento (Ω^e) .

Para un elemento cuadrático con el nodo interior, nodo (2), localizado en $(x = \alpha h_e)$, $(x_2^e = x_1^e + \alpha h_e)$, para $(\alpha = \frac{1}{2})$, cuando el nodo (2) esta localizado a la mitad del elemento, las funciones de interpolación serán.

$$\psi_{1}^{e}(x) = \left(1 - \frac{x}{h_{e}}\right)\left(1 - \frac{2x}{h_{e}}\right)$$

$$\psi_{2}^{e}(x) = 4 \frac{x}{h_{e}}\left(1 - \frac{x}{h_{e}}\right)$$

$$(1.18)$$

$$\psi_{3}^{e}(x) = -\frac{x}{h_{e}}\left(1 - \frac{2x}{h_{e}}\right)$$

$$(1.18)$$

$$W_{1}^{e}(x) = -\frac{x}{h_{e}}\left(1 - \frac{2x}{h_{e}}\right)$$

$$(1.18)$$

$$(1.18)$$

$$(1.18)$$

$$(1.18)$$

$$(1.18)$$

$$(1.18)$$

$$(1.18)$$

Propiedades de las funciones de interpolación:

(1)
$$\psi_i^e(x_j^e) = \delta_{ij} = \begin{cases} 0 & si \quad i \neq j \\ \\ 1 & si \quad i = j \end{cases}$$
 (1.19 a)

(2)
$$\sum_{j=1}^{n} \psi_{j}^{e}(x) = 1, \qquad \sum_{j=1}^{n} \frac{d\psi_{j}^{e}}{dx} = 0$$
 (1.19 b)

C) Derivar las ecuaciones del elemento finito para sustituir la solución aproximada en la forma débil.

La sustitución de (1.10 d) o (1.15) en (1.6) deberá dar las ecuaciones algebraicas necesarias para los valores nodales (u_i^e) y (Q_i^e) del elemento (Ω^e) . Para formular el modelo del elemento finito basado en la forma débil (1.6), no es necesario decidir a priori el grado de aproximación de (U^e) . El modelo puede ser desarrollado para un grado arbitrario de función de interpolación:

$$u \approx U^e = \sum_{j=1}^n u_j^e \psi_j^e(x) \tag{1.20}$$

Donde ψ_{i}^{*} son las funciones de interpolación de Lagrange de grado (n-1). Cuando (n>2), la forma débil en (1.6) debe ser modificada para incluir una variable secundaria no cero.

$$0 = \int_{x_A}^{x_B} \left[a \frac{dw}{dx} \frac{du}{dx} + cwu - wq \right] dx - \sum_{i=1}^n w(x_i^e) Q_A$$
(1.21)

donde (x_i^e) es la coordenada global del nodo (i) del elemento (Ω^e) . Si los nodos (1) y (n) son los puntos finales del elemento entonces (Q_1^e) y (Q_2^e) representan los puntos fuentes desconocidos, y todas las otras (Q_i^e) son siempre conocidas. Siguiendo el procedimiento de Rayleigh-Ritz sustituimos (1.20) por (u) y $(\psi_1^e), (\psi_2^e)...(\psi_n^e)$ por (w) en la forma débil (1.21) para obtener las (n) ecuaciones algebraicas.

$$0 = \int_{x_A}^{x_B} \left[a \frac{d\psi_1^e}{dx} \left(\sum_{j=1}^n u_j^e \frac{d\psi_j^e}{dx} \right) + c\psi_1^e \left(\sum_{j=1}^n u_j^e \psi_j^e(x) \right) - \psi_1^e q \right] dx - \sum_{j=1}^n \psi_1^e(x_j^e) Q_j^e$$
$$0 = \int_{x_A}^{x_B} \left[a \frac{d\psi_2^e}{dx} \left(\sum_{j=1}^n u_j^e \frac{d\psi_j^e}{dx} \right) + c\psi_2^e \left(\sum_{j=1}^n u_j^e \psi_j^e(x) \right) - \psi_2^e q \right] dx - \sum_{j=1}^n \psi_2^e(x_j^e) Q_j^e$$

$$0 = \int_{x_A}^{x_B} \left[a \frac{d\psi_n^e}{dx} \left(\sum_{j=1}^n u_j^e \frac{d\psi_j^e}{dx} \right) + c\psi_n^e \left(\sum_{j=1}^n u_j^e \psi_j^e(x) \right) - \psi_n^e q \right] dx - \sum_{j=1}^n \psi_n^e(x_j^e) Q_j^e \qquad (1.21 a)$$

Las ecuaciones algebraicas pueden escribirse como

$$0 = \sum_{j=1}^{n} K_{ij}^{e} u_{j}^{e} - f_{i}^{e} - Q_{i}^{e} \qquad (i = 1, 2, ..., n)$$
(1.21 b)

donde:

•

$$K_{ij}^{e} = \int_{x_{A}}^{x_{B}} \left(a \frac{d\psi_{i}^{e} d\psi_{j}^{e}}{dx dx} + c\psi_{i}^{e}\psi_{j}^{e} \right) dx = B(\psi_{i}^{e}, \psi_{j}^{e})$$

$$f_{i}^{e} = \int_{x_{A}}^{x_{B}} q\psi_{i}^{e} dx = l(\psi_{i}^{e})$$
(1.21 c)

note que la propiedad (1) de las funciones de interpolación (1.19 a) es usada para escribir.

$$\frac{\sum_{j=1}^{n} \psi_{j}^{e}(x_{i}^{e})Q_{j}^{e} = Q_{i}^{e}}{(1.22)}$$
UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

Las ecuaciones (1.21 a) pueden ser expresadas en términos de los coeficientes $(K_{ij}^{e}, f_{i}^{e}, Q_{i}^{e})$ como:

$$K_{11}^{e} u_{1}^{e} + K_{12}^{e} u_{2}^{e} + \dots + K_{1n}^{e} u_{n}^{e} = f_{1}^{e} + Q_{1}^{e}$$

$$K_{21}^{e} u_{1}^{e} + K_{22}^{e} u_{2}^{e} + \dots + K_{2n}^{e} u_{n}^{e} = f_{2}^{e} + Q_{2}^{e}$$

$$\vdots$$

$$\vdots$$

$$K_{n1}^{e} u_{1}^{e} + K_{n2}^{e} u_{2}^{e} + \dots + K_{nn}^{e} u_{n}^{e} = f_{n}^{e} + Q_{n}^{e}$$

$$(1.23 a)$$

:

En notación matricial, las ecuaciones lineales algebraicas (1.21 a) pueden ser escrita como.

$$\left[K^{e}\right]\left\{u^{e}\right\} = \left\{f^{e}\right\} + \left\{Q^{e}\right\}$$
(1.23 b)

La matriz $[K^e]$ es llamada matriz de coeficientes, en aplicaciones de mecánica estructural. El vector columna $\{f^e\}$ es el vector fuente, o vector fuerza en problemas de mecánica estructural. Note que (1.23) contiene (2n) incógnitas: $(u_1^e, u_2^e, \ldots, u_n^e)$ y $(Q_1^e, Q_2^e, \ldots, Q_n^e)$, llamadas variables primarias y secundarias del elemento grados de libertad nodal; por lo tanto, no pueden ser resueltas sin tener adicionalmente (n)condiciones. Algunas de estas provienen de las condiciones frontera y el resto por balance de las variables secundarias (Q_i^e) en los nodos comunes a varios elementos. Este balance puede ser implementado poniendo los elementos juntos (ensamblando las ecuaciones de los elementos). Ensamblando y imponiendo las condiciones frontera, debemos de obtener exactamente el mismo numero de ecuaciones algebraicas que él numero de variables primarias y secundarias desconocidas.

La matriz de coeficientes $[K^e]$ es simétrica, y el vector fuente $\{f^e\}$ puede ser evaluado para un elemento dado y datos (a,c, y q). Para un elemento con valores constantes de (a,c, y q) los coeficientes de $[K^e_{ij}]$ y $\{f^e\}$ pueden ser evaluados para un elemento típico. **Ejemplo:** Determinar la matriz $[K^e]$ y el vector $\{f^e\}$ de la ecuación (1.23 b).

a) Elemento Lineal.

Para una malla con elementos lineales en coordenadas locales, la matriz de coeficientes $[K^e]$ y el vector fuente $\{f^e\}$ se calculan de la siguiente manera.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN $K_{11}^{e} = \int_{0}^{h_{e}} \left[a_{e} \left(-\frac{1}{h_{e}} \right) \left(-\frac{1}{h_{e}} \right) + c_{e} \left(1 - \frac{\bar{x}}{h_{e}} \right) \left(1 - \frac{\bar{x}}{h_{e}} \right) \right] dx$ $K_{11}^{e} = \frac{a_{e}}{h_{e}} + \frac{1}{3} c_{e} h_{e}$ R

$$K_{12}^{e} = \int_{0}^{h_{e}} \left[a_{e} \left(-\frac{1}{h_{e}} \right) \begin{pmatrix} 1\\h_{e} \end{pmatrix} + c_{e} \left(1 - \frac{\bar{x}}{h_{e}} \right) \left(\frac{\bar{x}}{h_{e}} \right) \right] dx$$

$$K_{12}^{e} = -\frac{a_{e}}{h_{e}} + \frac{1}{6} c_{e} h_{e} = K_{21}^{e}$$

$$K_{22}^{e} = \int_{0}^{h_{e}} \left[a_{e} \left(\frac{1}{h_{e}} \right) \left(\frac{1}{h_{e}} \right) + c_{e} \left(\frac{\bar{x}}{h_{e}} \right) \left(\frac{\bar{x}}{h_{e}} \right) \right] dx = \frac{a_{e}}{h_{e}} + \frac{1}{3} c_{e} h_{e}$$
Similarmente:

$$f_i^e = \int_0^{h_e} q_e \psi_i^e d\bar{x}$$

$$f_1^e = \int_0^{h_e} q_e \left(1 - \frac{x}{h_e}\right) dx = \frac{1}{2} q_e h_e$$

$$f_2^e = \int_0^{h_e} q_e \frac{x}{h_e} dx = \frac{1}{2} q_e h_e$$

para (q_e) constante el vector fuente total $(q_e h_e)$ se distribuye igualmente en los dos

nodos.
Los coeficientes de la matriz y el vector columna son:

$$\begin{bmatrix} K^e \end{bmatrix} = \begin{bmatrix} K_{11}^e & K_{12}^e \\ K_{21}^e & K_{22}^e \end{bmatrix}$$

$$\begin{bmatrix} K^e \end{bmatrix} = \frac{a_e}{h_e} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} + \frac{c_e h_e}{6} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
(1.24 a)
UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

 ${f^e}_{1RE} = {f^e}_{1}$ DIRE ${f^e}_{2}$ IÓN GENERAL DE BIBLIOTECAS

$$\left\{f^{e}\right\} = \frac{q_{e}h_{e}}{2} \left\{\begin{matrix}\mathbf{l}\\\mathbf{l}\end{matrix}\right\}$$
(1.24 b)

Ejemplo: Determinar la matriz $[K^e]$ y el vector $\{f^e\}$ de la ecuación (1.23 b)

b) Elemento Cuadrático.

Para una malla con elementos cuadráticos en coordenadas locales, la matriz de coeficientes $[K^e]$ y el vector fuente $\{f^e\}$ se calculan de la siguiente manera.

Las funciones de interpolación de Lagrange para un elemento cuadrático $\psi_i^e(x)$ para (i=1,2,3) son:

DIRECCIÓN GENERAL DE BIBLIOTECAS $\psi_1^e(x) = \left(1 - \frac{x}{h_e}\right) \left(1 - \frac{2x}{h_e}\right)$ $\psi_2^e(x) = \frac{4x}{h_e} \left(1 - \frac{x}{h_e}\right)$

$$\psi_3^e(x) = -\frac{\bar{x}}{h_e} \left(1 - \frac{2\bar{x}}{h_e} \right)$$

Las derivadas de las funciones de interpolación.

$$\frac{d\psi_1^e}{dx} = -\frac{3}{h_e} + \frac{4x}{h_e^2}$$
$$\frac{d\psi_2^e}{dx} = \frac{4}{h_e} - \frac{8\overline{x}}{h_e^2}$$
$$\frac{d\psi_3^e}{dx} = -\frac{1}{h_e} + \frac{4\overline{x}}{h_e^2}$$

Los coeficientes de la matriz de rigidez.

$$\begin{bmatrix} K^{e} \end{bmatrix} = \begin{bmatrix} K_{11}^{e} & K_{12}^{e} & K_{13}^{e} \\ K_{21}^{e} & K_{22}^{e} & K_{23}^{e} \\ K_{31}^{e} & K_{32}^{e} & K_{33}^{e} \end{bmatrix}$$

$$\begin{bmatrix} K^{e} \end{bmatrix} = \frac{a_{e}}{3h_{e}} \begin{bmatrix} 7 & -8 & 1 \\ -8 & 16 & -8 \\ 1 & -8 & 7 \end{bmatrix} + \frac{c_{e}h_{e}}{30} \begin{bmatrix} 4 & 2 & -1 \\ 2 & 16 & 2 \\ -1 & 2 & 4 \end{bmatrix}$$

$$f_{i}^{e} = \int_{0}^{h_{e}} q_{e}\psi_{i}^{e}dx$$

$$f_{1}^{e} = \int_{0}^{h_{e}} \psi_{1}^{e}q_{e}dx = \frac{1}{6}q_{e}h_{e}$$

$$f_{2}^{e} = \int_{0}^{h_{e}} \psi_{2}^{e}q_{e}dx = \frac{2}{3}q_{e}h_{e}$$

IERSID,

 $UNIV_{f_{3}^{e}} = \int_{0}^{h} \psi_{3}^{e} q_{e} dx = \frac{1}{6} q_{e} h_{e}$ DIRECCIÓN GENERAL DE BIBLIOTECAS $\left\{ f^{e} \right\} = \frac{q_{e} h_{e}}{6} \begin{cases} 1\\ 4\\ 1 \end{cases}$ (1.25 b)

PASO 3: CONECTIVIDAD DE LOS ELEMENTOS

En el manejo de las ecuaciones del elemento, aislamos un elemento típico (e) de la malla y formulamos el problema variacional (forma débil de la ecuación diferencial) y se desarrolla el modelo del elemento finito, para resolver el problema completo debe regresar el elemento a su posición original e imponer las condiciones frontera.

En el ensamble de los elementos se deben de imponer las siguientes dos condiciones.

1) Continuidad de la variable primaria en los elementos a conectar

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN ® DIRECCIÓN GENERAL DE BIBLIOTECAS

La continuidad de la variable primaria $(u_2^e = u_1^{e+1})$ y el balance de la variable secundaria $(Q_2^e + Q_1^{e+1})$ para una malla con elementos lineales como se muestra en la (fig. 1.6) Se realiza de la siguiente manera:

La continuidad entre los elementos de la variable primaria es impuesta para renombrar las dos variables (u_n^e) y (u_1^{e+1}) en $(x = x_N)$ como uno y el mismo, normalmente el valor de (u) en el nodo global (N):

$$u_n^e = u_1^{e+1} \equiv U_N \tag{1.27}$$

Donde N = (n-1)e + 1 es él numero del nodo global que corresponde al nodo (n)del elemento (Ω^e) y el nodo (1) del elemento (Ω^{e+1}) . Por ejemplo para una malla con dos elementos lineales (fig. 1.6).

$$u_{1}^{1} = U_{1}$$

$$u_{2}^{1} = u_{1}^{2} = U_{2}$$

$$u_{2}^{2} = u_{1}^{3} = U_{3}$$
(1.28)

El balance de las variables secundarias puede ser interpretado como la continuidad de $(a \frac{du}{dx})$ no de $(a \frac{dU^e}{dx})$ en el punto común al elemento (Ω^e) y (Ω^{e+1}) cuando no hay cambios en $(a \frac{du}{dx})$ impuestos externamente. Por ejemplo para una malla con dos elementos lineales (fig. 1.6). $(a \frac{du}{dx})_n^e = (a \frac{du}{dx})_1^{e+1}$ UADIT (1.29 a)

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN La ecuación anterior también se puede escribir como: DIRECCIÓN GENERAL DE BIBLIOTECAS $\begin{pmatrix} a \frac{du}{dx} \end{pmatrix}^e + \left(-a \frac{du}{dx} \right)^{e+1} = 0$ $Q_2^e + Q_1^{e+1} = 0$ (1.29 b)

El signo menos en el segundo termino de la ecuación anterior es deacuerdo a los cosenos directores.

Para una malla con dos elementos lineales:

Elemento (1)

$$K_{11}^{1}U_{1} + K_{12}^{1}U_{2} = f_{1}^{2} + Q_{1}^{1}$$

$$K_{21}^{1}U_{1} + K_{22}^{1}U_{2} = f_{2}^{1} + Q_{2}^{1}$$

Elemento (2)

$$K_{11}^2 U_2 + K_{12}^2 U_3 = f_1^2 + Q_1^2$$
$$K_{21}^2 U_2 + K_{22}^2 U_3 = f_2^2 + Q_2^2$$

Las ecuaciones anteriores son llamadas ecuaciones ensambladas. Estas contienen la suma de los coeficientes y términos fuente en los nodos comunes a los dos elementos. Las ecuaciones (1.30 a) pueden expresarse en forma de matriz.

$$\begin{bmatrix} K_{11}^{1} & K_{12}^{1} & 0\\ K_{21}^{1} & \left(K_{11}^{2} + K_{22}^{1}\right) & K_{12}^{2}\\ 0 & K_{21}^{2} & K_{22}^{2} \end{bmatrix} \begin{bmatrix} U_{1}\\ U_{2}\\ U_{3} \end{bmatrix} = \begin{bmatrix} f_{1}^{1}\\ f_{2}^{1} + f_{1}^{2}\\ f_{2}^{2} \end{bmatrix} + \begin{bmatrix} Q_{1}^{1}\\ Q_{2}^{1} + Q_{1}^{2}\\ Q_{2}^{2} \end{bmatrix}$$
(1.30 b)

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

PASO 4: IMPOSICION DE LAS CONDICIONES FRONTERA

Imponer las condiciones frontera, ambas esencial y natural, en las ecuaciones ensambladas. Un problema particular difiere de otros en la especificación de los datos y en las condiciones de frontera.

(1.30 a)

PASO 5: SOLUCIÓN DE LAS ECUACIONES

Resolver las ecuaciones para los valores nodales desconocidos.

PASO 6: POSTPROCESAMIENTO DE LAS SOLUCIONES

La solución de las ecuaciones del elemento finito da el valor nodal de la variable primaria que se desconoce. (Desplazamiento, velocidad, o temperatura).

Postprocesamiento de los resultados incluye uno o más de lo siguiente.

 Calculo de cualquier variable secundaria (el gradiente de la solución)
 Interpretación de los resultados para comprobar que la solución tenga sentido (un entendimiento de los procesos físicos y experiencias son las guías cuando otras soluciones no son disponibles para comparar).

3) Tabular y o presentación gráfica de los resultados.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

CAPITULO 2

PROBLEMAS EN ESTADO ESTABLE UTILIZANDO EL MÉTODO DE ELEMENTO FINITO

Ejemplo 2.1a. Considere una aleta rectangular como lo muestra la figura. Determine la distribución de temperaturas y el flujo de calor usando:

Figura 2.1 Aleta rectangular

Datos:

$$T_{0} = \text{Temperatura en la base de la aleta} = 250^{\circ}C$$

$$T_{\infty} = \text{Temperatura del medio hambiente} = 75^{\circ}C$$

$$t = \text{Espesor de la aleta} = 0.254 \times 10^{-2} m$$

$$k = \text{Conductividad térmica del material de la aleta} = 207.6 \frac{w}{m^{-\circ}c}$$

$$\beta = \text{Coeficiente de película} = 283.9 \frac{w}{m^{2} - c}$$

$$p = \text{Perímetro de la aleta}$$

$$A = \text{Area de sección transversal}$$

$$m^{2} = \frac{\beta p}{kA} = 1076.79$$

$$L = \text{Longitud de la aleta} = 1.524 \times 10^{-2} m$$

$$h = \text{Espacio entre nodos}$$

$$h = \frac{L}{2} = 0.00762 m$$
Ecuación diferencial de una aleta rectangular.
$$-\frac{d^{2}T}{dx^{2}} + \frac{\beta P}{kA} (T - T_{\infty}) = 0 \qquad \Omega = (0, L)$$

Las condiciones frontera de la ecuación diferencial.

$$T(0) = T_0 \qquad (kA \frac{dT}{dx}) \bigg|_{x = L} = 0$$

Haciendo un cambio de variable:

DIRE

$$\theta = T - T_{\infty} \qquad \theta_0 = T_0 - T_{\infty}$$
$$m^2 = \frac{\beta P}{kA}$$

La ecuación diferencial y las condiciones de frontera toman la forma

$$-\frac{d^{2}\theta}{dx^{2}} + m^{2}\theta = 0 \qquad \qquad \Omega = (0,L)$$
$$\theta(0) = \theta_{0} \qquad \qquad \frac{d\theta}{dx \ x = L} = 0$$

PASO 1: DISCRETIZACIÓN

PASO 2: DERIVACIÓN DE LAS ECUACIONES DEL ELEMENTO

Construcción de la forma débil.

r

UN
$$\mathbf{0} \neq \begin{bmatrix} \mathbf{x}_{\theta} \\ \mathbf{x}_{A} \end{bmatrix} \begin{bmatrix} \mathbf{d}^{2} \theta \\ \mathbf{d} \mathbf{x}^{2} \end{bmatrix} \mathbf{d} \mathbf{x} UT ONOMA DE NUEVO LEON$$

DIRECCION GENERAL DE BIBLIOTECAS

Resolviendo la integral e integrando por partes

٦,

$$0 = \int_{A_A}^{x_B} \left[\frac{dw \ d\theta}{dx \ dx} + m^2 w \theta \right] dx - w \frac{d\theta \ x_B}{dx \ x_A}$$
$$0 = \int_{A_A}^{x_B} \left[\frac{dw \ d\theta}{dx \ dx} + m^2 w \theta \right] dx - w(x_B) \frac{d\theta}{dx \ x_B} - w(x_A) \frac{d\theta}{dx \ x_A}$$
$$0 = \int_{A_A}^{x_B} \left[\frac{dw \ d\theta}{dx \ dx} + m^2 w \theta \right] dx - \sum_{j=1}^2 w(x_j^e) Q_j^e$$
(a)

Suponer la forma de la solución aproximada sobre un elemento finito.

I) Aproximación Lineal.

$$\theta^e = \sum_{j=1}^2 \theta^e_j \psi^e_j(x) \tag{b}$$

Donde (θ_j^e) son los parámetros a ser determinados, $\psi_j^e(x)$ son las funciones de aproximación.

Sustituyendo (b) por (θ) y (w) por (ψ_i^e) en (a)

En notación matricial, las ecuaciones lineales algebraicas anteriores pueden ser escrita como:

$$\left[K^{e}\right]\!\!\left[\theta^{e}\right]\!\!=\!\left[Q^{e}\right]\!\!$$

Para una malla con elementos lineales en coordenadas locales, la matriz de coeficientes $[K^e]$ se calcula de la siguiente manera.

$$K_{ij}^{e} = \int_{0}^{h_{e}} \left(\frac{d\psi_{i}^{e}}{dx} \frac{d\psi_{j}^{e}}{dx} + m^{2}\psi_{i}^{e}\psi_{j}^{e} \right) dx$$

$$\psi_{1}^{e}(\bar{x}) = 1 - \frac{\bar{x}}{h_{e}}, \qquad \psi_{2}^{e}(\bar{x}) = \frac{\bar{x}}{h_{e}}$$

$$\frac{d\psi_{1}^{e}}{d\bar{x}} = -\frac{1}{h_{e}}, \qquad \frac{d\psi_{2}^{e}}{d\bar{x}} = \frac{1}{h_{e}}$$

$$K_{11}^{e} = \int_{0}^{h_{e}} \left[\left(-\frac{1}{h_{e}} \right) \left(-\frac{1}{h_{e}} \right) + m^{2} \left(1 - \frac{\bar{x}}{h_{e}} \right) \left(1 - \frac{\bar{x}}{h_{e}} \right) \right] d\bar{x} = \frac{1}{h_{e}} + \frac{1}{3} m^{2} h_{e}$$

$$K_{12}^{e} = \int_{0}^{h_{e}} \left[\left(-\frac{1}{h_{e}} \right) \left(\frac{1}{h_{e}} \right) + m^{2} \left(1 - \frac{\bar{x}}{h_{e}} \right) \left(\frac{\bar{x}}{h_{e}} \right) \right] dx = -\frac{1}{h_{e}} + \frac{1}{6} m^{2} h_{e}$$

$$K_{12}^{e} = K_{21}^{e}$$

 $K_{22}^{e} = \int_{0}^{h_{e}} \left[\left(\frac{1}{h_{e}} \right) \left(\frac{1}{h_{e}} \right) + m^{2} \left(\frac{x}{h_{e}} \right) \left(\frac{x}{h_{e}} \right) \right] dx = \frac{1}{h_{e}} + \frac{1}{3} m^{2} h_{e}$ DIRECCION GENERAL DE BIBLIOTECAS

$$\begin{bmatrix} K^{e} \end{bmatrix} = \begin{bmatrix} K_{11}^{e} & K_{12}^{e} \\ K_{21}^{e} & K_{22}^{e} \end{bmatrix}$$

$$\begin{bmatrix} K^e \end{bmatrix} = \frac{1}{h_e} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} + \frac{m^2 h_e}{6} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

PASO 3: CONECTIVIDAD DE LOS ELEMEMTOS

Para dos elementos lineales.

Las ecuaciones anteriores son llamadas ecuaciones ensambladas. Estas contienen la suma de los coeficientes y términos fuente en los nodos comunes a los dos elementos.

Las ecuaciones pueden expresarse en forma de matricial.

$$\begin{bmatrix} K_{11}^{1} & K_{12}^{1} & 0\\ K_{21}^{1} & \left(K_{11}^{2} + K_{22}^{1}\right) & K_{12}^{2}\\ 0 & K_{21}^{2} & K_{22}^{2} \end{bmatrix} \begin{bmatrix} \theta_{1}\\ \theta_{2}\\ \theta_{3} \end{bmatrix} = \begin{bmatrix} -Q_{1}^{1}\\ (Q_{2}^{1}) + (-Q_{1}^{2})\\ Q_{2}^{2} \end{bmatrix}$$

En el balance de la variable secundaria en los nodos a conectar ecuación (1.21 b) se obtiene como resultado:

$$\begin{pmatrix} Q_{2}^{1} \end{pmatrix} + \begin{pmatrix} -Q_{1}^{2} \end{pmatrix} = 0$$

$$\begin{bmatrix} K_{11}^{1} & K_{12}^{1} & 0 \\ K_{21}^{1} & (K_{11}^{2} + K_{22}^{1}) \\ 0 & K_{21}^{2} \\ \end{pmatrix} \begin{bmatrix} \theta_{1} \\ \theta_{2} \\ \theta_{3} \end{bmatrix} = \begin{cases} -Q_{1}^{1} \\ 0 \\ Q_{2}^{2} \end{bmatrix}$$
PASO 4: IMPOSICION DE LAS CONDICIONES FRONTERA
$$\theta_{1} = T_{0} - T_{\infty}$$

$$Q_{2}^{2} = \frac{d\theta}{dx} = 0$$

$$Q_{2}^{2} = \frac{d\theta}{dx} = 0$$

$$\begin{bmatrix} K_{11}^{1} & (K_{12}^{1} + K_{22}^{1}) \\ K_{21}^{1} & (K_{11}^{2} + K_{22}^{1}) \\ K_{21}^{1} & (K_{11}^{2} + K_{22}^{1}) \\ 0 & K_{21}^{2} \end{bmatrix} \begin{bmatrix} \theta_{1} \\ \theta_{2} \\ \theta_{3} \end{bmatrix} = \begin{cases} -Q_{1}^{1} \\ \theta_{2} \\ \theta_{3} \end{bmatrix} = BIBLIOTECAS$$

$$\begin{bmatrix} 133.96 & -129.86 & 0 \\ -129.86 & 267.96 & -129.86 \\ 0 & -129.86 & 133.96 \end{bmatrix} \begin{bmatrix} \theta_1 \\ \theta_2 \\ \theta_3 \end{bmatrix} = \begin{bmatrix} -Q_1^1 \\ 0 \\ 0 \end{bmatrix}$$

PASO 5: SOLUCION DE LAS ECUACIONES

Solución del sistema de ecuaciones para $(\theta_2), (\theta_3)$ y (Q_1^1)

$$\begin{aligned} \theta_2 &= 0.913\theta_1 & \theta_3 &= 0.886\theta_1 \\ T_2 - T_\infty &= 0.913(T_0 - T_\infty) & T_3 - T_\infty &= 0.886(T_0 - T_\infty) \\ T_2 &= 234.77^o C & T_3 &= 230.5^o C \end{aligned}$$

TABLA 2.1a

Comparación de resultados elemento finito solución exacta

Dos elementos linealesSolución exactax mT°CT°C0250250	Distancia	Temperatura	Temperatura
x m T°C T°C 0 250 250	TALERE FLAMMAN	Dos elementos lineales	Solución exacta
250 250		T°C	T ^o C
		250	250
0.00762 234.77 234.95	0.00762	234.77	234.95
0.01524 230.05 230.05	0.01524	230.05	230.05

PASO 5: POSTPROCESAMIENTO DE LAS SOLUCIONES

UNI Q_{l}^{1} = Flujo de calor en la basé de la aleta. A DE NUEVO LEÓN

$$Q_{1}^{1} = -\frac{dT}{dx} \Big|_{\substack{x = 0 \\ x = 0}} = 2694.6 \frac{^{o}C}{m} \text{ IRAL DE BIBLIOTECAS}$$
$$Q_{1}^{1} = -kA \frac{dT}{dx} \Big|_{\substack{x = 0 \\ x = 0}} = 1420.87 \frac{^{wtis}}{m}$$

Comparación de resultados para la variable secundaria elemento finito solución exacta

Flujo de calor	Flujo de calor
Dos elementos lineales	Solución exacta
Q_m^{wtts}	$Q m^{wt/s}$
1420.87	1399.3

Ejemplo 2.1b. Considere una aleta rectangular como lo muestra la (fig. 2.1). Determine la distribución de temperaturas y el flujo de calor usando:

II) Un elemento cuadrático

PASO 1: DISCRETIZACIÓN

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN Resolviendo la integral e integrando por partes

$$0 = \int_{x_A}^{x_B} \left[\frac{dw \, d\theta}{dx \, dx} + m^2 w \theta \right] dx - w \frac{d\theta \, x_B}{dx \, x_A} \quad DE BIBLIOTECAS$$

$$0 = \int_{x_A}^{x_B} \left[\frac{dw \ d\theta}{dx \ dx} + m^2 w \theta \right] dx - w(x_B) \frac{d\theta}{dx \ x_B} - w(x_A) \frac{d\theta}{dx} \bigg|_{x_A}$$
$$0 = \int_{x_A}^{x_B} \left[\frac{dw \ d\theta}{dx \ dx} + m^2 w \theta \right] dx - \sum_{j=1}^n w(x_j^e) Q_j^e \qquad (a)$$

Suponer la forma de la solución aproximada sobre un elemento finito. Aproximación Cuadrática.

$$\theta^{\epsilon} = \sum_{j=1}^{3} \theta_{j}^{\epsilon} \psi_{j}^{\epsilon}(\bar{x})$$
 (b)

Donde (θ_j^e) son los parámetros a ser determinados, $(\psi_j^e(x))$ son las funciones de aproximación.

Sustituyendo (b) por (θ) y (w) por (ψ_i^e) en (a)

En notación matricial, las ecuaciones lineales algebraicas anteriores pueden ser escrita como:

$$\begin{bmatrix} K^e \end{bmatrix} \theta^e = \{ Q^e \}$$

Para una malla con elementos cuadráticos en coordenadas locales, la matriz de coeficientes $[K^e]$ se calcula de la siguiente manera.

$$K_{ij}^{e} = \int_{0}^{h} \left(\frac{d\psi_{i}^{e}}{dx} \frac{d\psi_{j}^{e}}{dx} + m^{2}\psi_{i}^{e}\psi_{j}^{e} \right) dx$$

$$\begin{split} \psi_{1}^{e}(x) &= \left(1 - \frac{\bar{x}}{h_{e}}\right) \left(1 - \frac{2\bar{x}}{h_{e}}\right) \\ \psi_{2}^{e}(x) &= \frac{4\bar{x}}{h_{e}} \left(1 - \frac{\bar{x}}{h_{e}}\right) \\ \psi_{3}^{e}(x) &= -\frac{\bar{x}}{h_{e}} \left(1 - \frac{2\bar{x}}{h_{e}}\right) \\ \frac{d\psi_{1}^{e}}{d\bar{x}} &= -\frac{3}{h_{e}} + \frac{4\bar{x}}{(h_{e})^{2}} \\ \frac{d\psi_{2}^{e}}{dx} &= \frac{4}{h_{e}} - \frac{8\bar{x}}{(h_{e})^{2}} \\ \frac{d\psi_{2}^{e}}{dx} &= \frac{4}{h_{e}} - \frac{4\bar{x}}{(h_{e})^{2}} \\ \frac{d\psi_{2}^{e}}{dx} &= \frac{1}{h_{e}} - \frac{4\bar{x}}{(h_{e})^{2}} \\ \frac{d\psi_{2}^{e}}{dx} &= \frac{4}{h_{e}} - \frac{4\bar{x}}{(h_{e})^{2}} \\ \frac{d\psi_{2}^{e}}{dx} &= \frac{1}{h_{e}} - \frac{4\bar{x}}{(h_{e})^{2}} \\ \frac{d\psi_{2}^{e}}{dx} &= \frac{1}{h_{$$

$$K_{13}^{e} = \int_{0}^{h_{e}} \left[\left(-\frac{3}{h_{e}} + \frac{4x}{(h_{e})^{2}} \right) \left(-\frac{1}{h_{e}} - \frac{4x}{(h_{e})^{2}} \right) + m^{2} \left(1 - \frac{x}{h_{e}} \right) \left(1 - \frac{2x}{h_{e}} \right) \left(-\frac{x}{h_{e}} \right) \left(1 - \frac{2x}{h_{e}} \right) \right] dx$$

$$K_{13}^{e} = \frac{1}{3h_{e}} - m^{2}h_{e} \left(\frac{1}{30} \right)$$

 $K_{21}^e = K_{12}^e$

$$K_{22}^{e} = \int_{-\infty}^{+\infty} \left[\left(\frac{4}{h_{e}} - \frac{8\bar{x}}{(h_{e})^{2}} \right)^{2} + m^{2} \left(\frac{4x}{h_{e}} \right)^{2} \left(1 - \frac{\bar{x}}{h_{e}} \right)^{2} \right] d\bar{x}$$

$$K_{22}^{e} = \frac{16}{3h_{e}} + m^{2}h_{e} \left(\frac{32}{60} \right)$$

 $K_{33}^{e} = \int_{b}^{h_{e}} \left[\left(-\frac{1}{h_{e}} - \frac{4\bar{x}}{(h_{e})^{2}} \right)^{2} + m^{2} \left(-\frac{x}{h_{e}} \right)^{2} \left(1 - \frac{2\bar{x}}{h_{e}} \right)^{2} \right] dx$ DIRECOLEÓN $K_{33}^{e} = \frac{7}{3h_{e}} + m^{2}h_{e} \left(\frac{2}{15} \right)$

$$\begin{bmatrix} K^{e} \end{bmatrix} = \begin{bmatrix} K_{11}^{e} & K_{12}^{e} & K_{13}^{e} \\ K_{21}^{e} & K_{22}^{e} & K_{23}^{e} \\ K_{31}^{e} & K_{32}^{e} & K_{33}^{e} \end{bmatrix}$$

$$\begin{bmatrix} K^e \end{bmatrix} = \frac{1}{3h_e} \begin{bmatrix} 7 & -8 & 1 \\ -8 & 16 & -8 \\ 1 & -8 & 7 \end{bmatrix} + \frac{m^2 h_e}{30} \begin{bmatrix} 4 & 2 & -1 \\ 2 & 16 & 2 \\ -1 & 2 & 4 \end{bmatrix}$$

PASO 3: CONECTIVIDAD DE LOS ELEMEMTOS

Como nada mas es un elemento cuadrático no se tiene conectividad.

Las ecuaciones pueden expresarse en forma matricial.

$\begin{bmatrix} K_{11}^1 \end{bmatrix}$	K_{12}^{1}	K_{13}^{1}	$\left[\theta_{1} \right]$	$\left[-Q_{l}^{1}\right]$
K_{21}^{1}	K_{22}^{1}	K_{23}^{1}	$\left\{ \theta_{2} \right\}$	={ 0 }
K_{31}^{1}	K_{32}^{1}	K_{33}^{1}	$\left[\theta_{3} \right]$	Q_3^1

PASO 4: IMPOSICION DE LAS CONDICIONES FRONTERA

$$\theta_1 = T_0 - T_\infty$$
 $Q_3^1 = \frac{d\theta}{dx}\Big|_{x=L} = 0$

$$\begin{bmatrix} K_{11}^{1} & K_{12}^{1} & K_{13}^{1} \\ K_{21}^{1} & K_{22}^{1} & K_{23}^{1} \\ K_{31}^{1} & K_{32}^{1} & K_{33}^{1} \end{bmatrix} \begin{bmatrix} \theta_{1} \\ \theta_{2} \\ \theta_{3} \end{bmatrix} = \begin{bmatrix} -Q_{1}^{1} \\ 0 \\ 0 \end{bmatrix}$$

Solución del sistema de ecuaciones para $(\theta_2), (\theta_3)$ y (Q_1^1)

$$\theta_2 = .914\theta_1$$
 $\theta_3 = 0.8869\theta_1$
 $T_2 = 234.95^{\circ}C$ $T_3 = 230.2^{\circ}C$

TABLA 2.1b

Comparación de resultados elemento finito solución exacta

e	TONOMA	Temperatura	Temperatura
	Distancia	Un elemento cuadrático	Solución exacta
<u>A</u>	VERITATIS	T°C	T°C
ER	0	250	250
E	0.00762	234.95	234.95
- K	0.01524	230.2	230.05

PASO 5: POSTPROCESAMIENTO DE LAS SOLUCIONES

UN Q_1^1 = Flujo de calor en la basé de la aleta. MA DE NUEVO LEÓN $Q_1^1 = \frac{dT}{dt} CCI = 2670.9$ °CNERAL DE BIBLIOTECAS dx x = 0 m

$$Q_1^1 = -kA \frac{dT}{dx} \bigg|_{x=0} = 1408.5 \frac{wtts}{m}$$

Comparación de resultados para la variable secundaria elemento finito solución exacta

Flujo de calor	Flujo de calor
Un elemento cuadrático	Solución exacta
Q_m^{wits}	Q_m^{wits}
1408.5	1399.3

Ejemplo 2.2 a. Considere conducción de calor en estado estable en un alambre de sección transversal circular con una fuente de calor eléctrica. Supón que el radio del alambre es (R_o) , este tiene una conductividad eléctrica, este transporta una corriente eléctrica de densidad (1) amp cm⁻². Durante la transmisión de una corriente eléctrica, algo de energía eléctrica es convertida en energía térmica. La rapidez de producción de calor por unidad de volumen es dada por $(q = \frac{J^2}{k_e})$. Suponga que la temperatura alcanzada en el alambre es suficientemente pequeña que la dependencia de la conductividad eléctrica o térmica en la temperatura puede ser despreciada.

Determine la distribución de temperaturas en el alambre.

Datos

$$T_3 = \text{Temperatura en la superficie del conductor} = 60^\circ c$$

 $R_\circ = \text{Radio del conductor} = 2cm$
 $i = \text{Corriente por el conductor} = 300amp$
 $R = \text{Resistencia del conductor} = 0.0104\Omega$
 $L = \text{Longitud del conductor} = 10cm$

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN $R \neq \rho \frac{L}{A} CCIÓN k = \frac{1}{\rho} Reral DI = \frac{i}{\pi (R_o)^2} IOTE(q \neq \frac{I^2}{k})$

$\rho = 0.013 \Omega - cm$	$I = 23.87 amp - cm^{-2}$
$k = 76.5 \Omega^{-1} - cm^{-1}$	$q = 7.448 wtts - cm^{-3}$

La ecuación diferencial que gobierna el problema es:

$$-\frac{1}{r}\frac{d}{dr}\left(rk\frac{dT}{dr}\right) = q \qquad \qquad 0 \le r \le R_{\circ}$$

Las condiciones de frontera.

$$\left(kr \frac{dT}{dr}\right)\Big|_{r=0} = 0 \qquad T(R_{\circ}) = T_{\circ}$$

I) Para dos elementos lineales

PASO 1: DISCRETIZACIÓN

$$0 = 2\pi \int_{A}^{B} kr \frac{dw}{dr} \frac{dT}{dr} dr - 2\pi \int_{A}^{B} wqrdr - \left[w(r_B) \left(2\pi kr \frac{dT}{dr} \right) \right]_{r_B} - w(r_A) \left(2\pi kr \frac{dT}{dr} \right) \right]_{r_A}$$
$$0 = 2\pi \int_{A}^{B} kr \frac{dw}{dr} \frac{dT}{dr} dr - 2\pi \int_{A}^{B} wqrdr - \sum_{j=1}^{n} w(r_j^e) Q_j^e \qquad (a)$$

Suponer la forma de la solución aproximada sobre un elemento finito.

Aproximación Lineal.

 $\sum T_i^e \psi_i^e(r)$

Te

Donde (T_j^e) son los parámetros a ser determinados, $(\psi_j^e(x))$ son las funciones de

aproximación. Sustituyendo la ecuación (b) por (T) y (w) por (ψ_i^e) en la forma débil ecuación (a).

$$0 = 2\pi \int_{A}^{B} kr \frac{d\psi_{1}^{e}}{dr} \left(\sum_{j=1}^{2} T_{j}^{e} \frac{d\psi_{j}^{e}}{dr} \right) dr - 2\pi \int_{A}^{B} \psi_{1}^{e} qr dr - \sum_{j=1}^{2} \psi_{1}^{e} (r_{j}^{e}) Q_{j}^{e} \right)$$
DIRECCION GENERAL DE BIBLIOTECAS

Las ecuaciones algebraicas pueden escribirse como

$$0 = \sum_{j=1}^{2} K_{ij}^{e} T_{j}^{e} - f_{i}^{e} - Q_{i}^{e} \qquad (i = 1, 2)$$

donde:

$$K_{ij}^{e} = 2\pi \int_{A}^{B} kr \frac{d\psi_{i}}{dr} \frac{d\psi_{j}}{dr} dr$$

(b)

$$f_i^e = 2\pi q \int_A^B \psi_i^e r dr$$
$$Q_i^e = \sum_{j=1}^2 \psi_j^e(r_j^e) Q_j^e$$

En notación matricial, las ecuaciones lineales algebraicas anteriores pueden ser escritas como.

$$\left[K^{e}\right]\left[T^{e}\right] = \left\{f^{e}\right\} + \left\{Q^{e}\right\}$$

 $K_{ij}^{e} = 2\pi \int_{A}^{B} kr \frac{d\psi_{i} d\psi_{j}}{dr dr} dr$

 $r = r_A + r$

Para una malla con elementos lineales en coordenadas locales, la matriz de coeficiente $[K^e]$ se calcula de la siguiente manera.

$$\psi_1^e = 1 - \frac{\bar{r}}{h_e} \qquad \qquad \psi_2^e = \frac{\bar{r}}{h_e}$$

$$\frac{d\psi_1^e}{d\bar{r}} - \frac{1}{h_e} \qquad \qquad \frac{d\psi_2^e}{d\bar{r}} = \frac{1}{h_e}$$

$$K_{11}^{e} = 2\pi k \int_{0}^{h_{e}} (r_{A} + r) \frac{d\psi_{1}^{e}}{dr} \frac{d\psi_{1}^{e}}{dr} d\bar{r} = 2\pi k \int_{0}^{h_{e}} (r_{A} + r)(-\frac{1}{h_{e}})(-\frac{1}{h_{e}})d\bar{r}$$

$$K_{11}^{e} = \frac{2\pi k}{h_{e}} (r_{A} + \frac{h_{e}}{2})$$

$$K_{12}^{e} = 2\pi k \int_{0}^{h_{e}} (r_{A} + r) \frac{d\psi_{1}^{e}}{dr} \frac{d\psi_{2}^{e}}{d\bar{r}} d\bar{r} = 2\pi k \int_{0}^{h_{e}} (r_{A} + \bar{r})(-\frac{1}{h_{e}})(\frac{1}{h_{e}})d\bar{r}$$

$$K_{12}^{e} = -\frac{2\pi k}{h_{e}} (r_{A} + \frac{h_{e}}{2})$$

 $K^{e}_{21} = K^{e}_{12}$

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN $\begin{bmatrix} K^e \end{bmatrix} = \frac{2\pi k}{h_e} \binom{r_A + e}{2} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$ DIRECCIÓN GENERAL DE BIBLIOTECAS

$$f_i^e = 2\pi q \int_0^{h_e} \psi_i^e (r_A + r) dr$$

$$f_1^e = 2\pi q \int_0^{h_e} (1 - \frac{r}{h_e})(r_A + \bar{r})d\bar{r} = \frac{2\pi q h_e}{6}(3r_A + h_e)$$
$$f_2^e = 2\pi q \int_0^{h_e} (\frac{\bar{r}}{h_e})(r_A + r)d\bar{r} = \frac{2\pi q h_e}{6}(3r_A + 2h_e)$$

$$f_{1}^{e} = \frac{2\pi q}{6} \left\{ \begin{array}{l} 3r_{A} + h_{e} \\ 3r_{A} + 2h_{e} \end{array} \right\}$$

Si $r_{A} = r_{1} = 0$
 $\left[K^{e} \right] = \pi k \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$
 $\left\{ f^{e} \right\} = \frac{\pi q (h_{e})^{2}}{3} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$
PASO 3: CONECTIVIDAD DE LOS ELEMENTOS
Para una malla con dos elementos lineales
Para una malla con dos elementos lineales
Q_{1}^{1} SIDAD AUQ_{2}^{1} Q_{1}^{2} ADE NUQ_{2}^{2} VO LEÓN
Elemento (1) CCIÓN GENERAL DE BIBLIOTECAS

$$K_{11}^{1}T_{1}^{1} + K_{12}^{1}T_{2}^{1} = f_{1}^{1} - Q_{1}^{1}$$
$$K_{21}^{1}T_{1}^{1} + K_{22}^{1}T_{2}^{1} = f_{2}^{1} + Q_{2}^{1}$$

1 -

Elemento (2)

$$K_{11}^2 T_1^2 + K_{12}^2 T_2^2 = f_1^2 - Q_1^2$$
$$K_{21}^2 T_1^2 + K_{22}^2 T_2^2 = f_2^2 + Q_2^2$$

Balance de la variable primaria

$$T_1^1 = T_1$$
$$T_2^1 = T_1^2 = T_2$$
$$T_2^2 = T_3 = T_0$$

Las ecuaciones anteriores son llamadas ecuaciones ensambladas. Estas contienen la suma de los coeficientes y términos fuente en los nodos comunes a los dos elementos.

Las ecuaciones pueden expresarse en forma de matricial.

$$\begin{bmatrix} K_{11}^{1} & K_{12}^{1} & 0 \\ K_{21}^{1} & (K_{11}^{2} + K_{22}^{1}) & K_{22}^{2} \\ 0 & K_{21}^{2} & K_{22}^{2} \end{bmatrix} \begin{bmatrix} T_{1} \\ T_{2} \\ T_{0} \end{bmatrix} = \begin{bmatrix} f_{1}^{1} \\ f_{2}^{1} + f_{1}^{2} \\ f_{2}^{2} \end{bmatrix} + \begin{bmatrix} -Q_{1}^{1} \\ Q_{2}^{1} + (-Q_{1}^{2}) \\ Q_{2}^{2} \end{bmatrix}$$

En el balance de la variable secundaria en los nodos a conectar ecuación (1.21 b) se obtiene como resultado:
$$(Q_{2}^{1}) + (-Q_{1}^{2}) = 0$$
$$\begin{bmatrix} K_{11}^{1} & K_{12}^{1} & 0 \\ K_{21}^{1} & (K_{11}^{2} + K_{22}^{1}) & K_{12}^{2} \\ 0 & K_{21}^{2} & K_{22}^{2} \end{bmatrix} \begin{bmatrix} T_{1} \\ T_{2} \\ T_{2} \\ T_{2} \end{bmatrix} = \begin{bmatrix} f_{1}^{1} \\ f_{2}^{1} + f_{1}^{2} \\ f_{2}^{2} \end{bmatrix} \begin{bmatrix} -Q_{1}^{1} \\ 0 \\ Q_{2}^{2} \end{bmatrix}$$

PASO 4: IMPOSICIÓN DE LAS CONDICIONES FRONTERA

$$T(R_{\circ}) = T_0 \qquad \qquad Q_1^1 = 2\pi k r \frac{dT}{dr} \bigg|_{r=0} = 0$$

$$\begin{bmatrix} K_{11}^{1} & K_{12}^{1} & 0 \\ K_{21}^{1} & \left(K_{11}^{2} + K_{22}^{1}\right) & K_{12}^{2} \\ 0 & K_{21}^{2} & K_{22}^{2} \end{bmatrix} \begin{bmatrix} T_{1} \\ T_{2} \\ T_{0} \end{bmatrix} = \begin{bmatrix} f_{1}^{1} \\ f_{2}^{1} + f_{1}^{2} \\ f_{2}^{2} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ Q_{2}^{2} \end{bmatrix}$$

$$\begin{bmatrix} \pi k & -\pi k & 0 \\ -\pi k & 2\pi k & -\pi k \\ 0 & -\pi k & \pi k \end{bmatrix} \begin{bmatrix} T_1 \\ T_2 \\ T_0 \end{bmatrix} = \frac{\pi q (R_\circ)^2}{12} \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ Q_2^2 \end{bmatrix}$$

PASO 5: SOLUCIÓN DE LAS ECUACIONES

Solución del sistema de ecuaciones para (T_1) , (T_2) y (Q_2^2)

$$T_1 = 60.162^{\circ}C$$
 $T_2 = 60.129^{\circ}C$

TABLA 2.2a

Comparación de resultados elemento finito solución exacta

STUNOWA	Temperatura	Temperatura
A Radio	Dos elementos lineales	Solución exacta
r cm	T°C	T°C
E O	60.162	60.09
	60.129	60.07
2	60	60

PASO 6: POSTPROCESAMIENTO DE LAS SOLUCIONES

$$-Q_2^2 = 2\pi R_0 k \frac{dT}{dr} = 46.56 \frac{wits}{cm}$$

DIRECC dr R_o GENERAL DE BIBLIOTECAS

Q = Flujo de calor disipado por el conductor en la superficie

$$-Q = (2\pi R_0 L)k \frac{dT}{dr} \Big|_{R_o} = 465.6 \text{ wtts}$$

Comparación de resultados para la variable secundaria elemento finito solución exacta

Flujo de calor	Flujo de calor
Dos elementos lineales	Solución exacta
Q wtts	Q with
465.6	935.9

Ejemplo 2.2 b. Determine la distribución de temperaturas en el alambre ejemplo (2.2 a). Usando un elemento cuadrático.

II) Elemento Cuadrático

PASO 1: DISCRETIZACIÓN

$$0 = 2\pi \int_{A}^{B} kr \frac{dw}{dr} \frac{dT}{dr} dr - 2\pi \int_{A}^{B} wqrdr - \left[w(r_B) \left(2\pi kr \frac{dT}{dr} \right) \right]_{r_B} - w(r_A) \left(2\pi kr \frac{dT}{dr} \right) \right]_{r_A}$$
$$0 = 2\pi \int_{A}^{B} kr \frac{dw}{dr} \frac{dT}{dr} dr - 2\pi \int_{A}^{B} wqrdr - \sum_{j=1}^{n} w(r_j^e) Q_j^e \qquad (a)$$

Suponer la forma de la solución aproximada sobre un elemento finito.

Aproximación Cuadrática.

 $\psi_{j}^{e}(r)$

 T^e

Donde (T_j^e) son los parámetros a ser determinados, $(\psi_j^e(\bar{x}))$ son las funciones de

aproximación. Sustituyendo la ecuación (b) por (T) y (w) por (ψ_i^e) en la forma débil ecuación (a).

$$0 = 2\pi \int_{A}^{B} kr \frac{d\psi_{1}^{e}}{dr} \left(\sum_{j=1}^{3} T_{j}^{e} \frac{d\psi_{j}^{e}}{dr} \right) dr - 2\pi \int_{A}^{B} \psi_{1}^{e} qr dr - \sum_{j=1}^{3} \psi_{1}^{e} (r_{j}^{e}) Q_{j}^{e}$$
DIRECCION GENERAL DE BIBLIOTECAS

Las ecuaciones algebraicas pueden escribirse como

$$0 = \sum_{j=1}^{3} K_{ij}^{e} T_{j}^{e} - f_{i}^{e} - Q_{i}^{e} \qquad (i = 1, 2, 3)$$

donde:

$$K_{ij}^{e} = 2\pi \int_{A}^{B} kr \frac{d\psi_{i}}{dr} \frac{d\psi_{j}}{dr} dr$$

(b)

$$f_i^e = 2\pi q \int_A^B \psi_i^e r dr$$
$$Q_i^e = \sum_{j=1}^n \psi_j^e(r_j^e) Q_j^e$$

En notación matricial, las ecuaciones lineales algebraicas anteriores pueden ser escritas como.

$$\left[K^{e}\right]T^{e} = \left\{f^{e}\right\} + \left\{Q^{e}\right\}$$

Para una malla con elementos lineales en coordenadas locales, la matriz de coeficiente $[K^e]$ se calcula de la siguiente manera.

$$K_{ij}^{e} = 2\pi \int_{A}^{B} kr \frac{d\psi_{i}}{dr} \frac{d\psi_{j}}{dr} dr$$

$$F = r_{A} + \bar{r}$$
INIVERSIDAD AUTÓNOMA DE NUEVO LEÓ

 $K_{ij}^{e} = 2\pi \int_{0}^{h_{e}} k(r_{A} + r) \frac{d\psi_{i} d\psi_{j}}{dr dr} dr L DE BIBLIOTECAS$

$$\psi_1^e = \left(1 - \frac{\bar{r}}{h_e}\right) \left(1 - \frac{2\bar{r}}{h_e}\right)$$
$$\psi_2^e = \frac{4\bar{r}}{h_e} \left(1 - \frac{\bar{r}}{h_e}\right)$$
$$\psi_3^e = \frac{-r}{h_e} \left(1 - \frac{2\bar{r}}{h_e}\right)$$

T

$$\frac{d\psi_1^e}{dr} = -\frac{3}{h_e} + \frac{4r}{(h_e)^2}$$
$$\frac{d\psi_2^e}{dr} = \frac{4}{h_e} - \frac{8\bar{r}}{(h_e)^2}$$
$$\frac{d\psi_3^e}{dr} = -\frac{1}{h_e} + \frac{4\bar{r}}{(h_e)^2}$$

$$K_{11}^{e} = 2\pi k \int_{0}^{h_{e}} (r_{A} + r) \frac{d\psi_{1}^{e}}{dr} \frac{d\psi_{1}^{e}}{dr} dr = 2\pi k \int_{0}^{h_{e}} (r_{A} + r) \left(-\frac{3}{h_{e}} + \frac{4r}{(h_{e})^{2}} \right)^{2} dr$$

$$K_{11}^{e} = 2\pi k \left[\frac{13r_{A}}{h_{e}} + \frac{1}{2} \right]$$

$$K_{12}^{e} = 2\pi k \int_{0}^{h_{e}} (r_{A} + r) \frac{d\psi_{1}^{e}}{dr} \frac{d\psi_{2}^{e}}{dr} dr = 2\pi k \int_{0}^{h_{e}} (r_{A} + r) \left(-\frac{3}{h_{e}} + \frac{4r}{(h_{e})^{2}} \right) \left(\frac{4}{h_{e}} - \frac{8r}{(h_{e})^{2}} \right) dr$$

$$K_{12}^{e} = 2\pi k \int_{0}^{h_{e}} (r_{A} + r) \frac{d\psi_{1}^{e}}{dr} \frac{d\psi_{2}^{e}}{dr} dr = 2\pi k \int_{0}^{h_{e}} (r_{A} + r) \left(-\frac{3}{h_{e}} + \frac{4r}{(h_{e})^{2}} \right) \left(\frac{4}{h_{e}} - \frac{8r}{(h_{e})^{2}} \right) dr$$

$$K_{12}^{e} = 2\pi k \int_{0}^{h_{e}} (r_{A} + r) \frac{d\psi_{1}^{e}}{dr} \frac{d\psi_{2}^{e}}{dr} dr = 2\pi k \int_{0}^{h_{e}} (r_{A} + r) \left(-\frac{3}{h_{e}} + \frac{4r}{(h_{e})^{2}} \right) \left(-\frac{1}{h_{e}} + \frac{4r}{(h_{e})^{2}} \right) dr$$

$$K_{13}^{e} = 2\pi k \int_{0}^{h_{e}} (r_{A} + r) \frac{d\psi_{1}^{e}}{dr} \frac{d\psi_{2}^{e}}{dr} dr = 2\pi k \int_{0}^{h_{e}} (r_{A} + r) \left(-\frac{3}{h_{e}} + \frac{4r}{(h_{e})^{2}} \right) \left(-\frac{1}{h_{e}} + \frac{4r}{(h_{e})^{2}} \right) dr$$

$$K_{13}^{e} = 2\pi k \left[\frac{r_{A}}{3h_{e}} + \frac{1}{6} \right]$$

 $K_{21}^e = K_{12}^e$

$$K_{22}^{e} = 2\pi k \int_{0}^{h_{e}} (r_{A} + r) \frac{d\psi_{2}^{e}}{dr} \frac{d\psi_{2}^{e}}{dr} dr = 2\pi k \int_{0}^{h_{e}} (r_{A} + r) \left(\frac{4}{h_{e}} - \frac{8\bar{r}}{(h_{e})^{2}}\right)^{2} dr$$
$$K_{22}^{e} = 2\pi k \begin{bmatrix} 16r_{A} + 8\\ h_{e} + 3 \end{bmatrix}$$

$$K_{23}^{e} = 2\pi k \int_{0}^{h_{e}} (r_{A} + r) \frac{d\psi_{2}^{e}}{d\bar{r}} \frac{d\psi_{3}^{e}}{d\bar{r}} dr = 2\pi k \int_{0}^{h_{e}} (r_{A} + r) \left(\frac{4}{h_{e}} - \frac{8r}{(h_{e})^{2}}\right) \left(-\frac{1}{h_{e}} + \frac{4r}{(h_{e})^{2}}\right) dr$$
$$K_{23}^{e} = 2\pi k \left[\frac{-8r_{A}}{3h_{e}} - 2\right]$$

....

 $V_{K_{33}^e} = 2\pi k \begin{bmatrix} 7r_A \\ 7r_A \\ 3h_e \end{bmatrix} = \begin{bmatrix} 11 \\ 6 \end{bmatrix}$ UTÓNOMA DE NUEVO LEÓN UNI DIRECCIÓN GENERAL DE BIBLIOTECAS

$$\begin{bmatrix} K^{e} \end{bmatrix} = \begin{bmatrix} K_{11}^{e} & K_{12}^{e} & K_{12}^{e} \\ K_{21}^{e} & K_{22}^{e} & K_{23}^{e} \\ K_{31}^{e} & K_{32}^{e} & K_{33}^{e} \end{bmatrix}$$

Para ($r_A = 0$) la matriz de coeficientes se representa de la siguiente manera

$$\begin{bmatrix} K^{e} \end{bmatrix} = \frac{2\pi k}{6} \begin{bmatrix} 3 & -4 & 1 \\ -4 & 16 & -12 \\ 1 & -12 & 11 \end{bmatrix}$$
$$f_i^e = 2\pi q \int_0^{h_e} \psi_i^e (r_A + \bar{r}) d\bar{r}$$

$$f_1^e = 2\pi q \int_0^{h_e} \left(1 - \frac{\bar{r}}{h_e}\right) \left(1 - \frac{2\bar{r}}{h_e}\right) (r_A + \bar{r}) d\bar{r} = 2\pi q \left(\frac{19h_e r_A}{6} + 0\right)$$
$$f_2^e = 2\pi q \int_0^{h_e} \frac{4r}{h_e} \left(1 - \frac{r}{h_e}\right) (r_A + r) d\bar{r} = 2\pi q \left(\frac{2h_e r_A}{3} + \frac{(h_e)^2}{3}\right)$$
$$f_3^e = 2\pi q \int_0^{h_e} - \frac{r}{h_e} \left(1 - \frac{2r}{h_e}\right) (r_A + \bar{r}) dr = 2\pi q \left(\frac{h_e r_A}{6} + \frac{(h_e)^2}{6}\right)$$

PASO 3: CONECTIVIDAD DE LOS ELEMEMTOS

Como solamente es un elemento cuadrático no se tiene conectividad.

Elemento(1)

$$K_{11}^{1}T_{1}^{1} + K_{12}^{1}T_{2}^{1} = f_{1}^{1} - Q_{1}^{1}$$

$$K_{21}^{1}T_{1}^{1} + K_{22}^{1}T_{2}^{1} = f_{2}^{1} + 0$$

$$K_{31}^{1}T_{1}^{1} + K_{32}^{1}T_{2}^{1} = f_{3}^{1} + Q_{3}^{1}$$

Continuidad de la variable primaria

$$T_1^1 = T_1$$
$$T_2^1 = T_2$$
$$T_3^1 = T_3$$

Las ecuaciones pueden expresarse en forma de matricial.

$$\begin{bmatrix} K_{11}^{1} & K_{12}^{1} & K_{13}^{1} \\ K_{21}^{1} & K_{22}^{1} & K_{23}^{1} \\ K_{31}^{1} & K_{32}^{1} & K_{33}^{1} \end{bmatrix} \begin{bmatrix} T_{1} \\ T_{2} \\ T_{3} \end{bmatrix} = \begin{cases} f_{1}^{1} \\ f_{2}^{1} + f_{1}^{2} \\ f_{2}^{2} \end{bmatrix} + \begin{cases} -Q_{1}^{1} \\ 0 \\ Q_{3}^{1} \end{bmatrix}$$

$$T(R_{\circ}) = T_0 \qquad \qquad Q_1^1 = 2\pi k r \frac{dT}{dr} \Big|_{r=0} = 0$$

$$\begin{bmatrix} K_{11}^{1} & K_{12}^{1} & K_{13}^{1} \\ K_{21}^{1} & K_{22}^{1} & K_{23}^{1} \\ K_{31}^{1} & K_{32}^{1} & K_{33}^{1} \end{bmatrix} \begin{bmatrix} T_{1} \\ T_{2} \\ T_{0} \end{bmatrix} = \begin{bmatrix} f_{1}^{1} \\ f_{2}^{1} + f_{1}^{2} \\ f_{2}^{2} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ Q_{3}^{1} \end{bmatrix}$$

PASO 5: SOLUCIÓN DE LAS ECUACIONES

Solución del sistema de ecuaciones para $(T_1), (T_2)$ y (Q_3^1)

$$T_1 = 60.09^{\circ}C$$
 $T_2 = 60.07^{\circ}C$

TABLA 2.2b

.

Comparación de resultados elemento finito solución exacta

Temperatura	Temperatura		
Un elemento cuadrático	Solución exacta		
T ^o C	T ^o C		
60.09	60.09		
60.07	60.07		
60	60		
	Temperatura Un elemento cuadrático T°C 60.09 60.07 60		

PASO 6: POSTPROCESAMIENTO DE LAS SOLUCIONES

$$-Q_3^1 = 2\pi R_0 k \frac{dT}{dx} \Big|_{R_0} = 91.28 \frac{wtts}{cm}$$

UNIVERSIDADAUTÓNOMA DE NUE Q = Flujo de calor disipado por el conductor en la superficie

$$DIRECCIOdT GENERAL DE BIBLIOTECAS-Q = (2\pi R_0 L)k \frac{dT}{dx} = 912.8 \text{ wtts}$$

Comparación de resultados para la variable secundaria elemento finito solución exacta

Flujo de calor	Flujo de calor	
Un elemento cuadrático	Solución exacta	
Q with	Q wtts	
912.8	935.9	

Ejemplo 2.3 Determine la distribución de temperatura en la aleta que muestra la figura 2.3. Suponga que la temperatura en la base de la aleta es $(T_{\circ} = 250^{\circ}F)$ la conductividad térmica $(k = 120Btu \ hr^{-1}ft^{-1}\circ F^{-1})$, y el coeficiente de película $(\beta = 15Btu \ hr^{-1}ft^{-2}\circ F^{-1})$, la temperatura del medio hambiente es $(T_{\infty} = 75^{\circ}F)$.

Figura 2.3b Balance de energía

Balance de energías para obtener la ecuación diferencial de la aleta.

$$0 = q_x - q_{x+\Delta x} - q_{conv}$$

$$0 = -kA_{cond} \frac{dT}{dx}\Big|_x + kA_{cond} \frac{dT}{dx}\Big|_{x+\Delta x} - \beta A_{conv}(T-T_{\infty})$$

$$0 = -kA(x) \frac{dT}{dx} + kA(x) \frac{dT}{dx}\Big|_{x+\Delta x} - \beta 2b\Delta x(T-T_{\infty})$$

$$0 = k \frac{d}{dx} \left(A(x) \frac{dT}{dx}\right) - 2\beta b(T-T_{\infty})$$
La variación de la sección transversal de la aleta al variar (x) es,

$$0.125in + x + kA(x) \frac{dT}{dx} - 2\beta b(T-T_{\infty})$$
El variación de la sección transversal de la aleta al variar (x) es,

$$0.125in + x + kA(x) \frac{dT}{dx} - 2\beta b(T-T_{\infty})$$
El variación de la sección transversal de la aleta al variar (x) es,

$$0.125in + x + kA(x) \frac{dT}{dx} - 2\beta b(T-T_{\infty})$$
El variación de la sección transversal de la aleta al variar (x) es,

$$0.125in + x + kA(x) \frac{dT}{dx} - 2\beta b(T-T_{\infty})$$
El variación de la sección transversal de la aleta al variar (x) es,

$$0.125in + x + kA(x) \frac{dT}{dx} - 2\beta b(T-T_{\infty})$$
El variación de la sección transversal de la aleta al variar (x) es,

$$0.125in + x + kA(x) \frac{dT}{dx} - 2\beta b(T-T_{\infty})$$
El variación de la sección transversal de la aleta al variar (x) es,

$$0.125in + x + kA(x) \frac{dT}{dx} - 2\beta b(T-T_{\infty})$$
El variación de la sección transversal de la aleta al variar (x) es,

$$u = 3in$$
El variación de la sección transversal de la aleta al variar (x) es,

$$u = 3in$$
El variación de la sección transversal de la aleta al variar (x) es,

$$u = 3in$$
El variación de la sección transversal de la aleta al variar (x) es,

$$u = 3in$$
El variación de la sección transversal de la aleta al variar (x) es,

$$u = 3in$$
El variación de la sección transversal de la aleta al variar (x) es,

$$u = 3in$$
El variación de la sección transversal de la aleta al variar (x) es,

$$u = 3in$$

$$0 = k \frac{d}{dx} \left(\frac{2}{3} (3 - x)(0.125b) \frac{dT}{dx} \right) - 2\beta b(T - T_{\infty})$$

$$(3-x)\frac{d^2T}{dx^2} - \frac{dT}{dx} - \frac{24\beta}{k}T + \frac{24\beta}{k}T_{\infty} = 0 \qquad \Omega = (0,L)$$
$$m = \frac{24\beta}{k}$$
$$(3-x)\frac{d^2T}{dx^2} - \frac{dT}{dx} - mT + mT_{\infty} = 0$$

Condiciones frontera de la ecuación diferencial.

PASO 2: DERIVACIÓN DE LAS ECUACIONES DEL ELEMENTO

Construcción de la forma débil.

$$0 = \int_{a_A}^{a_B} w \left[(3-x) \frac{d^2 T}{dx^2} - \frac{dT}{dx} - mT + mT_{\infty} \right] dx$$

Integrando por partes él termino de segundo orden.

$$0 = \int_{\pi_{A}}^{\pi_{B}} \left[-(3-x) \frac{dw}{dx} \frac{dT}{dx} - mwT + mwT_{\infty} \right] dx + w(3-x) \frac{dT}{dx} \Big|_{x_{A}}^{x_{B}}$$

$$0 = \int_{\pi_{A}}^{\pi_{B}} \left[-(3-x) \frac{dw}{dx} \frac{dT}{dx} - mwT + mwT_{\infty} \right] dx + \left\{ w \left[(3-x) \frac{dT}{dx} \right]_{x_{B}}^{x} - w \left[(3-x) \frac{dT}{dx} \right]_{x_{A}}^{x} \right\}$$

$$0 = \int_{\pi_{A}}^{\pi_{B}} \left[-(3-x) \frac{dw}{dx} \frac{dT}{dx} - mwT + mwT_{\infty} \right] dx + \sum_{j=1}^{n} w(x_{j}^{e}) Q_{j}^{e}$$
(a)
Suponer la forma de la solución aproximada sobre un elemento finito.
Aproximación Lineal
$$T^{e} = \sum_{j=1}^{2} T_{j}^{e} \psi_{j}^{e}(x)$$
(b)

Donde (T_j^e) son los parámetros a ser determinados, $(\psi_j^e(x))$ son las funciones de aproximación. Sustituyendo la ecuación (b) por (T) y (w) por (ψ_i^e) en la forma débil Ecuación (a).

$$0 = \int_{x_A}^{x_B} \left[(3-x) \frac{dw}{dx} \frac{dT}{dx} + mwT - mwT_{\infty} \right] dx - \sum_{j=1}^n w(x_j^e) Q_j^e$$

$$0 = \int_{x_A}^{x_B} \left[(3-x) \frac{d\psi_1^e}{dx} \left(\sum_{j=1}^n T_j^e \frac{d\psi_j^e}{dx} \right) + m\psi_1^e \left(\sum_{j=1}^n T_j^e \psi_j^e \right) - mT_{\infty}\psi_1^e \right] dx - \sum_{j=1}^n \psi_1^e(x_j^e)Q_j^e$$

Las ecuaciones algebraicas pueden escribirse como

$$0 = \sum_{j=1}^{2} K_{ij}^{e} T_{j}^{e} - f_{i}^{e} - Q_{i}^{e} \qquad (i = 1, 2)$$

donde:

$$K_{ij}^{e} = \int_{x_{A}}^{x_{B}} \left((3-x) \frac{d\psi_{i}^{e} d\psi_{j}^{e}}{dx dx} + m\psi_{i}^{e}\psi_{j}^{e} \right) dx = B(\psi_{i}^{e}, \psi_{j}^{e})$$

Para una malla con elementos lineales en coordenadas locales, la matriz de coeficientes $[K^e]$ se calcula de la siguiente manera.

$$K_{ij}^{e} = \int_{x_{A}}^{x_{B}} \left((3-x) \frac{d\psi_{i}^{e} d\psi_{j}^{e}}{dx dx} + m\psi_{i}^{e}\psi_{j}^{e} \right) dx$$

$$x = x_A^e + \overline{x}$$

$$K_{ij}^e = \int_0^{h_e} \left((3 - x_A^e - x)) \frac{d\psi_i^e}{dx} \frac{d\psi_j^e}{dx} + m\psi_i^e \psi_j^e \right) dx$$

$$\psi_1^e(\overline{x}) = 1 - \frac{\overline{x}}{h_e} , \qquad \psi_2^e(\overline{x}) = \frac{\overline{x}}{h_e}$$

$$\frac{d\psi_1^e}{d\overline{x}} = -\frac{1}{h_e} , \qquad \frac{d\psi_2^e}{dx} = \frac{1}{h_e}$$

$$K_{11}^{e} = \int_{e}^{h_{e}} \left[(3 - x_{A}^{e} - \bar{x}) \frac{d\psi_{1}^{e}}{d\bar{x}} \frac{d\psi_{1}^{e}}{d\bar{x}} + m\psi_{1}^{e}\psi_{1}^{e} \right] dx$$

$$K_{11}^{e} = \int_{e}^{h_{e}} \left[(3 - x_{A}^{e} - \bar{x}) \left(-\frac{1}{h_{e}} \right)^{2} + m \left(1 - \frac{x}{h_{e}} \right)^{2} \right] dx$$

$$K_{11}^{e} = \frac{1}{h_{e}} \left((3 - x_{A}^{e}) - \frac{h_{e}}{2} \right) + \frac{mh_{e}}{3}$$

$$\begin{aligned} & \text{UNI} \ K_{12}^{e} = \int_{0}^{h_{e}} \left[\left(3 - x_{A}^{e} - x \right)^{d} \psi_{1}^{e} \ d\psi_{2}^{e} + m \psi_{1}^{e} \psi_{2}^{e} \right] dx \text{ E NUEVO LEÓN} \\ & \text{Rescale} \\ & K_{12}^{e} = \int_{0}^{h_{e}} \left[\left(3 - x_{A}^{e} - x \right)^{e} \left(-\frac{1}{h_{e}} \right)^{e} \left(\frac{1}{h_{e}} \right)^{e} + m \left(1 - \frac{x}{h_{e}} \right)^{e} \left(\frac{x}{h_{e}} \right)^{e} \right] dx \end{aligned}$$

 $K_{12}^e = K_{21}^e$ por simetria

$$K_{22}^{e} = \int_{0}^{h_{e}} \left[\left(3 - x_{A}^{e} - x \right) \frac{d\psi_{2}^{e}}{dx} \frac{d\psi_{2}^{e}}{d\bar{x}} + m\psi_{1}^{e}\psi_{2}^{e} \right] dx$$

$$K_{22}^{e} = \int_{0}^{h_{e}} \left[\left(3 - x_{A}^{e} - x \right) \left(\frac{1}{h_{e}} \right)^{2} + m \left(\frac{x}{h_{e}} \right)^{2} \right] d\bar{x}$$

$$K_{22}^{e} = \frac{1}{h_{e}} \left(\left(3 - x_{A}^{e} \right) - \frac{h_{e}}{2} \right) + \frac{mh_{e}}{3}$$

Para elemento (2) $x_A = h_e$

$$K_{11}^{2} = \frac{1}{h_{e}} \left(3 - \frac{3h_{e}}{2} \right) + \frac{mh_{e}}{3}$$
$$K_{12}^{2} = -\frac{1}{h_{e}} \left(3 - \frac{3h_{e}}{2} \right) + \frac{mh_{e}}{6}$$
$$K_{12}^{2} = K_{21}^{2}$$
$$K_{22}^{2} = \frac{1}{h_{e}} \left(3 - \frac{3h_{e}}{2} \right) + \frac{mh_{e}}{3}$$

Para elemento (3) $x_A = 2h_e$

$$K_{11}^{3} = \frac{1}{h_{e}} \left(3 - \frac{5h_{e}}{2} \right) + \frac{mh_{e}}{3}$$
$$K_{12}^{3} = -\frac{1}{h_{e}} \left(3 - \frac{5h_{e}}{2} \right) + \frac{mh_{e}}{6}$$
$$K_{12}^{3} = K_{21}^{3}$$
$$K_{22}^{3} = \frac{1}{h_{e}} \left(3 - \frac{5h_{e}}{2} \right) + \frac{mh_{e}}{3}$$

$$f_i^e = mT_\infty \int_{x_A}^{x_B} \psi_i^e dx$$

$$f_1^e = mT_\infty \int_0^{h_e} \psi_1^e dx = mT_\infty \int_0^{h_e} \left(1 - \frac{\overline{x}}{h_e}\right) d\overline{x} = \frac{mT_\infty h_e}{2}$$

$$f_2^e = mT_{\infty} \int_0^{h_e} \psi_2^e dx = mT_{\infty} \int_0^{h_e} \begin{pmatrix} x \\ h_e \end{pmatrix} d\bar{x} = \frac{mT_{\infty}h_e}{2}$$

PASO 3: CONECTIVIDAD DE LOS ELEMEMTOS

Para una malla con tres elementos lineales.

Continuidad de la variable primaria

$$T_1^1 = T_0$$
$$T_2^1 = T_1^2 = T_1$$
$$T_2^2 = T_1^3 = T_2$$
$$T_2^3 = T_3$$

Las ecuaciones anteriores son llamadas ecuaciones ensambladas. Estas contienen la suma de los coeficientes y términos fuente en los nodos comunes a los dos elementos. Las ecuaciones pueden expresarse en forma matricial.

$$\begin{bmatrix} K_{11}^{11} & K_{12}^{11} & 0 & 0 \\ K_{21}^{1} & (K_{22}^{1} + K_{11}^{2}) & K_{12}^{2} & 0 \\ 0 & K_{21}^{1} & (K_{22}^{2} + K_{11}^{3}) & K_{12}^{3} \\ 0 & 0 & K_{21}^{3} & K_{22}^{3} \end{bmatrix} \begin{bmatrix} T_{0} \\ T_{1} \\ T_{2} \\ T_{3} \end{bmatrix} = \begin{bmatrix} f_{1}^{1} \\ f_{2}^{1} + f_{1}^{2} \\ f_{2}^{2} + f_{1}^{3} \\ f_{2}^{3} \end{bmatrix} + \begin{bmatrix} -Q_{1}^{1} \\ Q_{2}^{1} - Q_{1}^{2} \\ Q_{2}^{2} - Q_{1}^{3} \\ Q_{2}^{3} \end{bmatrix}$$

En el balance de la variable secundaria en los nodos a conectar ecuación (1.21 b) se obtiene como resultado:
$$(Q_{2}^{1}) + (-Q_{1}^{2}) = 0$$
$$(Q_{2}^{2}) + (-Q_{1}^{3}) = 0$$
$$\begin{bmatrix} K_{11}^{1} & K_{12}^{1} & 0 & 0 \\ Q_{2}^{2}) + (-Q_{1}^{3}) = 0 \end{bmatrix}$$
$$\begin{bmatrix} K_{11}^{1} & K_{12}^{1} & 0 & 0 \\ (Q_{2}^{2}) + (-Q_{1}^{3}) = 0 \end{bmatrix} \begin{bmatrix} T_{0} \\ T_{1} \\ T_{2} \\ 0 & K_{21}^{1} & (K_{22}^{2} + K_{11}^{3}) \\ (K_{22}^{2} + K_{11}^{3}) & K_{12}^{2} \\ 0 & 0 & K_{21}^{3} \\ K_{21}^{3} & (K_{22}^{2} + K_{11}^{3}) \\ 0 & K_{21}^{3} & (K_{22}^{3} + K_{11}^{3}) \\ 0 & K_{21}^{3} & (K_{22}^{3} + K_{11}^{3}) \\ K_{21}^{3} & (K_{21}^{3} + K_{21}^{3}) \\ K_{21}^{3}$$

PASO 4: IMPOSICIÓN DE LAS CONDICIONES FRONTERA

$$T_0 = 250^{\circ}C$$
 $Q_2^3 = (3-x)\frac{dT}{dx}\Big|_{x_B} = 0$

$$\begin{bmatrix} K_{11}^{1} & K_{12}^{1} & 0 & 0 \\ K_{21}^{1} & (K_{22}^{1} + K_{11}^{2}) & K_{12}^{2} & 0 \\ 0 & K_{21}^{1} & (K_{22}^{2} + K_{11}^{3}) & K_{12}^{3} \\ 0 & 0 & K_{21}^{3} & K_{22}^{3} \end{bmatrix} \begin{bmatrix} T_{0} \\ T_{1} \\ T_{2} \\ T_{3} \end{bmatrix} = \begin{bmatrix} f_{1}^{1} \\ f_{2}^{1} + f_{1}^{2} \\ f_{2}^{2} + f_{1}^{3} \\ f_{2}^{3} \end{bmatrix} + \begin{bmatrix} -Q_{1}^{1} \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

PASO 5: SOLUCIÓN DE LAS ECUACIONES

$$m=\frac{24\beta}{k}=0.249\,in^{-1}$$

 h_e = Longitud del elemento finito

Solución del sistema de ecuaciones para $(T_1), (T_2), (T_3)$ y (Q_1^1) .

UNI $T_1 = 218.85^{\circ}F$ D A $T_2 = 191.07^{\circ}F$ M A $T_3 = 166.18^{\circ}F$ VO LEO DIRECCIÓN GENERAL DE BIBLIOTECAS TABLA 2.3

Comparación de resultados elemento finito solución exacta

	Temperatura	Temperatura
Distancia desde la base	Tres elementos lineales	Solución exacta
x in	T°F	T ^o F
0	250	250
1	218.85	218.75
2	191.07	191.12
3	166.18	166.72

$$-Q_1^1 = (3-x)\frac{dT}{dx} = 94.49\frac{e_F}{in}$$

Q = Flujo de calor en la base de la aleta

$$-Q = k(bt) \frac{dT}{dx} \bigg|_{x = 0} = (120 \frac{BTU}{hr - ft - {}^{o}F})(0.25 \text{ in})(32.83 \frac{{}^{o}F}{in})$$
$$-Q = 984.9 \frac{BTU}{hr - ft}$$

Comparación de resultados para la variablesecundaria elemento finito solución exacta

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS **Ejemplo 2.4 a.** Considere flujo estable laminar de dos fluidos inmisibles e incompresibles en una región de dos placas paralelas estacionarias bajo la influencia de un gradiante de presión.

Las velocidades en el fluido son ajustadas tal que la parte media inferior de la región esta llena con el fluido (μ_1) (fluido mas denso y más viscoso) y la parte media superior esta llena con el fluido (μ_2) (fluido menos denso y menos viscoso), como lo muestra la figura.2.4. Queremos determinar la distribución de velocidades en cada región usando el método de elemento finito.

Las ecuaciones gobernantes para cada fluido son

Solucionar el problema usando.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN I) Cuatro elementos lineales DIRECCIÓN GENERAL DE BIBLIOTECAS

Figura 2.4 Fluidos en una tubería

PASO 1: DISCRETIZACIÓN

PASO 2: DERIVACIÓN DE LAS ECUACIONES DEL ELEMENTO

Construcción de la forma débil.
Para el fluido más viscoso.

$$0 = \int_{A}^{V_B} w \left[-\mu_1 \frac{d^2 u_1}{dy^2} - f_0 \right] dy$$

$$0 = \int_{A}^{V_B} \left[\mu_1 \frac{dw}{dy} \frac{du_1}{dy} - wf_0 \right] dy - \mu_1 w \frac{du_1}{dy} \frac{y_B}{y_A}$$

$$0 = \int_{A}^{V_B} \left[\mu_1 \frac{dw}{dy} \frac{du_1}{dy} - wf_0 \right] dy - \left[w(y_B) \left(\mu_1 \frac{du_1}{dy} \right) \right]_{Y_B} - w(y_A) \left(\mu_1 \frac{du_1}{dy} \right) \right]_{Y_A}$$

$$0 = \int_{A}^{V_B} \left[\mu_1 \frac{dw}{dy} \frac{du_1}{dy} - wf_0 \right] dy - \left[w(y_B) \left(\mu_1 \frac{du_1}{dy} \right) \right]_{Y_B} - w(y_A) \left(\mu_1 \frac{du_1}{dy} \right) \right]_{Y_A}$$

$$0 = \int_{A}^{V_B} \left[\mu_1 \frac{dw}{dy} \frac{du_1}{dy} - wf_0 \right] dy - \sum_{j=1}^n w(y_j^e) \mathcal{Q}_j^e$$

Suponer la forma de la solución aproximada sobre un elemento finito.

Aproximación Lineal.

$$u_1 \bigg|^e = \sum_{j=1}^2 u_j^e \psi_j^e(y)$$

Sustituir la solución aproximada en la forma débil.

$$0 = \int_{y_{A}}^{y_{B}} \left[\mu_{1} \frac{d\psi_{1}^{e}}{dy} \left(\sum_{j=1}^{2} u_{j}^{e} \frac{d\psi_{j}^{e}}{dy} \right) - \psi_{1}^{e} f_{0} \right] dy - \sum_{j=1}^{2} \psi_{1}^{e} (y_{j}^{e}) Q_{j}^{e}$$
$$0 = \int_{y_{A}}^{y_{B}} \left[\mu_{1} \frac{d\psi_{2}^{e}}{dy} \left(\sum_{j=1}^{2} u_{j}^{e} \frac{d\psi_{j}^{e}}{dy} \right) - \psi_{2}^{e} f_{0} \right] dy - \sum_{j=1}^{2} \psi_{2}^{e} (y_{j}^{e}) Q_{j}^{e}$$

Las ecuaciones algebraicas pueden escribirse como:

Las ecuaciones anteriores pueden expresarse en términos de los coeficientes ($K_{ij}^{e}, f_{i}^{e}, Q_{i}^{e}$).

$$K_{11}^{e}u_{1}\frac{e}{1} + K_{12}^{e}u_{1}\frac{e}{2} = f_{1}^{e} + Q_{1}^{e}$$
$$K_{21}^{e}u_{1}\frac{e}{1} + K_{22}^{e}u_{1}\Big|_{2}^{e} = f_{2}^{e} + Q_{2}^{e}$$

En notación matricial.

$$\left[K^{e}\right]\left\{u_{1}\right|^{e}\right\} = \left\{f^{e}\right\} + \left\{Q^{e}\right\}$$

Para una malla con elementos lineales, la matriz de coeficientes $[K^e]$ y el vector $\{f^e\}$ se calculan de la siguiente manera.

 $K_{22}^e = \mu_1 \int_0^{h_e} \frac{d\psi_2^e}{dy} \frac{d\psi_2^e}{dy} \frac{d\overline{y}}{d\overline{y}} = \frac{\mu_1}{h_e} \text{ AL DE BIBLIOTECAS}$

$$\begin{bmatrix} K^e \end{bmatrix} = \frac{\mu_1}{h_e} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

Elemento(1) $K_{11}^{1}u_{1}\Big|_{1}^{1} + K_{12}^{1}u_{1}\frac{1}{2} = f_{1}^{1} - Q_{1}^{1}$ $K_{21}^{1}u_{1}\Big|_{1}^{1} + K_{22}^{1}u_{1}\Big|_{2}^{1} = f_{2}^{1} + Q_{2}^{1}$ Elemento(2) $K_{11}^2 u_1 \Big|_1^1 + K_{12}^2 u_1 \Big|_2^1 = f_1^2 - Q_1^2$ $K_{21}^2 u_1 \Big|_1^1 + K_{22}^2 u_1 \Big|_2^1 = f_2^2 + Q_2^2$ Elemento(3) $K_{11}^3 u_2 \Big|_1^1 + K_{12}^3 u_2 \Big|_2^1 = f_1^3 - Q_1^3$ $K_{21}^{3}u_{2}\Big|_{1}^{1} + K_{22}^{3}u_{2}\Big|_{2}^{1} = f_{2}^{3} + Q_{2}^{3}$ Elemento(4) $K_{11}^4 u_2 \Big|_1^1 + K_{12}^4 u_2 \Big|_2^1 = f_1^4 - Q_1^4$ ÆÓ $K_{21}^4 u_2 \Big|_1^1 + K_{22}^4 u_2 \Big|_2^1 = f_2^4 + Q_2^4$ MA DE NUEVO UN DIRECCIÓN $u_{l_1} = U_1$ BIBLIO ECAS $u_1 \Big|_2^1 = u_1 \Big|_1^2 = U_2$ $u_2 \Big|_2^2 = u_2 \frac{3}{1} = U_3$ $u_2\Big|_2^3 = u_2\frac{4}{1} = U_4$ $u_2 \frac{4}{2} = U_5$

Las ecuaciones pueden expresarse en forma matricial.

$$\begin{bmatrix} K_{11}^{1} & K_{12}^{2} & 0 & 0 & 0 \\ K_{21}^{1} & (K_{22}^{1} + K_{11}^{2}) & K_{12}^{2} & 0 & 0 \\ 0 & K_{21}^{2} & (K_{22}^{2} + K_{11}^{3}) & K_{12}^{3} & 0 \\ 0 & 0 & K_{21}^{3} & (K_{22}^{3} + K_{11}^{4}) & K_{12}^{4} \\ 0 & 0 & 0 & K_{21}^{3} & (K_{22}^{3} + K_{11}^{4}) & K_{12}^{4} \\ 0 & 0 & 0 & K_{21}^{4} & K_{22}^{4} \end{bmatrix} \begin{bmatrix} U_{1} \\ U_{2} \\ U_{3} \\ U_{4} \\ U_{5} \end{bmatrix} = \begin{bmatrix} f_{1}^{1} \\ f_{2}^{1} + f_{1}^{2} \\ f_{2}^{2} + f_{1}^{3} \\ f_{2}^{3} + f_{1}^{4} \\ f_{2}^{4} \end{bmatrix} + \begin{bmatrix} -Q_{1}^{1} \\ Q_{2}^{1} + Q_{1}^{2} \\ Q_{2}^{2} + Q_{1}^{3} \\ Q_{2}^{2} + Q_{1}^{3} \\ Q_{2}^{3} + Q_{1}^{4} \\ Q_{2}^{4} \end{bmatrix}$$

PASO 4: IMPOSICIÓN DE LAS CONDICIONES FRONTERA

PASO 5: SOLUCIÓN DE LAS ECUACIONES DIRECCIÓN GENERAL DE BIBLIOTECAS

Datos:

$$b = 0.5 \ m \qquad h_e = 0.25 \ m$$

$$P_0 = 200 \ kPa \qquad P_L = 190 \ kPa \qquad L = 5000 \ m$$

$$f_0 = \frac{P_0 - P_L}{L} = 2\frac{N}{m^3}$$

$$m = 0.01 \ P_0 = 5 \qquad cm/c \ a \ T = 10$$

 $\mu_1 = 0.01 \ Pa - s \qquad s.g_1 = 0.86 \ (petroleo \ crudo \ a \ T = 10^\circ c)$ $\mu_2 = 0.00035 \ Pa - s \qquad s.g_2 = 0.68 \ (gasolina \ a \ T = 10^\circ c)$

$$\begin{bmatrix} 0.04 & -0.04 & 0 & 0 & 0 \\ -0.04 & 0.08 & -0.04 & 0 & 0 \\ 0 & -0.04 & 0.0414 & -0.0014 & 0 \\ 0 & 0 & -0.0014 & 0.0028 & -0.0014 \\ 0 & 0 & 0 & -0.0014 & 0.0014 \end{bmatrix} \begin{bmatrix} 0 \\ U_2 \\ U_3 \\ U_4 \\ 0 \end{bmatrix} = 0.25 \begin{bmatrix} 1 \\ 2 \\ 2 \\ 1 \end{bmatrix} + \begin{bmatrix} -Q_1^1 \\ 0 \\ 0 \\ 0 \\ Q_2^4 \end{bmatrix}$$

Solución del sistema de ecuaciones para $(U_2), (U_3), (U_4), (Q_1^1)$ y (Q_2^4)

 $U_2 = 30.48 \frac{m}{seg}$ $U_3 = 48.30 \frac{m}{seg}$ $U_4 = 202.72 \frac{m}{seg}$

	Velocidad	Velocidad
Distancia	Cuatro elementos lineales	Solución exacta
y m	U m seg	U m seg
-0.50	0.0	0.0
-0.25	30.48	30.40
0.00	48.30	48.28
DIR ^{0.25} CIÓN	GENER 202.72 BIBL	OTE 202.67
0.50	0.0	0.0

PASO 5: POSTPROCESAMOENTO DE LAS SOLUCIONES

$$Q_1^1 = 1.469 \frac{N}{m^2}$$
 $Q_2^4 = -0.533 \frac{N}{m^2}$

Ejemplo 2.4 b. Determine la distribución de velocidades en cada region ejemplo (2.4 a), usando dos elementos cuadráticos

II) Para dos elementos cuadráticos

Suponer la forma de la solución aproximada sobre un elemento finito

Aproximación Cuadrática

 $u_{1}^{e} = \sum_{j=1}^{3} u_{j}^{e} \psi_{j}^{e}(y)$ Sustituir la solución aproximada en la forma débil. $0 = \int_{A}^{V_{B}} \left[\mu_{1} \frac{d\psi_{1}^{e}}{dy} \left(\sum_{j=1}^{3} u_{j}^{e} \frac{d\psi_{j}^{e}}{dy} \right) - \psi_{1}^{e} f_{0} \right] dy - \sum_{j=1}^{3} \psi_{1}^{e} (y_{j}^{e}) Q_{j}^{e}$ $0 = \int_{V_{A}}^{V_{B}} \left[\mu_{1} \frac{d\psi_{2}^{e}}{dy} \left(\sum_{j=1}^{3} u_{j}^{e} \frac{d\psi_{j}^{e}}{dy} \right) - \psi_{2}^{e} f_{0} \right] dy - \sum_{j=1}^{3} \psi_{2}^{e} (y_{j}^{e}) Q_{j}^{e}$ $0 = \int_{V_{A}}^{V_{B}} \left[\mu_{1} \frac{d\psi_{2}^{e}}{dy} \left(\sum_{j=1}^{3} u_{j}^{e} \frac{d\psi_{j}^{e}}{dy} \right) - \psi_{2}^{e} f_{0} \right] dy - \sum_{j=1}^{3} \psi_{2}^{e} (y_{j}^{e}) Q_{j}^{e}$

Las ecuaciones algebraicas pueden escribirse como:

$$0 = \sum_{j=1}^{3} K_{ij}^{e} u_{j}^{e} - f_{i}^{e} - Q_{i}^{e} \qquad (i = 1, 2, 3)$$

donde

$$K_{ij}^{e} = \mu_{1} \int_{\mathcal{Y}_{A}}^{\mathcal{Y}_{B}} \frac{d\psi_{i}^{e}}{dy} \frac{d\psi_{j}^{e}}{dy} dy$$
$$f_{i}^{e} = f_{0} \int_{\mathcal{Y}_{A}}^{\mathcal{Y}_{B}} \psi_{i}^{e} dy$$
$$Q_{i}^{e} = \sum_{j=1}^{3} \psi_{j}^{e} (y_{i}^{e}) Q_{j}^{e}$$

Las ecuaciones anteriores pueden expresarse en términos de los

coefficientes
$$(K_{ij}^{e}), (f_{i}^{e}), (Q_{i}^{e}).$$

 $K_{11}^{e}u_{1}^{e} + K_{12}^{e}u_{1}^{e} + K_{13}^{e}u_{1}|_{3}^{e} = f_{1}^{e} + Q_{1}^{e}$
 $K_{21}^{e}u_{1}^{e} + K_{22}^{e}u_{1}^{e} + K_{23}^{e}u_{1}|_{3}^{e} = f_{2}^{e} + Q_{2}^{e}$
 $K_{31}^{e}u_{1}^{e} + K_{32}^{e}u_{1}^{e} + K_{33}^{e}u_{1}^{e} = f_{3}^{e} + Q_{2}^{e}$
UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN
En notación matricial.
 $[K^{e}][u_{1}|^{e}] = \{f^{e}\} + \{Q^{e}\}$

Para una malla con elementos cuadraticos, la matriz de coeficientes $[K^e]$ y el vector $\{f^e\}$ se calculan de la siguiente manera.

$$K_{ij}^{e} = \mu_{1} \int_{0}^{h_{e}} \frac{d\psi_{i}^{e}}{dy} \frac{d\psi_{j}^{e}}{dy} dy$$

$$K_{11}^{e} = \mu_{1} \int_{0}^{h_{e}} \frac{d\psi_{1}^{e}}{dy} \frac{d\psi_{1}^{e}}{dy} dy = \mu_{1} \int_{0}^{h_{e}} \left(\frac{-3}{h_{e}} + \frac{4y}{(h_{e})^{2}}\right)^{2} dy$$

$$K_{11}^{e} = \frac{7}{3} \left(\frac{\mu_{1}}{h_{e}}\right)$$

$$K_{12}^{e} = \mu_{1} \int_{0}^{h_{e}} \frac{d\psi_{1}^{e}}{dy} \frac{d\psi_{2}^{e}}{dy} dy = \mu_{1} \int_{0}^{h_{e}} \left(\frac{-3}{h_{e}} + \frac{4y}{(h_{e})^{2}}\right) \left(\frac{4}{h_{e}} - \frac{8y}{(h_{e})^{2}}\right) dy$$

$$K_{12}^{e} = -\frac{8}{3} \left(\frac{\mu_{1}}{h_{e}}\right)$$

$$K_{13}^{e} = \frac{1}{3} \left(\frac{\mu_{1}}{h_{e}}\right)$$

$$K_{13}^{e} = \frac{1}{3} \left(\frac{\mu_{1}}{h_{e}}\right)$$

$$K_{21}^{e} = K_{12}^{e}$$

 $K_{22}^{e} = \mu_{1} \int_{0}^{h_{e}} \frac{d\psi_{2}^{e}}{dy} \frac{d\psi_{2}^{e}}{dy} dy = \mu_{1} \int_{0}^{h_{e}} \begin{pmatrix} 4 & -8y \\ h_{e} & (h_{e})^{2} \end{pmatrix} \begin{pmatrix} \frac{4}{h_{e}} - \frac{8y}{(h_{e})^{2}} \end{pmatrix} dy$ $K_{22}^{e} = \frac{16}{3} \begin{pmatrix} \mu_{1} \\ h_{e} \end{pmatrix}$

$$K_{23}^{e} = \mu_{1} \int_{0}^{h_{e}} \frac{d\psi_{2}^{e}}{d\overline{y}} \frac{d\psi_{3}^{e}}{d\overline{y}} dy = \mu_{1} \int_{0}^{h_{e}} \left(\frac{4}{h_{e}} - \frac{8y}{(h_{e})^{2}}\right) \left(\frac{4y}{(h_{e})^{2}} - \frac{1}{h_{e}}\right) dy$$
$$K_{23}^{e} = -\frac{8}{3} \left(\frac{\mu_{1}}{h_{e}}\right)$$

$$K_{33}^{e} = \mu_{1} \int_{0}^{h_{e}} \frac{d\psi_{3}^{e}}{dy} \frac{d\psi_{3}^{e}}{dy} dy = \mu_{1} \int_{0}^{h_{e}} \left(\frac{4y}{(h_{e})^{2}} - \frac{1}{h_{e}}\right)^{2} dy$$
$$K_{33}^{e} = \frac{7}{3} \left(\frac{\mu_{1}}{h_{e}}\right)$$

$$\begin{bmatrix} K^e \end{bmatrix} = \frac{\mu_1}{3h_e} \begin{bmatrix} 7 & -8 & 1 \\ -8 & 16 & -8 \\ 1 & -8 & 7 \end{bmatrix}$$

UNIV $f_2^e = f_0 \int_0^{h_e} \psi_2^e dy = f_0 \int_0^{h_e} \left(\frac{4\bar{y}}{h_e}\right) \left(1 - \frac{\bar{y}}{h_e}\right) d\bar{y}$ DE NUEVO LEÓN $f_2^e = \frac{2f_0 h_e}{3}$ $f_3^e = f_0 \int_0^{h_e} \psi_3^e d\bar{y} = f_0 \int_0^{h_e} \left(-\frac{\bar{y}}{h_e}\right) \left(1 - \frac{2\bar{y}}{h_e}\right) d\bar{y}$ $f_3^e = \frac{f_0 h_e}{6}$ $\left\{f^e\right\} = \frac{f_0 h_e}{3} \begin{cases} 0.5\\2\\0.5 \end{cases}$

PASO 3: CONECTIVIDAD DE LOS ELEMENTOS

Para una malla con dos elementos cuadráticos.

Elemento(1)

$$K_{11}^{1}u_{1}\Big|_{1}^{1} + K_{12}^{1}u_{1}\Big|_{2}^{1} + K_{13}^{1}u_{1}\Big|_{3}^{1} = f_{1}^{1} - Q_{1}^{1}$$

$$K_{21}^{1}u_{1}\Big|_{1}^{1} + K_{22}^{1}u_{1}\frac{1}{2} + K_{23}^{1}u_{1}\frac{1}{3} = f_{2}^{1}$$

$$K_{31}^{1}u_{1}\frac{1}{1} + K_{32}^{1}u_{1}\frac{1}{2} + K_{33}^{1}u_{1}\Big|_{3}^{1} = f_{3}^{1} + Q_{3}^{1}$$

Elemento(2)

$$K_{11}^{2}u_{1}\Big|_{1}^{2} + K_{12}^{2}u_{1}\Big|_{2}^{2} + K_{13}^{2}u_{1}\Big|_{3}^{2} = f_{1}^{2} - Q_{1}^{2}$$

$$K_{21}^{2}u_{1}\Big|_{1}^{2} + K_{22}^{2}u_{1}\Big|_{2}^{2} + K_{23}^{2}u_{1}\Big|_{3}^{2} = f_{2}^{2}$$

$$K_{31}^{2}u_{1}\Big|_{1}^{2} + K_{32}^{2}u_{1}\Big|_{2}^{2} + K_{33}^{2}u_{1}\Big|_{3}^{2} = f_{3}^{2} + Q_{3}^{2}$$

Continuidad de la variable primaria

Las ecuaciones pueden expresarse en forma matricial.

$$\begin{bmatrix} K_{11}^{1} & K_{12}^{1} & K_{13}^{1} & 0 & 0 \\ K_{21}^{1} & K_{22}^{1} & K_{23}^{1} & 0 & 0 \\ K_{31}^{1} & K_{32}^{1} & (K_{33}^{1} + K_{11}^{2}) & K_{12}^{2} & K_{13}^{2} \\ 0 & 0 & K_{21}^{2} & K_{22}^{2} & K_{23}^{2} \\ 0 & 0 & K_{31}^{2} & K_{32}^{2} & K_{33}^{2} \end{bmatrix} \begin{bmatrix} U_{1} \\ U_{2} \\ U_{3} \\ U_{4} \\ U_{5} \end{bmatrix} = \begin{bmatrix} f_{1}^{1} \\ f_{2}^{1} \\ f_{3}^{1} + f_{1}^{2} \\ f_{2}^{2} \\ f_{3}^{4} \end{bmatrix} + \begin{bmatrix} -Q_{1}^{1} \\ 0 \\ 0 \\ 0 \\ Q_{3}^{2} \end{bmatrix}$$

0.0466	-0.0533	0.0066	0 1		0		0.5		$-Q_1$	
-0.0533	0.1066	- 0.0533	0	0	U_2	÷.	2		0	
0.0066	- 0.0533	0.0482	- 0.0018	0.0002	$\{U_3\}$	= 0.333	1	++	0	ł
0	0	-0.0018	0.0037	-0.0018	U_4		2		0	
0	0	0.0002	- 0.0018	0.0016	0		0.5		O_1^2	

Solución del sistema de ecuaciones para $(U_2), (U_3), (U_4), (Q_1^1)$ y (Q_2^3)

 $U_2 = 30.19 \frac{m}{seg}$ $U_3 = 47.88 \frac{m}{seg}$ $U_4 = 203.29 \frac{m}{seg}$

TABLA 2.4b

Comparación de resultados elemento finito solución exacta

	Velocidad	Velocidad				
Distancia	Dos elementos cuadráticos	Solución exacta				
y m	U m seg	U m seg				
-0.50 ALERE FLAMMAN	0.0	0.0				
-0.25	30.19	30.40				
0.00	47.88	48.28				
0.25	203.29	202.67				
0.50	0.0	0.0				

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN PASO 5: POSTPROCESAMOENTO DE LAS SOLUCIONES DIRECCIÓN GENERAL DE BIBLIOTECAS

 $Q_1^{\mathsf{I}} = 1.45 \frac{N}{m^2}$ $Q_2^3 = -0.522 \frac{N}{m^2}$

ECUACIÓN DE CUARTO ORDEN EN UNA DIMENSIÓN

FLEXIÓN DE VIGAS

Se analizara la formulación del elemento finito en una dimensión de la ecuación diferencial de cuarto orden usando la teoría de Euler-Bernoulli.

En la teoría de Euler-Bernoulli, la flexión transversal (w) de la viga es gobernada por una ecuación diferencial de cuarto orden.

 $\frac{d^2}{dx^2} \left(b \frac{d^2 w}{dx^2} \right) = f(x) \qquad \Omega = (0, L)$ Donde b = b(x) y f = f(x) son funciones dadas de (x) (datos), y (w) es la variable dependiente. La función (b = EI) es el producto del modulo de elasticidad (E) y el momento de inercia (I) de la viga, (f) es la carga transversal. PROBLEMA MODELO PROBLEMA MODELO DRECONGENERAL DE BIBLIOTECAS

Figura 2.5 Flexión de viga

$$\frac{d^2}{dx^2} \left(b \frac{d^2 w}{dx^2} \right) = f(x) \qquad M = b \frac{d^2 w}{dx^2}$$
$$W = \frac{dM}{dx} \qquad \frac{dV}{dx} = f$$

PASO 1: DISCRETIZACIÓN DEL DOMINIO

El dominio de la estructura (longitud de la viga) es dividido en un conjunto de elementos, cada elemento tiene almenos dos nodos.

a) Construcción de la forma débil

$$d^{2} \left(b \frac{d^{2} w}{dx^{2}} \right) = f(x)$$

$$0 = \int_{e}^{e_{et}} \sqrt{\frac{d^{2}}{dx^{2}} \left(b \frac{d^{2} w}{dx^{2}} \right) - f} dx$$

$$0 = \int_{e}^{e_{et}} \left[-\frac{dv}{dx} \frac{d}{dx} \left(b \frac{d^{2} w}{dx^{2}} \right) - vf \right] dx - \left[v \frac{d}{dx} \left(b \frac{d^{2} w}{dx^{2}} \right) \right]_{x_{e}}^{x_{e+1}}$$

$$0 = \int_{e}^{e_{et}} \left[b \frac{d^{2} v}{dx^{2}} \frac{d^{2} w}{dx^{2}} - vf \right] dx + \left[v \frac{d}{dx} \left(b \frac{d^{2} w}{dx^{2}} \right) - \frac{dv}{dx} \left(b \frac{d^{2} w}{dx^{2}} \right) \right]_{x_{e}}^{x_{e+1}}$$

$$(2.2)$$
donde $v(x)$ es la función de peso que es dos veces diferenciable con respecto a (x) .
Introduciremos la siguiente notación:
$$Q_{1}^{e} = \left[\frac{d}{dx} \left(b \frac{d^{2} w}{dx^{2}} \right) \right]_{x_{e}}^{x_{e}} \qquad Q_{2}^{e} = \left[b \frac{d^{2} w}{dx^{2}} \right]_{x_{e}}^{x_{e}}$$

$$(2.3)$$

$$Q_{1}^{e} = -\left[\frac{d}{dx} \left(b \frac{d^{2} w}{dx^{2}} \right) \right]_{x_{e+1}}^{x_{e+1}} \qquad Q_{2}^{e} = -\left[b \frac{d^{2} w}{dx^{2}} \right]_{x_{e+1}}^{x_{e+1}}$$

Donde (Q_1^e) y (Q_3^e) representan las fuerzas de corte, (Q_2^e) y (Q_4^e) representan los momentos flexionantes (fig.2.6b). Las cantidades (Q_i^e) contienen momentos flexionantes, que pueden también ser vistos como "fuerzas flexionantes," el conjunto $\{Q_1^e, Q_2^e, Q_3^e, Q_4^e\}$ es a menudo referido como las *fuerzas generalizadas*. Los correspondientes desplazamientos y rotaciones son llamados *desplazamientos generalizados*.

$$0 = \int_{x_e}^{x_{e+1}} \left(b \frac{d^2 v}{dx^2} \frac{d^2 w}{dx^2} - v f \right) dx - v(x_e) Q_1^e - \left(-\frac{dv}{dx} \right) \Big|_{x_e} Q_2^e - v(x_{e+1}) Q_3^e - \left(-\frac{dv}{dx} \right) \Big|_{x_{e+1}} Q_4^e$$

$$0 = B(v, w) - l(v)$$
(2.4)

b) Suponer la forma de la solución aproximada sobre un elemento finito.

$$w^e = \sum_{j=1}^4 u_j^e \Phi_j^e \tag{2.5}$$

Las funciones de interpolación (Φ_i^e) (interpolación cubica de hermite) pueden ser expresadas en términos de las coordenadas locales (x):

La primera, segunda y tercera derivada de (Φ_i^e) con respecto a (x) son.

$$\frac{d\Phi_1^e}{d\bar{x}} = -\frac{6}{h_e} \frac{\bar{x}}{h_e} \left(1 - \frac{\bar{x}}{h_e}\right)$$
$$\frac{d\Phi_2^e}{d\bar{x}} = -\left[1 + 3\left(\frac{\bar{x}}{h_e}\right)^2 - 4\frac{\bar{x}}{h_e}\right]$$
$$\frac{d\Phi_3^e}{d\bar{x}} = -\frac{d\Phi_1^e}{dx}$$
$$\frac{d\Phi_4^e}{dx} = -\frac{\bar{x}}{h_e} \left(3\frac{\bar{x}}{h_e} - 2\right)$$

$$d^{2} \Phi_{1}^{e} = -\frac{6}{h_{e}} \left(1 - 2 \frac{\bar{x}}{h_{e}} \right)$$

$$d^{2} \Phi_{2}^{e} = -\frac{2}{h_{e}} \left(3 \frac{\bar{x}}{\bar{x}} - 1 \right)$$

$$\frac{d^{2} \Phi_{3}^{e}}{d\bar{x}^{2}} = -\frac{d^{2} \Phi_{1}^{e}}{d\bar{x}^{2}}$$

$$d^{2} \Phi_{4}^{e} = -\frac{2}{h_{e}} \left(3 \frac{\bar{x}}{\bar{x}} - 1 \right)$$

$$\frac{d^{2} \Phi_{4}^{e}}{dx^{-2}} = -\frac{2}{h_{e}} \left(3 \frac{\bar{x}}{h_{e}} - 1 \right)$$

$$\frac{d^{3} \Phi_{1}^{e}}{d\bar{x}^{-3}} = \frac{12}{(h_{e})^{3}}$$

$$\frac{d^{3} \Phi_{2}^{e}}{d\bar{x}^{-3}} = -\frac{6}{(h_{e})^{2}}$$

$$\frac{d^{3} \Phi_{4}^{e}}{d\bar{x}^{-3}} = -\frac{6}{(h_{e})^{2}}$$

$$\frac{d^{3} \Phi_{4}^{e}}{d\bar{x}^{-3}} = -\frac{6}{(h_{e})^{2}}$$

$$\frac{d^{3} \Phi_{4}^{e}}{d\bar{x}^{-3}} = -\frac{6}{(h_{e})^{2}}$$

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

MODELO DEL ELEMENTO FINITO. El modelo del elemento finito de la viga Euler-Bernoulli es obtenida sustituyendo las funciones de interpolación por w y las Φ_j por las funciones de peso v en la forma débil.

$$0 = \sum_{j=1}^{4} \left(\int_{x_e}^{x_{e+1}} b \frac{d^2 \Phi_i^e}{dx^2} \frac{d^2 \Phi_j^e}{dx^2} dx \right) u_j^e - \int_{x_e}^{x_{e+1}} \Phi_i^e f dx - Q_i^e$$
(2.9 a)

$$\sum_{j=1}^{4} K_{ij}^{e} u_{j}^{e} - F_{i}^{e} = 0$$
 (2.9 b)
donde

TONOMA

$$K_{ij}^{e} = \int_{x_{e}}^{x_{e+1}} b \frac{d^2 \Phi_i^{e}}{dx^2} \frac{d^2 \Phi_j^{e}}{dx^2} dx$$

$$F_i^{e} = \int_{x_{e}}^{x_{e+1}} \Phi_i^{e} f dx + Q_i^{e}$$
(2.10)

Note que los coeficientes (K_{ij}^e) son simétricos $(K_{ij}^e = K_{ji}^e)$. En notación matricial, pueden escribirse como.

$$\begin{bmatrix} K_{11}^{e} & K_{12}^{e} & K_{13}^{e} & K_{14}^{e} \\ K_{21}^{e} & K_{22}^{e} & K_{23}^{e} & K_{24}^{e} \\ K_{31}^{e} & K_{32}^{e} & K_{33}^{e} & K_{34}^{e} \\ K_{41}^{e} & K_{42}^{e} & K_{43}^{e} & K_{44}^{e} \end{bmatrix} = \begin{bmatrix} u_{1}^{e} \\ u_{2}^{e} \\ u_{3}^{e} \\ u_{4}^{e} \end{bmatrix} = \begin{bmatrix} f_{1}^{e} \\ f_{2}^{e} \\ f_{3}^{e} \\ f_{4}^{e} \end{bmatrix} + \begin{bmatrix} Q_{1}^{e} \\ Q_{2}^{e} \\ Q_{3}^{e} \\ Q_{4}^{e} \end{bmatrix}$$
(2.11)
Para el caso en el que $(b = EI)$ y (f) son constantes sobre un elemento, los
elementos de la matriz de rigidez $\begin{bmatrix} K^{e} \end{bmatrix}$ y el vector fuerza $\{F^{e}\}$ tienen las siguientes
formas especificas (ver figura 2.5).

$$\begin{bmatrix} K^{e} \end{bmatrix} = \frac{2b}{h^{3}} \begin{bmatrix} 6 & -3h & -6 & -3h \\ -3h & 2h^{2} & 3h & h^{2} \\ -6 & 3h & 6 & 3h \\ -3h & h^{2} & 3h & 2h^{2} \end{bmatrix}$$
(2.12)

$$\left\{F^{e}\right\} = \frac{fh}{12} \begin{cases} 6\\ -h\\ 6\\ h \end{cases} + \begin{cases} Q_{1}\\ Q_{2}\\ Q_{3}\\ Q_{4} \end{cases}$$

PASO 3: CONECTIVIDAD DE LOS ELEMENTOS

Para una malla con dos elementos

DIRECCIÓN GENERAL DE BIBLIOTECAS

Balance de la variable primaria

$$u_{1}^{1} = U_{1}$$
$$u_{2}^{1} = U_{2}$$
$$u_{3}^{1} = u_{1}^{2} = U_{3}$$
$$u_{4}^{1} = u_{2}^{2} = U_{4}$$
$$u_{3}^{2} = U_{5}$$
$$u_{2}^{4} = U_{6}$$

(2.13)

$$2EI \begin{bmatrix} 6 & -3h & -6 & -3h & 0 & 0 \\ -3h & 2h^{2} & 3h & h^{2} & 0 & 0 \\ -6 & 3h & 6+6 & 3h-3h & -6 & -3h \\ -3h & h^{2} & 3h-3h & 2h^{2}+2h^{2} & 3h & h^{2} \\ 0 & 0 & -6 & 3h & 6 & 3h \\ 0 & 0 & -3h & h^{2} & 3h & 2h^{2} \end{bmatrix} \begin{bmatrix} U_{1} \\ U_{2} \\ U_{3} \\ U_{4} \\ U_{5} \\ U_{6} \end{bmatrix} =$$

$$= \int_{12}^{fh} \begin{cases} 6 \\ -h \\ 6h \\ h-h \\ 6h \\ h \\ h \\ U_{5} \\ U_{6} \end{bmatrix} = \begin{cases} 2I \\ Q_{1}^{1} + Q_{1}^{2} \\ Q_{2}^{1} + Q_{1}^{2} \\ Q_{2}^{2} \\ Q_{$$

Solución del sistema de ecuaciones para $(Q_1^1, Q_2^1, U_3, U_5, U_6)$.

Ejemplo 2.5. Para el problema de la viga mostrada en la (figura. 2.8) determine

a) Las variables primarias desconocidas (desplazamientos generalizados)

b) Las variables secundarias desconocidas(fuerzas generalizadas)

PASO 1: DISCRETIZACIÓN DEL DOMINIO

PASO 2: DERIVACIÓN DE LAS ECUACIONES DEL ELEMENTO

En este paso se aísla un elemento típico $\Omega^e = (x_e, x_{e+1})$

b) Suponer la forma de la solución aproximada sobre un elemento finito

$$w^e = \sum_{j=1}^4 u_j^e \Phi_j^e$$

MODELO DEL ELEMENTO FINITO. El modelo del elemento finito de la viga Euler-Bernoulli es obtenida sustituyendo las funciones de interpolación por (w) y las (Φ_j) por las funciones de peso (v) en la forma débil.

$$0 = \sum_{j=1}^{4} \left(\int_{x_e}^{x_{e+1}} b \frac{d^2 \Phi_i^e}{dx^2} \frac{d^2 \Phi_j^e}{dx^2} dx \right) u_j^e - \int_{x_e}^{x_{e+1}} \Phi_i^e f dx - Q_i^e$$

$$\sum_{j=1}^{4} K_{ij}^e u_j^e - F_i^e = 0$$

donde:

$$K_{ij}^{e} = \int_{x_e}^{x_{e+1}} b \frac{d^2 \Phi_i^e}{dx^2} \frac{d^2 \Phi_j^e}{dx^2} dx \qquad F_i^{e} = \int_{x_e}^{x_{e+1}} \Phi_i^e f dx + Q_i^e$$

PASO 3: CONECTIVIDAD DE LOS ELEMENTOS

97

Elemento(1)

$$K_{11}^{1}u_{1}^{1} + K_{12}^{1}u_{2}^{1} + K_{13}^{1}u_{3}^{1} + K_{14}^{1}u_{4}^{1} = f_{1}^{1} + Q_{1}^{1}$$

$$K_{21}^{1}u_{1}^{1} + K_{22}^{1}u_{2}^{1} + K_{23}^{1}u_{3}^{1} + K_{24}^{1}u_{4}^{1} = f_{2}^{1} + Q_{2}^{1}$$

$$K_{31}^{1}u_{1}^{1} + K_{32}^{1}u_{2}^{1} + K_{33}^{1}u_{3}^{1} + K_{34}^{1}u_{4}^{1} = f_{3}^{1} + Q_{3}^{1}$$

$$K_{41}^{1}u_{1}^{1} + K_{42}^{1}u_{2}^{1} + K_{43}^{1}u_{3}^{1} + K_{44}^{1}u_{4}^{1} = f_{4}^{1} + Q_{4}^{1}$$

Elemento(2)

$$K_{11}^{2}u^{2} + K_{12}^{2}u_{2}^{2} + K_{13}^{2}u_{3}^{2} + K_{14}^{2}u_{4}^{2} = Q_{1}^{2}$$

$$K_{21}^{2}u^{2} + K_{22}^{2}u_{2}^{2} + K_{23}^{2}u_{3}^{2} + K_{24}^{2}u_{4}^{2} = Q_{2}^{2}$$

$$K_{31}^{2}u^{2} + K_{32}^{2}u_{2}^{2} + K_{33}^{2}u_{3}^{2} + K_{34}^{2}u_{4}^{2} = Q_{3}^{2}$$

$$K_{41}^{2}u^{2} + K_{42}^{2}u_{2}^{2} + K_{43}^{2}u_{3}^{2} + K_{44}^{2}u_{4}^{2} = Q_{4}^{2}$$
Continuidad de la variable primaria

$$u_{1}^{1} = U_{1}$$

$$u_{2}^{1} = U_{2}$$

$$u_{3}^{2} = U_{5}$$

$$u_{3}^{1} = u_{1}^{2} = U_{3}$$

$$u_{4}^{2} = U_{6}$$
MADAMA DE NUEVO LEÓN

K_{11}^1	K_{12}^{1}			0		$\left(U_{1}\right)$	$\{f_i^l\}$	$\left\{ \begin{array}{c} Q_{\mathbf{i}}^{1} \end{array} \right\}$
K_{21}^{1}	K_{22}^{1}	K ¹ ₂₃	K_{24}^{1}	0	_0_	U_2	f_2^{I}	Q_2^1
K_{31}^{1}	K_{32}^{1}	$(K_{33}^1 + K_{11}^2)$	$(K_{34}^1 + K_{12}^2)$	K_{13}^2	K_{14}^2	$ U_3 $	f_{3}^{1}	$Q_3^1 + Q_1^1$
K_{41}^{1}	K_{42}^{1}	$(K_{43}^1 + K_{21}^2)$	$(K_{44}^1 + K_{22}^1)$	K_{23}^{2}	K_{24}^2	U_4	f_{4}^{1}	$Q_4^1 + Q_2^2$
0	0	K_{31}^2	K_{32}^2	K_{33}^2	K_{34}^2	U_5	0	Q_3^2
0	0	K_{41}^2	K_{42}^2	K_{43}^2	K_{44}^{2}	$\begin{bmatrix} U_6 \end{bmatrix}$	[0]	Q_4^2

$$\begin{bmatrix} K^e \end{bmatrix} = \frac{2b}{h^3} \begin{bmatrix} 6 & -3h & -6 & -3h \\ -3h & 2h^2 & 3h & h^2 \\ -6 & 3h & 6 & 3h \\ -3h & h^2 & 3h & 2h^2 \end{bmatrix} \qquad \begin{cases} F^e \rbrace = \frac{-f_0h}{12} \begin{bmatrix} 6 \\ -h \\ 6 \\ h \end{bmatrix} + \begin{bmatrix} Q_1 \\ Q_2 \\ Q_3 \\ Q_4 \end{bmatrix}$$

$$2EI \begin{bmatrix} 6 & -3h & -6 & -3h & 0 & 0 \\ -3h & 2h^2 & 3h & h^2 & 0 & 0 \\ -6 & 3h & 12 & 0 & -6 & -3h \\ -3h & h^2 & 0 & 4h^2 & 3h & h^2 \\ 0 & 0 & -6 & 3h & 6 & 3h \\ 0 & 0 & -3h & h^2 & 3h & 2h^2 \end{bmatrix} \begin{bmatrix} U_1 \\ U_2 \\ U_3 \\ U_4 \\ U_5 \\ U_6 \end{bmatrix} = \begin{bmatrix} 6 \\ -h \\ 6 \\ h \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} Q_1^1 \\ Q_2^1 \\ Q_3^1 + Q_1^2 \\ Q_3^1 + Q_2^2 \\ Q_3^2 \\ Q_4^2 \end{bmatrix}$$

PASO 4: IMPOSICIÓN DE LAS CONDICIONES FRONTERA

$$U_{1} = 0 \qquad U_{2} = 0 \qquad U_{5} = 0 \qquad U_{6} = 0$$

$$Q_{3}^{1} + Q_{1}^{2} = 0 \qquad Q_{4}^{1} + Q_{2}^{2} = 0$$

$$\begin{bmatrix} 6 & -3h & -6 & -3h & 0 & 0 \\ -3h & 2h^{2} & 3h & h^{2} & 0 & 0 \\ -6 & 3h & 12 & 0 & -6 & -3h \\ h^{3} \begin{bmatrix} 0 \\ -6 & 3h & 12 & 0 & -6 & -3h \\ -3h & h^{2} & 0 & 4h^{2} & 3h & h^{2} \\ 0 & 0 & -6 & 3h & 6 & 3h \\ 0 & 0 & -3h & h^{2} & 3h & 2h^{2} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ U_{3} \\ U_{4} \\ 0 \\ 0 \end{bmatrix} = \frac{-f_{0}h}{12} \begin{bmatrix} 6 \\ -h \\ 6 \\ h \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} Q_{1}^{1} \\ Q_{2}^{1} \\ 0 \\ 0 \\ Q_{3}^{2} \\ Q_{4}^{2} \end{bmatrix}$$

PASO 5: SOLUCIÓN DE LAS ECUACIONES

Solución del sistema de ecuaciones para $(Q_1^1, Q_2^1, U_3, U_4, Q_3^2, Q_4^2)$

UNIVERSIDAD AUTÓNOMA DE NUEVO LEO TABLA 2.5a Comparación de resultados elemento finito solución exacta.

DIRECCION	GENSolución aproximada BI	IOTECAS
	Para dos elementos.	Solución exacta.
U ₃ m	-0.0013	-0.00129
U ₄ rad	-0.0001302	-0.0001300
$Q_{\mathbf{I}}^{1} N$	1624	1625.31
$Q_3^2 N$	374.4	374.69
$Q_2^1 N - m$	2289.33	2293.22
$O_4^2 N - m$	1456	1040.12

2) Malla con cuatro elementos h = 2.5 m

TABLA 2.5b Comparación de resultados elemento finito solución exacta

	Solución aproximada	Solución exacta
$U_3 m$	-0.0009	-0.00089
U ₄ rad	-0.0004	-0.00035
U ₅ m	-0.0013	-0.00128
U ₆ rad	-0.0001	-0.00013
$U_7 m$	-0.0006	-0.00054
U ₈ rad	0.0004	0.000424

Ejemplo 2.6. Para el problema de la viga mostrada en la (figura. 2.9) determine.

a) Las variables primarias desconocidas (desplazamientos generalizados).

b) Las variables secundarias desconocidas(fuerzas generalizadas).

 $h = 20 \text{ in } CIE = 30x10^{6} \frac{Lb_{f}}{in^{2}} \text{ AL DE BIBLIOTECAS}$ $d_{1} = 4 \text{ in } d_{2} = 3 \text{ in } d_{3} = 2 \text{ in}$ $I_{1} = 12.566 \text{ in}^{4} \qquad I_{2} = 3.976 \text{ in}^{4} \qquad I_{3} = 0.785 \text{ in}^{4}$

PASO 1: DISCRETIZACIÓN DEL DOMINIO

PASO 2: DERIVACIÓN DE LAS ECUACIONES DEL ELEMENTO

En este paso se aísla un elemento típico $\Omega^e = (x_e, x_{e+1})$

b) Suponer la forma de la solución aproximada sobre un elemento finito

$$w^e = \sum_{j=1}^4 u_j^e \mathcal{O}_j^e$$

MODELO DEL ELEMENTO FINITO. El modelo del elemento finito de la viga Euler-Bernoulli es obtenida sustituyendo las funciones de interpolación por (w) y las (Φ_j) por las funciones de peso (v) en la forma débil

$$0 = \sum_{j=1}^{4} \left(\int_{x_e}^{x_{e+1}} b \frac{d^2 \Phi_i^e}{dx^2} \frac{d^2 \Phi_j^e}{dx^2} dx \right) \mu_j^e - Q_i^e$$

$$\sum_{j=1}^4 K_{ij}^e u_j^e - F_l^e = 0$$

PASO 3: CONECTIVIDAD DE LOS ELEMENTOS DE NUEVO LEÓN Para una malla con cuatro elementos. DIRECCIÓN GENERAL DE BIBLIOTECAS

Elemento(1)

$$K_{11}^{1}u_{1}^{1} + K_{12}^{1}u_{2}^{1} + K_{13}^{1}u_{3}^{1} + K_{14}^{1}u_{4}^{1} = Q_{1}^{1}$$

$$K_{21}^{1}u_{1}^{1} + K_{22}^{1}u_{2}^{1} + K_{23}^{1}u_{3}^{1} + K_{24}^{1}u_{4}^{1} = Q_{2}^{1}$$

$$K_{31}^{1}u_{1}^{1} + K_{32}^{1}u_{2}^{1} + K_{33}^{1}u_{3}^{1} + K_{34}^{1}u_{4}^{1} = Q_{3}^{1}$$

$$K_{41}^{1}u_{1}^{1} + K_{42}^{1}u_{2}^{1} + K_{43}^{1}u_{3}^{1} + K_{44}^{1}u_{4}^{1} = Q_{4}^{1}$$

Elemento(2)

$$K_{11}^{2}u_{1}^{2} + K_{12}^{2}u_{2}^{2} + K_{13}^{2}u_{3}^{2} + K_{14}^{2}u_{4}^{2} = Q_{1}^{2}$$

$$K_{21}^{2}u_{1}^{2} + K_{22}^{2}u_{2}^{2} + K_{23}^{2}u_{3}^{2} + K_{24}^{2}u_{4}^{2} = Q_{2}^{2}$$

$$K_{31}^{2}u_{1}^{2} + K_{32}^{2}u_{2}^{2} + K_{33}^{2}u_{3}^{2} + K_{34}^{2}u_{4}^{2} = Q_{3}^{2}$$

$$K_{41}^{2}u_{1}^{2} + K_{42}^{2}u_{2}^{2} + K_{43}^{2}u_{3}^{2} + K_{44}^{2}u_{4}^{2} = Q_{4}^{2}$$
Elemento(3)

$$K_{11}^{3}u_{1}^{3} + K_{12}^{3}u_{2}^{3} + K_{13}^{3}u_{3}^{3} + K_{14}^{3}u_{4}^{3} = Q_{1}^{3}$$

$$K_{31}^{3}u_{1}^{3} + K_{32}^{3}u_{2}^{3} + K_{33}^{3}u_{3}^{3} + K_{34}^{3}u_{4}^{3} = Q_{3}^{3}$$

$$K_{31}^{3}u_{1}^{3} + K_{32}^{3}u_{2}^{3} + K_{33}^{3}u_{3}^{3} + K_{34}^{3}u_{4}^{3} = Q_{3}^{3}$$

$$K_{41}^{3}u_{1}^{3} + K_{42}^{3}u_{2}^{3} + K_{43}^{3}u_{3}^{3} + K_{44}^{3}u_{4}^{3} = Q_{4}^{3}$$

$$R_{41}^{3}u_{1}^{3} + K_{42}^{3}u_{2}^{3} + K_{43}^{3}u_{3}^{3} + K_{44}^{3}u_{4}^{3} = Q_{4}^{3}$$

$$R_{41}^{3}u_{1}^{3} + K_{42}^{3}u_{2}^{3} + K_{43}^{3}u_{3}^{3} + K_{44}^{3}u_{4}^{3} = Q_{4}^{3}$$

$$R_{41}^{3}u_{1}^{3} + K_{42}^{3}u_{2}^{3} + K_{43}^{3}u_{3}^{3} + K_{44}^{3}u_{4}^{3} = Q_{4}^{3}$$

$$R_{41}^{3}u_{1}^{3} + K_{42}^{3}u_{2}^{3} + K_{43}^{3}u_{3}^{3} + K_{44}^{3}u_{4}^{3} = Q_{4}^{3}$$

$$R_{41}^{3}u_{1}^{3} + K_{42}^{3}u_{2}^{3} + K_{43}^{3}u_{3}^{3} + K_{44}^{3}u_{4}^{3} = Q_{4}^{3}$$

$$R_{41}^{3}u_{1}^{3} + K_{42}^{3}u_{2}^{3} + K_{43}^{3}u_{3}^{3} + K_{44}^{3}u_{4}^{3} = Q_{4}^{3}$$

$$R_{41}^{3}u_{1}^{3} + K_{42}^{3}u_{2}^{3} + K_{43}^{3}u_{3}^{3} + K_{44}^{3}u_{4}^{3} = Q_{4}^{3}$$

$$R_{41}^{3}u_{1}^{3} + K_{42}^{3}u_{2}^{3} + K_{43}^{3}u_{3}^{3} + K_{44}^{3}u_{4}^{3} = Q_{4}^{3}$$

$$R_{41}^{3}u_{1}^{3} + K_{42}^{3}u_{2}^{3} + K_{43}^{3}u_{3}^{3} + K_{44}^{3}u_{4}^{3} = Q_{4}^{3}$$

$$R_{41}^{3}u_{1}^{3} + K_{42}^{3}u_{2}^{3} + K_{43}^{3}u_{3}^{3} + K_{44}^{3}u_{4}^{3} = Q_{4}^{3}$$

	K_{11}^{1}	K_{12}^{1}	K_{13}^{1}	K_{14}^{1}	0	0	0	0	$\left[U_{1} \right]$
2	K_{21}^{1}	K_{22}^{1}	K_{23}^{1}	K_{24}^{1}	0	0	0	0	U_2
Î	K_{31}^{1}	K_{32}^{1}	$(K_{33}^1 + K_{11}^2)$	$(K_{34}^1 + K_{12}^2)$	K_{13}^2	K_{14}^2	0	0	U_3
	K_{41}^{1}	K_{42}^{1}	$(K_{43}^1 + K_{21}^2)$	$(K_{44}^1 + K_{22}^2)$	K_{23}^2	K_{24}^2	0	0	U_4
	0	0	K_{31}^2	K_{32}^2	$(K_{33}^2 + K_{11}^3)$	$(K_{34}^2 + K_{12}^3)$	K_{13}^{3}	K_{14}^{3}	U_5
	0	0	K_{41}^2	K_{42}^2	$(K_{43}^2 + K_{21}^3)$	$(K_{44}^2 + K_{22}^3)$	K_{23}^{3}	K_{24}^{3}	U_6
	0	0	0	0	K_{31}^{3}	K_{32}^{3}	K_{33}^{3}	K_{34}^{3}	U_7
	0	0	0	0	K_{41}^{3}	K_{42}^{3}	K_{43}^{3}	K_{44}^{3}	$[U_8]$

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

DIRECCIÓN GENERAL DE BIBLIOTECAS

$$\begin{bmatrix} K^e \end{bmatrix} = \frac{2(EI)}{h^3} \begin{bmatrix} 6 & -3h & -6 & -3h \\ -3h & 2h^2 & 3h & h^2 \\ -6 & 3h & 6 & 3h \\ -3h & h^2 & 3h & 2h^2 \end{bmatrix}$$

PASO 4: IMPOSICIÓN DE LAS CONDICIONES FRONTERA

$$= \begin{cases} Q_2^1 \\ 0 \\ 0 \\ 0 \\ 0 \\ -2000 \\ 0 \end{cases}$$

PASO 5: SOLUCIÓN DE LAS ECUACIONES

Solución del sistema de ecuaciones para $(Q_1^1, Q_1^2, U_3, U_4, U_5, U_6, U_7, U_8)$

$$\begin{bmatrix} K^{1} \end{bmatrix} = \frac{2EI_{1}}{h^{3}} \begin{bmatrix} 6 & -3h & -6 & -3h \\ -3h & 2h^{2} & 3h & h^{2} \\ -6 & 3h & 6 & 3h \\ -3h & h^{2} & 3h & 2h^{2} \end{bmatrix}$$
$$\begin{bmatrix} K^{2} \end{bmatrix} = \frac{2EI_{2}}{h^{3}} \begin{bmatrix} 6 & -3h & -6 & -3h \\ -3h & 2h^{2} & 3h & h^{2} \\ -6 & 3h & 6 & 3h \\ -3h & h^{2} & 3h & 2h^{2} \end{bmatrix}$$
$$\begin{bmatrix} K^{3} \end{bmatrix} = \frac{2EI_{3}}{h^{3}} \begin{bmatrix} 6 & -3h & -6 & -3h \\ -3h & h^{2} & 3h & 2h^{2} \end{bmatrix}$$
$$\begin{bmatrix} 6 & -3h & -6 & -3h \\ -3h & h^{2} & 3h & 2h^{2} \end{bmatrix}$$
TABLA 2.6

Comparación de resultados elemento finito solución exacta

	Solución aproximada	
	Tres elementos	Solución exacta
INIVERUS in DAD A	UTON0.0566 A DE	NUEV-0.070EON
DIR Fradción (ENER 0.0053 E BIB	LIOTECAS5
U ₅ in	-0.27448	-0.226
U ₆ rad	0.0153	0.0180
U ₇ in	-0.8082	-0.4524
U ₈ rad	0.0323	0.0349
$Q_{\mathbf{l}}^{\mathbf{l}} \ Lb_{f}$	2035.6	2000
$Q_1^2 \ Lb_f - in$	-120256.6	-120000

Ejemplo 2.7. Para el problema de la viga mostrada en la (fig. 2.10) determine.

a) Las variables primarias desconocidas (desplazamientos generalizados).

b) Las variables secundarias desconocidas (fuerzas generalizadas).

PASO 1: DISCRETIZACIÓN DEL DOMINIO

En este paso se aísla un elemento típico $\Omega^e = (x_e, x_{e+1})$

b) Suponer la forma de la solución aproximada sobre un elemento finito.

$$w^e = \sum_{j=1}^4 u_j^e \mathcal{O}_j^e$$

MODELO DEL ELEMENTO FINITO. El modelo del elemento finito de la viga Euler-Bernoulli es obtenida sustituyendo las funciones de interpolación por w y las Φ_j por las funciones de peso v en la forma débil.

$$0 = \sum_{j=1}^{4} \left(\int_{x_e}^{x_{e+1}} b \frac{d^2 \Phi_i^e}{dx^2} \frac{d^2 \Phi_j^e}{dx^2} dx \right) u_j^e - \int_{x_e}^{x_{e+1}} \Phi_i^e f dx - Q_i^e$$
$$\sum_{j=1}^{4} K_{ij}^e u_j^e - F_i^e = 0$$

donde

Elemento(1)

$$K_{11}^{1}u_{1}^{1} + K_{12}^{1}u_{2}^{1} + K_{13}^{1}u_{3}^{1} + K_{14}^{1}u_{4}^{1} = f_{1}^{1} + Q_{1}^{1}$$

$$K_{21}^{1}u_{1}^{1} + K_{22}^{1}u_{2}^{1} + K_{23}^{1}u_{3}^{1} + K_{24}^{1}u_{4}^{1} = f_{2}^{1} + Q_{2}^{1}$$

$$K_{31}^{1}u_{1}^{1} + K_{32}^{1}u_{2}^{1} + K_{33}^{1}u_{3}^{1} + K_{34}^{1}u_{4}^{1} = f_{3}^{1} + Q_{3}^{1}$$

$$K_{41}^{1}u_{1}^{1} + K_{42}^{1}u_{2}^{1} + K_{43}^{1}u_{3}^{1} + K_{44}^{1}u_{4}^{1} = f_{4}^{1} + Q_{4}^{1}$$

Continuidad de la variable primaria

UNIV $_{1}^{1} = U_{1}$ IDAD AUTÓNOMA DE NUEVO LEÓN $u_{2}^{1} = U_{2}$ DIRECCIÓN GENERAL DE BIBLIOTECAS $u_{3}^{1} = u_{1}^{2} = U_{3}$ $u_{4}^{1} = u_{2}^{2} = U_{4}$ $u_{3}^{2} = U_{5}$

 $u_2^4 = U_6$

$$\begin{bmatrix} K_{11}^{1} & K_{12}^{1} & K_{13}^{1} & K_{14}^{1} \\ K_{21}^{1} & K_{22}^{1} & K_{23}^{1} & K_{24}^{1} \\ K_{31}^{1} & K_{32}^{1} & K_{33}^{1} & K_{34}^{1} \\ K_{41}^{1} & K_{42}^{1} & K_{43}^{1} & K_{44}^{1} \end{bmatrix} \begin{bmatrix} U_{1} \\ U_{2} \\ U_{3} \\ U_{4} \end{bmatrix} = \begin{bmatrix} f_{1}^{1} \\ f_{2}^{1} \\ f_{3}^{1} \\ f_{4}^{1} \end{bmatrix} + \begin{bmatrix} Q_{1}^{1} \\ Q_{2}^{1} \\ Q_{2}^{1} \\ Q_{3}^{1} \\ Q_{4}^{1} \end{bmatrix}$$

$$\begin{bmatrix} K^e \end{bmatrix} = \frac{2b}{h^3} \begin{bmatrix} 6 & -3h & -6 & -3h \\ -3h & 2h^2 & 3h & h^2 \\ -6 & 3h & 6 & 3h \\ -3h & h^2 & 3h & 2h^2 \end{bmatrix}$$

$$f_{2}^{1} = -\int_{0}^{h_{e}} f_{0} \sin\left(\frac{\pi x}{L}\right) \left[-x + \frac{2(x)^{2}}{h_{e}} - \frac{(x)^{3}}{(h_{e})^{2}} \right] dx$$

$$f_{3}^{1} = -\int_{0}^{h_{e}} f_{0} \sin\left(\frac{\pi x}{L}\right) \left[\frac{3(x)^{2}}{(h_{e})^{2}} - \frac{2(x)^{3}}{(h_{e})^{3}} \right] dx$$

$$f_{4}^{1} = -\int_{0}^{h_{e}} f_{0} \operatorname{sen} \left(\frac{\pi x}{L}\right) \left[-\frac{(x)^{3}}{(h_{e})^{2}} + \frac{(x)^{2}}{h_{e}}\right] dx$$

$$U_1 = 0$$
 $Q_2^1 = 0$
 $U_3 = 0$ $Q_4^1 = 0$

$$\begin{bmatrix} K_{11}^{1} & K_{12}^{1} & K_{13}^{1} & K_{14}^{1} \\ K_{21}^{1} & K_{22}^{1} & K_{23}^{1} & K_{24}^{1} \\ K_{31}^{1} & K_{32}^{1} & K_{33}^{1} & K_{34}^{1} \\ K_{41}^{1} & K_{42}^{1} & K_{43}^{1} & K_{44}^{1} \end{bmatrix} \begin{bmatrix} 0 \\ U_{2} \\ 0 \\ U_{4} \end{bmatrix} = \begin{bmatrix} f_{1}^{1} \\ f_{2}^{1} \\ f_{3}^{1} \\ f_{4}^{1} \end{bmatrix} + \begin{bmatrix} Q_{1}^{1} \\ 0 \\ Q_{3}^{1} \\ 0 \end{bmatrix}$$

PASO 5: SOLUCIÓN DE LAS ECUACIONES

Solución del sistema de ecuaciones para (U_2, U_4, Q_1^1, Q_3^1)

TABLA 2.7 ECCIÓN GENERAL DE BIBLIOTECAS

Comparación de resultados elemento finito solución exacta

	Solución aproximada	
	Un elemento	Solución exacta
U ₂ rad	1.61	1.58
U_4 rad	-1.61	-1.58
$Q_1^1 N$	95496.3	95492.6
$Q_3^1 N$	95496.3	95492.6

CAPITULO 3

PROBLEMAS EN ESTADO TRANSITORIO UTILIZANDO EL MÉTODO DE ELEMENTO FINITO

3.1 Introducción

En este capitulo se desarrollaran los modelos de problemas del elemento finito en una dimensión en estado transitorio y esquemas para describir las aproximaciones en el tiempo para convertir ecuaciones diferenciales ordinarias en ecuaciones algebraicas.

Consideraremos modelos de elementos finitos que incluyen segundo orden (en el espacio) parabólico (primera derivada en el tiempo) y hiperbólico (segunda derivada en el tiempo) y de cuarto orden ecuación hiperbólica en conexión con la flexión de la viga.

Las ecuaciones de segundo orden parabólicas aparecen en transferencia de calor y en mecánica de fluidos.

La formulación del elemento finito en problemas dependiendo del tiempo se compone de dos pasos.

1. Aproximación Espacial. Donde la solución u de la ecuación bajo consideración es aproximada por la expresión de la forma.

$$u(x,t) \approx U^{e}(x,t) = \sum_{j=1}^{n} u_{j}^{e}(t) \psi_{j}^{e}(x)$$
 (3.1)

El modelo espacial del elemento finito de la ecuación se desarrolla usando problemas en estado estable, mientras que se transportan todos los términos dependientes del tiempo en la formulación. Cuando la solución es separable en funciones solo de tiempo y solo de espacio, u(x,t) = T(t)X(x), la aproximación (3.1) se justifica, cuando la solución no sea separable, (3.1) puede representar una buena aproximación de la solución, proporcionando incrementos de tiempo muy pequeños.

2. Aproximacion en el tiempo. Cuando el sistema de ecuaciones diferenciales es aproximado en el tiempo, a menudo usando familias de diferencias finitas para las derivadas del tiempo. Este paso permite la conversión del sistema de ecuaciones diferenciales en un conjunto de ecuaciones algebraicas entre (u_j^e) a tiempo $t_{s+1} = (s+1)\Delta t$, donde (Δt) es el incremento del tiempo y (s) es un entero.

Todos los esquemas de aproximación en el tiempo para encontrar (u_j) en el tiempo (t_{s+1}) usando los valores conocidos de (u_j) de tiempos anteriores:

Así, al final de los dos pasos, uno tiene una solución espacial continua en intervalos de tiempo discretos.

DIRECCIÓN GENERAL DE BIBLIOTECAS

$$U^{e}(x,t_{s}) = \sum_{j=1}^{n} u_{j}^{e}(t_{s})\psi_{j}^{e}(x) \qquad (s = 0,1,....)$$

Ecuación diferencial modelo:

$$-\frac{\partial}{\partial x}(a\frac{\partial u}{\partial x}) + \frac{\partial^2}{\partial x^2}(b\frac{\partial^2 u}{\partial x^2}) + c_o u + c_1\frac{\partial u}{\partial t} + c_2\frac{\partial^2 u}{\partial t^2} = f(x,t)$$
(3.2 a)

Las condiciones de frontera son de la forma

$$u(x,t)$$
 o $-a\frac{\partial u}{\partial x}(x,t)+\frac{\partial}{\partial x}(b\frac{\partial^2 u}{\partial x^2})$

у

$$\frac{\partial u}{\partial x}(x,t)$$
 o $b\frac{\partial^2 u}{\partial x^2}$ en $x=0,L$ (3.2 b)

y las condiciones iniciales.

 $c_2 u(x,0)$ y $c_2 u(x,0) + c_1 u(x,0)$ (3.2 c)

3.2 Modelos del elemento finito

La formulación involucra la variación espacial de la variable dependiente, en el que se siguen los mismos pasos que se describieron en él capitulo (2).

Construcción de la forma débil de la ecuación (3.2 a)

$$0 = \int_{A}^{B} w \left[-\frac{\partial}{\partial x} \left(a \frac{\partial u}{\partial x} \right) + \frac{\partial^{2}}{\partial x^{2}} \left(b \frac{\partial^{2} u}{\partial x^{2}} \right) + c_{0} u + c_{1} \frac{\partial u}{\partial t} + c_{2} \frac{\partial^{2} u}{\partial t^{2}} - f \right] dx$$

$$0 = \int_{A}^{B} \left[-a \frac{\partial w}{\partial x} \frac{\partial u}{\partial x} + b \frac{\partial^{2} w}{\partial x^{2}} \frac{\partial^{2} u}{\partial x^{2}} + c_{0} w u + c_{1} w \frac{\partial u}{\partial t} + c_{2} w \frac{\partial^{2} u}{\partial t^{2}} - w f \right] dx$$

$$-\hat{Q}_{1} w (x_{A}) - \hat{Q}_{3} w (x_{B}) - \hat{Q}_{2} (-\frac{\partial w}{\partial x}) \Big|_{x_{A}} - \hat{Q}_{4} (-\frac{\partial w}{\partial x})_{x_{B}}$$
(3.3 a)

donde

$$\hat{Q}_{1} = \left[-a \frac{\partial u}{\partial x} + \frac{\partial}{\partial x} (b \frac{\partial^{2} u}{\partial x^{2}}) \right]_{x_{A}} , \qquad \hat{Q}_{2} = (b \frac{\partial^{2} u}{\partial x^{2}})_{x_{A}}$$

$$\hat{Q}_{3} = -\left[-a\frac{\partial u}{\partial x} + \frac{\partial}{\partial x}(b\frac{\partial^{2} u}{\partial x^{2}})\right]_{x_{B}} , \qquad \hat{Q}_{4} = (b\frac{\partial^{2} u}{\partial x^{2}})\Big|_{x_{B}}$$
(3.3 b)

sustituimos $w = \psi_i(x) y (3.1)$ en (3.3 a), para obtener

$$0 = \int_{x_{A}}^{x_{B}} \left[a \frac{d\psi_{i}}{dx} \left(\sum_{j=1}^{n} \frac{d\psi_{j}}{dx} \right) + b \frac{d^{2}\psi_{i}}{dx^{2}} \left(\sum_{j=1}^{n} u_{j} \frac{d^{2}\psi_{j}}{dx^{2}} \right) \right] + c_{o}\psi_{i} \left(\sum_{j=1}^{n} u_{j}\psi_{j} \right) + c_{1}\psi_{i} \left(\sum_{j=1}^{n} \frac{du_{j}}{dt}\psi_{j} \right) + c_{2}\psi_{i} \left(\sum_{j=1}^{n} \frac{d^{2}u_{j}}{dt^{2}}\psi_{j} \right) - \psi_{i}f \right] dx$$

$$- \hat{Q}_{1}\psi_{i}(x_{A}) - \hat{Q}_{3}\psi_{i}(x_{B}) - \hat{Q}_{2}(-\frac{d\psi_{i}}{dx}) \Big|_{x_{A}} - \hat{Q}_{4}(-\frac{d\psi_{i}}{dx}) \Big|_{x_{B}}$$

$$0 = \sum_{j=1}^{n} \left[\left(K_{ij}^{1} + K_{ij}^{2} + M_{ij}^{o} \right)u_{j} + M_{ij}^{1} \frac{du_{j}}{dt} + M_{ij}^{2} \frac{d^{2}u_{j}}{dt^{2}} \right] - F_{i} \qquad (3.4)$$

En forma matricial, tenemos

$$UNI_{[K]}[u] + [M^{1}][u] + [M^{2}][u] = \{F\}$$
 NOMA DE NUEVO LE(3.5 a)
DIRECCIÓN GENERAL DE BIBLIOTECAS
donde

$$[K] = [K^{1}] + [K^{2}] + [M^{0}]$$

$$M_{ij}^{0} = \int_{x_{A}}^{x_{B}} c_{o} \psi_{i} \psi_{j} dx$$

$$M_{ij}^{1} = \int_{x_{A}}^{x_{B}} c_{1} \psi_{i} \psi_{j} dx, \qquad M_{ij}^{2} = \int_{x_{A}}^{x_{B}} c_{2} \psi_{i} \psi_{j} dx$$

$$K_{ij}^{1} = \int_{x_{A}}^{x_{B}} a \frac{d\psi_{i}}{dx} \frac{d\psi_{j}}{dx} dx, \qquad K_{ij}^{2} = \int_{x_{A}}^{x_{B}} b \frac{d\psi_{i}}{dx} \frac{d\psi_{j}}{dx} dx$$

$$F_{i} = \int_{x_{A}}^{x_{B}} \psi_{i} f dx + Q_{i}$$

$$(3.5 \text{ b})$$

$$(3.5 \text{ b})$$

$$(3.5 \text{ b})$$

$$(3.5 \text{ c})$$

3.3 Aproximaciones en el tiempo

Como casos especiales de la ecuación (3.5 b) ecuación parabólica sí ($[M^2] = [0]$) y ecuación hiperbólica sí ($[M^1] = [0]$). La aproximación en el tiempo de (3.5 b) para estos dos casos deberá ser considerada separadamente: en el Caso (1), $c_2 = 0$; en él Caso (2), $c_1 = 0$.

Caso (1): Ecuación Parabólica.

$$M^{1}\{u\} + [K]\{u\} = \{F\}$$
(3.6 a)

Sujeta a las condiciones iniciales donde $\{u\}_0$

$$\{u\}_0 = \{u_0\}$$
 (3.6 b)

donde $\{u\}_0$ es el valor de la cantidad u en el tiempo t = 0, mientras $\{u_0\}$ denota la columna de valores u_{i0} .

El método comúnmente usado de resolver (3.4 a) es la *familia de aproximacion* α , $\alpha = 0$, (Diferencias hacia adelante, Euler); orden de exactitud; $O(\Delta t)$, cond.est. $\alpha = \frac{1}{2}$, (Crank-Nicolson), orden de exactitud; $O((\Delta t)^2)$, estable. $\alpha = \frac{2}{3}$, (Metodo Galerkin), orden de exactitud; $O((\Delta t)^2)$, estable. $\alpha = 1$, (Diferencias hacia atrás), orden de exactitud = $O(\Delta t)$, estable.

El sistema de ecuaciones (3.5 a) se transforma en un sistema de ecuaciones algebraicas

$$[\mathcal{K}]_{s+1} \{u\}_{s+1} = [\mathcal{K}]_s \{u\}_s + \{\mathcal{F}\}_{s,s+1}$$
(3.7 a)

donde

$$\begin{bmatrix} \mathcal{K} \end{bmatrix}_{s+1} = \begin{bmatrix} M^1 \end{bmatrix} + \alpha \Delta t_{s+1} \begin{bmatrix} K \end{bmatrix}_{s+1}$$

$$\begin{bmatrix} \mathcal{K} \end{bmatrix}_s = \begin{bmatrix} M^1 \end{bmatrix} - (1 - \alpha) \Delta t_{s+1} \begin{bmatrix} K \end{bmatrix}_s$$

$$\{ \mathcal{F} \}_{s,s+1} = \Delta t_{s+1} \begin{bmatrix} \alpha \{ F \}_{s+1} + (1 - \alpha) \{ F \}_s \end{bmatrix}$$

$$(3.7 b)$$

Estabilidad y Exactitud.

Exactitud de un esquema numérico es una medida de la cercanía entre la solución aproximada y la solución exacta, mientras que estabilidad de la solución es una medida de la relación de la solución aproximada con el tiempo.

Un esquema numérico puede ser condicionalmente estable si es estable solo cuando ciertas restricciones en los incrementos de tiempo son satisfechas. Para todos los esquemas numéricos en el que ($\alpha < \frac{1}{2}$), la familia de aproximación es estable solo si los incrementos de tiempo satisfacen la siguiente condición de estabilidad.

$\Delta t < \Delta t_{cr} = \frac{2}{(1-2\alpha)\lambda}$ (3.8) UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

Donde (λ) es el mayor eigenvalor de la ecuación de elemento finito (3.6). Note que la misma malla que se uso para el análisis transitorio debe ser usada para calcular los eigenvalores.

Caso (2): Ecuaciones Hiperbólicas

$$M^{2}[u] + [K][u] = \{F\}$$
(3.9)

Hay varios métodos para integrar ecuaciones de segundo orden. Algunos de estos son, la familia Newmark de esquemas de integradores de tiempo es muy usada en dinámica estructural. Otros métodos, como el de Wilson y el de Houbolt, pueden ser usados para desarrollar las ecuaciones algebraicas de la ecuación diferencial de segundo orden (3.9).

En el método de Newmark (γ) y (β) son parámetros que determinan la estabilidad y exactitud del esquema.

 $\alpha = \frac{1}{2}, \quad \gamma = 2\beta = \frac{1}{2}, \text{ Método de aceleración promedio constante (estable)}$ $\alpha = \frac{1}{2}, \quad \gamma = 2\beta = \frac{1}{3}, \text{ Método de aceleración lineal (condicionalmente estable)}$ $\alpha = \frac{1}{2}, \quad \gamma = 2\beta = 0, \text{ Método de diferencias central(condicionalmente estable)}$ $\alpha = \frac{3}{2}, \quad \gamma = 2\beta = \frac{8}{5}, \text{ Método de Galerkin (estable)}$ (3.10)

 $\alpha = \frac{3}{2}$, $\gamma = 2\beta = 2$, Método de diferencias hacia atrás (estable)

Para todos los esquemas en los que $(\gamma(\alpha) y (\alpha \ge \frac{1}{2}))$, los requerimientos de

estabilidad

$$\Delta t \leq \Delta t_{cr} = \begin{bmatrix} 1 \\ 2 \\ \omega_{max}^2 (\alpha - \gamma) \end{bmatrix}^{-1}$$

UNIVERSIDAD AUTÓNOMA DE NUEVO LE

donde ω_{max} es la máxima frecuencia natural del sistema (3.9).

El sistema de ecuaciones (3.9) se transforma en un sistema de ecuaciones algebraicas usando el método de Newmark:

$$[\mathcal{K}]_{s+1} \{u\}_{s+1} = \{\mathcal{F}\}_{s,s+1}$$
(3.12 a)

donde

$$\begin{bmatrix} \mathcal{K} \end{bmatrix}_{s+1} = \begin{bmatrix} K \end{bmatrix}_{s+1} + a_3 \begin{bmatrix} M \end{bmatrix}_{s+1}$$

$$\{ \hat{F} \}_{s,s+1} = \{ F \}_{s+1} + \begin{bmatrix} M \end{bmatrix}_{s+1} (a_3 \{ u \}_s + a_4 \{ u \}_s + a_5 \{ u \}_s)$$
 (3.12 b)

(3.11)

$$a_3 = \frac{2}{\gamma(\Delta t)^2}$$
, $a_4 = \frac{2}{\gamma \Delta t}$, $a_5 = \frac{1}{\gamma} - 1$

Note que los cálculos de [K] y $\{F\}$ requieren las condiciones iniciales $\{u\}_0, \{u\}_0, y$ $\{u\}_0$. En la practica, no se conoce $\{u\}_0$. Como una aproximación, se puede calcular de (3.9) (se puede suponer que las fuerzas aplicadas son cero en t = 0):

$$\{u\}_{0} = \left[M^{2}\right]^{-1} \left(\{F\}_{0} - [K]\{u\}_{0}\right)$$
(3.13)

Al final de cada incremento de tiempo, el nuevo vector velocidad $\{u\}_{s+1}$ y el vector aceleración $\{u\}_{s+1}$ son calculados usando las ecuaciones $\{u\}_{s+1} = a_1(\{u\}_{s+1} - \{u\}_s) - a_4\{u\} - a_5\{u\}_s$ $\{u\}_{s+1} = \{a\}_s + a_2\{u\}_s + a_1\{u\}_{s+1}$ $a_1 = \alpha \Delta t$, $a_2 = (1 - \alpha) \Delta t$ (3.14)

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS Ejemplo 3.1 Una barra delgada a una temperatura inicial de (θ_1) , aislada por todos lados, menos por uno de sus extremos, que se somete a la temperatura de (θ_0) , que es la temperatura ambiente. La barra tiene una longitud (L), determine la distribución de temperaturas.

Ecuación diferencial del problema

Normalizando

$$T = \frac{\theta - \theta_0}{\theta_1 - \theta_0} \qquad \tau = \frac{\xi t}{L^2} \qquad X = \frac{x}{L}$$

La ecuación diferencial y las condiciones de frontera del problema se transforma en

El problema que se tiene es un caso especial de la ecuación (3.2 a) con a = 1, $b = 0, c_o = 0, c_2 = 0$, y f = 0.

El modelo de elemento finito para (3.15) es dado por (3.6 a):

$$\begin{bmatrix} M^1 \\ T \end{bmatrix} + \begin{bmatrix} K \end{bmatrix} \{T\} = \{F\}$$
(3.6 a)

donde

$$\psi_1^e(\overline{X}) = 1 - \frac{X}{h_e} \qquad \qquad \psi_2^e(X) = \frac{X}{h_e}$$
$$\frac{d\psi_1^e}{dX} = -\frac{1}{h_e} \qquad \qquad \frac{d\psi_2^e}{dX} = \frac{1}{h_e}$$

Con las funciones de interpolación y sus derivadas sé calcular (M_{ij}^{e}) y (K_{ij}^{e}) después se sustituyen en la ecuación (3.6 a).

$$\begin{aligned} h_e \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} \mathbf{i} \\ T_1 \\ \mathbf{i} \\ T_2 \end{bmatrix} + \frac{1}{h_e} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} T_1 \\ T_2 \end{bmatrix} = \begin{bmatrix} Q_1 \\ Q_2 \end{bmatrix} \end{aligned}$$

Usando la familia (α) de aproximación (3.7)

$$(\left|M^{e}\right| + \Delta\tau\alpha \left|K^{e}\right)\left|T^{e}\right|_{s+1} = \left(\left|M^{e}\right| - \Delta\tau(1-\alpha)\left|K^{e}\right|\right)\left|T^{e}\right|_{s} + \Delta\tau(\alpha \left|Q^{e}\right|_{s+1} + (1-\alpha)\left|Q^{e}\right|_{s}\right)$$

$$\begin{bmatrix}h_{e} + \alpha\Delta\tau & h_{e} - \alpha\Delta\tau\\h_{e} & 6 & h_{e}\\h_{e} & -\alpha\Delta\tau & h_{e} + \alpha\Delta\tau\\h_{e} & 3 & h_{e}\end{bmatrix}\left|T_{1}\right|_{T_{2}}\right|_{s+1} = \begin{bmatrix}h_{e} - (1-\alpha)\Delta\tau & h_{e} + (1-\alpha)\Delta\tau\\h_{e} & 6 + \frac{(1-\alpha)\Delta\tau}{h_{e}} & -\frac{h_{e}}{h_{e}} + \frac{(1-\alpha)\Delta\tau}{h_{e}}\right|_{t} = \left[\frac{h_{e} - (1-\alpha)\Delta\tau}{h_{e} - \alpha\Delta\tau} & h_{e} - (1-\alpha)\Delta\tau\\h_{e} & 3 & -\frac{(1-\alpha)\Delta\tau}{h_{e}} & -\frac{h_{e}}{h_{e}} - \frac{(1-\alpha)\Delta\tau}{h_{e}}\right]\left|T_{2}\right|_{s} + \Delta\tau\left[\frac{Q_{1}}{Q_{2}}\right]$$
donde

UNI
$$Q_1 = \alpha(Q_1^1)_{s+1} + (1-\alpha)(Q_1^1)_s$$
 ONOMA DE NUEVO LEÓN

Condiciones de frontera GENERAL DE BIBLIOTECAS

 $(T_1)_s = 0 \qquad \text{por que} \quad T(0,\tau) = 0$ $(\overline{Q}_2^1)_s = 0 \qquad \text{por que} \quad \frac{\partial T(1,\tau)}{\partial X} = 0 \qquad \hat{Q}_3 = (a\frac{\partial T}{\partial X})\Big|_{X_B} = 0$

Condiciones iniciales

 $(T_1)_0 = 1,$ $(T_2)_0 = 1$ en $\tau = 0$

$$\begin{bmatrix} h_e & + \frac{\alpha \Delta \tau}{h_e} & h_e & - \frac{\alpha \Delta \tau}{h_e} \\ h_e & - \frac{\alpha \Delta \tau}{h_e} & h_e & + \frac{\alpha \Delta \tau}{h_e} \end{bmatrix} \begin{bmatrix} 0 \\ T_2 \end{bmatrix}_{s+1} = \begin{bmatrix} h_e & -(1-\alpha)\Delta \tau & h_e & + (1-\alpha)\Delta \tau \\ h_e & - h_e & - h_e \\ h_e & + (1-\alpha)\Delta \tau & - h_e \\ h_e & - \frac{\alpha \Delta \tau}{h_e} \end{bmatrix} \begin{bmatrix} T_1 \\ T_2 \end{bmatrix}_s + \Delta \tau \begin{bmatrix} Q_1 \\ 0 \end{bmatrix}$$

$$\binom{1}{3}h_e + \alpha \frac{\Delta \tau}{h_e}(T_2)_{s+1} = \begin{bmatrix} 1\\3}h_e - (1-\alpha)\frac{\Delta \tau}{h_e} \end{bmatrix} (T_2)_s \tag{A}$$

para los incrementos de tiempo crítico $\Delta \tau_{cr}$ se obtiene primero el λ_{max} asociado con:

Por lo tanto ($\Delta \tau_{cr} = 0.6667$) para que la solución de la ecuación de diferencias hacia adelante (A) sea estable, los incrementos de tiempo deben de ser menores que ($\Delta \tau_{cr} = 0.6667$), de otra manera la solución será inestable. Solución de la ecuación (A) para $h_e = 1$

$$\binom{1}{3}h_{e} + \alpha \frac{\Delta \tau}{h_{e}}(T_{2})_{s+1} = \begin{bmatrix} 1 \\ 3 \\ -(1-\alpha) \frac{\Delta \tau}{h_{e}} \end{bmatrix} (T_{2})_{s}$$
(A)

TABLA 3.1a

Comparación de la solución del elemento finito con la solución analítica de una ecuación parabólica para un elemento lineal.

Tiempo	<i>T</i> ₂	<i>T</i> ₂	<i>T</i> ₂	T ₂	
	$\alpha = 0$	<i>α</i> = 1	$\alpha = 0.5$	Solución exacta	
0	1 E	1	1	1	
0.05	0.85	0.8696	0.8605	0.9969	
0.10	0.7225	0.7561	0.7404	0.9493	
0.15	0.6141	0.6575	0.6371	0.8642	
0.20	0.5220	0.5718	0.5482	0.7723	
0.25	0.4437	0.4972	0.4717	0.6854	
UNI0.30 RS	0.3771D AU	0.4323OMA	0.4059 UEV	0.6068 ON	
0.35	0.3206	0.3759	0.3492	0.5367	
0.40	0.2724	0.3269	0.3004	0.4745	
0.45	0.2315	0.2843	0.2584	0.4119	
0.50	0.1967	0.2472	0.2223	0.3708	
II) Para el caso de un elemento cuadrático (Ejemplo 3.1)

$$\begin{bmatrix} M^{1} \\ T \end{bmatrix} + \begin{bmatrix} K \\ T \end{bmatrix} = \{Q\}$$

$$M_{ij}^{e} = \int_{X_{A}}^{X_{B}} \psi_{i} \psi_{j} dX$$

$$K_{ij}^{e} = \int_{A}^{B} \frac{d\psi_{i}}{dX} \frac{d\psi_{j}}{dX} dX$$
(3.6 a)

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

$$\psi_1^e(\overline{X}) = (1 - \frac{\overline{X}}{h_e})(1 - \frac{2\overline{X}}{h_e}) \text{ IRAL} \frac{d\psi_1^e}{dX} = +\frac{3}{h_e} + \frac{4\overline{X}}{h_e^2} \text{ OTECAS}$$

$$\psi_2^e(\overline{X}) = \frac{4\overline{X}}{h_e}(1 - \frac{\overline{X}}{h_e}) \qquad \qquad \frac{d\psi_2^e}{dX} = \frac{4}{h_e} - \frac{8\overline{X}}{h_e^2}$$

$$\psi_3^e(\overline{X}) = -\frac{X}{h_e}(1 - \frac{2\overline{X}}{h_e}) \qquad \qquad \frac{d\psi_3^e}{d\overline{X}} = -\frac{1}{h_e} + \frac{4\overline{X}}{h_e^2}$$

Con las funciones de interpolación y sus derivadas se calculan (M_{ij}^e) y (K_{ij}^e) después se sustituyen en la ecuación(3.6 a).

$$\begin{bmatrix} M^{e} \end{bmatrix} = \frac{h_{e}}{30} \begin{bmatrix} 4 & 2 & -1 \\ 2 & 16 & 2 \\ -1 & 2 & 4 \end{bmatrix} \qquad \begin{bmatrix} K^{e} \end{bmatrix} = \frac{1}{3h_{e}} \begin{bmatrix} 7 & -8 & 1 \\ -8 & 16 & -8 \\ 1 & -8 & 7 \end{bmatrix}$$
$$\frac{h_{e}}{30} \begin{bmatrix} 4 & 2 & -1 \\ 2 & 16 & 2 \\ -1 & 2 & 4 \end{bmatrix} \begin{bmatrix} \frac{7}{1} \\ \frac{7}{2} \\ \frac{7}{3} \end{bmatrix} + \frac{1}{3h_{e}} \begin{bmatrix} 7 & -8 & 1 \\ -8 & 16 & -8 \\ 1 & -8 & 7 \end{bmatrix} \begin{bmatrix} T_{1} \\ T_{2} \\ T_{3} \end{bmatrix} = \begin{bmatrix} Q_{1} \\ Q_{2} \\ Q_{3} \end{bmatrix}$$
Usando la familia α de aproximación (3.7)
$$(M^{e}] + A\tau \alpha [K^{e}] T^{e}]_{s+1} = (M^{e}] - A\tau (1-\alpha) [K^{e}] T^{e}]_{s} + A\tau (\alpha [Q^{e}]_{s+1} + (1-\alpha) [Q^{e}]_{s})$$

$$\begin{bmatrix} 4h_{e} + \frac{7}{30} \alpha \Delta \tau & \frac{2h_{e}}{30} + \frac{8}{3h_{e}} \alpha \Delta \tau & -\frac{h_{e}}{30} + \frac{1}{3h_{e}} \alpha \Delta \tau \\ \frac{2h_{e}}{30} - \frac{8}{3h_{e}} \alpha \Delta \tau & \frac{16h_{e}}{30} + \frac{16}{3h_{e}} \alpha \Delta \tau & \frac{2h_{e}}{30} - \frac{8}{3h_{e}} \alpha \Delta \tau \\ -\frac{h_{e}}{30} + \frac{1}{3h_{e}} \alpha \Delta \tau & \frac{2h_{e}}{30} - \frac{8}{3h_{e}} \alpha \Delta \tau & \frac{4h_{e}}{30} + \frac{7}{3h_{e}} \alpha \Delta \tau \end{bmatrix} \begin{bmatrix} T_{1} \\ T_{2} \\ T_{3} \end{bmatrix}_{s+1}$$

$$\frac{4h_e}{30} - \frac{7}{3h_e}(1-\alpha)\Delta\tau \quad \frac{2h_e}{30} + \frac{8}{3h_e}(1-\alpha)\Delta\tau \quad \frac{-h_e}{30} - \frac{1}{3h_e}(1-\alpha)\Delta\tau \\ \frac{2h_e}{30} + \frac{8}{3h_e}(1-\alpha)\Delta\tau \quad \frac{16h_e}{30} - \frac{16}{3h_e}(1-\alpha)\Delta\tau \quad \frac{2h_e}{30} + \frac{8}{3h_e}(1-\alpha)\Delta\tau \\ \frac{-h_e}{30} - \frac{1}{3h_e}(1-\alpha)\Delta\tau \quad \frac{2h_e}{30} + \frac{8}{3h_e}(1-\alpha)\Delta\tau \quad \frac{4h_e}{30} - \frac{7}{3h_e}(1-\alpha)\Delta\tau \\ \frac{-h_e}{30} - \frac{1}{3h_e}(1-\alpha)\Delta\tau \quad \frac{2h_e}{30} + \frac{8}{3h_e}(1-\alpha)\Delta\tau \quad \frac{4h_e}{30} - \frac{7}{3h_e}(1-\alpha)\Delta\tau \\ \frac{-h_e}{30} - \frac{1}{3h_e}(1-\alpha)\Delta\tau \quad \frac{2h_e}{30} + \frac{8}{3h_e}(1-\alpha)\Delta\tau \quad \frac{4h_e}{30} - \frac{7}{3h_e}(1-\alpha)\Delta\tau \\ \frac{-h_e}{30} - \frac{1}{3h_e}(1-\alpha)\Delta\tau \quad \frac{2h_e}{30} + \frac{8}{3h_e}(1-\alpha)\Delta\tau \quad \frac{4h_e}{30} - \frac{7}{3h_e}(1-\alpha)\Delta\tau \\ \frac{-h_e}{30} - \frac{1}{3h_e}(1-\alpha)\Delta\tau \quad \frac{2h_e}{30} + \frac{8}{3h_e}(1-\alpha)\Delta\tau \quad \frac{4h_e}{30} - \frac{7}{3h_e}(1-\alpha)\Delta\tau \\ \frac{-h_e}{30} - \frac{1}{3h_e}(1-\alpha)\Delta\tau \quad \frac{2h_e}{30} + \frac{8}{3h_e}(1-\alpha)\Delta\tau \quad \frac{4h_e}{30} - \frac{7}{3h_e}(1-\alpha)\Delta\tau \\ \frac{-h_e}{30} - \frac{1}{3h_e}(1-\alpha)\Delta\tau \quad \frac{2h_e}{30} + \frac{8}{3h_e}(1-\alpha)\Delta\tau \quad \frac{4h_e}{30} - \frac{7}{3h_e}(1-\alpha)\Delta\tau \\ \frac{-h_e}{30} - \frac{1}{3h_e}(1-\alpha)\Delta\tau \quad \frac{2h_e}{30} + \frac{8}{3h_e}(1-\alpha)\Delta\tau \quad \frac{4h_e}{30} - \frac{7}{3h_e}(1-\alpha)\Delta\tau \\ \frac{-h_e}{30} - \frac{1}{3h_e}(1-\alpha)\Delta\tau \quad \frac{2h_e}{30} + \frac{8}{3h_e}(1-\alpha)\Delta\tau \\ \frac{-h_e}{30} - \frac{1}{3h_e}(1-\alpha)\Delta\tau \quad \frac{2h_e}{30} + \frac{8}{3h_e}(1-\alpha)\Delta\tau \quad \frac{4h_e}{30} - \frac{7}{3h_e}(1-\alpha)\Delta\tau \\ \frac{-h_e}{30} - \frac{1}{3h_e}(1-\alpha)\Delta\tau \quad \frac{2h_e}{30} + \frac{8}{3h_e}(1-\alpha)\Delta\tau \\ \frac{-h_e}{30} - \frac{1}{3h_e}(1-\alpha)\Delta\tau \quad \frac{4h_e}{30} - \frac{7}{3h_e}(1-\alpha)\Delta\tau \\ \frac{-h_e}{30} - \frac{1}{3h_e}(1-\alpha)\Delta\tau \quad \frac{4h_e}{30} - \frac{1}{3h_e}(1-\alpha)\Delta\tau \\ \frac{-h_e}{30} - \frac{1}{3h_e}(1-\alpha)\Delta\tau \quad \frac{1}{3h_e}(1-\alpha)\Delta\tau$$

donde

$$\overline{Q}_i = \alpha(Q_i^1)_{s+1} + (1-\alpha)(Q_i^1)_s$$

Condiciones frontera.

$$(U_{1})_{s} = 0 \quad \text{por que} \quad u(0,\tau) = 0$$

$$\overline{Q}_{2} = 0$$

$$\overline{Q}_{3} = \alpha (Q_{3}^{1})_{s+1} + (1-\alpha)(Q_{3}^{1})_{s}$$

$$\overline{Q}_{3} = \alpha \left\{ (\frac{\partial T_{3}}{\partial X})_{x_{B}} \right\}_{s+1} + (1-\alpha) \left\{ (\frac{\partial T_{3}}{\partial X})_{x_{B}} \right\}_{s} = 0$$
Condiciones iniciales.
$$(T_{2})_{0} = 1, \quad (T_{3})_{0} = 1 \quad \text{en} \quad \tau = 0$$

$$\left[\begin{array}{c} 4h_{e} + \frac{7}{2h_{e}} - \frac{8}{3h_{e}} \alpha d\tau & 2h_{e} - \frac{8}{3h_{e}} \alpha d\tau & -h_{e} + \frac{1}{3h_{e}} \alpha d\tau \\ \frac{2h_{e}}{30} - \frac{8}{3h_{e}} \alpha \tau & \frac{16h_{e}}{30} + \frac{16}{3h_{e}} \alpha d\tau & \frac{2h_{e}}{30} - \frac{8}{3h_{e}} \alpha d\tau \\ \frac{-h_{e}}{30} - \frac{1}{3h_{e}} \alpha \tau & \frac{2h_{e}}{30} - \frac{8}{3h_{e}} \alpha d\tau & \frac{4h_{e}}{30} + \frac{7}{3h_{e}} \alpha d\tau \\ \frac{-h_{e}}{30} - \frac{1}{3h_{e}} \alpha \tau & \frac{2h_{e}}{30} - \frac{8}{3h_{e}} \alpha d\tau & \frac{4h_{e}}{30} + \frac{7}{3h_{e}} \alpha d\tau \\ \frac{4h_{e}}{30} - \frac{7}{3h_{e}} \alpha \tau & \frac{2h_{e}}{30} - \frac{8}{3h_{e}} \alpha d\tau & \frac{4h_{e}}{30} + \frac{7}{3h_{e}} \alpha d\tau \\ \frac{4h_{e}}{30} - \frac{7}{3h_{e}} \alpha \tau & \frac{2h_{e}}{30} - \frac{8}{3h_{e}} \alpha d\tau & \frac{4h_{e}}{30} + \frac{7}{3h_{e}} \alpha d\tau \\ \frac{4h_{e}}{30} - \frac{7}{3h_{e}} \alpha d\tau & \frac{2h_{e}}{30} - \frac{8}{3h_{e}} \alpha d\tau & \frac{4h_{e}}{30} - \frac{1}{3h_{e}} \alpha d\tau \\ \frac{4h_{e}}{30} - \frac{7}{3h_{e}} \alpha d\tau & \frac{2h_{e}}{30} + \frac{8}{3h_{e}} \alpha d\tau \\ \frac{4h_{e}}{30} - \frac{7}{3h_{e}} \alpha d\tau & \frac{2h_{e}}{30} + \frac{8}{3h_{e}} \alpha d\tau \\ \frac{4h_{e}}{30} - \frac{7}{3h_{e}} d\tau \\$$

$$\frac{4n_e}{30} - \frac{7}{3h_e}(1-\alpha)\Delta\tau = \frac{2n_e}{30} + \frac{8}{3h_e}(1-\alpha)\Delta\tau = \frac{-n_e}{30} - \frac{1}{3h_e}(1-\alpha)\Delta\tau$$

$$\frac{2h_e}{30} + \frac{8}{3h_e}(1-\alpha)\Delta\tau = \frac{16h_e}{30} - \frac{16}{3h_e}(1-\alpha)\Delta\tau = \frac{2h_e}{30} + \frac{8}{3h_e}(1-\alpha)\Delta\tau$$

$$\begin{bmatrix}0\\T_2\\T_3\end{bmatrix}_s + \Delta t \begin{bmatrix}\overline{Q}_1\\0\\0\end{bmatrix}$$

$$\begin{bmatrix}-h_e\\30\\-\frac{1}{3h_e}(1-\alpha)\Delta\tau = \frac{2h_e}{30} + \frac{8}{3h_e}(1-\alpha)\Delta\tau = \frac{4h_e}{30} - \frac{7}{3h_e}(1-\alpha)\Delta\tau$$

Simplificando el sistema de ecuaciones

$$\begin{bmatrix} \frac{16h_e}{30} + \frac{16}{3h_e} \alpha \Delta \tau & \frac{2h_e}{30} - \frac{8}{3h_e} \alpha \Delta \tau \\ \frac{2h_e}{30} - \frac{8}{3h_e} \alpha \Delta \tau & \frac{4h_e}{30} + \frac{7}{3h_e} \alpha \Delta \tau \end{bmatrix} \begin{bmatrix} T_2 \\ T_3 \end{bmatrix}_{s+1} = \begin{bmatrix} 16h_e & -\frac{16}{3h_e} (1-\alpha) \Delta \tau & \frac{2h_e}{30} + \frac{8}{3h_e} (1-\alpha) \Delta \tau \\ \frac{2h_e}{30} + \frac{8}{3h_e} (1-\alpha) \Delta \tau & \frac{4h_e}{30} - \frac{7}{3h_e} (1-\alpha) \Delta \tau \end{bmatrix} \begin{bmatrix} T_2 \\ T_3 \end{bmatrix}_s$$

Para $h_e = 1$, $\alpha = 0.5$, $\Delta \tau = 0.05$

$$\begin{bmatrix} 0.66666 & 0 \\ 0 & 0.1916 \end{bmatrix} \begin{bmatrix} T_2 \\ T_3 \\ T_3 \end{bmatrix}_{s+1} = \begin{bmatrix} 0.4 & 0.1333 \\ 0.1333 & 0.7499 \end{bmatrix} \begin{bmatrix} T_2 \\ T_3 \\ T_3 \end{bmatrix}_s$$
TABLA 3.1b

Comparación de la solución del elemento finito con la solución analítica de una ecuación parabólica para un elemento cuadrático.

Tiempo	<i>T</i> ₂	T ₃	
Δτ	$\alpha = 0.5$	$\alpha = 0.5$	Solución
NIVERS	DAD AU	TÓNOMA	DE _{exacta} EVO LE
O IREC	LIÓN GEN	IERAL DE	BIBLIOTECAS
0.05	0.8000	1.087	0.9969
0.10	0.6972	0.9819	0.9493
0.15	0.6146	0.8692	0.8642
0.20	0.5425	0.7676	0.7723
0.25	0.4789	0.6777	0.6854
0.30	0.4228	0.5983	0.6068
0.35	0.3732	0.5282	0.5367
0.40	0.3295	0.4663	0.4745
0.45	0.2909	0.4116	0.4119
0.50	0.2568	0.3634	0.3708

III) Para el caso de dos elemento cuadrático (Ejemplo 3.1).

$$\begin{bmatrix} M^{1e} \\ T \end{bmatrix} + \begin{bmatrix} K^{e} \\ T \end{bmatrix} = \{ Q^{e} \}$$

$$M^{e}_{ij} = \int_{x_{A}}^{x_{B}} \psi_{i} \psi_{j} dx$$

$$K^{e}_{ij} = \int_{x_{A}}^{x_{B}} \frac{d\psi_{i}}{dX} \frac{d\psi_{j}}{dX} dX$$
(3.6 a)

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

$$\psi_1^e(\overline{X}) = (1 - \frac{X}{h_e})(1 - \frac{2X}{h_e}) \qquad \text{IRA} \quad \frac{d\psi_1^e}{dX} = -\frac{3}{h_e} + \frac{4\overline{X}}{h_e^2} \text{ TECAS}$$

$$\psi_2^e(\overline{X}) = \frac{4\overline{X}}{h_e}(1 - \frac{\overline{X}}{h_e}) \qquad \qquad \frac{d\psi_2^e}{dX} = \frac{4}{h_e} - \frac{8\overline{X}}{h_e^2}$$

$$\psi_3^e(X) = -\frac{\overline{X}}{h_e}(1 - \frac{2\overline{X}}{h_e}) \qquad \qquad \frac{d\psi_3^e}{d\overline{X}} = -\frac{1}{h_e} + \frac{4\overline{X}}{h_e^2}$$

Con las funciones de interpolación y sus derivadas se calculan (M_{ij}^e) y (K_{ij}^e) después se sustituyen en (3.6 a).

$$\begin{bmatrix} M^{e} \end{bmatrix} = \frac{h_{e}}{30} \begin{bmatrix} 4 & 2 & -1 \\ 2 & 16 & 2 \\ -1 & 2 & 4 \end{bmatrix}$$
$$\begin{bmatrix} K^{e} \end{bmatrix} = \frac{1}{3h_{e}} \begin{bmatrix} 7 & -8 & 1 \\ -8 & 16 & -8 \\ 1 & -8 & 7 \end{bmatrix}$$
$$\begin{bmatrix} \frac{h_{e}}{2} \end{bmatrix} \begin{bmatrix} 4 & 2 & -1 \\ -8 & 16 & -8 \\ 1 & -8 & 7 \end{bmatrix}$$

Ensamble de elementos.(Balance de la variable primaria) UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN R

 $\dot{T} I_1^{T} = \dot{T}_1 CCIÓN GENERAL DE BIBLIOTECAS$ $\dot{T} I_2^{1} = \dot{T}_2$ $\dot{T} I_3^{1} = \dot{T} I_1^{2} = \dot{T}_3$ $\dot{T} I_2^{2} = \dot{T}_4$ $\dot{T} I_3^{2} = \dot{T}_5$

$$h_{e} \begin{bmatrix} 4 & 2 & -1 & 0 & 0 \\ 2 & 16 & 2 & 0 & 0 \\ -1 & 2 & 8 & 2 & -1 \\ 0 & 0 & 2 & 16 & 2 \\ 0 & 0 & -1 & 2 & 4 \end{bmatrix} \begin{bmatrix} 7 & -8 & 1 & 0 & 0 \\ T_{2} \\ T_{3} \\ T_{4} \\ T_{5} \end{bmatrix} + \frac{1}{3h_{e}} \begin{bmatrix} 7 & -8 & 1 & 0 & 0 \\ -8 & 16 & -8 & 0 & 0 \\ 1 & -8 & 14 & -8 & 1 \\ 0 & 0 & -8 & 16 & -8 \\ 0 & 0 & 1 & -8 & 7 \end{bmatrix} \begin{bmatrix} T_{1} \\ T_{2} \\ T_{3} \\ T_{4} \\ T_{5} \end{bmatrix} = \begin{bmatrix} Q_{1}^{1} \\ Q_{2}^{1} \\ Q_{3}^{1} + Q_{1}^{2} \\ Q_{3}^{2} \\ Q_{3}^{2} \end{bmatrix}$$

Usando la familia (α) de aproximación (3.7)

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN R DIRECCIÓN GENERAL DE BIBLIOTECAS

$$\begin{cases} 4^{h_{t}} + \frac{7}{3} ext & \frac{2h_{c}}{30} - \frac{8}{3h_{c}} ext & \frac{1}{3}h_{c} - \frac{8}{3} ext \\ \frac{2h_{c}}{30} - \frac{8}{3h_{c}} ext & \frac{2h_{c}}{30} - \frac{8}{3h_{c}} ext & \frac{2h_{c}}{30} - \frac{8}{3h_{c}} ext \\ \frac{2h_{c}}{30} - \frac{8}{3h_{c}} ext & \frac{2h_{c}}{30} - \frac{8}{3h_{c}} ext & 2h_{c} - \frac{8}{3} ext \\ \frac{2h_{c}}{30} - \frac{1}{3h_{c}} ext & \frac{2h_{c}}{30} - \frac{8}{3h_{c}} ext & 2h_{c} - \frac{8}{3} ext \\ \frac{2h_{c}}{30} - \frac{1}{3h_{c}} ext & \frac{2h_{c}}{30} - \frac{8}{3h_{c}} ext & 2h_{c} - \frac{8}{3} ext \\ \frac{2h_{c}}{30} - \frac{1}{3h_{c}} ext & 2h_{c} - \frac{8}{3} ext & 2h_{c} - \frac{8}{3} ext \\ \frac{2h_{c}}{30} - \frac{1}{3h_{c}} ext & 2h_{c} - \frac{8}{3} ext \\ \frac{2h_{c}}{30} - \frac{1}{3h_{c}} ext & 2h_{c} - \frac{8}{3} ext \\ \frac{2h_{c}}{30} - \frac{1}{3h_{c}} ext & 2h_{c} - \frac{8}{3} ext \\ \frac{2h_{c}}{30} - \frac{1}{3h_{c}} ext & 2h_{c} - \frac{8}{3} ext \\ \frac{2h_{c}}{30} - \frac{1}{3h_{c}} ext & 2h_{c} - \frac{8}{3} ext \\ \frac{2h_{c}}{30} - \frac{1}{3h_{c}} ext & 2h_{c} - \frac{8}{3} ext \\ \frac{2h_{c}}{30} - \frac{1}{3h_{c}} ext & 2h_{c} - \frac{8}{3} ext \\ \frac{4h_{c}}{30} - \frac{1}{3h_{c}} ext & 2h_{c} - \frac{8}{3} ext \\ \frac{4h_{c}}{30} - \frac{1}{3h_{c}} ext & 2h_{c} - \frac{8}{3} ext \\ \frac{4h_{c}}{30} - \frac{1}{3h_{c}} ext & 2h_{c} - \frac{8}{3} ext \\ \frac{4h_{c}}{30} - \frac{1}{3h_{c}} ext & 2h_{c} - \frac{8}{3} ext \\ \frac{4h_{c}}{30} - \frac{1}{3h_{c}} ext & 2h_{c} - \frac{8}{3} ext \\ \frac{4h_{c}}{30} - \frac{1}{3h_{c}} ext & 2h_{c} - \frac{8}{3} ext \\ \frac{4h_{c}}{30} - \frac{1}{3h_{c}} ext & 2h_{c} - \frac{8}{3} ext \\ \frac{4h_{c}}{30} - \frac{1}{3h_{c}} ext & 2h_{c} - \frac{8}{3} ext \\ \frac{4h_{c}}{30} - \frac{1}{3h_{c}} ext & 2h_{c} - \frac{8}{3} ext \\ \frac{4h_{c}}{30} - \frac{1}{3h_{c}} ext & 2h_{c} - \frac{8}{3} ext \\ \frac{4h_{c}}{30} - \frac{1}{3h_{c}} ext & 2h_{c} - \frac{8}{3} ext \\ \frac{4h_{c}}{30} - \frac{1}{3h_{c}} (1-ex)At & \frac{2h_{c}}{30} + \frac{8}{3h_{c}} (1-ex)At \\ \frac{2h_{c}}{30} - \frac{1}{3h_{c}} (1-ex)At & \frac{2h_{c}}{30} - \frac{8}{3h_{c}} (1-ex)At \\ \frac{2h_{c}}{30} - \frac{2h_{c}}{3h_{c}} + \frac{8}{3} (1-ex)At & \frac{2h_{c}}{30} - \frac{8}{3h_{c}} (1-ex)At \\ \frac{2h_{c}}{30} - \frac{8}{3h_{c}} (1-ex)At & \frac{2h_{c}}{30} - \frac{8}{3h_{c}} (1-ex)At \\ \frac{2h_{c}}{30} - \frac{2h_{c}}{30} - \frac{8}{3h_{c}} (1-ex)At & \frac{2h_{c}}{30} - \frac{8}{3h_{c}} (1-ex)At \\ \frac{2h_{c}}{3$$

$$\overline{Q}_i = \alpha(Q_i^e)_{s+1} + (1-\alpha)(Q_i^e)_s$$

Condiciones frontera.

 $(T_1)_s = 0$ $\overline{Q}_2 = 0$, $\overline{Q}_3 = 0$, $\overline{Q}_4 = 0$, $\overline{Q}_5 = 0$

Condiciones iniciales.

 $(T_2)_0 = 1,$ $(T_3)_0 = 1,$ $(T_4)_0 = 1,$ $(T_5)_0 = 1$

Sustituimos las condiciones frontera y las condiciones iniciales en el sistema de ecuaciones algebraicas para ($h_e = 0.5$, $\alpha = 0.5$, $\Delta \tau = 0.05$).

0.533	-0.1	0	0	$ T_2$		0	0.166	0	0	T_2
-0.1	0.366	-0.1	0	T_3		0.166	- 0.1	0.166	- 0.033	T_3
0	- 0.1	0.533	- 0.1	T_4	} =	0	0.166	0	0.166	T_4
0	100	-0.1	0.183	T ₅	5+1	0	- 0.033	0.166	- 0.05	T_5
	ALEDE ELAN		·///		15011					

TABLA 3.1c

Comparación de la solución del elemento finito con la solución analítica de una ecuación parabólica para dos elementos cuadráticos.

Tiempo		U			Solución Exacta
Δ <i>τ</i> INIVFR	T ₂ Sidad A			T ₅	T ₅ LEON
0	1	1	1	1	I R
0.05 IR I	0.4903ÓN	0.9488 RAI	0.9891 BIB	0.9941 ECA	0.9969
0.1	0.4256	0.6889	0.9151	0.9547	0.9493
0.15	0.3361	0.6445	0.7998	0.8825	0.8642
0.20	0.3025	0.5395	0.7212	0.7626	0.7723
0.25	0.2607	0.4914	0.6287	0.6925	0.6854
0.30	0.2330	0.4241	0.5618	0.5998	0.6068
0.35	0.2039	0.3810	0.4923	0.5385	0.5367
0.40	0.1813	0.3324	0.4377	0.4701	0.4745
0.45	0.1594	0.2964	0.3849	0.4192	0.4194
0.50	0.1414	0.2601	0.3413	0.3678	0.3708

Ejemplo 3.2 Una barra delgada a una temperatura inicial de (θ_1) , aislada por todos lados, menos por uno de sus extremos, por el que intercambia calor con el medio hambiente. La barra tiene una longitud (L), determine la distribución de temperaturas.

Datos:

 θ_1 = Temperatura inicial = $100^{\circ}F$

- θ_{∞} = Temperatura del media hambiente = $1600^{\circ}F$
- β = Coefficiente de transferencia de calor por convección = $5 \frac{Btu}{hr ft^2 {}^{o}F}$
- k = Coefficiente de transferencia de calor por conducción = $0.54 \frac{Btu}{hr ft {}^oF}$

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

Ecuación diferencial del problema RAL DE BIBLIOTECAS

Condiciones de frontera

$$\theta(x,0) = \theta_{\rm I} \qquad \qquad 0 \langle x \langle L \rangle$$

$$\frac{\partial \theta(0,t)}{\partial x} = 0 \qquad t > 0$$

$$-k\frac{\partial\theta(L,t)}{\partial x}=\beta(\theta-\theta_{\infty}) \qquad t > 0$$

El problema que se tiene es un caso especial de la ecuación (3.2 a) con a = 1, b = 0, $c_o = 0, c_2 = 0, f = 0$. El modelo de elemento finito para(3.15) es dado por (3.6 a):

$$\begin{bmatrix} \mathcal{M}^1 \end{bmatrix} \left\{ T \right\} + \begin{bmatrix} K \end{bmatrix} \left\{ T \right\} = \left\{ F \right\}$$
(3.6 a)

donde

$$M_{ij}^{e} = \int_{X_{A}}^{X_{B}} \psi_{i} \psi_{j} dX$$
$$K_{ij}^{e} = \int_{X_{A}}^{X_{B}} \frac{d\psi_{i}}{dX} \frac{d\psi_{j}}{dX} dX$$

Con las funciones de interpolación y sus derivadas sé calcular (M_{ij}^{e}) y (K_{ij}^{e}) después se sustituyen en la ecuación (3.6 a)

$$\begin{array}{ccc} h_e \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} \bullet \\ T_1 \\ \bullet \\ T_2 \end{bmatrix} + \begin{array}{ccc} 1 & -1 \\ h_e \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} T_1 \\ T_2 \end{bmatrix} = \begin{bmatrix} Q_1^e \\ Q_2^e \end{bmatrix}$$

Usando la familia (α) de aproximación (3.7)

$$\begin{split} \left(M^{e} \right) + A \pi \alpha \left[K^{e} \right] \left[T^{e} \right]_{s+1} &= \left(M^{e} \right] - A \pi (1-\alpha) \left[K^{e} \right] \left[T^{e} \right]_{s} + A \pi (\alpha \left[Q^{e} \right]_{s+1} + (1-\alpha) \left[Q^{e} \right]_{s} \right) \\ \left[\frac{h_{e}}{3} + \frac{\alpha \Delta \pi}{h_{e}} + \frac{\alpha \Delta \pi}{h_{e}} \right] \left[T_{1} \right]_{s+1} &= \left[\frac{h_{e}}{3} - \frac{(1-\alpha)\Delta \pi}{h_{e}} + \frac{h_{e}}{6} + \frac{(1-\alpha)\Delta \pi}{h_{e}} \right] \left[T_{1} \right]_{s} + \Delta \pi \left[\frac{Q_{1}}{Q_{2}} \right] \\ \frac{h_{e}}{6} - \frac{\alpha \Delta \pi}{h_{e}} + \frac{\alpha \Delta \pi}{3} + \frac{\alpha \Delta \pi}{h_{e}} \right] \left[T_{2} \right]_{s+1} = \left[\frac{h_{e}}{6} - \frac{(1-\alpha)\Delta \pi}{h_{e}} + \frac{h_{e}}{3} - \frac{(1-\alpha)\Delta \pi}{h_{e}} \right] \left[T_{1} \right]_{s} + \Delta \pi \left[\frac{Q_{1}}{Q_{2}} \right] \\ \\ donde \\ \overline{Q}_{1} = \alpha (Q_{1}^{1})_{s+1} + (1-\alpha) (Q_{1}^{1})_{s} \\ Q_{1} = \alpha (Q_{1}^{1})_{s+1} + (1-\alpha) (Q_{1}^{1})_{s} \\ Q_{1} = \alpha \left\{ (-\alpha \frac{\partial T}{\partial \pi})_{X_{A}} \right\}_{s+1} + (1-\alpha) \left\{ (-\alpha \frac{\partial T}{\partial X})_{X_{A}} \right\}_{s} = 0 \\ \hline Q_{2} = \alpha (Q_{2}^{1})_{s+1} + (1-\alpha) (Q_{2}^{1})_{s} \\ Q_{2} = \alpha \left\{ -(\alpha \frac{\partial T}{\partial \chi})_{X_{B}} \right\}_{s+1} + (1-\alpha) \left\{ -(\alpha \frac{\partial T}{\partial \chi})_{X_{B}} \right\}_{s} \\ Q_{2} = \alpha \left\{ -(\alpha \frac{\partial T}{\partial \chi})_{X_{B}} \right\}_{s+1} + (1-\alpha) \left\{ -(\alpha \frac{\partial T}{\partial \chi})_{X_{B}} \right\}_{s} \\ Q_{2} = \alpha (-\beta T_{2})_{s+1} + (1-\alpha) (-\beta T_{2})_{s} \end{split}$$

Condiciones iniciales.

 $(T_1)_0 = 1,$ $(T_2)_0 = 1$ en $\tau = 0$

Sustituimos las condiciones frontera y las condiciones iniciales en el sistema de ecuaciones algebraicas.

$$\begin{bmatrix} \frac{h_e}{3} + \frac{\alpha \Delta \tau}{h_e} & \frac{h_e}{6} - \frac{\alpha \Delta \tau}{h_e} \\ \frac{h_e}{6} - \frac{\alpha \Delta \tau}{h_e} & \frac{h_e}{3} + \frac{\alpha \Delta \tau}{h_e} \end{bmatrix} \begin{bmatrix} T_1 \\ T_2 \end{bmatrix}_{s+1} = \begin{bmatrix} h_e - (1-\alpha)\Delta \tau & h_e + \frac{(1-\alpha)\Delta \tau}{h_e} \\ \frac{h_e}{6} + \frac{(1-\alpha)\Delta \tau}{h_e} & \frac{h_e}{3} - \frac{(1-\alpha)\Delta \tau}{h_e} \end{bmatrix} \begin{bmatrix} T_1 \\ T_2 \end{bmatrix}_s + \Delta \tau \begin{bmatrix} 0 \\ \overline{Q}_2 \end{bmatrix}$$

a) Para
$$h_e = 1$$
, $\alpha = 0.5$, $\Delta \tau = 0.01875$

$$\Delta \tau \overline{Q}_2 = -0.0468 (T_2)_{s+1} - 0.0468 (T_2)_s$$

 $\begin{bmatrix} 0.3427 & 0.1572 \\ 0.1572 & 0.3895 \end{bmatrix} \begin{bmatrix} T_1 \\ T_2 \\ s+1 \end{bmatrix} = \begin{bmatrix} 0.3239 & 0.1760 \\ 0.1760 & 0.2771 \end{bmatrix} \begin{bmatrix} T_1 \\ T_2 \\ s \end{bmatrix}_s$

TABLA 3.2a

Comparación de la solución del elemento finito con la solución analítica de una ecuación parabólica para un elemento lineal

			Solución	Solución
Tiempo	2		exacta	exacta
Ar	Ti	T ₂	T ₁	<i>T</i> ₂
0	1	1	1	1
0.01875 SI	DA 1.1353 , UT	ON0.70511A	DE 1.0210EV	0.3500
0.03750	1.1900	0.5343	1.0082	0.2798 ®
0.05625	CI9.2000 EN	ER 0.4300 E	BIB1.00341 EC	AS0.2379
0.07500	1.1865	0.3719	0.9950	0.2102
0.09375	1.1598	0.3326	0.9810	0.1904
0.11250	1.1266	0.3060	0.9616	0.1753
0.13125	1.0905	0.2867	0.9384	0.1633
0.15000	1.0533	0.2716	0.9127	0.1534
0.16875	1.0160	0.2590	0.8853	0.1450
0.18750	0.9797	0.2481	0.8572	0.1377

b) Para $h_e = 1$, $\alpha = 0.5$, $\Delta \tau = 0.0375$

$$\Delta \tau \overline{Q}_{2} = -0.09375(T_{2})_{s+1} - 0.09375(T_{2})_{s}$$

$$\begin{bmatrix} 0.3520 & 0.1479 \\ 0.1479 & 0.4457 \end{bmatrix} \begin{bmatrix} T_{1} \\ T_{2} \\ s+1 \end{bmatrix} = \begin{bmatrix} 0.3145 & 0.1854 \\ 0.1854 & 0.2208 \end{bmatrix} \begin{bmatrix} T_{1} \\ T_{2} \end{bmatrix}$$

Tabla 3.2aa

Comparación de la solución del elemento finito con la solución analítica de una ecuación parabólica para un elemento lineal

5

ALERE FLAMM VERITATIS	M		Solución	Solución
Tiempo			Exacta	Exacta
Δτ		<i>T</i> ₂	<i>T</i> 1	<i>T</i> ₂
0	DI 3	1 1	1	1
0.03750	1.2053	0.5114	1.0082	0.2798
0.07500	1.1959	0.3579	0.9950	0.2102
0.11250	1.1312	0.2994	0.9616	0.1753
0.15000 SI	DA1.055	0.2686 A	0.9127	0.1534
0.18750	0.9809	0.2466	0.8572	0.1377
0.22500	0.9105	0.2281	0.8005	0.1255
0.26250	0.8448	0.2114	0.7452	0.1152
0.30000	0.7838	0.1961	0.6904	0.1049
0.33750	0.7271	0.1819	0.6356	0.0946
0.3750	0.6745	0.1687	0.5808	0.0843

II) Para el caso de un elemento cuadrático (Ejemplo 3.2)

$$\begin{bmatrix} M^{1} \\ T \end{bmatrix} + \begin{bmatrix} K \\ T \end{bmatrix} = \{Q\}$$

$$M_{ij}^{e} = \int_{X_{A}}^{X_{B}} \psi_{i} \psi_{j} dX$$

$$K_{ij}^{e} = \int_{X_{A}}^{X_{B}} \frac{d\psi_{i}}{dX} \frac{d\psi_{j}}{dX} dX$$
(3.6 a)

Con las funciones de interpolación y sus derivadas se calculan (M_{ij}^e) y (K_{ij}^e) después se sustituyen en (3.6 a).

$$\begin{bmatrix} M^{e} \end{bmatrix} = \frac{h_{e}}{30} \begin{bmatrix} 4 & 2 & -1 \\ 2 & 16 & 2 \\ -1 & 2 & 4 \end{bmatrix} \qquad \begin{bmatrix} K^{e} \end{bmatrix} = \frac{1}{3h_{e}} \begin{bmatrix} 7 & -8 & 1 \\ -8 & 16 & -8 \\ 1 & -8 & 7 \end{bmatrix}$$
$$\frac{h_{e}}{30} \begin{bmatrix} 4 & 2 & -1 \\ 2 & 16 & 2 \\ -1 & 2 & 4 \end{bmatrix} \begin{bmatrix} 7 & -8 & 1 \\ T_{2} \\ T_{3} \\ T_{3} \end{bmatrix} + \frac{1}{3h_{e}} \begin{bmatrix} 7 & -8 & 1 \\ -8 & 16 & -8 \\ 1 & -8 & 7 \end{bmatrix} \begin{bmatrix} T_{1} \\ T_{2} \\ T_{3} \\ T_{3} \end{bmatrix} = \begin{bmatrix} Q_{1} \\ Q_{2} \\ Q_{3} \end{bmatrix}$$

Usando la familia α de aproximación (3.7)

donde

$$\overline{Q}_i = \alpha(Q_i^1)_{s+1} + (1-\alpha)(Q_i^1)_s$$

Condiciones de frontera.

$$Q_{1} = \alpha (Q_{1}^{1})_{s+1} + (1-\alpha)(Q_{1}^{1})_{s}$$
$$Q_{1} = \alpha \left\{ (-\alpha \frac{\partial T_{1}}{\partial X})_{X_{B}} \right\}_{s+1} + (1-\alpha) \left\{ (-\alpha \frac{\partial T_{1}}{\partial X})_{X_{B}} \right\}_{s} = 0$$

 $\overline{Q}_2 = 0$

$$\overline{Q}_{3} = \alpha (Q_{3}^{1})_{s+1} + (1-\alpha)(Q_{3}^{1})_{s}$$

$$\overline{Q}_{3} = \alpha \left\{ (-\alpha \frac{\partial T_{3}}{\partial X})_{X_{B}} \right\}_{s+1} + (1-\alpha) \left\{ (-\alpha \frac{\partial T_{3}}{\partial X})_{X_{B}} \right\}_{s}$$

$$\overline{Q}_{3} = \alpha \left\{ -\beta T_{3} \right\}_{s+1} + (1-\alpha) \left\{ -\beta T_{3} \right\}_{s}$$
Condiciones iniciales.

 $(T_1)_0 = 1, (T_2)_0 = 1, (T_3)_0 = 1$ en $\tau = 0$ UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

Sustituir las condiciones frontera y las condiciones iniciales en el sistema de ecuaciones algebraicas.

$$\begin{bmatrix} \frac{4h_e}{30} + \frac{7}{3h_e} \alpha \Delta \tau & \frac{2h_e}{30} - \frac{8}{3h_e} \alpha \Delta \tau & -\frac{h_e}{30} + \frac{1}{3h_e} \alpha \Delta \tau \\ \frac{2h_e}{30} - \frac{8}{3h_e} \alpha \Delta \tau & \frac{16h_e}{30} + \frac{16}{3h_e} \alpha \Delta \tau & \frac{2h_e}{30} - \frac{8}{3h_e} \alpha \Delta \tau \\ -\frac{h_e}{30} + \frac{1}{3h_e} \alpha \Delta \tau & \frac{2h_e}{30} - \frac{8}{3h_e} \alpha \Delta \tau & \frac{4h_e}{30} + \frac{7}{3h_e} \alpha \Delta \tau \\ \end{bmatrix} \begin{bmatrix} T_1 \\ T_2 \\ T_3 \\ T_3 \\ s+1 \end{bmatrix} =$$

a) Para $h_e = 1$, $\alpha = 0.5$, $\Delta \tau = 0.01875$

$$\Delta \tau \overline{Q}_2 = -0.0468(T_2)_{s+1} - 0.0468(T_2)_s$$

0.1552	0.0416	-0.0302	$\left[T_{1}\right]$	°	0.1114	0.0916	-0.0364]	$[T_1]$
0.0416	0.5833	0.0416	T_2	} =	0.0916	0.4833	0.0916	$\{T_2\}$
-0.0302	0.0416	0.2020	T_3	s+1	- 0.0364	0.0916	-0.0646	$\left[T_{3}\right]$
	RITATIS [1]							

TABLA 3.2b

Comparación de la solución del elemento finito con la solución analítica de una ecuación parabólica para un elemento cuadrático

	51111			Solución	Solución	Solución
Tiempo				exacta	exacta	exacta
JNIATER	SIFAL	A T TÓ	NŒMA	DETINU	JEV72 L	EÓ r y ®
	ECCIÓN	IGÈNEI	RAL DE	BIBLIC	TECAS	1
0.01875	0.8932	1.0425	0.5117	1.0210	1.0040	0.3500
0.03750	0.9524	0.9869	0.4143	1.0082	0.9702	0.2798
0.05625	0.9886	0.9359	0.3633	1.0034	0.9636	0.2379
0.07500	1.0012	0.8930	0.3280	0.9950	0.8761	0.2102
0.09375	0.9980	0.8559	0.3021	0.9810	0.8326	0.5812
0.11250	0.9850	0.8230	0.2824	0.9616	0.7932	0.1753
0.13125	0.9658	0.7930	0.2669	0.9384	0.7575	0.1636
0.15000	0.9429	0.7653	0.2541	0.9127	0.7248	0.1534
0.16875	0.9180	0.7392	0.2431	0.8853	0.6947	0.1450
0.18750	0.8920	0.7146	0.2335	0.8572	0.6666	0.1377

b) Para $h_e = 1$, $\alpha = 0.5$, $\Delta \tau = 0.0375$

$$\Delta \tau Q_2 = -0.0937 (T_2)_{s+1} - 0.0937 (T_2)_s$$

$$\begin{bmatrix} 0.17708 & 0.01666 & -0.0270 \\ 0.01666 & 0.63330 & 0.01666 \\ -0.02708 & 0.01666 & 0.27070 \end{bmatrix} \begin{bmatrix} T_1 \\ T_2 \\ T_3 \end{bmatrix}_{s+1} = \begin{bmatrix} 0.08958 & 0.11666 & -0.0395 \\ 0.11666 & 0.43333 & 0.11666 \\ -0.03958 & 0.11666 & -0.0041 \end{bmatrix} \begin{bmatrix} T_1 \\ T_2 \\ T_3 \end{bmatrix}_{s}$$

TABLA 3.2bb

Comparación de la solución del elemento finito con la solución analítica de una ecuación parabólica para un elemento cuadrático

		0		Solución	Solución	Solución
Tiempo				exacta	exacta	exacta
47	T	<i>T</i> ₂	T ₃	T 1	T ₂	T ₃
0	OUL	1				1
0.0375	0.8903	1.0212	0.2955	1.0082	0.9702	0.2798
0.07500	1.0280	0.8807	0.3539	0.9950	0.8761	0.2102
0.11250	0.9853	0.8240	0.2714	0.9616	0.7932	0.1753
0.15000	0.9477	0.7635	0.2545	0.9127	0.7248	0.1534
0.18750	0.8938	0.7141	0.2319	0.8572	0.6666	0.1377
0.22500	0.8410	0.6680	0.2164	0.8005	0.6155	0.1255
0.26250	0.7892	0.6257	0.2019	0.7452	0.5694	0.1152
0.30000	0.7401	0.5861	0.1890	0.6904	0.5233	0.1049
0.33750	0.6937	0.5492	0.1770	0.6356	0.4772	0.0946
0.3750	0.6501	0.5146	0.1658	0.5808	0.4311	0.0843

III) Para dos elementos cuadráticos (Ejemplo 3.2)

$$\begin{bmatrix} M^{1} \\ T \end{bmatrix} \{T\} + [K] \{T\} = \{Q\}$$

$$M_{ij}^{e} = \int_{X_{A}}^{X_{B}} \psi_{i} \psi_{j} dX$$

$$K_{ij}^{e} = \int_{X_{A}}^{X_{B}} \frac{d\psi_{i}}{dX} \frac{d\psi_{j}}{dX} dX$$
(3.6 a)

Con las funciones de interpolación y sus derivadas se calculan (M_{ij}^e) y (K_{ij}^e) después se sustituyen en la ecuación (3.6 a).

$$\begin{bmatrix} M^{e} \end{bmatrix} = \frac{h_{e}}{30} \begin{bmatrix} 4 & 2 & -1 \\ 2 & 16 & 2 \\ -1 & 2 & 4 \end{bmatrix} \qquad \begin{bmatrix} K^{e} \end{bmatrix} = \frac{1}{3h_{e}} \begin{bmatrix} 7 & -8 & 1 \\ -8 & 16 & -8 \\ 1 & -8 & 7 \end{bmatrix}$$
$$\frac{h_{e}}{30} \begin{bmatrix} 4 & 2 & -1 \\ 2 & 16 & 2 \\ -1 & 2 & 4 \end{bmatrix} \begin{bmatrix} 7 & 1 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix} + \frac{1}{3h_{e}} \begin{bmatrix} 7 & -8 & 1 \\ -8 & 16 & -8 \\ 1 & -8 & 7 \end{bmatrix} \begin{bmatrix} T_{1} \\ T_{2} \\ T_{3} \end{bmatrix} = \begin{bmatrix} Q_{1}^{1} \\ Q_{2}^{1} \\ Q_{3}^{1} \end{bmatrix}$$

Ensamble de elementos (Balance de la variable primaria)

Usando la familia α de aproximación (3.7).

$$\left(\left|M^{e}\right| + \Delta\tau\alpha \left|K^{e}\right|\right)\left|T^{e}\right|_{s+1} = \left(\left|M^{e}\right| - \Delta\tau(1-\alpha)\left|K^{e}\right|\right)\left|T^{e}\right|_{s} + \Delta\tau(\alpha \left|Q^{e}\right|_{s+1} + (1-\alpha)\left|Q^{e}\right|_{s}\right)$$

$$\begin{cases} \frac{4h}{30} + \frac{7}{3h} & adr & \frac{2h}{3h} - \frac{8}{3h} & adr & \frac{-h}{3h} + \frac{1}{1} adr \\ \frac{2h}{30} - \frac{3h}{3h} & adr & \frac{2h}{3h} + \frac{1}{3h} & adr \\ \frac{2h}{30} - \frac{3h}{3h} & adr & \frac{2h}{3h} + \frac{1}{3h} & adr \\ \frac{2h}{30} - \frac{1}{3h} & adr & \frac{2h}{3h} + \frac{1}{3h} & adr \\ \frac{2h}{30} - \frac{1}{3h} & adr & \frac{2h}{3h} + \frac{1}{3h} & adr \\ \frac{2h}{30} - \frac{1}{3h} & adr & \frac{2h}{3h} + \frac{1}{3h} & adr \\ \frac{2h}{30} - \frac{1}{3h} & adr & \frac{2h}{3h} + \frac{1}{3h} & adr \\ \frac{2h}{30} - \frac{1}{3h} & adr & \frac{2h}{3h} + \frac{1}{3h} & adr \\ \frac{4h}{30} - \frac{1}{3h} & adr & \frac{2h}{3h} + \frac{1}{3h} & adr \\ \frac{4h}{30} - \frac{1}{3h} & adr & \frac{2h}{3h} + \frac{1}{3h} & adr \\ \frac{4h}{30} - \frac{1}{3h} & adr & \frac{2h}{3h} + \frac{1}{3h} & adr \\ \frac{4h}{30} - \frac{1}{3h} & adr & \frac{2h}{3h} + \frac{1}{3h} & adr \\ \frac{4h}{30} - \frac{1}{3h} & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{2h}{3h} & \frac{8}{3h} & 1 & 0 \\ \frac{4h}{3h} & 1 & 0 & 0 & 0 \\ \frac{4h}{3h} & 1 & 0 & 0 & 0 \\ \frac{4h}{3h} & 1 & 0 & 0 & 0 \\ \frac{4h}{3h} & 1 & 0 & 0 & 0 \\ \frac{4h}{3h} & 1 & 0 & 0 & 0 \\ \frac{4h}{3h} & 1 & 0 & 0 & 0 \\ \frac{4h}{30} - \frac{1}{3h} & 1 & 0 & 0 \\ \frac{4h}{30} - \frac{1}{3h} & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \frac{4h}{30} - \frac{1}{3h} & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \frac{4h}{30} - \frac{1}{3h} & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \frac{4h}{30} - \frac{1}{3h} & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \frac{4h}{30} - \frac{1}{3h} & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \frac{4h}{30} - \frac{1}{3h} & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \frac{4h}{30} - \frac{1}{3h} & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \frac{4h}{30} - \frac{1}{3h} & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \frac{4h}{30} - \frac{1}{3h} & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \frac{4h}{30} - \frac{1}{3h} & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \frac{4h}{30} - \frac{4h}{3h} + \frac{1}{3h} & 1 & 0 \\ 0 & 0 & 0 & 0 \\ \frac{4h}{3h} + \frac{1}{3h} & \frac{4h}{3h} & 1 \\ \frac{4h}{30} - \frac{4h}{3h} + \frac{1}{3h} & \frac{4h}{3h} & 1 \\ \frac{4h}{30} - \frac{4h}{3h} + \frac{1}{3h} & \frac{4h}{3h} & 1 \\ \frac{4h}{30} - \frac{4h}{3h} + \frac{1}{3h} & \frac{4h}{3h} & 1 \\ \frac{4h}{30} - \frac{4h}{3h} + \frac{1}{3h} & \frac{4h}{3h} & 1 \\ \frac{4h}{3h} + \frac{4h}{3h} & 1 \\ \frac{4h}{3h} & \frac{4h}{3h} & 1 \\$$

donde

$$\overline{Q}_i = \alpha(Q_i^e)_{s+1} + (1-\alpha)(Q_i^e)_s$$

Condiciones frontera.

$$\overline{Q}_{1} = 0, \quad \overline{Q}_{2} = 0, \quad \overline{Q}_{3} = 0, \quad \overline{Q}_{4} = 0$$

$$Q_{5} = \alpha \left\{ -(-\alpha \frac{\partial T}{\partial X})_{XA} \right\}_{s+1} + (1-\alpha) \left\{ -(\alpha \frac{\partial T}{\partial X})_{XA} \right\}_{s}$$

$$\overline{Q}_{5} = \alpha \left\{ -\beta T_{5} \right\}_{s+1} + (1-\alpha) \left\{ -\beta T_{5} \right\}_{s}$$
Condiciones iniciales.
$$(T_{1})_{0} = 1, \quad (T_{2})_{0} = 1, \quad (T_{3})_{0} = 1, \quad (T_{4})_{0} = 1, \quad (T_{5})_{0} = 1$$
a) Para $h_{e} = 0.5, \quad \alpha = 0.5, \quad \Delta \tau = 0.01875$

$$\Delta t \overline{Q}_{5} = -0.0468(T_{5})_{s+1} - 0.0468(T_{5})_{s}$$

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

	0.1552	0.0416	-0.0302	0	0	$[T_1]$	Į	
	0.0416	0.5833	0.0416	RAOL I	DE B IB	T_2	DTEC	AS
	-0.0320	0.0416	0.3104	0.0416	-0.0302	T_3	=	
	0	0	0.0416	0.5833	0.0416	T_4		
	0	0	-0.0320	0.0416	0.2020	T_5	s+1	
1	[0.1 t	2 7 2				(-)		
ĺ	0.1114	0.0916	-0.0364	0	0	17.		0
			2. 2	•		-1		1747
	0.0916	0.4833	0.0916	0	0	T_2	í.	0
	0.0916 -0.0364	0.4833 0.0916	0.0916 0.2229	0 0.0916	0 0.0364	T_2 T_3	+ Δ τ-	0
	0.0916 -0.0364 0	0.4833 0.0916 0	0.0916 0.2229 0.0916	0 0.0916 0.4833	0 0.0364 0.0916	$\begin{cases} T_2 \\ T_3 \\ T_4 \end{cases}$	+∆τ<	0 0 } 0
	0.0916 -0.0364 0 0	0.4833 0.0916 0 0	0.0916 0.2229 0.0916 -0.0364	0 0.0916 0.4833 0.0916	0 0.0364 0.0916 0.0646	$\begin{bmatrix} T_2 \\ T_3 \\ T_4 \\ T_5 \end{bmatrix}$	+∆τ	0 0 0 25

TABLA 3.2c

Comparación de la solución del elemento finito con la solución analítica de una ecuación parabólica para dos elementos cuadráticos.

Tiempo						Solución cxacta	Solución exacta	Solución exacta	Solución exacta	Solución cuacta
Δτ	<i>T</i> ₁	<i>T</i> ₂	<i>T</i> ₃	T ₄	T5	<i>T</i> ₁	<i>T</i> ₂	T ₃	T4	T ₅
0	1	1	1	1	1	1	1	1	1	1
0.01875	0.9880	1.0047	0.9464	1.0381	0.5205	1.0210	0.9936	1.0040	0.9174	0.3500
0.03750	1.0031	0.9950	0.9763	0.9917	0.4082	1.0082	1.0000	0.9702	0.7853	0.2798
0.05625	1.0056	0.9926	0.9950	0.9426	0.3587	1.0034	0.9916	0.9236	0.6960	0.2379
0.07500	1.0024	0.9937	1.0011	0.8989	0.3272	0.9950	0.9734	0.8761	0.6310	0.2102
0.09375	0.9985	0.9955	0.9992	0.8604	0.3038	0.9810	0.9501	0.8326	0.5812	0.1904
0.1125	0.9955	0.9968	0.9926	0.8264	0.2852	0.9616	0.9238	0.7932	0.5414	0.1753
0.13125	0.9938	0.9971	0.9830	0.7960	0.2699	0.9384	0.8959	0.7575	0.5086	0.1633
0.15000	0.9929	0.9965	0.9717	0.7687	0.2569	0.9127	0.8672	0.7248	0.4808	0.1534
0.16875	0.9926	0.9958	0.9593	0.7439	0.2456	0.8853	0.8383	0.6947	0.4567	0.1450
0.1875	0.9925	0.9926	0.9464	0.7213	0.2357	0.8572	0.8095	0.6666	0.4353	0.1377

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS b) Para $h_e = 0.5$, $\alpha = 0.5$, $\Delta \tau = 0.0375$

 $\varDelta\tau \overline{Q}_5 = -0.09375 (T_5)_{s+1} - 0.09375 (T_5)_s$

ì	0.1541	-0.0666	-0.0041	0	0	$\left[T_{1}\right]$	
ļ	-0.0666	0.4666	- 0.0666	0	0	T_2	
	-0.0041	-0.0666	0.3083	-0.0666	- 0.0041	T_3	> =
	0	0	- 0.0666	0.4666	- 0.0666	<i>T</i> ₄	
1	0	0	- 0.004 1	- 0.0666	0.2478	T_5	s+1

	-0.0208	0.1333	-0.02916	0	0	$\left \left(T_{1} \right) \right $		0	
	0.1333	0.0666	0.1333	0	0	T_2		0	
	-0.02916	0.1333	-0.04166	0.1333	- 0.0291	$\{T_3\}$	• +∆ τ <	0	}
\overline{z}	ALERE FLANMAN VERIT O IS	0	0.1333	0.0666	0.1333	<i>T</i> ₄	(0	
	0	0	- 0.02916	0.1333	-0.1145	Ts	3	Q_5	
		0							

TABLA 3.2cc

Comparación de la solución del elemento finito con la solución analítica de una ecuación parabólica para dos elementos cuadráticos

- [NILLY /	EDC			τό		Solución	Solución	Solución	Solución	Solución
	$\Delta \tau$	T_{l}	T_2	T_3	T_4	T_5	T_1	T ₂	T ₃	T ₄	T ₅ R
Ī	0 D	REG	CIO	Y GE	NER.	AL D	F i BH	LIO	Fieca	1p	1
Ī	0.0375	0.9958	0.9935	0.9615	0.8815	0.2113	1.0082	1.0000	0.9702	0.7853	0.2798
	0.0750	0.9900	0.9765	0.9397	0.6603	0.4566	0.9950	0.9734	0.8761	0.6310	0.2102
Ţ	0.1125	0.9618	0.9423	0.8014	0.6388	0.2187	0.9616	0.9238	0.7932	0.5414	0.1753
ŀ	0.1500	0.9368	0.8884	0.7879	0.5388	0.3063	0.9127	0.8672	0.7248	0.4808	0.1534
Į	0.1875	0.8726	0.8434	0.7002	0.5190	0.2068	0.8572	0.8095	0.6666	0.4353	0.1377
	0.2250	0.8369	0.7857	0.6768	0.4636	0.2372	0.8005	0.7535	0.6155	0.3984	0.1255
ŀ	0.2625	0.7763	0.7433	0.6163	0.4423	0.1894	0.7452	0.7002	0.5694	0.3668	0.1152
	0.3000	0.7367	0.6930	0.5879	0.4053	0.1967	0.6904	0.6469	0.5233	0.3352	0.1049
	0.3375	0.6852	0.6526	0.5426	0.3837	0.1702	0.6356	0.5936	0.4772	0.3036	0.0946
	0.3750	0.6463	0.6094	0.5133	0.3557	0.1681	0.5808	0.5403	0.4311	0.2720	0.0843

CAPITULO 4

PROBLEMAS EN DOS DIMENSIONES MÉTODO DE ELEMENTO FINITO

4.1 Introducción

El análisis del elemento finito de problemas en dos dimensiones involucra los mismos pasos básicos que se describieron para problemas en una dimensión en él capitulo (2).

El análisis es algo complicado porque los problemas en dos dimensiones son descritos por ecuaciones diferenciales parciales sobre regiones de geometrias complejas.

La frontera (Γ) de un dominio en dos dimensiones (Ω) es, en general, una curva.

Las mallas del elemento finito consisten de elementos en dos dimensiones, tales como triángulos, rectángulos y o cuadriláteros.

La posibilidad para representar dominios con geometrias irregulares por una colección de elementos finitos hace del método una herramienta practica para la solución de problemas de valores en la frontera, valor inicial, y eigenvalor en varios campos de la ingeniería.

4.2 Problemas con valores en la frontera

4.2.1 Ecuación modelo

Considere el problema de encontrar la solución (u) de la ecuación diferencial parcial de segundo orden.

$$-\frac{\partial}{\partial x}\left(a_{11}\frac{\partial u}{\partial x}+a_{12}\frac{\partial u}{\partial y}\right)-\frac{\partial}{\partial y}\left(a_{21}\frac{\partial u}{\partial x}+a_{22}\frac{\partial u}{\partial y}\right)+a_{00}u-f=0$$
(4.1)

4.2.2 Discretizacion del elemento finito

La representación de una región dada por un conjunto de elementos (discretizacion o generación de malla) es un paso importante en el análisis del elemento finito. La elección del tipo de elemento, numero de elementos, y la densidad de elementos dependen del dominio de la geometría.

Figura 4.1

Discretizacion de un dominio por elementos

triangulares y cuadrilateros.

4.2.3 Forma débil

Para desarrollar la forma débil, se considera un elemento típico arbitrario. Considere que (Ω^e) es dicho elemento, triangular o cuadrilátero.

$$0 = \int_{\Omega^{d}} \left[\frac{\partial w}{\partial x} \left(a_{11} \frac{\partial u}{\partial x} + a_{12} \frac{\partial u}{\partial y} \right) + \frac{\partial w}{\partial x} \left(a_{21} \frac{\partial u}{\partial x} + a_{22} \frac{\partial u}{\partial y} \right) + a_{00} wu - wf \right] dxdy$$
$$- \oint_{\Gamma^{d}} w \left[n_{x} \left(a_{11} \frac{\partial u}{\partial x} + a_{12} \frac{\partial u}{\partial y} \right) + n_{y} \left(a_{21} \frac{\partial u}{\partial x} + a_{22} \frac{\partial u}{\partial y} \right) \right] ds \qquad (4.2 a)$$

$$q_{m} = \left[n_{x} \left(a_{11} \frac{\partial u}{\partial x} + a_{12} \frac{\partial u}{\partial y} \right) + n_{y} \left(a_{21} \frac{\partial u}{\partial x} + a_{22} \frac{\partial u}{\partial y} \right) \right]$$
(4.2 b)

Por definición, (q_n) es positivo hacia fuera de la superficie cuando nos movemos en contra de las manecillas del reloj a lo largo de la frontera (Γ^e) . La variable secundaria (q_n) es de interés físico en muchos de los problemas. Por ejemplo, en el caso de transferencia de calor en un medio anisotropico, (a_{ij}) son la conductividad del medio, y (q_n) es el flujo de calor normal a la frontera del elemento.

La forma débil (también llamado problema variacional) en (4.2 a) forma la base del modelo del elemento finito.

DIRECCIÓN GENERAL DE BIBLIOTECAS

4.2.4 Modelo del elemento finito

La forma débil (4.2) requiere que la aproximación que se escoja para (u) debe ser al menos lineal en ambas (x, y) de tal manera que ningún termino en la ecuación (4.2) sea cero.

$$u(x, y) \approx U^{e}(x, y) = \sum_{j=1}^{n} u_{j}^{e} \psi_{j}^{e}(x, y)$$
(4.3)

Sustituimos la aproximación del elemento finito (4.3) por (u) en la forma débil (4.2), y (ψ_i) por (w).

$$\sum_{j=1}^{n} K_{ij}^{e} u_{j}^{e} = f_{i}^{e} + Q_{i}^{e}$$

$$K_{ij}^{e} = \int_{\mathbb{R}^{e}} \left[\frac{\partial \psi_{i}}{\partial x} \left(a_{11} \frac{\partial \psi_{j}}{\partial x} + a_{12} \frac{\partial \psi_{j}}{\partial y} \right) + \frac{\partial \psi_{i}}{\partial y} \left(a_{21} \frac{\partial \psi_{j}}{\partial x} + a_{22} \frac{\partial \psi_{j}}{\partial y} \right) + a_{00} \psi_{i} \psi_{j} \right] dx dy$$

$$f_{i}^{e} = \int_{\mathbb{R}^{e}} f \psi_{i}^{e} dx dy, \qquad Q_{i}^{e} = \int_{\mathbb{R}^{e}} q_{n} \psi_{i}^{e} ds$$

$$(4.4 \text{ b})$$
En notación matricial
$$\left[K^{e} \right] u^{e} \right\} = \left\{ f^{e} \right\} + \left\{ Q^{e} \right\}$$

$$(4.4 \text{ c})$$

U 4.2.5 Funciones de interpolación ÓNOMA DE NUEVO LEÓN

DIRECCIÓN GENERAL DE BIBLIOTECAS

La aproximación del elemento finito $U^{e}(x, y)$ de u(x, y) sobre un elemento (Ω^{e}) debe satisfacer las siguientes condiciones para que la solución aproximada converja:

- 1. U^e debe ser diferenciable, como es requerido en la forma débil del problema.
- 2. El polinomio usado para representar U^e debe ser completo.
- 3. Todos los términos en el polinomio deben ser linealmente independientes.

a) Elemento lineal triangular

Figura 4.2a

Elemento finito en dos dimensiones elemento con tres nodos

 A_e es el área del triángulo.

$$A_e = \alpha_1 + \alpha_2 + \alpha_3$$

b) Elemento lineal rectangular

Figura 4.2b

Elemento finito en dos dimensiones elemento con cuatro nodos

4.2.6 Evaluación de los elementos de la matriz, y vectores

La evaluación exacta de los elementos de las matrices $[K^e]$ y $\{f^e\}$ en (4.4 b) son dificil en general. Cuando $(a_{ij}), (a_{00}), y(f)$ son constantes, es posible evaluar las integrales exactamente con elementos triangulares y rectangulares. La integral en la frontera $\{Q^e\}$ de (4.4 b) puede ser evaluada siempre que (q_n) sea conocida

$$\left[K^{e}\right] = a_{00}\left[S^{00}\right] + a_{11}\left[S^{11}\right] + a_{12}\left[S^{12}\right] + a_{21}\left[S^{12}\right]^{T} + a_{22}\left[S^{22}\right]$$
(4.11)

$$S_{ij}^{\alpha\beta} = \int_{\Omega^e} \psi_{i,\alpha} \psi_{j,\beta} \, dx \, dy \tag{4.12}$$

con $\psi_{i,\alpha} = \frac{\partial \psi_i}{\partial \psi_{\alpha}}$, $x_1 = x$, $y x_2 = y$; $\psi_{i,0} = \psi_i$. Todas las matrices en (4.11) y funciones de interpolación (4.12) deben ser definidas sobre un elemento.

ELEMENTOS DE MATRICES PARA UN ELEMENTO TRIANGULAR LINEAL

$$I_{10} = A \quad (\text{área del triángulo}) \quad \text{MA DE NUEVO LEON}$$

$$I_{10} = A\hat{x}, \quad I = \frac{1}{3} \sum_{i=1}^{3} x_i, \quad I_{01} = A\hat{y}, \quad B \neq = \frac{1}{3} \sum_{i=1}^{3} y_i \quad \text{CAS}$$

$$I_{11} = \frac{A}{12} \left(\sum_{i=1}^{3} x_i y_i + 9\hat{x}\hat{y} \right), \quad I_{20} = \frac{A}{12} \left(\sum_{i=1}^{3} x_i^2 + 9\hat{x}^2 \right), \quad I_{02} = \frac{A}{12} \left(\sum_{i=1}^{3} y_i^2 + 9\hat{y}^2 \right) \quad (4.13)$$

$$S_{ij}^{11} = \frac{1}{4A} \beta_i \beta_j , S_{ij}^{12} = \frac{1}{4A} \beta_i \gamma_j , S_{ij}^{22} = \frac{1}{4A} \gamma_i \gamma_j$$
$$S_{ij}^{00} = \frac{1}{4A} \left\{ \alpha_i \alpha_j + (\alpha_i \beta_j + \alpha_j \beta_i) \mathbf{\hat{x}} + (\alpha_i \beta_j + \alpha_j \beta_i) \mathbf{\hat{y}} \right\} + (\alpha_i \beta_j + \alpha_j \beta_i) \mathbf{\hat{y}} = \frac{1}{4A} \left\{ \alpha_i \alpha_j + (\alpha_i \beta_j + \alpha_j \beta_i) \mathbf{\hat{x}} + (\alpha_i \beta_j + \alpha_j \beta_i) \mathbf{\hat{y}} \right\}$$

$$+\frac{1}{A}\left[I_{20}\beta_i\beta_j + I_{11}(\gamma_i\beta_j + \gamma_j\beta_i) + I_{02}\gamma_i\gamma_j\right] \right\}$$
(4.14)

$$f_i^e = \frac{1}{3} f_e A_e \tag{4.15}$$

Por ejemplo, cuando (a_{12}) , (a_{21}) , $y(a_{00})$ son cero, $y(a_{11})$, (a_{22}) son constantes se tiene.

$$K_{ij}^{e} = \frac{1}{4A_{e}} \left(a_{11}^{e} \beta_{i}^{e} \beta_{j}^{e} + a_{22}^{e} \gamma_{i}^{e} \gamma_{j}^{e} \right)$$
(4.16)

$$\{f\} = \frac{1}{4} fab\{1 \ 1 \ 1 \ 1\}^T$$

EVALUACIÓN DE LAS INTEGRALES DE FRONTERA

Aquí se analizara la evaluación de las integrales del tipo

$$Q_i^e = \oint_e q_n^e \psi_i^e(s) ds \tag{4.18}$$

donde (q_n^e) es una función conocida de la distancia (s) a lo largo de la frontera (Γ^e) .

No necesariamente se calculan dichas integrales cuando una porción de (Γ^e) no coincide con la frontera (Γ) del dominio total (Ω) . La evaluación de (Q_i^e) involucra el uso de funciones de interpolación (1-D) y variaciones conocidas de (q_n^e) en la frontera:

Figura 4.3 Elemento triangular lineal en coordenadas L DE BIBLIOTECAS

globales (x, y) y en coordenadas locales (s, t).

$$Q_{i}^{e} = \int_{-2} \psi_{i}(s)q_{n}(s)ds + \int_{2-3} \psi_{i}(s)q_{n}(s)ds + \int_{3-1} \psi_{i}(s)q_{n}(s)ds$$

$$Q_{i}^{e} \equiv Q_{i1}^{e} + Q_{i2}^{e} + Q_{i3}^{e}$$
(4.19)

por ejemplo

$$Q_1^e = \oint_{-e} q_n \psi_1(s) ds = \int_{-2} (q_n)_{1-2} \psi_1 ds + 0 + \int_{-1} (q_n)_{3-1} \psi_1 ds$$

La contribución del lado (2-3) es cero, porque (ψ_1) es cero en el lado (2-3) de un elemento triangular.

Para un elemento rectangular, (Q_1^e) tiene contribuciones de los lados (1-2) y(4-1), porque (ψ_1) es cero en los lados (2-3) y (3-4).

Ejemplos. Considere la evaluación de la integral de frontera (Q_i^e)

Caso I. $q(s) = q_0 = \text{constante}$; elemento lineal:

Caso II $q(s) = q_0 \frac{s}{h_e}$ como lo muestra la figura; elemento lineal:

 $Q_3^e = Q_{32}^e$

4.2.7 Ensamble de las ecuaciones del elemento

El ensamble de las ecuaciones de los elementos esta basada en los mismos dos principios que fueron usados en los problemas en una dimensión:

- 1. Continuidad de las variables primarias
- 2. Balance de las variables secundarias

Se ilustrara el procedimiento considerando una malla con dos elementos uno triangular y el otro cuadrilátero.

Las ecuaciones de los dos elementos son escritas primero. Para el problema modelo a la mano, este tiene solo un grado de libertad por nodo.

Para el elemento triangular, las ecuaciones del elemento son de la forma.

$$K_{11}^{1}u_{1}^{1} + K_{12}^{1}u_{2}^{1} + K_{13}^{1}u_{3}^{1} = f_{1}^{1} + Q_{1}^{1}$$

$$K_{21}^{1}u_{1}^{1} + K_{22}^{1}u_{2}^{1} + K_{23}^{1}u_{3}^{1} = f_{2}^{1} + Q_{2}^{1}$$

$$K_{31}^{1}u_{1}^{1} + K_{32}^{1}u_{2}^{1} + K_{33}^{1}u_{3}^{1} = f_{3}^{1} + Q_{3}^{1}$$
(4.20 a)

Para el elemento rectangular, las ecuaciones del elemento son dadas.

$$K_{11}^{2}u_{1}^{2} + K_{12}^{2}u_{2}^{2} + K_{13}^{2}u_{3}^{2} + K_{14}^{2}u_{4}^{2} = f_{1}^{2} + Q_{1}^{2}$$

$$K_{21}^{2}u_{1}^{2} + K_{22}^{2}u_{2}^{2} + K_{23}^{2}u_{3}^{2} + K_{24}^{2}u_{4}^{2} = f_{2}^{2} + Q_{2}^{2}$$

$$K_{31}^{2}u_{1}^{2} + K_{32}^{2}u_{2}^{2} + K_{33}^{2}u_{3}^{2} + K_{34}^{2}u_{4}^{2} = f_{3}^{2} + Q_{3}^{2}$$

$$(4.20 \text{ b})$$

$$K_{41}^{2}u_{1}^{2} + K_{42}^{2}u_{2}^{2} + K_{43}^{2}u_{3}^{2} + K_{44}^{2}u_{4}^{2} = f_{4}^{2} + Q_{4}^{2}$$

Continuidad de la variable primaria

se sustituyen las condiciones frontera y después se soluciona el sistema de ecuaciones para las variables primarias (U_i) y las variables secundarias (Q_i^e) .

Ejemplo 4.1. Escriba la aproximación por elemento finito y la solución de la ecuación de Poisson, para la geometria que se muestra en la figura 4.5.

$$-\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) = f_0 \qquad \text{en} \qquad \Omega$$

Las condiciones frontera del problema son.

u=0 en Γ

I). SOLUCIN POR ELEMENTOS TRIANGULARES LINEALES

DIRECCIÓN GENERAL DE BIBLIOTECAS

Un problema posee simetría de la solución a trabes de una línea solo cuando hay simetría de.

- a) La geometria.
- b) Las propiedades del material.
- c) La variación de la fuente.
- d) Las condiciones de frontera atrabes de la linea.

El análisis del problema (4.1) solo se hara en el triángulo de la figura (4.5)

Figura 4.6

Subdominio rectangular para la aplicación de la ecuación de poisson

- (a) Geometría y dominio computacional,
- (b) Malla de elementos finitos lineales triangulares.

169

Considere el elemento uno, con su sistema de coordenadas locales (\bar{x}, \bar{y}) , suponemos que la longitud y la altura, son $a \neq b$, respectivamente.

Las coordenadas de los nodos del elemento son.

$$(\bar{x}_1, \bar{y}_1) = (0,0), \quad (\bar{x}_2, \bar{y}_2) = (a,0), \quad (\bar{x}_3, \bar{y}_3) = (a,b)$$

Los coeficientes (K_{ij}^{e}) y (f_{i}^{e}) son dados por las ecuaciones (4.15) y (4.16)

$$f_i^e = \frac{1}{3} f_e A_e \tag{4.15}$$

$$\left\{ f^1 \right\} = \frac{f_0 a b}{6} \begin{bmatrix} I \\ 1 \\ 1 \end{bmatrix}$$

$$K_{ij}^{e} = \frac{1}{4A_{e}} \left(a_{11}^{e} \beta_{i}^{e} \beta_{j}^{e} + a_{22}^{e} \gamma_{i}^{e} \gamma_{j}^{e} \right)$$
(4.16)

$$\begin{bmatrix} K^{1} \end{bmatrix} = \frac{1}{2ab} \begin{bmatrix} b^{2} & -b^{2} & 0 \\ -b^{2} & a^{2} + b^{2} & -a^{2} \\ 0 & -a^{2} & a^{2} \end{bmatrix}$$

Para la malla mostrada en la figura 4.6 (b), tenemos.

 $\begin{bmatrix} K^{1} \end{bmatrix} = \begin{bmatrix} K^{2} \end{bmatrix} = \begin{bmatrix} K^{3} \end{bmatrix} = \begin{bmatrix} K^{4} \end{bmatrix}, \quad \{f^{1} \} = \{f^{2} \} = \{f^{3} \} = \{f^{4} \}$ Si $(a = b = \frac{1}{2})$, los coeficientes de las matrices toman la forma. $\begin{bmatrix} K^{e} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix} \quad [f^{e}] = \frac{f_{0}}{24} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

Para los elementos triangulares, las ecuaciones para cada un son de la forma.

Elemento(1)

$$K_{11}^{1}u_{1}^{1} + K_{12}^{1}u_{2}^{1} + K_{13}^{1}u_{3}^{1} = f_{1}^{1} + Q_{1}^{1}$$

$$K_{21}^{1}u_{1}^{1} + K_{22}^{1}u_{2}^{1} + K_{23}^{1}u_{3}^{1} = f_{2}^{1} + Q_{2}^{1}$$

$$K_{31}^{1}u_{1}^{1} + K_{32}^{1}u_{2}^{1} + K_{33}^{1}u_{3}^{1} = f_{3}^{1} + Q_{3}^{1}$$

Elemento(2)

$$K_{11}^2 u_1^2 + K_{12}^2 u_2^2 + K_{13}^2 u_3^2 = f_1^2 + Q_1^2$$

$$K_{21}^2 u_1^2 + K_{22}^2 u_2^2 + K_{23}^2 u_3^2 = f_2^2 + Q_2^2$$

$$K_{31}^2 u_1^2 + K_{32}^2 u_2^2 + K_{33}^2 u_3^2 = f_3^2 + Q_3^2$$

Elemento(3)

VERSID

$$K_{11}^{3}u_{1}^{3} + K_{12}^{3}u_{2}^{3} + K_{13}^{3}u_{3}^{3} = f_{1}^{3} + Q_{1}^{3}$$

$$K_{21}^{3}u_{1}^{3} + K_{22}^{3}u_{2}^{3} + K_{23}^{3}u_{3}^{3} = f_{2}^{3} + Q_{2}^{3}$$

$$K_{31}^{3}u_{1}^{3} + K_{32}^{3}u_{2}^{3} + K_{33}^{3}u_{3}^{3} = f_{3}^{3} + Q_{3}^{3}$$

Elemento(4)

$$K_{11}^4 u_1^4 + K_{12}^4 u_2^4 + K_{13}^4 u_3^4 = f_1^4 + Q_1^4$$

 $K_{21}^4 u_1^4 + K_{22}^4 u_2^4 + K_{23}^4 u_3^4 = f_2^4 + Q_2^4$
 $K_{31}^3 u_1^3 + K_{32}^3 u_2^3 + K_{33}^3 u_3^3 = f_3^3 + Q_3^3$

Continuidad de la variable primaria UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

$$u_1^1 = U_{\text{ECCION GENERAL DE BIBLIOTECAS}}$$

 $u_2^1 = u_3^2 = u_1^3 = U_2$
 $u_1^4 = u_3^1 = u_2^2 = U_3$
 $u_2^3 = U_4$
 $u_2^4 = u_1^2 = u_3^3 = U_5$
 $u_3^4 = U_6$

Ensamble del sistema de ecuaciones.

$$\begin{bmatrix} K_{11}^{1} & K_{12}^{1} & K_{13}^{1} & 0 & 0 & 0 \\ K_{21}^{1} & (K_{22}^{1} + K_{33}^{2} + K_{11}^{3}) & (K_{23}^{1} + K_{32}^{2}) & K_{12}^{3} & (K_{31}^{2} + K_{13}^{3}) & 0 \\ K_{31}^{1} & (K_{32}^{1} + K_{23}^{2}) & (K_{33}^{1} + K_{22}^{2} + K_{11}^{4}) & 0 & (K_{21}^{2} + K_{12}^{4}) & K_{13}^{4} \\ 0 & K_{21}^{3} & 0 & K_{22}^{3} & K_{23}^{3} & 0 \\ 0 & (K_{21}^{2} + K_{31}^{3}) & (K_{12}^{2} + K_{21}^{4}) & K_{32}^{3} & (K_{11}^{2} + K_{33}^{3} + K_{22}^{4}) & K_{23}^{4} \\ 0 & 0 & K_{31}^{4} & 0 & K_{32}^{4} & K_{33}^{4} \end{bmatrix} \begin{bmatrix} U_{1} \\ U_{2} \\ U_{3} \\ U_{4} \\ U_{5} \\ U_{6} \end{bmatrix}$$

La suma de las variables secundarias en los nodos globales (2),(3), y (5) son

$$Q_2^1 + Q_3^2 + Q_1^3 = \dot{Q}_2$$
$$Q_3^1 + Q_2^2 + Q_1^4 = \dot{Q}_3$$
$$Q_1^2 + Q_3^3 + Q_2^4 = \dot{Q}_5$$

en los nodos (1),(4), y (6), tenemos $(Q_1^1 = \hat{Q}_1), (Q_2^3 = \hat{Q}_4), y (Q_3^4 = \hat{Q}_6).$

	1	-1	0	0	0	0	$\begin{bmatrix} U_1 \end{bmatrix}$		[1]	$[Q_1]$
	-1	4	-2	-1	0	0	U_2		3	\hat{Q}_2
1	0	-2	4	0	-2	0	U_3	\int_0^{∞}	3	Q_3
2	0	-1	0	2	-1	0	U_4	2 4]1(*	ÌQ₄ [
	0	0	-2	-1	4	-1	U_5		3	Q_5
	0	0	0	0	-1	1	U_6		[1]	Q6)

Las condiciones de frontera especificadas en los grados de libertad de la variable primaria son.

Los grados de libertad especificados en la variable secundaria son (todos por simetría).

$$\hat{Q}_1 = 0, \quad \hat{Q}_2 = 0, \quad \hat{Q}_3 = 0$$

 $U_4 = U_5 = U_6 = 0$

Usando los valores numéricos de los coeficientes (K_{ij}^{e}) y (f_{i}^{e}) con $(f_{0}=1)$, escribimos las ecuaciones condensadas para (U_{1}) , (U_{2}) , y (U_{3}) como:

$$\begin{bmatrix} 0.5 & -0.5 & 0 \\ -0.5 & 2 & -1.0 \\ 0 & -1.0 & 2.0 \end{bmatrix} \begin{bmatrix} U_1 \\ U_2 \\ U_3 \end{bmatrix} = \frac{1}{24} \begin{bmatrix} 1 \\ 3 \\ 3 \end{bmatrix}$$
$$U_1 = 0.31250 \qquad U_2 = 0.22917 \qquad U_3 = 0.17708$$

TABLA 4.1a

Comparación de resultados elemento finito solución por series

	Solución	Solución
Coordenadas	Aproximada	Por series
(x,y)	U	U
(0,0)	0.31250	0.2947
(0.5,0)	0.22917	0.2284
(0.5,0.5)	0.17708	0.1801

Las variables secundarias desconocidas (\hat{Q}_4) , (\hat{Q}_5) , y (\hat{Q}_6) pueden ser calculadas ya sea por las ecuaciones de equilibrio UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

$$\begin{bmatrix} \hat{Q}_{4} \\ \hat{Q}_{5} \\ \hat{Q}_{6} \end{bmatrix} = \underbrace{1}_{24} \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 & -0.5 & 0 \\ 0 & 0 & R-1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} U_{1} \\ U_{2} \\ U_{3} \end{bmatrix} \in \text{BIBLIOTECAS}$$

 $\hat{Q}_4 = -0.19717$ $\hat{Q}_5 = -0.30208$ $\hat{Q}_6 = -0.04166$

o por la definición (4.19)

$$Q_{i}^{e} = \int_{-2} \psi_{i}(s)q_{n}(s)ds + \int_{2-3} \psi_{i}(s)q_{n}(s)ds + \int_{3-1} \psi_{i}(s)q_{n}(s)ds$$

$$Q_{i}^{e} = Q_{i1}^{e} + Q_{i2}^{e} + Q_{i3}^{e}$$
(4.19)

II) SOLUCION POR ELEMENTOS RECTANGULARES LINEALES

Note que no podemos explotar la simetría a lo largo de la diagonal x = y cuando usamos una malla rectangular.

Figura 4.7

Discretizacion del dominio para elementos lineales rectangulares (a), (b).

Como todos los elementos en la malla son idénticos, podemos calcular las matrices del elemento solo para uno, para el elemento(1).

$$\psi_i = (1 - 2\bar{x})(1 - 2\bar{y}), \quad \psi_2 = 2\bar{x}(1 - 2\bar{y})$$

 $\psi_3 = 4\bar{x}\bar{y}, \quad \psi_4 = (1 - 2\bar{x})2\bar{y}$ (4.10 a)

$$K_{ij}^{e} = \int_{0}^{0.5} \int_{0}^{0.5} \left(\frac{\partial \psi_{i}}{\partial x} \frac{\partial \psi_{j}}{\partial x} + \frac{\partial \psi_{i}}{\partial y} \frac{\partial \psi_{j}}{\partial y} \right) dx dy$$
(4.4 b)

$$f_i^e \int_0^{0.5} \int_0^{0.5} f_0 \psi_i dx dy$$
 (4.4 b)

$$a_{11} = a_{22} = 1$$

 $a = b = \frac{1}{2}$
 $f_0 = 1$

$$\begin{bmatrix} K^{e} \end{bmatrix} = \begin{bmatrix} 4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{bmatrix}$$

UNIVERSIDAD AUTONOMA DE NUEVO LEON

La matriz de coeficientes de las ecuaciones condensadas para las variables primarias® desconocidas puede ser directamente ensamblada. BIBLIOTECAS

Elemento(1)

$$K_{11}^{1}u_{1}^{1} + K_{12}^{1}u_{2}^{1} + K_{13}^{1}u_{3}^{1} + K_{14}^{1}u_{4}^{1} = f_{1}^{1} + Q_{1}^{1}$$

$$K_{21}^{1}u_{1}^{1} + K_{22}^{1}u_{2}^{1} + K_{23}^{1}u_{3}^{1} + K_{24}^{1}u_{4}^{1} = f_{2}^{1} + Q_{2}^{1}$$

$$K_{31}^{1}u_{1}^{1} + K_{32}^{1}u_{2}^{1} + K_{33}^{1}u_{3}^{1} + K_{34}^{1}u_{4}^{1} = f_{3}^{1} + Q_{3}^{1}$$

$$K_{41}^{1}u_{1}^{1} + K_{42}^{1}u_{2}^{1} + K_{43}^{1}u_{3}^{1} + K_{44}^{1}u_{4}^{1} = f_{4}^{1} + Q_{4}^{1}$$

Elemento(2)

$$K_{11}^{2}u_{1}^{2} + K_{12}^{2}u_{2}^{2} + K_{13}^{2}u_{3}^{2} + K_{14}^{2}u_{4}^{2} = f_{1}^{2} + Q_{1}^{2}$$

$$K_{21}^{2}u_{1}^{2} + K_{22}^{2}u_{2}^{2} + K_{23}^{2}u_{3}^{2} + K_{24}^{2}u_{4}^{2} = f_{2}^{2} + Q_{2}^{2}$$

$$K_{31}^{2}u_{1}^{2} + K_{32}^{2}u_{2}^{2} + K_{33}^{2}u_{3}^{2} + K_{34}^{2}u_{4}^{2} = f_{3}^{2} + Q_{3}^{2}$$

$$K_{41}^{2}u_{1}^{2} + K_{42}^{2}u_{2}^{2} + K_{43}^{2}u_{3}^{2} + K_{44}^{2}u_{4}^{2} = f_{4}^{2} + Q_{4}^{2}$$

Elemento(3)

$$K_{11}^{3}u_{1}^{3} + K_{12}^{3}u_{2}^{3} + K_{13}^{3}u_{3}^{3} + K_{14}^{3}u_{4}^{3} = f_{1}^{3} + Q_{1}^{3}$$

$$K_{21}^{3}u_{1}^{3} + K_{32}^{3}u_{2}^{3} + K_{23}^{3}u_{3}^{3} + K_{24}^{3}u_{4}^{3} = f_{2}^{3} + Q_{2}^{3}$$

$$K_{31}^{3}u_{1}^{3} + K_{32}^{3}u_{2}^{3} + K_{33}^{3}u_{3}^{3} + K_{34}^{3}u_{4}^{3} = f_{3}^{3} + Q_{3}^{3}$$

$$K_{41}^{3}u_{1}^{3} + K_{42}^{3}u_{2}^{3} + K_{43}^{3}u_{3}^{3} + K_{44}^{4}u_{4}^{4} = f_{4}^{4} + Q_{4}^{4}$$
Elemento(4)

$$K_{11}^{4}u_{1}^{4} + K_{12}^{4}u_{2}^{4} + K_{43}^{4}u_{3}^{4} + K_{44}^{4}u_{4}^{4} = f_{2}^{4} + Q_{4}^{4}$$

$$K_{41}^{4}u_{1}^{4} + K_{42}^{4}u_{2}^{4} + K_{43}^{4}u_{3}^{4} + K_{44}^{4}u_{4}^{4} = f_{3}^{4} + Q_{4}^{4}$$
R

Donde (K_{ij}) y (F_i) son los coeficientes globales.

$$K_{22}^{1} + K_{11}^{2} = K_{22}$$

$$K_{44}^{1} + K_{11}^{3} = K_{44}$$

$$K_{33}^{1} + K_{44}^{2} + K_{22}^{3} + K_{11}^{4} = K_{55}$$

$$K_{33}^{2} + K_{22}^{4} = K_{66}$$

$$K_{33}^{3} + K_{44}^{4} = K_{88}$$

$$K_{23}^{1} + K_{14}^{2} = K_{25}$$

$$K_{43}^{1} + K_{12}^{3} = K_{45}$$

$$K_{43}^{2} + K_{12}^{4} = K_{56}$$

$$K_{23}^{3} + K_{14}^{4} = K_{58}$$

Continuidad de la variable primaria

Condiciones de frontera.

$$U_{3} = 0, \quad U_{6} = 0, \quad U_{7} = 0, \quad U_{8} = 0, \quad U_{9} = 0$$

$$\overline{Q}_{1} = 0, \quad \overline{Q}_{2} = 0, \quad \overline{Q}_{4} = 0, \quad \overline{Q}_{5} = 0$$

$$\begin{bmatrix} 4 & -1 & -1 & -2 \\ -1 & 8 & -2 & -2 \\ -1 & -2 & 8 & -2 \\ -1 & -2 & 8 & -2 \\ -2 & -2 & -2 & 16 \end{bmatrix} \begin{bmatrix} U_{1} \\ U_{2} \\ U_{4} \\ U_{5} \end{bmatrix} = \frac{1}{16} \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$

UN $U_1 = 0.31071$ DAD AU $U_2 = 0.24107$ A DE NUEVO LEÓN $U_4 = 0.24107$ $U_5 = 0.19286$ \square DIRECCIÓN GENERAL DE BIBLIOTECAS

TABLA 4.1b

Comparación de resultados elemento finito solución por series

	Solución	Solución
Coordenadas	Aproximada	Por series
(x, y)	U	U
(0,0)	0.31071	0.2947
(0.5,0)	0.24107	0.2284
(0,0.05)	0.24107	0.2293
(0.5,0.5)	0.19286	0.1801

$$\frac{1}{6} \begin{bmatrix} 0 & -1 & 0 & -2 \\ 0 & -2 & 0 & -2 \\ 0 & 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} U_1 \\ U_2 \\ U_4 \\ U_5 \end{bmatrix} = \frac{1}{16} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} + \begin{bmatrix} \overline{Q}_3 \\ \overline{Q}_6 \\ \overline{Q}_9 \end{bmatrix}$$

La solución de las variables secundarias es.

$$\overline{Q}_3 = -0.16687$$
 $\overline{Q}_6 = -0.26964$ $\overline{Q}_9 = -0.12679$

TABLA 4.1c

Comparación elemento finito solución por series

Coordenadas	Para 4 elementos Triangulares	Para 4 elementos Rectangulares	Solución Por series
(x, y)	U S	U	U
(0,0)	0.31250	0.31071	0.2947
(0.5,0)	0.22917	0.24107	0.2284
(0,0.5)	0.23022*	0.24107	0.2293
(0.5,0.5)	0.17708	0.19286	0.1801*

DIRECCIÓN GENERAL DE BIBLIOTECAS

* Valores interpolados

CAPITULO 5

EL MÉTODO DE DIFERENCIAS FINITAS

El método de diferencias finitas obtiene un sistema de ecuaciones finito de una ecuación diferencial ordinaria o parcial discretizando el dominio; los valores de la solución aproximada son encontrados solo para un conjunto finito de puntos. La diferenciación numérica, o aproximación por diferencias, se utiliza para evaluar las derivadas de una función por medio de sus valores dados en los puntos de una retícula.

Aproximación por diferencias centrales para la primera segunda y tercera derivada.

$$f'_{i} = \frac{f_{i+1} - f_{i-1}}{2h}$$
(5.1)
UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN
$$f''_{i} = \frac{f_{i+1} - 2f_i + f_{i-1}}{h^2}$$
 GENERAL DE BIBLIOTECAS (5.2)

$$f_i^{m} = \frac{f_{i+2} - 2f_{i+1} + 2f_{i-1} - f_{i-2}}{2h^3}$$
(5.3)

Ejemplo 2.1 Considere una aleta rectangular como lo muestra la figura 2.1.

Determine la distribución de temperaturas.

Ecuación diferencial de una aleta rectangular.

$$-\frac{d^2T}{dx^2} + \frac{\beta p}{kA}(T - T_{\infty}) = 0 \qquad \Omega = (0,L)$$

Las condiciones frontera de la ecuación diferencial

$$T(0) = T_0 \qquad (kA \frac{dT}{dx})_{x=L} = 0$$

haciendo un cambio de variable:

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

$$-\frac{d}{dx^{2}} + m^{2}\theta = 0, \qquad \Omega = (0,L)$$

$$\frac{dx^{2}}{dx^{2}} RECCIÓN GENERAL DE BIBLIOTECAS$$

Condiciones frontera.

\theta(0)

$$=\theta_0 \qquad \qquad \frac{d\theta}{dx} = L = 0$$

Aplicamos la aproximación por diferencias centrales (5.2) al primer termino de la ecuación diferencial, con lo que obtenemos la ecuación en diferencias.

$$\frac{-\theta_{i-1} + 2\theta_i - \theta_{i+12}}{h^2} + m^2 \theta_i = 0$$

$$-\theta_{i-1} + (2 + m^2 h^2) \theta_i - \theta_{i+1} = 0 \qquad i = 1, \text{ hasta N-1}$$

Utilizamos la aproximación por diferencias hacia delante con base en un intervalo de longitud $\binom{h}{2}$ de la ecuación de la aleta en (x = L).

$$-\begin{bmatrix} \theta'(L) - \theta'(L - \frac{h}{2}) \\ \frac{h}{2} \end{bmatrix} + m^2 \theta(L) = 0$$
 (A)

Por diferencias centrales

$$\theta'(L) = 0 \tag{B}$$

$$\theta'(L-\frac{h}{2}) = \frac{\theta(L) - \theta(L-h)}{h} = \frac{\theta_2 - \theta_1}{h}$$
(C)

sustituimos (B) y (C) en (A).

$$-2\theta_1 + (2+m^2h^2)\theta_2 = 0$$
 (2)

Solucionando el sistema de ecuaciones .

$$\begin{bmatrix} (2+m^{2}h^{2}) & -1 \\ -2 & (2+m^{2}h^{2}) \end{bmatrix} \begin{bmatrix} \theta_{1} \\ \theta_{2} \end{bmatrix} = \begin{bmatrix} \theta_{0} \\ 0 \end{bmatrix}$$

$$\theta_{1} = 160.205 \qquad \qquad \theta_{2} = 155.374$$

$$\theta_{1} = T_{1} - T_{\infty} \qquad \qquad \theta_{2} = T_{2} - T_{\infty}$$

$$T_{1} = 235.2^{\circ}C \qquad \qquad T_{2} = 230.37^{\circ}C$$

TABLA 5.1

ABLA 5.1 Comparación de resultados diferencias finitas solución exacta

	Temperatura	Temperatura
Distancia	Solución aproximada	Solución exacta
x m UNIVERSIDAD	AUTÓNOMA DI	E NUEVO LEÓN
0	250	250
0.00762CCION	GENE235.20 DE BI	BLIOT 234.95
0.01524	230.37	230.05

Ejemplo 2.2 Considere conducción de calor en estado estable en un alambre de sección transversal circular con una fuente de calor eléctrica. Supón que el radio del alambre es (R_{\circ}) , este tiene una conductividad eléctrica, este transporta una corriente

eléctrica de densidad (I) amp cm^{-2} . Durante la transmisión de una corriente eléctrica, algo de energía eléctrica es convertida en energía térmica. La rapidez de producción de calor por unidad de volumen es dada por $(q = \frac{I^2}{k_e})$. Suponga que la temperatura alcanzada en el alambre es suficientemente pequeña que la dependencia de la conductividad eléctrica o térmica en la temperatura puede ser despreciada.

Determine la distribución de temperaturas en el alambre.

Datos T_3 = Temperatura en la superficie del conductor = 60°c R_{\circ} = Radio del conductor = 2cm i = Corriente por el conductor = 300amp R = Resistencia del conductor = 0.0104 Ω L = Longitud del conductor = 10cm

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN $R = \rho \frac{L}{A} \text{DIRECCIÓN} \text{GENERAL} \frac{I}{\pi (R_o)^2} \text{BIBLIO} \frac{I^2}{I + k} \text{AS}$

$ ho = .013 \Omega - cm$	$I = 23.87 amp - cm^{-2}$
--------------------------	---------------------------

 $k = 76.5 \Omega^{-1} - cm^{-1}$ $q = 7.448 wtts - cm^{-3}$

La ecuación diferencial que gobierna el problema es:

ï

$$-\frac{1}{r}\frac{d}{dr}\left(rk\frac{dT}{dr}\right) = q \qquad \qquad 0 \le r \le R_{o}$$

$$\left(kr \frac{dT}{dr} \right)_{r=0} = 0 \qquad T(R_{\circ}) = T_{\circ}$$

Reescribimos la ecuación diferencial en la forma.

Aplicamos la aproximación por diferencias centrales al primero y segundo termino del lado izquierdo de la ecuación diferencial.

$$-k \begin{bmatrix} T_{i+1} - 2T_i + T_{i-1} \\ h^2 \end{bmatrix} - \frac{k}{r_i} \begin{bmatrix} T_{i+1} - T_{i-1} \\ 2h \end{bmatrix} = q \qquad i = 1,2$$

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

DIRECCIÓN GENERAL DE BIBLIOTECAS

Para (i = 1)

$$-\frac{k}{h^2}(T_2 - 2T_1 + T_0) - \frac{k}{2hr_1}(T_2 - T_0) = q$$

La condición de la frontera izquierda, es equivalente a una condición simétrica en la frontera llamada condicion adiabatica en la frontera en el caso de la transferencia de calor $(T_0 = T_2)$.

$$(\frac{2k}{h^2})T_1 - (\frac{2k}{h^2})T_2 = q$$

TABLA 5.2

Comparación diferencias finitas solución exacta

	Temperatura	Temperatura
Radio	Solución aproximada	Solución exacta
r cm	т°С	т°С
0	60.1721	60.09
1	60.1234	60.07
2	60	60

Ejemplo 2.3 Encuentre la distribución de temperatura en la aleta que muestra la fig.2.3.

Suponga que la temperatura en la base de la aleta es $(T_o = 250^{\circ}F)$ la conductividad térmica es $(k = 120Btu - hr^{-1} - ft^{-1} - \circ F^{-1})$, y el coeficiente de película $(\beta = 15Btu - hr^{-1} - ft^{-2} - \circ F^{-1})$. La temperatura del medio hambiente es $(T_{\infty} = 75^{\circ}F)$.

La ecuación diferencial y las condiciones frontera para esta aleta triangular son.

$$(3-x)\frac{d^2T}{dx^2} - \frac{dT}{dx} - mT + mT_{\infty} = 0$$

$$T(0) = T_{a} \qquad \qquad \frac{dT}{dx} = 0$$

Haciendo un cambio de variable la ecuación diferencial y las condiciones de frontera toman la forma.

$$\theta = T - T_{\infty}$$

$$(3 - x)\theta'' - \theta' - m\theta = 0$$

$$\theta(0) = \theta_0 \qquad \theta'(L) = 0$$

La ecuación diferencial también puede tomar esta forma.

$$\left[(3-x)\theta' \right] - m\theta = 0$$

diferencias con coeficientes constantes por partes. En este método, integramos la ÓN ecuación desde (a) hasta (b). DIRECCIÓN GENERAL DE BIBLIOTECAS

$$\int_{a}^{b} ((3-x)\theta')' dx - \int_{a}^{b} m\theta dx = 0$$
 (A)

Para el primer termino de la ecuación (A).

$$\int_{a}^{b} ((3-x)\theta')' dx = ((3-x)\theta') \frac{b}{a}$$
$$\int_{a}^{b} ((3-x)\theta')' dx = (3-x)\theta' \Big|_{b} - (3-x)\theta' \Big|_{a}$$

$$\int_{a}^{b} ((3-x)\theta')' dx = (3-x)\theta'_{i+\frac{1}{2}} - (3-x)\theta'_{i-\frac{1}{2}}$$
(B)

Aproximamos las derivadas mediante diferencias hacia atrás.

$$(3-x)\theta'_{i+\frac{1}{2}} = (3-x_i)(\frac{\theta_{i+1}-\theta_i}{h_i})$$
 (C)

$$(3-x)\theta'_{i-\frac{1}{2}} = (3-x_{i-1})(\frac{\theta_i - \theta_{i-1}}{h_{i-1}})$$
(D)

Sustituimos (C)y (D) en (B). $\int_{a}^{b} ((3-x)\theta')' dx = \begin{bmatrix} (3-x_{i-1}) \\ h_{i-1} \end{bmatrix} \theta_{i-1} - \begin{bmatrix} (3-x_i) \\ h_i \end{bmatrix} \theta_{i+1} + \begin{bmatrix} (3-x_i) \\ h_i \end{bmatrix} \theta_{i+1} \quad (E)$ Para el segundo termino de la ecuación (A). $\int_{a}^{b} m\theta dx = \frac{1}{2} m(h_{i-1} + h_i)\theta_i \quad (F)$ Sustituimos las ecuaciones (E) y (F) en (A) DE BIBLIOTECAS

$$\begin{bmatrix} (3-x_{i-1})\\h_{i-1} \end{bmatrix} \theta_{i-1} - \begin{bmatrix} (3-x_i)\\h_i + (3-x_{i-1})\\h_{i-1} \end{bmatrix} \theta_i + \begin{bmatrix} (3-x_i)\\h_i \end{bmatrix} \theta_{i+1} - \frac{1}{2}m(h_{i-1}+h_i)\theta_i = 0$$

la ecuación anterior se aplica para i = 1, 2, ..., N-1

Para
$$(i = 1)$$

$$\begin{bmatrix} (3 - x_0) \\ h_0 \end{bmatrix} \theta_0 - \begin{bmatrix} (3 - x_1) + (3 - x_0) \\ h_1 \end{bmatrix} \theta_1 + \begin{bmatrix} (3 - x_1) \\ h_1 \end{bmatrix} \theta_2 - \frac{1}{2} m(h_0 + h_1) \theta_1 = 0$$

$$\begin{bmatrix} (3 - x_0) \\ h_0 \end{bmatrix} \theta_0 - \begin{bmatrix} (3 - x_1) + (3 - x_0) \\ h_1 \end{bmatrix} \theta_1 + \frac{1}{2} m(h_0 + h_1) \theta_1 + \begin{bmatrix} (3 - x_1) \\ h_1 \end{bmatrix} \theta_2 = 0 \quad (1)$$

Para (i = 2)

$$\begin{bmatrix} (3-x_1) \\ h_1 \end{bmatrix} \theta_1 - \begin{bmatrix} (3-x_2) \\ h_2 \end{bmatrix} + \begin{bmatrix} (3-x_1) \\ h_1 \end{bmatrix} \theta_2 + \begin{bmatrix} (3-x_2) \\ h_2 \end{bmatrix} \theta_3 - \frac{1}{2}m(h_1 + h_2)\theta_2 = 0$$

$$\begin{bmatrix} (3-x_1) \\ h_1 \end{bmatrix} \theta_1 - \begin{bmatrix} (3-x_2) \\ h_2 \end{bmatrix} + \frac{(3-x_1) }{h_1} + \frac{1}{2}m(h_1 + h_2) \end{bmatrix} \theta_2 + \begin{bmatrix} (3-x_2) \\ h_2 \end{bmatrix} \theta_3 = 0 \quad (2)$$
Para el caso del punto frontera derecho

$$\frac{h_2}{a} = \frac{\theta'(L) = 0}{b}$$
UNIVERSIDAD^X²AUTÓN C³MA DE NUEVO LEÓN

$$BIRF_{h_2}CIÓN GENERAL DE BIBLIOTECAS$$

$$a = x_3 - \frac{2}{2}$$

Para el primer termino de la ecuación (A)

$$\int_{a}^{b} ((3-x)\theta')' dx = ((3-x)\theta') \Big|_{a}^{b}$$
$$\int_{a}^{b} ((3-x)\theta')' dx = (3-x)\theta' \Big|_{3}^{b} - (3-x)\theta' \Big|_{3}^{b$$

$$\int_{a}^{b} ((3-x)\theta')' dx = 0 - (3-x_2) (\frac{\theta_3 - \theta_2}{h_2})$$
(G)

Para el segundo termino de la ecuación (A).

$$\int_{a}^{b} m \, \theta dx = \frac{1}{2} m h_3 \theta_3 \tag{H}$$

Sustituimos (G) y (H) en (A).

$$-(3-x_2)\frac{(\theta_3-\theta_2)}{h_2} - \frac{1}{2}mh_2\theta_3 = 0$$

$$\left[\frac{(3-x_2)}{h_2}\right]\theta_2 - \left[\frac{(3-x_2)}{h_2} + \frac{1}{2}mh_2\right]\theta_3 = 0$$
(3)

En resumen, las ecuaciones en diferencias (1),(2) y (3) en notación matricial son:

$$\theta_1 = 147.64$$
 CION GE $\theta_2 = 125$ L DE BIBLI $\theta_3 = 111.16$

$$T_1 = 222.64^{\circ}F$$
 $T_2 = 200^{\circ}F$ $T_3 = 186^{\circ}F$

TABLA 5.3 Comparación de resultados diferencias finitas solución exacta

Distancia desde la base	Solución aproximada	Solución exacta
x in	T [°] F	T [°] F
0	250	250
1	222.64	218.75
2	200	191.12
3	186	166.72

Ejemplo 2.4 Considere flujo estable laminar de dos fluidos inmisibles e incompresibles en una región de dos placas paralelas estacionarias bajo la influencia de un gradiente de presión.

Las velocidades en el fluido son ajustadas tal que la parte media inferior de la región esta llena con el fluido μ_1 (fluido mas denso y más viscoso) y la parte media superior esta llena con el fluido μ_2 (fluido menos denso y menos viscoso), como lo muestra la figura.

Queremos determinar la distribución de velocidades en cada región usando el método de diferencias finitas.

donde $f_0 = \left(\frac{P_0 - P_L}{L}\right)$ es el gradiente de presión.

Datos

h = Espacio entre los puntos de la retícula = 0.25m b = 2h L = 5000m $P_0 = 200kPa$ $P_L = 190kPa$ $\mu_1 = 0.01Pa - s$ $\mu_2 = 0.00035Pa - s$ Ecuación diferencial del problema.

$$-\mu \frac{d^2 u}{dy^2} = f_0$$

La ecuación diferencial también puede tomar esta forma.

$$-(\mu u')'=f_0$$

El método de integración es una forma natural para obtener ecuaciones en diferencias con coeficientes constantes por partes. En este método, integramos la ecuación desde (a) hasta (b).

$$- \int_{a}^{b} ((\mu u')') dx = \int_{a}^{b} f_{0} dx$$
(A)
UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

Para el primer termino de la ecuación (A). AL DE BIBLIOTECAS

$$-\int_{a}^{b} (\mu u')' dx = -(\mu u') \Big|_{a}^{b}$$

$$-\int_{a}^{b} (\mu u')' dx = -(\mu u') \Big|_{i+\frac{1}{2}} + (\mu u') \Big|_{i-\frac{1}{2}}$$

$$-\int_{a}^{b} (\mu u')' dx = -\left[\mu_{i} (\frac{u_{i+1} - u_{i}}{h_{i}})\right] + \left[\mu_{i-1} (\frac{u_{i} - u_{i-1}}{h_{i-1}})\right]$$

$$-\int_{a}^{b} (\mu u')' dx = -\left[\frac{\mu_{i-1}}{h_{i-1}}\right] u_{i-1} + \left[\frac{\mu_{i}}{h_{i}} + \frac{\mu_{i-1}}{h_{i-1}}\right] u_{i} - \left[\frac{\mu_{i}}{h_{i}}\right] u_{i+1}$$
(B)

Para el segundo termino de la ecuación (A).

$$\int_{a}^{b} f_{0} dx = \frac{f_{0}}{2} (h_{i-1} + h_{i})$$
(C)

Sustituimos las ecuaciones (B) y (C) en (A).

$$-\begin{bmatrix} \mu_{i-1} \\ h_{i-1} \end{bmatrix} u_{i-1} + \begin{bmatrix} \mu_i \\ h_i \end{bmatrix} + \begin{bmatrix} \mu_{i-1} \\ h_{i-1} \end{bmatrix} u_i - \begin{bmatrix} \mu_i \\ h_i \end{bmatrix} u_{i+1} = \frac{f_0}{2} (h_{i-1} + h_i)$$

La ecuación anterior se aplica para i = 1, 2, ..., N-1

Para
$$(i = 1)$$

 $-\begin{bmatrix} \mu_0 \\ h_0 \end{bmatrix} u_0 + \begin{bmatrix} \mu_1 \\ h_1 \end{bmatrix} u_1 - \begin{bmatrix} \mu_1 \\ h_1 \end{bmatrix} u_2 = \frac{f_0}{2} (h_0 + h_1)$ (1)
Para $(i = 2)$
 $\begin{bmatrix} \mu_1 \\ h_1 \end{bmatrix} u_1 + \begin{bmatrix} \mu_2 + \mu_1 \\ h_2 + h_1 \end{bmatrix} u_2 - \begin{bmatrix} \mu_2 \\ h_2 \end{bmatrix} u_3 = \frac{f_0}{2} (h_1 + h_2)$ (2)
Para $(i = 3)$
 $-\begin{bmatrix} \mu_2 \\ h_2 \end{bmatrix} u_2 + \begin{bmatrix} \mu_3 + \mu_2 \\ h_3 + h_2 \end{bmatrix} u_3 - \begin{bmatrix} \mu_3 \\ h_3 \end{bmatrix} u_4 = \frac{f_0}{2} (h_2 + h_3)$ (3)

En resumen, las ecuaciones en diferencias (1),(2) y (3) en notación matricial son:

$$\begin{bmatrix} \frac{2\mu_1}{h} & -\frac{\mu_1}{h} & 0\\ -\frac{\mu_1}{h} & \frac{\mu_1 + \mu_2}{h} & -\frac{\mu_2}{h}\\ 0 & -\frac{\mu_2}{h} & \frac{2\mu_2}{h} \end{bmatrix} \begin{bmatrix} u_1\\ u_2\\ u_3 \end{bmatrix} = \begin{bmatrix} 2hf_0\\ 2hf_0\\ 2hf_0 \end{bmatrix}$$

$$\begin{bmatrix} 0.08 & -0.04 & 0 \\ -0.04 & 0.0414 & -0.0014 \\ 0 & -0.0014 & 0.0028 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{cases} 0.5 \\ 0.5 \\ 0.5 \end{bmatrix}$$

Solucionando el sistema de ecuaciones:

$$u_1 = 30.4 \frac{m}{s}$$
 $u_2 = 48.3 \frac{m}{s}$ $u_3 = 202.72 \frac{m}{s}$

TABLA 5.4

Comparación de resultados diferencias finitas solución exacta

Distancia	Velocidad Solución aproximada	Velocidad Solucion exacta	
AY IM LAMMAM	$u \frac{m}{s}$	u m S	
	6 0	0	
0.25	30.40	30.40	
0.50	48.30	48.28	
0.75	202.72	202.67	
1.0	0	0	

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

DIRECCIÓN GENERAL DE BIBLIOTECAS
Ejemplo 2.5a. Para el problema de la viga mostrada en la figura 2.5a determine.

Las variables primarias desconocidas (desplazamientos generalizados)

$$EI\frac{d^4y}{dx^4} = f_0$$

Las condiciones frontera para este problema son:

Para la frontera izquierda.

$$y(0) = y_0 = 0$$

 $y'(0) = y'_0 = 0$

Para la frontera derecha.

 $y(L) = y_2 = 0$

$$y'(L)=y_2'=0$$

La derivada (y'') de la ecuación diferencial del problema se evalúa numéricamente mediante la aproximación por diferencias centrales.

$$EI_{h^4}[y_{i-2} - 4y_{i-1} + 6y_i - 4y_{i+1} + y_{i+2}] = f(x_i) \qquad i = 1, N-1$$

$$i = -1$$
 0 1 2 3

Para (i = 1)

$$\frac{EI}{h^4} [y_{-1} - 4y_0 + 6y_1 - 4y_2 + y_3] = f(x_1)$$

Condiciones de frontera izquierda.

$$y_{0} = 0$$

$$y_{0}' = \frac{y_{1} - y_{-1}}{2h} = 0$$

$$y_{1} = y_{-1}$$

$$\frac{EI}{h^{4}} [7y_{1} - 4y_{2} + y_{3}] = f(x_{1})$$
(1)

Condición de frontera derecha.

 $y_2 = 0$

 $y_1 = -0.0078m$ $y_3 = -0.0078m$

TABLA 5.5a

Comparación de resultados diferencias finitas solución exacta

Distancia	Deflexión	Deflexión
x m	Solución apróximada	Solución exacta
	у т	<i>y m</i>
5	-0.0078	-0.00128

Ejemplo 2.5b. Para el problema de la viga mostrada en la fig.2.5b, determine.

Las variables primarias desconocidas (desplazamientos generalizados)

FENERAL DE BIBLIOTECAS

Para la frontera izquierda.

$$y(0) = y_0 = 0$$

 $y'(0) = y'_0 = 0$

Para la frontera derecha.

$$y(L) = y_4 = 0$$
$$y'(L) = y'_4 = 0$$

La derivada (y'') de la ecuación diferencial del problema se evalúa numéricamente mediante la aproximación por diferencias centrales.

i = 1, N - 1

 $\frac{EI}{L^4} [y_{i-2} - 4y_{i-1} + 6y_i - 4y_{i+1} + y_{i+2}] = f(x_i)$

$$x = 0$$

$$x = 1$$

$$x = 0$$

$$x = L$$

$$y_{0} = 0$$

$$(1)$$

Para
$$(i = 2)$$

$$\frac{EI}{h^4} [y_0 - 4y_1 + 6y_2 - 4y_3 + y_4] = f(x_2)$$
(2)

Para (i = 3)

$$\frac{EI}{h^4} [y_1 - 4y_2 + 6y_3 - 4y_4 + y_5] = f(x_3)$$
(3)

Condición de frontera derecha.

....

$$y_{4}(L) = y_{4} = 0$$

$$y'_{4}(L) = y'_{4} = \frac{y_{5} - y_{3}}{2h} = 0$$

$$y_{5} - y_{3} = 0$$
(4)

Solucionando el sistema de ecuaciones.

TABLAS SECCIÓN GENERAL DE BIBLIOTECAS

Comparación de resultados diferencias finitas solución exacta

	Deflexión	Deflexión
Distancia	Solución apróximada	Solución exacta
x m	y m	y m
2.5	-0.0020	-0.00089
5.0	-0.0029	-0.00128
7.5	-0.0014	-0.00054

Ejemplo 2.5c. Para el problema de la viga mostrada en la fig.2.5c., determine.

Las variables primarias desconocidas (desplazamientos generalizados)

La derivada (y'') de la ecuación diferencial del problema se evalúa numéricamente mediante la aproximación por diferencias centrales.

$$\frac{EI}{h^4} [y_{i-2} - 4y_{i-1} + 6y_i - 4y_{i+1} + y_{i+2}] = f(x_i) \qquad i = 1, N-1$$

h = Espacio entre los puntos de la retícula = 1.25m

Para (i = 1)

$$\frac{EI}{h^4} [y_{-1} - 4y_0 + 6y_1 - 4y_2 + y_3] = f(x_1)$$

Condiciones de frontera izquierda.

$$y_{0} = 0$$

$$y_{0}^{'} = \frac{y_{1} - y_{-1}}{2h} = 0$$

$$y_{1} = y_{-1}$$

$$\frac{EI}{h^{4}} [7y_{1} - 4y_{2} + y_{3}] = f(x_{1}) \qquad (1)$$
Para (*i* = 2)
$$EI = [y_{0} - 4y_{1} + 6y_{2} - 4y_{3} + y_{4}] = f(x_{2}) \qquad (2)$$
Para (*i* = 3)
$$EI = [y_{1} - 4y_{2} + 6y_{3} - 4y_{4} + y_{5}] = f(x_{3})$$
Para (*i* = 3)
$$EI = [y_{1} - 4y_{2} + 6y_{3} - 4y_{4} + y_{5}] = f(x_{3})$$
Para (*i* = 4)
Para (*i* = 4)
Para (*i* = 5)
$$EI = [y_{2} - 4y_{3} + 6y_{4} - 4y_{5} + y_{6}] = f(x_{4}) = BIBLIOTECAS \qquad (4)$$
Para (*i* = 5)
$$EI = [y_{3} - 4y_{4} + 6y_{5} - 4y_{6} + y_{7}] = 0 \qquad (5)$$
Para (*i* = 6)
$$EI = [y_{4} - 4y_{5} + 6y_{6} - 4y_{7} + y_{8}] = 0 \qquad (6)$$
Para (*i* = 7)
$$EI = [y_{3} - 4y_{6} + 6y_{7} - 4y_{8} + y_{9}] = 0 \qquad (7)$$

Condición de frontera derecha.

$$y_{8}(L) = y_{8} = 0$$

$$y_{8}'(L) = y_{8}' = \frac{y_{9} - y_{7}}{2h} = 0$$

$$y_{9} - y_{7} = 0$$
(8)

Solució del sistema de ecuaciones:

$$y_{1} = -0.0005m$$

$$y_{2} = -0.0012m$$

$$y_{1} = -0.0005m$$

$$y_{1} = -0.0018m$$

$$y_{2} = -0.0018m$$

$$y_{1} = -0.0018m$$

$$y_{2} = -0.0018m$$

$$y_{2} = -0.0018m$$

$$y_{2} = -0.0008m$$

$$y_{3} = -0.0008m$$

TABLA 5.5c	Comparación de	resultados	diferencias	finitas solu	ición exacta	
	RSIDAD					

Deflexión	Deflexión
\square \square Solución apróximada \square	Schución exacta
y m	y m
-0.0005	-0.000324
-0.0012	-0.00089
-0.0018	-0.00388
-0.0018	-0.00128
-0.0014	-0.000986
-0.0008	-0.000542
-0.0003	-0.000138
	Deflexión Sohición apróximada B <i>y m</i> -0.0005 -0.0012 -0.0018 -0.0018 -0.0014 -0.0008 -0.0008

Ejemplo 2.6a. Para el problema de la viga mostrada en la fig.2.6a, determine.

Las variables primarias desconocidas (desplazamientos generalizados).

$$y''(L) = \frac{V}{EI}$$
$$y'''(L) = \frac{V}{EI}$$

Datos:

h = Espacio entre los puntos de la retícula = 20 in

$$E = 30x10^{6} \frac{Lb_{f}}{in^{2}}$$
$$d_{1} = 4in \qquad d_{2} = 3in \qquad d_{3} = 2in$$

Derivando la ecuación diferencial del problema.

$$EI_{i}y_{i}^{**}+2EI_{i}'y_{i}^{**}+EI_{i}'y_{i}^{*}=0$$
(1)

Las derivadas y''', y''' y y'' se evalúan numéricamente mediante las aproximaciones por diferencias centrales.

$$y''' = (y_{i-2} - 4y_{i-1} + 6y_i - 4y_{i+1} + y_{i+2})/h$$

$$y''' = (-y_{i-2} + 2y_{i-1} - 2y_{i+1} + y_{i+2})/2h^3$$

$$y'' = (y_{i-1} - 2y_i + y_{i+1})/h^2$$

Los términos $I'_i \in I''_i$ se calculan mediante la aproximación por diferencias finitas como sigue: para i = 1, 2, ..., N-1 $I'_i = \frac{I_{i+1} - I_{i-1}}{2h}$ $I''_i = \frac{I_{i+1} - 2I_i + I_{i-1}}{h^2}$ La aproximación por diferencias hacia atrás; para N La aproximación por diferencias hacia atrás; para N $I'_N = \frac{3I_N + 4I_{N-1} + I_{N-2}}{2h}$ TÓNOMA DE NUEVO LEÓN $I''_N = \frac{2I_N + 5I_{N-1} + 4I_{N-2} + I_{N-3}}{h^2}$

Sustituir las ecuaciones anteriores en la ecuación (1) para obtener las ecuaciones en diferencias.

$$a_i y_{i-2} + b_i y_{i-1} + c y_i + d_i y_{i+1} + e_i y_{i+2} = 0$$

 $i = 1, 2, ..., N$

donde

$$a_{i} = EI_{i} / h^{4} - EI_{i}' / h^{3}$$

$$b_{i} = -4EI_{i} / h^{4} + 2EI_{i}' / h^{3} + EI_{i}'' / h^{2}$$

$$c_{i} = 6EI_{i} / h^{4} - 2EI_{i}'' / h^{2}$$

$$d_{i} = -4EI_{i} / h^{4} - 2EI_{i}'' / h^{3} + EI_{i}'' / h^{2}$$

$$e_{i} = EI_{i} / h^{4} + EI_{i}' / h^{3}$$

$$(a_1 + c_1)y_1 + d_1y_2 + e_1y_3 = 0 \tag{1}$$

Para
$$(i = 2)$$

 $a_2y_0 + b_2y_1 + c_2y_2 + d_2y_3 + e_1y_4 = 0$
 $b_2y_1 + c_2y_2 + d_2y_3 + e_1y_4 = 0$ (2)

Para
$$(i = 3)$$

 $a_3y_1 + b_3y_2 + c_3y_3 + d_3y_4 + e_3y_5 = 0$ (3)

Condición de frontera derecha.

$$y''(L) = \frac{M}{EI} = \frac{y_2 - 2y_3 + y_4}{h^4} = 0$$

$$y_2 - 2y_3 + y_4 = 0$$
 (4)

$$y'''(L) = \bigvee_{EI_3}^{V} = -\frac{y_1 + 2y_2 - 2y_4 + y_5}{2h^3}$$

$$\frac{EI_3}{2h^3} [-y_1 + 2y_2 - 2y_4 + y_5] = V$$
(5)
Solución del sistema de ecuaciones para los siguientes valores.
(5)
I) Para los siguientes radios:
$$h = \text{Espacio entre los puntos de la retícula} = 20 \text{ in}$$
UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN
DI CCIÓN GENERAL DE BIBLIOTECAS

$$r_{0} = 2 \text{ in } r_{1} = 1.75 \text{ in } r_{2} = 1.25 \text{ in } r_{3} = 1 \text{ in}$$

$$I_{0} = 12.566 \text{ in}^{4}$$

$$I_{1} = 7.366 \text{ in}^{4} \qquad I_{1}' = -0.266 \text{ in}^{3} \qquad I_{1}'' = -0.00062 \text{ in}^{2}$$

$$I_{2} = 1.917 \text{ in}^{4} \qquad I_{2}' = -0.1645 \text{ in}^{3} \qquad I_{2}'' = 0.01079 \text{ in}^{2}$$

$$I_3 = 0.785 \ in^4$$
 $I'_3 = 0.0513 \ in^3$ $I''_3 = 0.0222 \ in^2$

$a_1 = 30078 \ Lb_f / in^2$	$b_2 = -29637 \ Lb_f / in^2$	$a_3 = 816 \ Lb_f / in^2$
$c_1 = 132960 \ Lb_f / in^2$	$c_2 = 28032 \ Lb_f / in^2$	$b_3 = 318 \ Lb_f / in^2$
$d_1 = -72618 \ Lb_f / in^2$	$d_2 = -9897 \ Lb_f / in^2$	$c_3 = 810 \ Lb_f / in^2$
$e_1 = 14118 \ Lb_f / in^2$	$e_2 = 816 \ Lb_f / in^2$	$d_3 = -5838 \ Lb_f / in^2$
		$e_3 = 3894 \ Lb_f / in^2$

 $y_4 = -6.3625$ in $y_5 = -8.4966$ in DIRECCION GENERAL DE BIBLIOTECAS

TABLA 5.6a Comparación de resultados diferencias finitas solución exacta

	Deflexión	Deflexión
Distancia	Solución apróximada	Solución exacta
x in	y in	y in
20	-0.3774	-0.0700
40	-1.6235	-0.2260
60	-3.3993	-0.4524

II) Para los siguientes radios:

h = Espacio entre los puntos de la retícula = 20 in

$$\begin{bmatrix} (a_1+c_1) & d_1 & e_1 & 0 & 0 \\ b_2 & c_2 & d_2 & e_2 & 0 \\ a_3 & b_3 & c_3 & d_3 & e_3 \\ 0 & 1 & -2 & 1 & 0 \\ EI_3 & (-1 & 2 & 0 & -2 & 1) \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ f \end{bmatrix}$$

 $y_1 = -0.1976$ in $y_2 = -0.7980$ in $y_3 = -1.7377$ in $y_4 = -2.6773$ in $y_5 = -2.5976$ in

TABLA 5.6b

Comparación de resultados diferencias finitas solución exacta

HE AA	Deflexión	Deflexión
Distancia	Solución apróximada	Solución exacta
x in	y in	y in
20	-0.1976	-0.0700
40 LINUVED SID A I	-0.7980	-0.2260
60 STD/1	-1.7377	-0.4524

DIRECCIÓN GENERAL DE BIBLIOTECAS

Ejemplo 2.6b Para el problema de la viga mostrada en la fig.2.6b, determine.

Las variables primarias desconocidas (desplazamientos generalizados).

Datos:

$$E = 30x10^{6} \frac{Lb_{f}}{in^{2}}$$

$$d_{0} = 4 \text{ in } d_{1} = 3.668 \text{ in } d_{2} = 3.336 \text{ in } d_{3} = 3 \text{ in }$$

$$d_{4} = 2.672 \text{ in } d_{5} = 2.34 \text{ in } d_{6} = 1 \text{ in }$$

Derivando la ecuación diferencial del problema.

$$EI_{i}y_{i}^{*}+2EI_{i}^{'}y_{i}^{*}+EI_{i}^{*}y_{i}^{*}=0$$
(1)
$$a_{i}y_{i-2}+b_{i}y_{i-1}+cy_{i}+d_{i}y_{i+1}+e_{i}y_{i+2}=0$$

$$i=1,2...,N$$

donde

$$a_{i} = EI_{i} / h^{4} - EI_{i} / h^{3}$$

$$b_{i} = -4EI_{i} / h^{4} + 2EI_{i} / h^{3} + EI_{i} / h^{2}$$

$$c_{i} = 6EI_{i} / h^{4} - 2EI_{i} / h^{3} + EI_{i} / h^{2}$$

$$d_{i} = -4EI_{i} / h^{4} - 2EI_{i} / h^{3} + EI_{i} / h^{2}$$

$$e_{i} = EI_{i} / h^{4} + EI_{i} / h^{3}$$

$$h = \text{Espacio entre los puntos de la retícula = 10 in}$$

$$x = 0$$

$$x = L$$

$$x = L$$

$$i = -1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8$$

$$DRECCION GENERAL DE BIBLIOTECAS$$

 $a_1y_{-1} + b_1y_0 + c_1y_1 + d_1y_2 + e_1y_3 = 0$

Condiciones de frontera izquierda.

$$y(0) = y_{0} = 0$$

$$y'(0) = y'_{0} = \frac{y_{1} - y_{-1}}{2h} = 0$$

$$y_{1} = y_{-1}$$

$$(a_{1} + c_{1})y_{1} + d_{1}y_{2} + e_{1}y_{3} = 0$$
(1)
Para (i = 2)
$$a_{2}y_{0} + b_{2}y_{1} + c_{2}y_{2} + d_{2}y_{3} + e_{1}y_{4} = 0$$

$$b_{2}y_{1} + c_{2}y_{2} + d_{2}y_{3} + e_{1}y_{4} = 0$$
(2)
Para (i = 3)
$$a_{3}y_{1} + b_{3}y_{2} + c_{3}y_{3} + d_{3}y_{4} + e_{3}y_{5} = 0$$
(3)
Para (i = 4)
$$a_{4}y_{2} + b_{4}y_{3} + c_{4}y_{4} + d_{4}y_{5} + e_{4}y_{6} = 0$$
(4)
Para (i = 5)
$$a_{5}y_{3} + b_{5}y_{4} + c_{5}y_{5} + d_{5}y_{6} + e_{5}y_{7} = 0$$
(5)

Para
$$(i = 6)$$

 $a_6y_4 + b_6y_5 + c_6y_6 + d_6y_7 + e_6y_8 = 0$ (6)

Condición de frontera derecha.

22

$$y''(L) = \frac{M}{EI} = \frac{y_5 - 2y_6 + y_7}{h^4} = 0$$

$$y_5 - 2y_6 + y_7 = 0$$
 (7)

$$y''(L) = \frac{V}{EI_3} = \frac{-y_4 + 2y_5 - 2y_7 + y_8}{2h^3}$$
$$\frac{EI_3}{2h^3} \left[-y_4 + 2y_5 - 2y_7 + y_8 \right] = V$$
(8)

Solución del sistema de ecuaciones:

 $r_0 = 2$ in $r_1 = 1.834$ in $r_2 = 1.668$ in $r_3 = 1.502$ in $r_4 = 1.336$ in $r_5 = 1.17$ in $r_6 = 1$ in

$$a_{1} = 36384 \ Lb_{f} / in^{2} \qquad b_{2} = -85440 \ Lb_{f} / in^{2} \qquad a_{3} = 17355 \ Lb_{f} / in^{2}$$

$$c_{1} = -123453 \ Lb_{f} / in^{2} \qquad c_{2} = 105078 \ Lb_{f} / in^{2} \qquad b_{3} = -56931 \ Lb_{f} / in^{2}$$

$$d_{1} = --84537 \ Lb_{f} / in^{2} \qquad d_{2} = -56112 \ Lb_{f} / in^{2} \qquad c_{3} = 68424 \ Lb_{f} / in^{2}$$

$$e_{1} = 16926 \ Lb_{f} / in^{2} \qquad e_{2} = 10905 \ Lb_{f} / in^{2} \qquad d_{3} = -35475 \ Lb_{f} / in^{2}$$

$$e_{3} = 6627 \ Lb_{f} / in^{2}$$

$$a_{4} = 11295 \ Lb_{f} / in^{2} \qquad a_{5} = 6987 \ Lb_{f} / in^{2} \qquad a_{6} = 3895 \ Lb_{f} / in^{2}$$

$$b_{4} = -36210 \ Lb_{f} / in^{2} \qquad b_{5} = -21765 \ Lb_{f} / in^{2} \qquad b_{6} = -11823 \ Lb_{f} / in^{2}$$

$$c_{4} = -42252 \ Lb_{f} / in^{2} \qquad c_{5} = 24408 \ Lb_{f} / in^{2} \qquad c_{6} = -12774 \ Lb_{f} / in^{2}$$

$$d_{4} = -21054 \ Lb_{f} / in^{2} \qquad d_{5} = -11469 \ Lb_{f} / in^{2} \qquad d_{6} = -5661 \ Lb_{f} / in^{2}$$

$$e_{4} = 3717 \ Lb_{f} / in^{2} \qquad e_{5} = 1839 \ Lb_{f} / in^{2} \qquad e_{6} = 815 \ Lb_{f} / in^{2}$$

 $y_8 = -.6096$ in UTONOMA DE NUEVO LEÓN $y_7 = -0.6010$ in Å

TABLA 5.6c	Comparación d	le resultados	diferencias	finitas solución exacta
11 10 101 1 0.00	comparation o	ie resultatos	anoionaa	minus sonucion chuvia

DIRECCIÓN	FENERDeflexión EBIBL	O Deflexión
Distancia	Solución apróximada	Solución exacta
x in	y in	y in
10	-0.0092	-0.0080*
20	-0.0402	-0.0700
30	-0.0969	-0.1480*
40	-0.1836	-0.2260
50	-0.3031	-0.3392*
60	-0.4521	-0.4524

* Valores interpolados.

Ejemplo 3.1 Una barra delgada a una temperatura inicial de (θ_1) , aislada, menos por uno de sus extremos, que se somete a la temperatura de (θ_0) , que es la temperatura ambiente. La barra tiene una longitud (L), determine la distribución de temperaturas.

Ecuación diferencial del problema

Normalizando

$$T = \frac{\theta - \theta_0}{\theta_1 - \theta_0} \qquad \tau = \frac{\alpha t}{L^2} \qquad X = \frac{x}{L}$$

La ecuación diferencial y las condiciones de frontera del problema se transforma en

$$\frac{\partial^2 T}{\partial X^2} = \frac{\partial T}{\partial \tau} \qquad 0 \langle X \langle 1 \rangle$$

Solución de la ecuación diferencial parcial parabólica.

Método implícito.

$$\frac{\partial T}{\partial \tau} = \frac{\partial^2 T}{\partial X^2}$$

Se utiliza Euler hacia atrás con respecto al dominio del tiempo y él termino de la segunda derivada de la ecuación mediante la aproximación por diferencias centrales.

Para
$$(i = 1)$$

 $T_1^n = -\gamma T_0^{(n+1)} + (2\gamma + 1)T_1^{(n+1)} - \gamma T_2^{(n+1)}$

Condición de frontera derecha

$$T_{1}' = \frac{T_{2} - T_{0}}{2\Delta X} = 0$$

$$T_{0}^{(n+1)} = T_{2}^{(n+1)}$$

$$T_{1}^{n} = -2\gamma \ T_{0}^{(n+1)} + (2\gamma + 1)T_{1}^{(n+1)}$$

$$[(2\gamma + 1)][T_{1}^{(n+1)}] = [T_{1}^{n} + 2\gamma \ T_{0}^{(n+1)}]$$

$$\gamma = \frac{\Delta \tau}{\Delta X^{2}} = \frac{0.05}{(1)^{2}} = 0.05$$
Solución de la ecuación (1)

TARI	A 5/	70 C	omnaraci	ón (łe	resultados	diferencias	finitac	solución	evacta
INDL	nj.	Ia L	vinparaci	UII	ŝ	resultatios	uncicucias	minas	SOLUCION	UNALLA

not	Tiempo			Solución Exacta T ₁
UNIVERS	DAD AU	TÓNOMA	DE NUEV	O LEÓN
1	0.05	0	0.909	0.9969
2IREC	CIQNOEN	ERAD DE	0.826	0.9493
3	0.15	0	0.751	0.8642
4	0.20	0	0.682	0.7723
5	0.25	0	0.620	0.6854
6	0.30	0	0.564	0.6068
7	0.35	0	0.512	0.5367
8	0.40	0	0.465	0.4745
9	0.45	0	0.422	0.4119
10	0.50	0	0.383	0.3708

2) Malla con tres nodos

 $\Delta X = 0.5$

$$Para(i=1)$$

Solución de las ecuaciones (2) y (3)

$$\gamma = \frac{\Delta \tau}{\Delta X^2} = \frac{0.05}{(0.5)^2} = 0.2$$
$$\begin{bmatrix} (2\gamma + 1) & -\gamma \\ -2\gamma & (2\lambda + 1) \end{bmatrix} \begin{bmatrix} T_1^{(n+1)} \\ T_2^{(n+1)} \end{bmatrix} = \begin{bmatrix} T_1^n \\ T_2^n \end{bmatrix}$$

TABLA 5.7b Comparación de resultados diferencias finitas solución exacta

					*	Solución
		Tiempo				Exacta
		A D T	T ₀	T ₁	<i>T</i> ₂	<i>T</i> ₂
4	O VERITATIS		0	1	1	1
RSJ	1	0.05	0	0.8510	0.9574	0.9969
NE	2	0.10	0	0.7355	0.8940	0.9493
1	3	0.15	0	0.6428	0.8222	0.8642
		0.20	0	0.5666	0.7490	0.7723
	5	0.25	0	0.5016	0.6783	0.6854
U	NIVERS	DA ^{0.30} AI	TÓNON	0.4456	0.6118	0.6068
	7	0.35	Ō	0.3969	0.5504	0.5367
4	L8IREC	CI (0.40 GE	NEROALI	DE 0.3541LI	DI 0.4943 S	0.4745
3	9	0.45	0	0.3162	0.4434	0.4119
	10	0.50	0	0.2826	0.3974	0.3708

3) Malla con cinco nodos

 $\Delta X = 0.25$

UNPara
$$(i=3)$$
 IDAD AUTÓNOMA DE NUEVO LEÓN
 $T_3^n = -\gamma T_2^{(n+1)} + (2\gamma+1)T_3^{(n+1)} - \gamma T_4^{(n+1)}$ (6)
DIRECCIÓN GENERAL DE BIBLIOTECAS

Para (i = 4)

$$T_4^n = -\gamma \ T_3^{(n+1)} + (2\gamma + 1)T_4^{(n+1)} - \gamma T_5^{(n+1)}$$

Condición de frontera derecha

$$T_{4}' = \frac{T_{5} - T_{3}}{2\Delta X} = 0$$

$$T_{5}^{(n+1)} = T_{3}^{(n+1)}$$

$$T_{4}^{n} = -2\gamma T_{3}^{(n+1)} + (2\gamma + 1)T_{4}^{(n+1)}$$
(7)

Solución de las ecuaciones (4), (5), (6) y (7)

$$\gamma = \frac{\Delta \tau}{\Delta X^2} = \frac{0.05}{(0.25)^2} = 0.8$$

$$\begin{bmatrix} (2\gamma+1) & -\gamma & 0 & 0 \\ -\gamma & (2\gamma+1) & -\gamma & 0 \\ 0 & -\gamma & (2\gamma+1) & -\gamma \\ 0 & 0 & -2\gamma & (2\gamma+1) \end{bmatrix} \begin{bmatrix} T_1^{(n+1)} \\ T_2^{(n+1)} \\ T_3^{(n+1)} \\ T_4^{(n+1)} \end{bmatrix} = \begin{bmatrix} T_1^n \\ T_2^n \\ T_3^n \\ T_4^n \end{bmatrix}$$

- - N

TABLA 5.7c

Comparación de resultados diferencias finitas solución exacta

	267	EV				Ĩ	Solución
ER	Tiempo	0					Exacta
P. P. C	T	To	T	<i>T</i> ₂	T ₃	T ₄	T4
0	0) 0	1	4	1	1	1
1	0.05	0	0.6554	0.8799	0.9544	0.9720	0.9969
2	0.10	0	0.4858	0.7596	0.8830	0.9172	0.9493
UNI3 E	0.15		0.3897	0.6591	0.8031	0.8470	0.8642
⁴ DIF	E 0.20	DN GEN	0.3274	0.5769	0.7236	0.7711	0.7723
5	0.25	0	0.2823	0.5084	0.6489	0.6959	0.6854
6	0.30	0	0.2471	0.4501	0.5803	0.6247	0.6068
7	0.35	0	0.2180	0.3997	0.5182	0.5592	0.5367
8	0.40	0	0.1932	0.3554	0.4624	0.4996	0.4745
9	0.45	0	0.1717	0.3164	0.4124	0.4460	0.4194
10	0.50	. 0	0.1528	0.2819	0.3678	0.3979	0.3708

Ejemplo 3.2 Una barra delgada a una temperatura inicial de (θ_1) , aislada, menos por uno de sus extremos, por el que intercambia calor con el medio hambiente. La barra tiene una longitud (*L*), determine la distribución de temperaturas.

Condiciones de frontera

$$\theta(\mathbf{x},0) = \theta_1 \qquad \qquad 0 \langle \mathbf{x} \langle \mathbf{x} \rangle$$

$$\frac{\partial \theta(0,t)}{\partial x} = 0 \qquad t > 0$$

$$-k\frac{\partial\theta(L,t)}{\partial x} = \beta(\theta - \theta_0) \qquad t \rangle 0$$

Normalizando

$$T = \frac{\theta - \theta_0}{\theta_1 - \theta_0} \qquad \tau = \frac{\alpha t}{L^2} \qquad X = \frac{x}{L}$$

La ecuación diferencial y las condiciones de frontera del problema se transforma en.

$$\frac{\partial^2 T}{\partial X^2} = \frac{\partial T}{\partial \tau} \qquad 0 \langle X \langle I \rangle$$

$$T(X,0) = 1 \qquad \qquad 0\langle X \langle X \rangle$$

$$\frac{\partial T(0,\tau)}{\partial X} = 0 \qquad \qquad \tau > 0$$

$$-k\frac{\partial T(L,\tau)}{\partial X} = \beta T \qquad \tau > 0$$

DIRECCIÓN GENERAL DE BIBLIOTECAS

Solución de la ecuación diferencial parcial parabólica. Método implícito.

$$\frac{\partial T}{\partial \tau} = \frac{\partial^2 T}{\partial X^2}$$

Se utiliza Euler hacia atrás con respecto al dominio del tiempo y él termino de la segunda derivada de la ecuación mediante la aproximación por diferencias centrales.

$$\frac{T_i^{n+1} - T_i^n}{\Delta \tau} = \frac{T_{i-1}^{n+1} - 2T_i^{n+1} + T_{i+1}^{n+1}}{\Delta X^2}$$
$$\gamma = \frac{\Delta \tau}{\Delta X^2}$$
$$T_i^n = -\gamma \ T_{i-1}^{(n+1)} + (2\gamma + 1)T_i^{(n+1)} - \gamma \ T_{i+1}^{(n+1)} \qquad i = 0, 1, ...N$$

1) Malla con dos nodos

 $\Delta X = 1$

Condición de frontera izquierda

$$T_0' = \frac{T_1 - T_{-1}}{2\Delta X} = 0$$

$$T_1^{(n+1)} = T_{-1}^{(n+1)}$$

$$T_0^n = (2\gamma + 1)T_0^{(n+1)} - 2\gamma T_1^{(n+1)}$$
(1)

Para (i=1)

$$T_1^n = -\gamma \ T_0^{(n+1)} + (2\gamma + 1)T_1^{(n+1)} - \gamma T_2^{(n+1)}$$

Condición de frontera derecha.

$$T_{1}' = \frac{T_{2} - T_{-0}}{2\Delta X} = -\frac{\beta}{k}T_{1}$$

$$T_{2}^{(n+1)} = \frac{-2\Delta X\beta}{k}T_{1}^{(n+1)} + T_{0}^{(n+1)}$$

$$T_{1}^{n} = -2\gamma T_{0}^{(n+1)} + \left[(2\gamma + 1) + \gamma(\frac{2\Delta X\beta}{k})\right]T_{1}^{(n+1)}$$
(2)

Solución de las ecuaciones (1) y (2)

$$\begin{bmatrix} (2\gamma+1) & -2\gamma \\ -2\gamma & [(2\gamma+1)+\gamma \begin{pmatrix} 2\Delta X\beta \\ k \end{pmatrix}] \end{bmatrix} \begin{bmatrix} T_0^{(n+1)} \\ T_1^{(n+1)} \end{bmatrix} = \begin{bmatrix} T_0^n \\ T_1^n \end{bmatrix}$$

$$\gamma = \frac{\Delta \tau}{\Delta X^2} = \begin{array}{c} 0.01875 \\ (1)^2 & = 0.01875 \end{bmatrix}$$

TABLA 5.8a Comparación de los resultados diferencias finitas solución exacta

				Solución	Solución
	Tiempo			Exacta	Exacta
UNIVER	SIDAD A	UT T ÓNC	MATIDE	NUZOVO	LECIN
		1 TENIED A I			
	0.01875	0.9909	0.7490	1.0210	0.3500
2	0.03750	0.9747	0.5673	1.0082	0.2798
3	0.05620	0.9552	0.4355	1.0034	0.2379
4	0.07500	0.9329	0.3397	0.9950	0.2102
5	0.09375	0.9089	0.2699	0.9810	0.1904
6	0.11250	0.8839	0.2188	0.9616	0.1753
7	0.13125	0.8585	0.1812	0.9384	0.1633
8	0.15000	0.8330	0.1534	0.9127	0.1534
9	0.16875	0.8076	0.1326	0.8853	0.1450
10	0.18750	0.7826	0.1169	0.8572	0.1377

 $\Delta X = 0.5$

UNPara (i = 1) IDAD AUTÓNOMA DE NUEVO LEÓN $T_{1}^{n} = -\gamma T_{0}^{(n+1)} + (2\gamma + 1)T_{1}^{(n+1)} - \gamma T_{2}^{(n+1)}$ DIRECCIÓN GENERAL DE BIBLIOTECAS
(4)

Para (i=2)

$$T_2^n = -\gamma \ T_1^{(n+1)} + (2\gamma + 1)T_2^{(n+1)} - \gamma T_3^{(n+1)}$$

Condición de frontera derecha

$$T_{2}' = \frac{T_{3} - T_{1}}{2\Delta X} = -\frac{\beta}{k}T_{2}$$
$$T_{3}^{(n+1)} = \frac{-2\Delta X\beta}{k}T_{2}^{(n+1)} + T_{1}^{(n+1)}$$

$$T_2^n = -2\gamma \ T_1^{(n+1)} + \left[(2\gamma + 1) + \gamma (\frac{2\Delta X\beta}{k}) \right] T_2^{(n+1)}$$
(5)

Solución de las ecuaciones (3), (4) y (5)

$$\begin{bmatrix} (2\gamma+1) & -2\gamma & 0 \\ -\gamma & (2\gamma+1) & -\gamma \\ 0 & -2\gamma & \left[(2\gamma+1)+\gamma(\frac{2\Delta X\beta}{k}) \right] \end{bmatrix} \begin{bmatrix} T_0^{(n+1)} \\ T_1^{(n+1)} \\ T_2^{(n+1)} \end{bmatrix} = \begin{bmatrix} T_0^n \\ T_1^n \\ T_2^n \end{bmatrix}$$

$$\gamma = \frac{\Delta \tau}{\Delta X^2} = \frac{0.05}{(0.5)^2} = 0.2$$

TABLA 5.8b Comparación de resultados diferencias finitas solución exacta

	Tiempo	VQ	T	T	Solución Exacta	Solución Exacta	Solución Exacta
				12	T ₀		T ₂
0	0	1	1	1	1	1	1
1	0.01875	0.9967	0.9751	0.6216	1.0210	1.0040	0.3500
2	0.03750	0.9892	0.9393	0.4135	1.0082	0.9702	0.2798
	0.05625	0.9775	0.8999	0.2974	1.0034	0.9636	0.2379
4	0.07500	0.9622	0.8603	0.2312	0.9950	0.8761	0.2102
5	0.09375	0.9439	0.8221	0.1922	0.9810	0.8326	0.5812
6	0.11250	0.9233	0.7860	0.1681	0.9616	0.7932	0.1753
7	0.13125	0.9009	0.7521	0.1523	0.9384	0.7575	0.1636
8	0.15000	0.8773	0.7204	0.1411	0.9127	0.7248	0.1534
9	0.16875	0.8529	0.6907	0.1327	0.8853	0.6947	0.1450
10	0.1875	0.8280	0.6628	0.1258	0.8572	0.6667	0.1377

٩
3) Malla con cinco nodos

 $\Delta X = 0.25$

$$T_{0}' = 0 \qquad T_{4}' = -\frac{\beta}{k} T_{4}$$

$$i = -1 \qquad 0 \qquad 1 \qquad 2 \qquad 3 \qquad 4 \qquad 5$$
Para (*i* = 0)
$$T_{0}'' = -\gamma T_{-1}^{(n+1)} + (2\gamma + 1)T_{0}^{(n+1)} - \gamma T_{1}^{(n+1)}$$
Condición de frontera izquierda
$$T_{0}' = \frac{T_{1} - T_{-1}}{2\Delta X} = 0$$

$$T_{1}^{(n+1)} = T_{-1}^{(n+1)}$$

$$T_{0}'' = (2\gamma + 1)T_{0}^{(n+1)} - 2\gamma T_{1}^{(n+1)}$$
(6)
Para (*i* = 1)
$$T_{1}'' = -\gamma T_{0}^{(n+1)} + (2\gamma + 1)T_{1}^{(n+1)} - \gamma T_{2}^{(n+1)}$$
(7)

Para
$$(i = 2)$$

 $T_2^n = -\gamma \ T_1^{(n+1)} + (2\gamma + 1)T_2^{(n+1)} - \gamma T_3^{(n+1)}$
(8)

Para
$$(i = 3)$$

 $T_3^n = -\gamma \ T_2^{(n+1)} + (2\gamma + 1)T_3^{(n+1)} - \gamma T_4^{(n+1)}$
(9)

Para (i = 4)

$$T_4^n = -\gamma \ T_3^{(n+1)} + (2\gamma + 1)T_4^{(n+1)} - \gamma T_5^{(n+1)}$$

Condición de frontera derecha

$$T_{4}' = \frac{T_{5} - T_{3}}{2\Delta X} = -\frac{\beta}{k} T_{4}$$

$$T_{5}^{(n+1)} = \frac{-2\Delta X\beta}{k} T_{4}^{(n+1)} + T_{3}^{(n+1)}$$

$$T_{4}^{n} = -2\gamma T_{3}^{(n+1)} + \left[(2\gamma + 1) + \gamma (\frac{2\Delta X\beta}{k}) \right] T_{4}^{(n+1)}$$
(10)

Solución de las ecuaciones (6), (7), (8), (9) y (10)

TABLA 5.8c Comparación de resultados diferencias finitas solución exacta

Tiempo τ	TRS.	Ι β Α		J T Í	₩ ₫ ₩		E Ti ^x U	$E^{T_2^{\star}}$		
0	1								1	(<u>R</u>)
0.01875	0.9986	0.9963	0.9817	0.9059	0.5166	1.0210	0.9936	1.0040	0.9174	0.3500
0.03750	0.9944	0.9873	0.9500	0.8071	0.3350	1.0082	1.0000	0.9702	0.7853	0.2798
0.05625	0.9863	0.9729	0.91190	0.7237	0.2574	1.0034	0.9916	0.9236	0.6960	0.2379
0.07500	0.9743	0.9543	0.8720	0.6567	0.2180	0.9950	0.9734	0.8761	0.6310	0.2102
0.09375	0.9586	0.9323	0.8328	0.6030	0.1940	0.9810	0.9501	0.8326	0.5812	0.1904
0.11250	0.9396	0.9081	0.7956	0.5593	0.1772	0.9616	0.9238	0.7932	0.5414	0.1753
0.13125	0.9181	0.8823	0.7608	0.5230	0.1643	0.9384	0.8959	0.7575	0.5086	0.1633
0.15000	0.8947	0.8558	0.7282	0.4923	0.1538	0.9127	0.8672	0.7248	0.4808	0.1534
0.16875	0.8700	0.8288	0.6979	0.4657	0.1450	0.8853	0.8383	0.6947	0.4567	0.1450
0.18750	0.8445	0.8019	0.6695	0.4423	0.1374	0.8572	0.8095	0.6667	0.4353	0.1377

 T^{\times} Solucion exacta

Ejemplo 4.1 Escriba la aproximación por diferencias y la solución de la ecuación de Poisson, para la geometría que se muestra en la figura 5.1.

Ecuación diferencial del problema.(EDP elíptica)

$$-\nabla^2 T(x, y) = f_0$$
$$-\left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2}\right) = f_0$$

.

Geometría del problema y condiciones de frontera.

Condiciones de frontera de la raticula de análisis.

Frontera izquierda
$$\frac{\partial T}{\partial x} = 0$$
 (Tipo Neuman)
Frontera derecha $T = 0$ (Tipo Dirichlet)
Frontera inferior $\frac{\partial T}{\partial y} = 0$
Frontera superior $T = 0$

Condiciones de frontera de la retícula de análisis

UNIV
$$\frac{\partial^2 T}{\partial x^2} = \frac{T_{i+1,j} - 2T_{i,j} + T_{i+1,j}}{\Delta x^2}$$
ÓNOMA DE NUEVO LE(2)
DIRECCIÓN GENERAL DE BIBLIOTECAS

De manera análoga, la aproximación por diferencias del segundo termino es

$$\frac{\partial^2 T}{\partial y^2} = \frac{T_{i,j-1} - 2T_{i,j} + T_{i,j+1}}{\Delta y^2}$$
(3)

Sustituimos (2) y (3) en (1)

$$\frac{-T_{i-1,j} + 2T_{i,j} - T_{i+1,j}}{\Delta x^2} + \frac{-T_{i,j-1} + 2T_{i,j} - T_{i,j+1}}{\Delta y^2} = f_{0_{i,j}}$$
(4)

La ecuación (4) se aplica a todos los puntos de la retícula excepto los de la frontera.

La frontera inferior, ecuación en diferencias para un punto.

$$(1 < i < i_{max} \quad y \quad j = 1)$$

$$\binom{\partial^2 T}{\partial y^2}_{i,1} = \frac{\binom{\partial T}{\partial y}_{i,1+\frac{1}{2}} - \binom{\partial T}{\partial y}_{i,1}}{\frac{\Delta y}{2}}$$
(a)

$$\left(\frac{\partial T}{\partial y}\right)_{i,1+\frac{1}{2}} = \frac{T_{i,2} - T_{i,1}}{\Delta y}$$
(b)

$$\left(\frac{\partial T}{\partial y}\right)_{i,1} = 0$$
 (Condición de frontera inferior) (c)

La ecuación (6) se aplica para cualquier punto en la frontera inferior. LEON

La frontera izquierda, ecuación en diferencias para un punto. TECAS

$$(1 < j < j_{max} \quad y \quad j=1)$$

$$\left(\frac{\partial^2 T}{\partial x^2}\right)_{\mathbf{i},j} = \frac{\left(\frac{\partial T}{\partial x}\right)_{\mathbf{i}+\frac{1}{2},j} - \left(\frac{\partial T}{\partial y}\right)_{\mathbf{i},j}}{\Delta \mathbf{x}} \tag{d}$$

$$\left(\frac{\partial T}{\partial x}\right)_{1+\frac{1}{2},j} = \frac{T_{2,j} - T_{1,j}}{\Delta x}$$
(e)

$$(\frac{\partial T}{\partial x})_{1,j} = 0$$
 (Condición de frontera izquierda) (f)

Sustituimos (e) y (f) en (d)

$$\binom{\partial^2 T}{\partial x^2}_{1,j} = \frac{2T_{2,j} - 2T_{1,j}}{\Delta x^2}$$
(7)

Sustituimos (7) y (3) en (1)

$$\frac{2T_{1,j} - 2T_{2,j}}{\Delta x^2} + \frac{-T_{1,j-1} + 2T_{1,j} - T_{1,j+1}}{\Delta x^2} = f_{0_{1,j}}$$
(8)

La ecuación (8) se aplica para cualquier punto en la frontera izquierda.

Ecuación en diferencias para el punto de la esquina (i = j = 1).

Sustituimos (5) y (7) en (1)

$$\frac{2T_{1,1} - 2T_{2,1}}{\Delta x^2} + \frac{2T_{1,1} - 2T_{1,2}}{\Delta y^2} = f_{0_{1,1}} \qquad (9)$$
Aplicamos las ecuaciones (4), (6), (8) y (9) para la solucion de la retícula del
problema. ($\Delta x = \Delta y$)

Para(i=j=1)CIÓN GENERAL DE BIBLIOTECAS

$$4T_{1,1} - 2T_{2,1} - 2T_{1,2} = \Delta x^2 f_0 \tag{10}$$

Para
$$(i = 2, j = 1)$$

 $-T_{1,1} + 4T_{2,1} - 2T_{2,2} = \Delta x^2 f_0$
(11)

Para
$$(i = 1, j = 2)$$

 $-T_{1,1} + 4T_{1,2} - 2T_{2,2} = \Delta x^2 f_0$
(12)

Para (i = 2, j = 2)

$$-T_{2,1} - T_{1,2} + T_{2,2} = \Delta x^2 f_0 \tag{13}$$

Solución de las ecuaciones (10), (11), (12), y (13)

$$\begin{bmatrix} 4 & -2 & -2 & 0 \\ -1 & 4 & 0 & -2 \\ -1 & 0 & 4 & -2 \\ 0 & -1 & -1 & 4 \end{bmatrix} \begin{bmatrix} T_{1,1} \\ T_{2,1} \\ T_{1,2} \\ T_{2,2} \end{bmatrix} = \begin{bmatrix} \Delta x^2 f_0 \\ \Delta x^2 f_0 \\ \Delta x^2 f_0 \\ \Delta x^2 f_0 \\ \Delta x^2 f_0 \end{bmatrix}$$

Para ($f_0 = 1$) y ($\Delta x \approx \Delta y = 0.5$)

Comparación de resultados diferencias finitas solución por series

Coordenadas	Solución aproximada	Solución por series
(<i>i</i> , <i>j</i>)	Т	T
NIVER(A) DAD A	UTÓNO.2812 A DE	NUEV 0.2947 ÓN _
	0.2187	0.2284
(1,2)	0.2188	0.2293
(2,2)	0.1719	0.1801*

Valor interpolado *

TABLA 5.9

CAPITULO 6

COMPARACIÓN DE RESULTADOS.

GRAFICA 6.1

Comparación de los métodos elemento finito y diferencias finitas con la solución analítica para la distribución de temperaturas en una aleta rectangular (Ejemplo 2.1)

Comparación de los métodos elemento finito y diferencias finitas con la solución analítica para la distribución de temperaturas en un conductor eléctrico (Ejemplo 2.2)

Comparación de los métodos elemento finito y diferencias finitas con la solución analítica para la distribución de temperaturas en una aleta triangular (Ejemplo 2.3)

Comparación de los métodos elemento finito y diferencias finitas con la solución analítica para la distribución de velocidades en un fluido (Ejemplo 2.4)

Comparación de los métodos elemento finito y diferencias finitas con la solución analítica para la flexón de una viga empotrada en los extremos (Ejemplo 2.5)

Comparación de los métodos elemento finito y diferencias finitas con la solución analítica para la flexión de una viga de sección variable empotrada en el extremo izquierdo y con una carga concentrada en el extremo derecho (Ejemplo 2.6)

Comparación de los métodos elemento finito y diferencias finitas con la solución analítica para la distribución de temperaturas en estado transitorio en una barra aislada en un extremo. (Ejemplo 3.1)

Comparación de los métodos elemento finito y diferencias finitas con la solución analítica para la distribución de temperaturas en estado transitorio en una barra aislada en el extremo izquierdo y que intercambia calor por el extremo derecho. (Ejemplo 3.2)

Comparación de los métodos elemento finito y diferencias finitas con la solución analítica para la distribución de temperaturas en estado estable dos dimensiones en una placa rectangular. (Ejemplo 4.1)

CAPITULO 7

CONCLUSIONES

Las conclusiones que se originaron de mi investigación se apoyan en las gráficas del capitulo anterior y son las siguientes: para el método del elemento finito, se obtiene los mismos resultados cuando se utilizan dos elementos lineales que cuando se utiliza un elemento cuadrático; sin embargo cuando se hace muy fina la malla de elementos finitos no se mejora la aproximación a la solución analítica solo se obtiene mas información de la maya.

Las aplicaciones mas fuertes del elemento finito son para geometrías complejas; es decir para todo lo que no sea cuadrado en problemas de estado estable. Lo interesante de este método es que proporciona además información de las variables secundarias del problema que pueden ser: el flujo de calor, las reacciones en vigas, los momentos etc.

Otro de los puntos importantes de mi investigación es el método de las diferencias finitas, en este punto quiero señalar las siguientes conclusiones: es muy importante que las distancias entre los puntos de la retícula sean muy pequeñas para que se tenga una mejor aproximación a la solución analítica, por otra parte quiero mencionar que no recomiendo el método para problemas de vigas o de estructuras porque no sé obtendrían las variables secundarias solo sé obtendría la flexión si la geometría es sencilla; lo que me pareció muy interesante del método son: Las aplicaciones a problemas de valor inicial para problemas que tengan geometría sencillas; es decir cuadrados o rectángulos.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

Bibliografías

ANALYSIS OF HEAT AND MASS TRANSFER

E.R.G. ECKERT

ROBERT M. DRAKE, JR.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

MECHANICS OF MATERIALS DIRECCION GENERAL DE BIBLIOTECAS

FERDINAND P. BEER

E. RUSSEL JOHNSTON, JR.

Mc Graw Hill

METODOS NIMERICOS APLICADOS CON SOFTWARE

SHOICHIRO NAKAMURA

Prentice Hall

ANALISIS NUMERICO Y VISUALIZACION GRAFICA CON MATLAB

SHOICHIRO NAKAMURA

Prentice Hall

NUMERICAL METHODS, SOFTWARE, AND ANALYSIS

JOHN R. RICE

Mc Graw Hill

NUMERICAL HEAT TRANSFER

TIEN MO SHIH

Hemisphere publishing corporation

METHODS FOR THE NUMERICAL SOLUTION OF PARTIAL

DIFFERENTIAL EQUATIONS

UNIV**DALE U. VON ROSENBERG**IOMA DE NUEVO LEÓN

American Elsevier publishing company DIRECCION GENERAL DE BIBLIOTECAS

FINITE ELEMENT METHOD

J.N. REDDY

Mc Graw Hill

APPLIED FUNCTIONAL ANALYSIS AND VARIATIONAL

METHODS IN ENGINEERING

J.N. REDDY

Mc Graw Hill

APPLIED FINITE ELEMENT ANALYSIS

LARRY J. SEGERLIND

John Wiley & Sons

FINITE ELEMENT ANALYSIS FROM CONCEPTS TO APPLICATIONS

DAVID S. BURNETT

Addison Wesley

THE FINITE ELEMENT METHOD FOR ENGINEERS

UNIVERNETHE HUEBNER NOMA DE NUEVO LEÓN

John Wiley & Sons DIRECCIÓN GENERAL DE BIBLIOTECAS

THE FINITE ELEMENT METHOD IN ENGINEERING

S.S. RAO

Pergamon Press

LISTA DE TABLAS

	TABLA 1.1	Ejemplos de ecuaciones de segundo orden en una dimensión	6
	TABLA 2.1a	Comparación de resultados elemento finito solución analítica	36
/	TABLA 2.1b	Comparación de resultados elemento finito solución analítica	42
	TABLA 2.2a	Comparación de resultados elemento finito solución analítica	50
	TABLA 2.2b	Comparación de resultados elemento finito solución analítica	58
	TABLA 2.3	Comparación de resultados elemento finito solución analítica	69
	TABLA 2.4a	Comparación de resultados elemento finito solución analítica	78
	TABLA 2.4b	Comparación de resultados elemento finito solución analítica	86
	TABLA 2.5a	Comparación de resultados elemento finito solución analítica	99 ®
	TABLA 2.5b	Comparación de resultados elemento finito solución analítica	100
	TABLA 2.6	Comparación de resultados elemento finito solución analítica	107
	TABLA 2.7	Comparación de resultados elemento finito solución analítica	113
	TABLA 3.1a	Comparación de resultados elemento finito solución analítica	127
	TABLA 3.1b	Comparación de resultados elemento finito solución analítica	131
	TABLA 3.1c	Comparación de resultados elemento finito solución analítica	136
	TABLA 3.2a	Comparación de resultados elemento finito solución analítica	141
	TABLA 3.1as	Comparación de resultados elemento finito solución analítica	142

	TABLA 3.2b	Comparación de resultados elemento finito solución analítica	146
	TABLA 3.26	Comparación de resultados elemento finito solución analítica	147
	TABLA 3.2c	Comparación de resultados elemento finito solución analítica	152
	TABLA 3.2cc	Comparación de resultados elemento finito solución analítica	153
	TABLA 4.1a	Comparación de resultados elemento finito solución analítica	174
	TABLA 4.1b	Comparación de resultados elemento finito solución analítica	181
	TABLA 4.1c	Comparación de resultados elemento finito solución analítica	182
	TABLA 5.1	Comparación de resultados diferencias finitas solución analítica	187
	TABLA 5.2	Comparación de resultados diferencias finitas solución analítica	190
	TABLA 5.3	Comparación de resultados diferencias finitas solución analítica	195
S.S.Y	TABLA 5.4	Comparación de resultados diferencias finitas solución analítica	199
ELE I	TABLA 5.5a	Comparación de resultados diferencias finitas solución analítica	202
	TABLA 5.5b	Comparación de resultados diferencias finitas solución analítica	205
	TABLA 5.5c	Comparación de resultados diferencias finitas solución analítica	208
U	TABLA 5.6a	Comparación de resultados diferencias finitas solución analítica	213
	TABLA 5.6b	Comparación de resultados diferencias finitas solución analítica	215 [®]
	TABLA 5.6c	Comparación de resultados diferencias finitas solución analítica	220
	TABLA 5.7a	Comparación de resultados diferencias finitas solución analítica	224
	TABLA 5.7b	Comparación de resultados diferencias finitas solución analítica	226
	TABLA 5.7c	Comparación de resultados diferencias finitas solución analítica	228
	TABLA 5.8a	Comparación de resultados diferencias finitas solución analítica	233
	TABLA 5.8b	Comparación de resultados diferencias finitas solución analítica	235
	TABLA 5.8c	Comparación de resultados diferencias finitas solución analítica	237
	TABLA 5.9	Comparación de resultados diferencias finitas solución analítica	242

Lista de gráficas

Figura 1.1	Elemento finito en una dimensión.	5
Figura 1.2	Elemento lineal en una dimensión.	10
Figura 1.3	Funciones de forma lineales.	11
Figura 1.4	Funciones de interpolación en coordenadas locales.	12
Figura 1.5	Elementos cuadráticos funciones de interpolación.	13
Figura 1.6	Ensamble de dos elementos lineales.	25
Figura 2.1	Aleta rectangular.	29
Figura 2.3	Aleta triangular.	59
Figura 2.4	Fluido en una tubería.	71
Figura 2.5	Flexión de viga apoyada en el extremo.	87
Figura 2.6	Desplazamientos generalizados y fuerzas generalizadas.	88 [®]
Figura 2.7	ECCION GENERAL DE BIBLIOTECAS Ensamble de dos elementos.	93
Figura 2.8	Viga empotrada en los extremos.	95
Figura 2.9	Viga empotrada de sección variable.	101
Figura 2.10	Viga simplemente apoyada con carga senoidal.	108
Figura 4.1	Discretización de un dominio por elementos triangulares y cuad	riláteros.
		155
Figura 4.2a.	Elemento finito en dos dimensiones.	158
Figura 4.2b.	Elemento finito en dos dimensiones.	159

	Figura 4.3.	Elemento triangular lineal.	162
	Figura 4.4.	Ensamble de los coeficientes de las matrices del elemento finito.	158
	Figura 4.5.	Dominio rectangular para la aplicación de la ecuación de poisson.	167
	Figura 4.6.	Dominio rectangular para la aplicación de la ecuación de poisson.	168
	Figura 4.7.	Discretización del dominio para elementos lineales rectangulares.	175
	Figura 5.1.	Dominio del problema	238
	Figura 6.1.	Comparación de los métodos elemento finito y diferencias finitas	con la
	solución anal	ítica (Ejemplo2.1)	243
	Figura 6.2.	Comparación de los métodos elemento finito y diferencias finitas	con la
/	solución anal	ítica (Ejemplo2.2)	244
<u>SSIN</u>	Figura 6.3.	Comparación de los métodos elemento finito y diferencias finitas	con la
NE	solución anal	ítica (Ejemplo2.3)	245
1	Figura 6.4.	Comparación de los métodos elemento finito y diferencias finitas	con la
	solución anal	ítica (Ejemplo2.4)	246
U	Figura 6.5.	Comparación de los métodos elemento finito y diferencias finitas	con la
	solución anal	litica (Ejemplo2.5)	247
	Figura 6.6.	Comparación de los métodos elemento finito y diferencias finitas	s con la
	solución anal	lítica (Ejemplo2.6)	248
	Figura 6.7.	Comparación de los métodos elemento finito y diferencias finitas	s con la
	solución anal	lítica (Ejemplo3.1)	249
	Figura 6.8.	Comparación de los métodos elemento finito y diferencias finitas	s con la
	solución anal	lítica (Ejemplo3.2)	250
	Figura 6.9.	Comparación de los métodos elemento finito y diferencias finitas	s con la
	solución ana	lítica (Ejemplo4.1)	251

AUTOBIOGRAFIA

Mi nombre es Raúl Acosta Landín, nací en H. Matamoros Tamps. el 3 de octubre de 1958. Soy Ingeniero electromecánico, Egresado del Instituto Tecnológico de Matamoros Tamaulipas en el año de 1983.

En el año de 1984 al 1986 empece y termine los créditos de la maestría en ingeniería

térmica en la Facultad de Ingeniería Mecánica de la Universidad de Nuevo León.

En el año de 1987 empece a trabajar en la misma como maestro asignado al

departamento de Térmica y Fluidos, en las materias de Transferencia de Calor,

Termodinámica, Mecánica de Fluidos, Refrigeración, Maquinas Hidráulicas en donde continuo a la fecha.

DIRECCIÓN GENERAL DE BIBLIOTECAS

En el año de 1991 a 1994 paralelamente con mi trabajo de catedrático realice mis estudios de Maestría en Sistemas de información en la Facultad de Ciencias Químicas obteniendo mi grado de Maestro en Ciencias.

Actualmente soy jefe de la Academia de Termodinámica I y II.

Uno de mis objetivos concluye con esta investigación, para continuar con una de mis metas obtener el doctorado en Ingeniería.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN () DIRECCIÓN GENERAL DE BIBLIOTECAS

