INDICE

	Página		
DEDICATORIA	i		
AGRADECIMIENTOS	ii		
PROLOGO	iv		
INDICE			
RESUMEN	1		
CAPITULO 1. INTRODUCCION	3		
CAPITULO 2. CONCEPTOS SOBRE EL COLOR	5		
2.1 Introducción.	5		
2.2 Naturaleza de la luz y fuentes luminosas.	6		
2.3 Modificación de la luz por los materiales.	9		
2.4 Detección de la luz y el color por el ojo humano.	13		
2.5 El color y la estructura química.	14		
2.6 El color y la estructura física.	19		
CAPITULO 3. LOS PIGMENTOS	20		
3.1 Introducción.			
3.2 Reseña histórica.			
3.3 clasificación de los pigmentos.	22		
3.3.1 Pigmentos inorgánicos.	23		
3.3.2 Pigmentos orgánicos.	23		
3.4 Manufactura y/u obtención de pigmentos.	24		
3.4.1 Pigmentos inorgánicos naturales.	24		
3.4.2 Pigmentos inorgánicos sintéticos.	24		
3.4.3 Pigmentos orgánicos naturales.	25		
3.4.3.1 Palo de Brasil.	25		
3.4.3.2 Cochinilla.	26		
3.4.3.3 Indiao.	27		

3.4.4 Pigmentos orgánicos sintéticos.			
3.4.4.1 Materias primas.			
3.4.4.2 Clasificación de los compuestos orgánicos			
sintéticos.			
3.5 Características de los pigmentos	30		
CAPITULO 4. PIGMENTOS ESTUDIADOS	32		
4.1 Descripción de los pigmentos estudiados	32		
4.2 Amarillos de bencidina (C.I. 13)	34		
4.2.1 Características del pigmento			
4.2.2 Aplicaciones	35		
4.3 Ftalocianinas de Cobre (C.I 15:1)	36		
4.3.1 Características del pigmento			
4.3.2 Aplicaciones	38		
CAPITULO 5. CARACTERIZACION DE PIGMENTOS	39		
5.1 Introducción	39		
5.2 Materiales y equipos utilizados en el presente trabajo	40		
5.3 Preparación de muestras para MET	41		
5.4 Preparación de muestras para MEB			
5.5 Muestras para análisis térmico			
5.6 Difracción de rayos X			
5.7 Forma de partícula			
5.8 Tamaño de partícula	45		
CAPITULO 6. RESULTADOS Y DISCUSION	47		
6.1 Introducción	47		
6.2 Difracción de Rayos X	48		
6.3 Características de los pigmentos	49		
6.3.1 Forma de la partícula	52		
6.3.2 Tamaño de partícula	53		
6.3.3 Histogramas de pigmentos amarillos	55		
6.3.4 Histogramas de pigmentos azules	57		

6.4 Imágenes obtenidas por MEB		59
6.5 Análisis termogravimétricos		62
CAPITULO 7.	CONCLUSIONES	67
CAPITULO 8.	RECOMENDACIONES	68
REFERENCIAS BIBLIOGRAFICAS		69
	_	
LISTA DE TABLAS	5	71
LISTA DE FIGURAS		73
RESUMEN AUTOBIOGRAFICO		76

RESUMEN

Los pigmentos son materiales insolubles en forma de polvo, de tamaño de partícula pequeño y de baja densidad. Estas características imponen la necesidad de pigmentos que tengan una forma física fácil de manejar y al mismo tiempo de dispersar.

En el presente trabajo, se determina la técnica de preparación de muestras para realizar observaciones de partículas individuales de pigmentos mediante Microscopía Electrónica de Transmisión (MET) y Microscopía Electrónica de Barrido (MEB). Además, se analizan las imágenes obtenidas mediante MET y se cuantifica la forma y tamaño de las partícula de estos pigmentos.

Se estudian tres muestras de amarillos de bencidina y tres azules de ftalocianinas de cobre. Cada muestra se obtuvo de distinto proveedor.

Mediante la realización de difracción de Rayos X se corrobora que las muestras de pigmentos de colores iguales tienen una estructura cristalina igual lo que pudiera indicar que tienen una composición química semejante.

Se obtiene el tamaño de partícula tomando como factor de medición el díametro de feret máximo y el factor de forma de cada una de las muestras y se comparan los resultados entre colores iguales.

La comparación de estas características entre colores iguales revela que el tamaño de partícula (díametro de feret máximo) no está relacionado directamente con el la tonalidad del color tanto en los amarillos de bencidina como en las ftalocianinas de cobre y que el factor de forma tampoco esta relacionado con el tono del color en los colores estudiados en este trabajo.

Se presentan además los análisis termogravimétricos (TGA) de las diferentes muestras, los cuales pueden dar un indicador de la resistencia térmica de los pigmentos además del contenido de otras sustancias como aditivos e impurezas.