CAPÍTULO 8

ESTUDIO COMPARATIVO DE LAS ACCIONES MECÁNICAS

En este capítulo se presentan los casos de estudio propuestos para hacer la comparación de las acciones mecánicas obtenidas de los análisis de los modelos estructurales seleccionados, utilizando los tres métodos mencionados anteriormente. Las acciones mecánicas que se comparan en este estudio son: las fuerzas circunferenciales, fuerzas axiales y los momentos flexionantes horizontales y verticales que se presentan en las paredes de los silos.

Los resultados de los análisis de los cinco modelos estudiados se presentan en forma resumida en las tablas 8-1 a la 8-5, en las que se indican los valores obtenidos a profundidades Y a cada 6 m; sin embargo, las figuras en las que se comparan las acciones mecánicas para los diferentes casos de estudio, contienen los resultados de estas acciones, a cada 3 m de profundidad, aunque los análisis de los silos se hicieron con datos de carga, para profundidades de 1.5 m.

8.1 Casos de estudio

A fin de evaluar las principales diferencias encontradas en los resultados de los análisis, se propusieron los siguientes casos de estudio, para observar con mayor claridad el comportamiento de los silos. La comparación de las acciones mecánicas se hizo usando figuras en las que se incluyó los resultados de los tres métodos en una sola gráfica, para cada una de las acciones mecánicas. A continuación se menciona la descripción de cada uno de los casos de estudio:

Caso estudio A: Este caso de estudio tiene como objetivo observar las diferencias que existen entre los tres métodos de análisis propuestos para un mismo silo, con losa de fondo plana, sin considerar excentricidad (ver figura 8-1). Consiste, básicamente, en la comparación de las acciones mecánicas resultantes del análisis de un silo con una relación H/D=3, considerando las cargas de peso propio, presión estática más sobrepresión y fricción, utilizando los Métodos I, II y III. La comparación de los resultados de las acciones mecánicas, para este caso de estudio, se muestra en la figura 8-8.

Caso de estudio B: El objetivo de este caso es estudiar cómo influye la excentricidad sobre las acciones mecánicas obtenidas mediante los tres métodos para un silo con losa de fondo plana y descarga excéntrica y, también, estudiar el efecto de la excentricidad con respecto a un silo con losa de fondo plana y descarga concéntrica. En este caso, se comparan las acciones mecánicas resultantes del análisis de un silo con una relación H/D=3, con losa de descarga plana, considerando las mismas cargas del caso de estudio A (ver figura 8-2(a)), además, incluyendo la carga debido a la presión de material generada por una descarga excéntrica (ver figura 8-2(b)) por separado y el efecto total de las cargas indicadas en la figura 8-2(c) utilizando los Métodos I, II y III. La comparación de los resultados de las acciones mecánicas, para este caso de estudio, se muestra en las figuras 8-8 a la 8-11.

Caso de estudio C: El objetivo de este caso de estudio es observar la influencia de la forma de la losa de fondo sobre los resultados de los tres métodos de análisis. Consiste en la comparación de las acciones mecánicas resultantes del análisis de silos con una relación H/D=3, para tres formas diferentes de losas de descarga como se muestra en la figura 8-3 (losa plana, losa cónica concéntrica y losa cónica excéntrica), considerando las cargas del caso A (ver figuras 8-3(a) y 8-3(b)) y la carga debido a la presión del material, generada por una descarga excéntrica, sólo para el silo con losa cónica excéntrica (ver figura 8-3(c)), utilizando los Métodos I, II y III. La comparación de los resultados de las acciones mecánicas, para este caso de estudio, se muestra en las figuras 8-8, 8-12 y 8-13.

Caso de estudio D: El objetivo de este caso es observar cómo influye la relación H/D sobre los resultados de las acciones mecánicas de los tres métodos de análisis. En este caso se comparan, por separado, las acciones mecánicas obtenidas con los tres métodos de análisis para relaciones H/D = 3, H/D = 2 y H/D = 1.5 considerando losa de fondo plana, descarga concéntrica y el mismo tipo de cargas del caso A (ver figura 8-4). La comparación de los resultados de las acciones mecánicas, para este caso de estudio, se muestra en las figuras 8-8, 8-14 y 8-15.

Caso de estudio E: El objetivo de este caso es estudiar cómo influye la excentricidad sobre las acciones mecánicas obtenidas mediante los tres métodos, para silos con losa de fondo plana y descarga excéntrica con diferentes relaciones H/D. En este caso se comparan las acciones mecánicas resultantes del análisis de silos con relaciones H/D = 3, H/D = 2 y H/D = 1.5 con losa de fondo plana y descarga excéntrica (ver figura 8-5), considerando el mismo tipo de cargas del caso A y, además, incluyendo la carga debido a la presión de material generada por la excentricidad, utilizando los Métodos I, II y III. La comparación de los resultados de las acciones mecánicas, para este caso de estudio, se muestra en las figuras 8-11, 8-16 y 8-17.

Caso de estudio F: Este caso de estudio tiene como objetivo visualizar el comportamiento de un silo que tiene losa de fondo plana, con descarga concéntrica contra el mismo silo, con losa de fondo cónica concéntrica. En este caso, se comparan las acciones mecánicas resultantes del análisis de silos con una relación H/D=3, utilizando el método III y considerando únicamente la variación en la forma de la losa de fondo. (Ver figura 8-6.) La comparación de los resultados de las acciones mecánicas, para este caso de estudio, se muestra en la figura 8-18.

Caso de estudio G: El objetivo de este caso de estudio es, también, visualizar el comportamiento de un silo que tiene losa de fondo plana, pero con descarga excéntrica contra el mismo silo, con losa de fondo cónica excéntrica. En este caso se comparan las acciones mecánicas resultantes del análisis de silos con una relación H/D=3, utilizando el método III y considerando únicamente la variación en la forma de la losa de fondo. (Ver figura 8-7.) La comparación de los resultados de las acciones mecánicas, para este caso de estudio, se muestra en la figura 8-19.

8.2 Discusión de resultados

A partir de los resultados que se obtuvieron de los cinco modelos estudiados y conforme a los siete casos de estudio mencionados anteriormente, surgieron varias observaciones, al comparar las acciones mecánicas obtenidas de los análisis. A continuación se destacan las principales observaciones que se encontraron para cada uno de los casos de estudio.

8.2.1 Caso de estudio A

Las observaciones encontradas para este caso de estudio, que surgieron de la comparación de las acciones mecánicas obtenidas con los tres métodos de análisis y que se visualizan con la figura 8-8, fueron las siguientes:

- a) Para la fuerza de tensión circunferencial, los tres métodos proporcionaron resultados muy similares entre sí en toda la altura de las paredes del silo. La máxima fuerza de tensión se presentó a una profundidad de 30 m con una diferencia del 1.5 % entre los métodos II y III en ese punto. Para la fuerza circunferencial en el mismo nivel, el método I proporcionó un valor de un 3 % menor, con respecto al obtenido con el método III; sin embargo, si se considera el valor máximo de esta fuerza, que resulta del método I (a una profundidad de 36.0 m), se tendría un valor de 1.5 % mayor con respecto al método III.
- b) Los resultados que se obtuvieron para las fuerzas axiales, hasta la conexión de las paredes con la losa de fondo, fueron muy similares para los tres métodos estudiados; sin embargo, existieron diferencias un poco mayores, de estas fuerzas, por abajo del nivel de la conexión mencionada, debido a que cada método redistribuye la carga de la losa de fondo de diferente manera.

- c) Prácticamente no se presentaron momentos flexionantes en la mayor parte de las paredes del silo, solamente existieron en la conexión con la losa de fondo y se desvanecieron a una distancia de 3 m por arriba y debajo de esta conexión (aproximadamente 10 % de la altura) con valores negativos y positivos. El método II proporcionó valores más altos de momentos flexionantes verticales en esta zona. El valor del momento que proporcionó el método II, en dicha conexión, fue de aproximadamente un 50% mayor que el valor obtenido con el método III y el valor del método I fue del 38 % con respecto al método III.
- d) El método III fue el único que mostró valores de momentos flexionantes horizontales en toda la altura del silo; sin embargo, también proporcionó valores máximos en la conexión de las paredes del silo con la losa de fondo y se redujeron prácticamente a cero, a una distancia de 3 m por arriba y debajo de esta conexión. Con el método I y II se obtuvieron valores de momentos flexionantes horizontales solamente en la conexión con la losa de fondo siendo el valor del método I un 32 % con respecto al valor del método III y el valor del método II fue un 19 % mayor que el del método III.

De acuerdo con las observaciones anteriores, se puede concluir que, para un silo con losa de fondo plana y descarga concéntrica, los resultados obtenidos de las fuerzas circunferenciales y axiales para los tres métodos de análisis son muy similares, con las diferencias señaladas arriba; pero para la obtención de los momentos flexionantes verticales y horizontales, los resultados muestran valores muy diferentes en los que el método II proporcionó momentos mayores que el método III, que se pueden considerar como valores conservadores para el diseño de un silo con losa plana y descarga concéntrica, mientras que los momentos del método I mostraron valores mucho menores por lo que no se podrían considerar adecuados para el diseño.

8.2.2 Caso de estudio B

Para este caso de estudio, se hicieron las comparaciones de las acciones mecánicas que resultaron de los tres métodos de análisis (figuras 8-9 a la 8-11). En cada una de estas figuras se consideraron diferentes casos de carga, incluyendo la carga excéntrica por separado, con las cuales se encontraron las siguientes observaciones:

a) Con relación a la figura 8-10, en la que se consideró solamente el efecto de la carga debida a la excentricidad de la descarga, los tres métodos mostraron valores similares para las fuerzas circunferenciales hasta una profundidad de 30 m y a partir de este nivel hacia abajo, existieron diferencias importantes. El método I arrojó fuerzas de tensión hasta la conexión de las paredes con la losa de fondo, para el método II, la fuerza circunferencial se redujo a cero a en esta misma conexión, manteniéndose en este valor hasta la unión de las paredes del silo con la cimentación, mientras que para el método III, la fuerza circunferencial a partir de 30 m de profundidad pasó de un valor de tensión a un valor de compresión a una profundidad de 36 m, variando su magnitud en las paredes del silo hasta llegar a la losa de cimentación.

- b) La fuerza de tensión circunferencial máxima que se presentó en el silo, debido únicamente a la excentricidad de la descarga, al utilizar cualquiera de los tres métodos, representó un 15 % de la fuerza de tensión total del silo en operación (ver figuras 8-10 y 8-11) para una excentricidad de 0.25 veces el diámetro del silo (dato propuesto para el análisis). Este porcentaje variará si se manejan distancias diferentes para la localización de la descarga.
- c) Las fuerzas circunferenciales de compresión que se presentaron al considerar solamente la condición de carga excéntrica en la conexión de las paredes con losa de fondo se contrarrestaron al sumar todas las cargas de operación del silo; únicamente en la conexión de las paredes con la losa de cimentación se presentó, para el método III, una fuerza de compresión equivalente al 50 % de la fuerza de tensión máxima obtenida con el mismo método.
- d) Las fuerzas de tensión circunferencial, al considerar todas las cargas de operación, incluyendo la carga excéntrica, proporcionaron resultados muy similares entre sí en toda la altura de las paredes del silo para los tres métodos. La máxima fuerza de tensión se presentó a una profundidad de 30 m prácticamente sin diferencia entre los valores resultantes de los tres métodos en ese punto; sin embargo, si se considera el valor máximo de esta fuerza, que resulta del método I (a una profundidad de 36.0 m), se tendría un valor de 2 % mayor con respecto a los métodos II y III.
- e) Los valores de los momentos flexionantes verticales, que se obtuvieron con los métodos II y III, para la carga de servicio total, presentaron el mismo comportamiento que para cuando no se tenía la carga excéntrica (caso de estudio A). Los valores de momentos del método II, al considerar todas las cargas de operación, para las paredes del silo en la conexión con la losa de fondo, resultaron de un 19 % mayor que los valores del método III en las paredes por arriba de la losa de fondo y un 163 % mayor por debajo de la losa. El valor del momento vertical del método I fue apenas un 33 % con respecto al valor del método III, por arriba de la losa de fondo. En este caso, los valores de los momentos resultantes del método II siguieron siendo los mayores.
- f) Para el caso de los momentos flexionantes horizontales, con la presencia de todas las cargas de operación, incluyendo la carga excéntrica, el método II aportó el valor mayor de momento en la conexión de las paredes con la losa de fondo, por lo que el valor de momento máximo del método II fue de un 19 % mayor que el valor máximo del método III y el mismo momento para el método I correspondió a un 35 % del valor del método III, pero la información de los momentos horizontales del método I y II sólo se obtuvo en la conexión con la losa de fondo.

g) Para las fuerzas axiales, los métodos I y II proporcionaron resultados muy similares entre sí, pero no identificaron la presencia de la carga excéntrica, como lo hizo el método III de acuerdo a como lo muestra la figura 8-11. El método III proporcionó información de las fuerzas axiales que se desarrollan en las paredes de los silos, dando fuerzas de compresión mayores del lado opuesto a la descarga del material y generando fuerzas de tensión en el lado más cercano a dicha descarga.

De acuerdo con estas observaciones, se puede concluir que la influencia de la excentricidad de la descarga no debe despreciarse en el análisis y diseño de silos, debido a que la excentricidad de la descarga genera un incremento de las acciones mecánicas que se presentan en las paredes de los silos, que por ejemplo en este caso (excentricidad de 0.25 del diámetro), la fuerza circunferencial debida a la excentricidad de la descarga representó un 15 % de la fuerza circunferencial total debida a todas las cargas de operación del silo. Por otro lado, para las fuerzas axiales hay una gran diferencia al utilizar el método III con respecto a los otros dos métodos de análisis, debido a que el método III, permitió visualizar la presencia de fuerzas de compresión mayores, en el lado opuesto a la descarga del material y menores en el lado más cercano o, inclusive, obteniéndose fuerzas de tensión en este último lado.

Además, en cuanto a los momentos flexionantes, se puede concluir que en la conexión de las paredes con la losa de fondo existen diferencias importantes en los valores obtenidos; pero es el método II el que acusa valores mayores; sin embargo, el método III es el único que proporciona información sobre los momentos flexionantes horizontales que se desarrollan en toda la altura de las paredes del silo, los que son de magnitud importante y deben tomarse en cuenta para el diseño de los silos con descarga excéntrica. También, como el método I, denotó presencia de momentos sólo en la conexión de las paredes con la losa de fondo y de magnitud muy pequeña, estos valores del método I no se pueden considerar apropiados para el diseño del silo.

8.2.3 Caso de estudio C

Las observaciones encontradas para este caso de estudio, que surgieron de las comparaciones de los resultados de las acciones mecánicas de los tres métodos de análisis y que se visualizan con las figuras 8-8, 8-12 y 8-13, fueron las siguientes:

a) En cuanto a la influencia de la forma de la losa de descarga, los métodos de análisis tuvieron un comportamiento similar al descrito en el caso A, excepto que la fuerza circunferencial pasó de un valor de tensión a una profundidad de 30 m, a un valor de compresión en el nivel de la conexión de la losa cónica concéntrica o excéntrica. Las fuerzas circunferenciales de compresión del método II mostraron valores más altos que las del método III. Estos valores de compresión del método II, con respecto al método III, fueron mayores en 138 % y 190 % para los silos con losa cónica concéntrica y losa cónica excéntrica, respectivamente. (Ver figuras 8-12 y 8-13.)

- b) En este caso, los valores de los momentos flexionantes verticales obtenidos con el método III, para los silos con losas cónicas, resultaron mayores que en los otros dos métodos. La diferencia entre los momentos determinados en la conexión de las paredes con las losas cónicas, con los métodos II y III, fue de un 5 % para el silo con losa cónica concéntrica y de un 17 % para el silo con losa cónica excéntrica; sin embargo, el método I proporcionó valores más bajos con respecto a los otros dos métodos en esta misma unión, o sea, un 72 % y 45 %, respectivamente, con respecto a los valores del método III.
- c) Los momentos flexionantes horizontales siguieron el mismo comportamiento que el descrito en los casos A y B. Para el silo con losa cónica concéntrica, los valores de los momentos máximos se presentan en la conexión de las paredes del silo con la losa y se desvanecen a una distancia de 3 m, por arriba y debajo de la losa y, para el silo con losa cónica excéntrica, existieron momentos en toda la altura de las paredes del silo, pero con valores máximos en la conexión con la losa de fondo. Las diferencias de los valores de momentos flexionantes horizontales, entre los métodos I, II y III, fueron similares a las de los momentos verticales, sólo que los métodos I y II proporcionaron únicamente un valor de momento flexionante en la conexión con la losa de fondo.

Con este caso de estudio se puede concluir que la presencia de una losa de fondo cónica modifica las fuerzas circunferenciales por debajo de la conexión de las paredes con la losa de fondo, pero se mantiene el mismo comportamiento en el resto de la altura del silo, como se muestra en las figuras, al compararse los resultados de los tres métodos de análisis.

También se puede concluir que, para las fuerzas axiales, no existen diferencias importantes de los métodos de análisis, cuando se tiene descarga concéntrica; pero en el caso del silo con losa cónica excéntrica, sigue manteniéndose el mismo comportamiento que en el caso de un silo con losa plana y descarga excéntrica (caso de estudio B), en el que el método III indica la presencia de cargas de compresión mayores en el lado opuesto a la descarga del silo y menores en el lado cercano a la descarga.

Además, para la obtención de los valores de los momentos flexionantes verticales y horizontales, los resultados de los tres métodos mostraron valores diferentes; en los cuales, el método III aportó momentos ligeramente mayores que los del método II y el método I proporcionó valores mucho menores con respecto a los otros dos métodos, que no podrían considerarse apropiados para el diseño.

8.2.4 Caso de estudio D

Las observaciones encontradas para este caso de estudio, que surgieron de las comparaciones de los resultados de las acciones mecánicas de los tres métodos de análisis y que se visualizan con las figuras 8-8, 8-14 y 8-15, fueron las siguientes:

- a) A medida que la relación HID disminuye, la diferencia entre los tres métodos se redujo para el caso de la fuerza de tensión circunferencial. El método I mostró un valor de un 94 % con respecto al método III, para el silo con diámetro de 18 m y prácticamente no hubo diferencia para el silo de 24 m, a una profundidad de 30 m, que fue donde se presentó la tensión máxima; sin embargo, el método I presentó valores mayores en la conexión con la losa de fondo, excediendo en un 10 %, con respecto al valor máximo de tensión que proporcionó el método III, para el silo de 24 m de diámetro y solamente un 1 % para el silo de 18 m de diámetro.
- b) Al disminuir la relación HID, también se redujo la diferencia entre los momentos verticales y horizontales. Los valores de los momentos flexionantes verticales del método II, en la conexión de las paredes con la losa de fondo, fueron de un 53% mayor para el silo de 12 m de diámetro, un 37 % menor para el silo de 18 m de diámetro y un 22 % menor para el silo de 24 m de diámetro, con respecto al método III. Por otro lado, los valores de los momentos flexionantes del método I, con respecto al método III, fueron de un 55% menor para el silo de 12 m de diámetro, un 22 % menor para el silo de 18 m de diámetro y un 8 % menor para el silo de 24 m de diámetro.
- c) La fuerza axial en el caso de silos con diferentes diámetros se comportó muy similar hasta la conexión entre las paredes del silo y la losa de fondo y a partir de esta unión hacia la cimentación, existió una variación de estas fuerzas debida a la presencia de columnas que soportan la losa de fondo para los silos de 18 y 24 m de diámetro, las cuales reciben cierto porcentaje de carga axial que no toman las paredes del silo, por la rigidez de la losa y, además, estas cargas también varían de acuerdo con la manera en que se distribuyen, dependiendo de cada método.

Con estas observaciones se puede concluir que cualquiera de los tres métodos de estudio es adecuado para la obtención de fuerzas circunferenciales y axiales con las diferencias señaladas anteriormente; sin embargo, para los momentos flexionantes horizontales y verticales, la presencia de las columnas en los silos de 18 y 24 m de diámetro, contribuye a reducir los momentos flexionantes en la conexión de las paredes con la losa de fondo, pero siguen existiendo diferencias en los resultados de los momentos flexionantes siendo mayores los del método III con respecto a los otros dos métodos para los silos de 18 y 24 m de diámetro.

8.2.5 Caso de estudio E

Las observaciones encontradas para este caso de estudio, que surgieron de las comparaciones de los resultados de las acciones mecánicas de los tres métodos de análisis y que se visualizan con las figuras 8-11, 8-16 y 8-17, fueron las siguientes:

- a) Al considerar las cargas totales de servicio para un silo con descarga excéntrica (excentricidad de 0.25 del diámetro), los métodos II y III proporcionaron valores similares para la fuerza circunferencial hasta una profundidad de 30 m y a partir de este nivel hacia abajo existieron algunas diferencias. Para el método II la fuerza circunferencial se redujo a cero a una profundidad de 36 m (en la conexión con la losa de fondo) manteniéndose en este valor hasta la conexión de las paredes del silo con la cimentación, mientras que para el método III, la fuerza circunferencial a partir de 30 m de profundidad pasó de un valor de tensión a un valor de compresión a una profundidad de 36 m, variando su magnitud en las paredes del silo, hasta llegar a la losa de cimentación.
- b) El valor de la fuerza de tensión circunferencial, utilizando el método I, para las cargas totales de operación, considerando descarga excéntrica, fue de un 97 % con respecto al valor que se obtuvo utilizando el método III para el silo con diámetro de 12 m, de un 93 % para el silo con diámetro de 18 m y del 98 % para el silo de 24 m de diámetro.
- c) A medida que se disminuyó la relación H/D, fue menor la diferencia de los valores de los momentos flexionantes verticales y horizontales obtenidos con los métodos II y III, para la carga de servicio total. Para el caso del silo de 12 m de diámetro, el valor del momento flexionante vertical del método II fue un 19 % mayor que el obtenido con el método III en las paredes del silo en la conexión con la losa de fondo, por arriba del nivel de la losa de fondo y un 163 % mayor por debajo de la misma losa. Para el caso del silo de 18 m de diámetro, el valor del momento flexionante vertical del método II fue un 44 % menor que el obtenido con el método III en las paredes del silo en la conexión con la losa de fondo por arriba del nivel de la losa de fondo y prácticamente no hubo diferencia por debajo de la misma losa. Para el caso del silo de 24 m de diámetro, el valor del momento flexionante vertical del método II fue un 25 % menor que el obtenido con el método III en las paredes del silo en la conexión con la losa de fondo por arriba del nivel de la losa de fondo y prácticamente tampoco hubo diferencia por debajo de dicha losa. Los valores de los momentos flexionantes en la conexión de las paredes con la losa de fondo obtenidos solamente por arriba del nivel de esta losa con el método I, fueron de un 65 % menor para el silo de 12 m de diámetro, de un 36 % menor para el silo de 18 m de diámetro y de un 12 % menor para el silo de 24 m de diámetro, con respecto al método III.
- d) Con la presencia de la carga excéntrica, también se presentaron momentos flexionantes horizontales en toda la altura de las paredes del silo, con diferentes magnitudes, que se obtuvieron solamente utilizando el método III. Los métodos I y II, sólo proporcionaron momentos en la conexión de las paredes con la losa de fondo. Las diferencias entre los valores de los momentos flexionantes horizontales, resultantes para los tres métodos de análisis, fueron similares a las descritas anteriormente para los valores de los momentos flexionantes verticales.

e) Para las fuerzas axiales, los métodos I y II proporcionaron resultados muy similares entre sí; pero no identificaron la presencia de la carga excéntrica, como lo muestran las figuras 8-11, 8-16 y 8-17, en cambio, el método III proporcionó información de las fuerzas axiales que se desarrollan en las paredes, denotando fuerzas de compresión mayores del lado opuesto a la descarga del material y generando fuerzas de tensión en el lado más cercano a la descarga.

De acuerdo con las observaciones anteriores, se puede concluir que a medida que se tiene una relación H/D menor, la diferencia entre los métodos de análisis para obtener las fuerzas circunferenciales de un silo sujeto a cargas de operación, que incluyen carga excéntrica, se reduce de acuerdo con los porcentajes señalados arriba, aunque los métodos II y III proporcionan resultados muy similares para estas fuerzas.

También se puede concluir que para las fuerzas axiales hay una gran diferencia al utilizar el método III, con respecto a los otros dos métodos de análisis, debido a que el método III permitió visualizar la presencia de fuerzas de compresión mayores en el lado opuesto a la descarga del material y menores, en el lado más cercano de la descarga, para cualquiera de los modelos de silos que se compararon para este caso de estudio; sin embargo, con relaciones H/D menores, tiende a disiparse la fuerza de tensión o a aumentar la fuerza de compresión que se presenta en las paredes del lado más cercano de la descarga del material.

Además, con respecto a los momentos flexionantes horizontales y verticales, se puede concluir que en la conexión de las paredes con la losa de fondo, la diferencia de los valores resultantes de los análisis con los métodos I y II se reduce a medida que disminuye la relación H/D, pero siguen presentándose valores diferentes con respecto al método III que no se pueden considerar apropiados para el diseño de un silo, y además, el método III es el único que proporciona información sobre los momentos flexionantes horizontales que se desarrollan en toda la altura de las paredes del silo y son de magnitud importante que deben tomarse en cuenta para el diseño de los silos con descarga excéntrica.

8.2.6 Caso de estudio F

Las observaciones encontradas para este caso de estudio, que surgieron de la comparación de los resultados de las acciones mecánicas obtenidas con el método III, entre un silo con losa plana y descarga concéntrica y de un silo con losa cónica concéntrica, se visualizan con la figura 8-18 y fueron las siguientes:

a) Al comparar el silo de 12 m de diámetro, con losa de fondo plana, con el mismo silo, pero con losa cónica concéntrica, los resultados de las fuerzas circunferenciales, usando el método III, fueron muy similares hasta una profundidad de 30 m y después, para el silo con losa cónica concéntrica, hubo un cambio de fuerza de tensión a fuerza de compresión, de aproximadamente un 31 % del valor máximo de tensión que se presenta a una profundidad de 30 m.

- b) La fuerza axial fue similar en toda la altura de las paredes del silo. Las pequeñas diferencias que se presentaron fueron del nivel de la conexión de las paredes con la losa de fondo hacia abajo y se debieron a la variación de las cargas actuantes por la forma de las losas de fondo.
- c) Los valores de los momentos flexionantes verticales y horizontales máximos, en las paredes arriba de la losa de fondo, fueron mayores en el caso del silo con losa plana y se tuvieron momentos de magnitud diferente y de signo opuesto en la parte inferior de la losa, como se muestra en la figura 8-18. Los valores de momentos flexionantes verticales y horizontales máximos, para el silo con losa cónica, fueron de un 54 % con respecto a los valores de los momentos del silo con losa de fondo plana.

Según este caso de estudio, se puede concluir que un silo con losa de fondo cónica concéntrica, comparado con un silo de losa plana y descarga concéntrica, sólo tiene variaciones importantes en los resultados de las fuerzas circunferenciales, por debajo de la conexión de las paredes con la losa de fondo, en donde se presenta una fuerza de compresión que no resulta muy grande y no afectaría el diseño del silo y, por otro lado, en el resto de la altura del silo, prácticamente no hay diferencias en estas fuerzas, como lo muestra la figura 8-18. En cuanto a las fuerzas axiales, no existen diferencias importantes entre los dos tipos de silos, pero si existen diferencias entre los momentos flexionantes verticales y horizontales, los cuales resultaron ser menores los del silo con losa de fondo cónica, con respecto a los del silo con losa de fondo plana, según los porcentajes indicados arriba.

8.2.7 Caso de estudio G

Las observaciones encontradas para este caso de estudio, que surgieron de la comparación de los resultados de las acciones mecánicas obtenidas con el método III, entre un silo con losa plana y descarga excéntrica y de un silo con losa cónica excéntrica, se visualizan con la figura 8-19 y fueron las siguientes:

- a) El comportamiento de un silo de 12 m de diámetro con losa de fondo plana y descarga excéntrica comparado con el mismo silo pero con losa de fondo cónica excéntrica, para las fuerzas circunferenciales, siguió el mismo comportamiento que se mencionó en el caso de estudio F, pero la fuerza de compresión que se generó en la conexión con la losa de fondo fue de un 50 % de la fuerza de tensión máxima.
- b) La presencia de la carga excéntrica, en ambos casos, proporcionó fuerzas de compresión mayores del lado opuesto a la descarga del material y generó pequeñas fuerzas de tensión en el lado más cercano a la descarga, como se muestra en la figura 8-19. Estas fuerzas de tensión fueron pequeñas y no afectarian el diseño del silo. Las fuerzas axiales fueron muy similares en toda la altura de las paredes de los silos al comparar los dos modelos de silos de este caso.

c) Los momentos flexionantes verticales y horizontales máximos en las paredes arriba de la losa de fondo, fueron menores en el caso del silo con losa cónica excéntrica y se tuvieron momentos de magnitud diferente y de signo opuesto en la parte inferior de la losa como se muestra en la figura 8-19. Los valores de los momentos flexionantes verticales máximos, para el silo con losa cónica, fueron de un 79 % con respecto a los valores del silo con losa de fondo plana y los valores de los momentos horizontales fueron de un 75 % con respecto a los valores de los momentos del mismo silo.

Con este último caso de estudio, se puede concluir que un silo con losa de fondo cónica excéntrica, comparado con un silo de losa plana y descarga excéntrica, sólo tiene variaciones importantes en los resultados de las fuerzas circunferenciales, por debajo de la conexión de las paredes con la losa de fondo, en donde se presenta una fuerza de compresión que no resulta muy grande y no afectaría el diseño del silo y, por otro lado, en el resto de la altura del silo, prácticamente no hay diferencias en estas fuerzas, como lo muestra la figura 8-19. En cuanto a las fuerzas axiales, no existen diferencias importantes entre los dos tipos de silos, pero sí existen diferencias entre los valores de los momentos flexionantes verticales y horizontales, los cuales resultaron menores en el silo con losa de fondo cónica, con respecto a los del silo con losa de fondo plana, según los porcentajes indicados arriba.

CAPÍTULO 9

CONCLUSIONES Y RECOMENDACIONES

En esta investigación se estudió el comportamiento teórico de silos de concreto utilizando tres métodos de análisis estructural. Al efectuar la comparación de las acciones mecánicas, de acuerdo con los diferentes casos de estudio presentados en el capítulo anterior, se puede concluir lo siguiente:

- a) Para la utilización del método I, en el análisis de silos de concreto, se incluyen las siguientes conclusiones y recomendaciones:
 - i. Silos con descarga concéntrica.
 - El método I sólo es apropiado para la determinación de fuerzas de tensión circunferencial y fuerzas axiales en las paredes de los silos, cuando no se tiene la presencia de cargas excéntricas.
 - Cuando hay continuidad entre las paredes del silo y el sistema de fondo, con el método I sólo se pueden determinar directamente los valores de los momentos horizontales y verticales en la conexión de las paredes del silo con la losa de fondo. La aproximación de los resultados, de estas acciones, dependerá de las hipótesis que se planteen para obtener una mayor precisión. Si se introduce la hipótesis de rotación cero, en la base de las paredes, tal como se consideró en los casos estudios, los resultados que se obtienen no son apropiados para el diseño del silo.
 - ii. Silos con descarga excéntrica.
 - Aún y cuando es posible determinar las fuerzas circunferenciales, no es posible determinar las fuerzas axiales de compresión y de tensión que se generan en las paredes.
 - De la misma manera, que en el caso de silos con descarga concéntrica, los momentos flexionantes horizontales y verticales, sólo se pueden obtener directamente en la conexión de las paredes con la losa de fondo y, los resultados también dependerán de las hipótesis que se planteen.
 - Los momentos horizontales que se presentan en el resto de la altura de las paredes, no se pueden obtener con este método.

- De acuerdo con las observaciones anteriores, la utilización del método I, no es recomendable para este caso.
- b) Para la utilización del método II, en el análisis de silos, se concluye y recomienda:

i. Silos con descarga concéntrica:

- Al igual que el método I, el método II también es apropiado para la determinación de las fuerzas circunferenciales y fuerzas axiales, cuando no existen cargas excéntricas.
- Se pueden obtener los valores de los momentos flexionantes verticales y horizontales en la conexión de las paredes del silo con el sistema de fondo.
- Los valores de los momentos verticales proporcionados por el método II, cuando no existen columnas de soporte de la losa de fondo, son mayores que los que se obtienen con el método III, por lo que los resultados de este método están del lado conservador para casos similares a los estudiados.
- Cuando se tiene estructurada la losa de fondo con columnas de soporte, los resultados de momentos verticales, que se obtienen con el método II, no están del lado conservador. Para casos similares a los estudiados se pueden incrementar los valores de los momentos de acuerdo con los porcentajes indicados en el Caso de Estudio D.

ii. Silos con descarga excéntrica

- En este caso, el método II también es apropiado para determinar las fuerzas circunferenciales y los momentos verticales en toda la altura del silo.
- Los momentos horizontales sólo se pueden determinar en la conexión de las paredes del silo con la losa de fondo. Para casos similares a los estudiados se pueden incrementar los valores de los momentos de acuerdo con los porcentajes indicados en los Casos de Estudio C y E.
- Con este método, tampoco es posible determinar los momentos flexionantes horizontales en el resto de la altura de las paredes del silo.

- Además, con este método, no es posible determinar las fuerzas axiales de compresión y de tensión que se generan en las paredes del silo por la presencia de la carga excéntrica.
- De acuerdo con las observaciones anteriores, tampoco es recomendable la utilización del método II, para este caso.
- c) Si se compara únicamente los métodos I y II, la ventaja que tiene el método II con respecto al I, es que puede considerar la influencia de la losa de fondo sobre las paredes del silo en el análisis y, los valores de los momentos flexionantes verticales se pueden obtener directamente en la conexión de las paredes con la losa de fondo.
- d) Cuando existen cargas excéntricas, se presentan momentos flexionantes horizontales de magnitud considerable, en toda la altura del silo y deben tomarse en cuenta para reforzar las paredes. Los valores máximos de estos momentos se presentan en la vecindad de la conexión de las paredes con la losa de fondo y se reducen a la mitad de su valor, por arriba de la conexión, a una distancia de aproximadamente el 10 % de la altura del silo; por debajo de dicha conexión los momentos se desvanecen también a una distancia del 10 % de la altura del silo.
- e) El acero de refuerzo mínimo que especifica el ACI-313, que se utilizaría para resistir los momentos horizontales, no es suficiente para reforzar las paredes de los silos en su conexión con el sistema de fondo y tampoco es suficiente para reforzar las paredes en la parte media de su altura, cuando se tiene la presencia de carga excéntrica para un silo con relación H/D= 3 (para una excentricidad del 25 % del diámetro del silo, de acuerdo con los casos estudiados); sin embargo, a medida que la relación H/D disminuye, los momentos flexionantes horizontales son menos significativos por la rigidez del cilindro a resistir la carga excéntrica que se considera como un empuje lateral sobre el cilindro completo. De acuerdo con lo anterior, se puede concluir lo siguiente:
 - i. Para relaciones H/D menores que 2.0, es adecuado usar el acero mínimo horizontal especificado por el ACI-313, en la parte media de la altura del silo y debe utilizarse el doble de este acero para reforzar la zona cercana a la conexión con la losa de fondo.
 - ii. Para relaciones HID mayores que 2.0, es necesario realizar el análisis de silos con el método III, para determinar la cantidad de acero de refuerzo horizontal adecuada o, para casos similares a los estudiados, incrementar los valores de momentos horizontales obtenidos con los métodos I y II de acuerdo con los porcentajes señalados en la discusión de los resultados, mencionada en el capítulo anterior.

- f) Cuando se tenga un silo con varias aberturas de descarga, que operen en forma independiente, la presión excéntrica generará fuerzas axiales de compresión en las paredes del silo que se localizan en el lado opuesto a la descarga del material y fuerzas axiales de tensión en el lado más cercano a la descarga, por lo que deben considerarse estas fuerzas de tensión y compresión en el diseño de las paredes en toda su circunferencia, para lo cual se dan las siguientes recomendaciones:
 - i. Si al realizar las combinaciones de carga, resultan fuerzas de tensión en las paredes, debe colocarse acero de refuerzo vertical, para resistir estos esfuerzos, además del refuerzo requerido para soportar la flexión vertical.
 - ii. Deberán revisarse las paredes del silo por el incremento de la fuerza axial de compresión, cuando se tenga presente la carga excéntrica, debido a que la fuerza axial de compresión es mucho mayor si se compara con esa misma fuerza para un silo sin carga excéntrica.
 - iii. La fuerza axial de tensión, generada por la carga excéntrica, se reduce o desaparece al combinarse con otras cargas de operación y, también, a medida que la relación H/D disminuye, por lo que se puede considerar que esta fuerza axial de tensión no es significativa para relaciones H/D menores que 2, pero sí es importante el incremento en la compresión axial que se genera por la presencia de la carga excéntrica.
- g) Si la conexión de las paredes del silo con la losa de fondo es monolítica, existirán momentos flexionantes verticales de magnitud considerable, que podrían requerir, en algunos casos y conforme a la geometría de los silos, acero de refuerzo excesivo o un incremento del espesor de las paredes en esta zona.
- h) Conforme a la hipótesis que se formuló inicialmente en el presente estudio, en la que se señaló que el método III es el más completo para la determinación de las acciones mecánicas en silos y, de acuerdo con las conclusiones anteriores, en las que los resultados de los métodos I y II requieren ciertos ajustes o modificaciones para utilizarse en el diseño, se confirma que el método III es el método ideal para el análisis de silos, por lo que se recomienda ampliamente su utilización para el análisis definitivo, sobre todo cuando existen cargas excéntricas. Los métodos I y II se podrían utilizar en el diseño de silos que no tengan cargas excéntricas o en análisis preliminares para cotizaciones o presupuestos de inversión, con los criterios señalados anteriormente.

REFERENCIAS BIBLIOGRÁFICAS

- 1. Safarian, S. S. and Harris E. C., (1985) "Design and Construction of Silos and Bunkers," Van Nostrand Reinhold Company.
- 2. Reimbert, M. L. and Reimbert, A. M., "Silos Theory and Practice," Series on Bulk Materials Handling Vol. 1 No. 3 (1975/76).
- 3. Jenike, A. W., (1977) "Construction of Concrete Silos," Norwegian Society of Chartered Engineers, Mar.
- 4. Pieper, K., (1968) "Investigation of Silo Loads in Measuring Models," Publication No. 68-MH-30, American Society of Mechanical Engineers, New York.
- 5. ACI 313, (1991) "Standard Practice for Design and Construction of Concrete Silos and Stacking Tubes for Storing Granular Materials," Committee 313, ACI 313.
- 6. Priestley, M. J. N., "Análisis and Design of Circular Prestressed Concrete Storage Tanks," PCI JOURNAL, July-August 1985, pp. 68-85.
- 7. Theimer, O. F., and Theimer, G.U., (1975) Hilfstafeln zur Berechnung Wandarliger Stahlbeton trager, Verlag von Wilhelm Ernst and Sohn, Berlin.
- 8. IBAU-Hamburg, "Technical information, "The Integrated Cement Terminal," "Central Cone Silo," "Cement Ring Silo and Bulk Dispatch," "Fully Automatic Sack and Bulk Dispatch Facilities," Hamburg, West Germany.
- 9. Timoshenko, S. P. and Woinowsky-Krieger S., (1984) "Theory of Plates and Shells," Mc Graw Hill Book Company, Second Edition.
- 10. Lipnitski, M. E., and Abramovitsch, Sh. P., (1967) Zhelezobetonnie Bunkera I Silosi (Reinforced Concrete Bunkers and Silos), Izdatelstro Literaturi Po Stroitelstvu, Leningrad.
- 11. SAP 2000, "Integrated Finite Element Análisis and Design of Structures," "Basic Analysis Reference," Computers and Structures, Inc., Berkeley, California, USA, Versión 6.1, 1977.
- 12. Ghali, A. y Neville, A. M., (1983) "Análisis Estructural," México, Diana.
- 13. Billington David P., (1982) "Thin Shell Concrete Structures," Mc Graw-Hill Book Company, Second Edition.

TABLAS

TABLA 4-1

RELACIÓN ENTRE LOS MÉTODOS DE ANÁLISIS, ELEMENTOS ESTRUCTURALES Y ACCIONES MECÁNICAS

Método de análisis	_	Accione	es Mecánicas	<u> </u>	Carga excéntrica		Elemen	
	Fuerza Circun- ferencial	Fuerza Axial (P. Propio, Fricción)	Momentos flexionantes verticales	Momentos flexionantes horizontales		Losa de fondo plana	Losa de fondo cónica	Paredes
I	√	V	*	*	√	**	**	√
11	√	√	√	*	√	***	***	√
III	√	>	√	√	√	>	√	√

- * Se pueden obtener estas acciones, utilizando teoría de placas y cascarones (Timoshenko, 1984).
- ** Se requiere realizar un análisis por separado de estas losas, pero su rigidez no se puede tomar en cuenta directamente en el análisis de las paredes.
- *** Se requiere realizar un análisis por separado de estas losas, pero su rigidez si se considera en el análisis de las paredes del silo.

TABLA 5-1

DATOS PARA EL ANÁLISIS DE SILO CON LOSA PLANA Y H/D = 3, USANDO EL MÉTODO I

	PRESIÓN	ESTATI	ICA MÁS	SIÓN ESTÁTICA MÁS SOBREPRESIÓN	RESIÓN				
_	Profundidad Y (m.)	0	9	12	18	24	30	33	36
7	Presión estática (pst, kg/m2) (ec. 3-1)	0	3269	5545	7130	8233	9001	9293	9236
m	Altura H1 (m.) (H1=D tan ρ)	5.6							
4	(H-H1)/4	9.7							
S	Factor de sobrepresión (Cd) (Tabla C.1, ACI 313)	1.45	1.45	1.55	1.65	1.75	1.75	1.75	1.75
9	Cd pst (kg/m2)	0	4740	8595	11764	14408	15752	16262	16688
7	Cd pst (promedio, kg/m2)	675	5406	8945	12023	14599	15886	16374	16688
	PRESIÓN	ÉNTRIC/	A SEGUN	SAFARI	EXCÉNTRICA SEGÚN SAFARIAN (Secc. 3.4.6)	3.4.6)			
•	Presión imaginaria (pi) a prof. H(kg/m2)	12350							
0,	Pesión estática pH (kg/m2)	9536							
10	pecc promedio (Kg/m)	88	610	1306	2003	2699	2786	2786	2786
		PRE	PRESIÓN TOTAL	TAL					
11	pdes prom.=Cdpst+pecc (Kg/m2)	763	6015	10251	14026	17299	18672	19160	19474
		FUERZ	FUERZAS DE FRICCÓN	ICCÓN					
12	12 Fuerza de fricción total acumulada (ec. 3-21, Kg/m)	0	9470	24811	44240	\$1599	<i>7LL</i> 06	103448	116409
13	Fricción para cada segmento (Físeg, Kg/m)		3002	4277	5165	5783	6214	6377	6513
14	14 Presión en losa fondo (q des=pdes/k, Kg/m2)								34657

TABLA 5-2

DATOS PARA EL ANÁLISIS DE SILO CON LOSA PLANA Y H/D = 2, USANDO EL MÉTODO I

	PRESIO	V ESTAT	PRESIÓN ESTÁTICA MÁS SOBREPRESIÓN	SOBREP	RESION				
1	Profundidad Y (m.)	0	9	12	18	24	30	33	36
7	Presión estática (pst, kg/m2) (ec. 3-1)	0	3462	6181	8317	9666	11314	11863	12350
ო	Altura H1 (m.) (H1=D tan ρ)	8.4							
4	(H-H1)/4	6.9							
S	Factor de sobrepresión (Cd) (Tabla C.1, ACI 313)	1.35	1.35	1.45	1.55	1.65	1.65	1.65	1.65
9	Cd pst (kg/m2)	0 .	4673	8963	12892	16493	18668	19574	20377
7	Cd pst (promedio, kg/m2)	638	5175	9386	13247	16790	18901	19781	20377
	PRESIÓN	ÉNTRIC	EXCÉNTRICA SEGÚN SAFARIAN (Secc. 3.4.6)	SAFARI	AN (Secc.	3.4.6)			
∞	Presión imaginaria (pi) a prof. H(kg/m2)	14993							
0	Pesión estática pH (kg/m2)	12350							
10	pecc promedio (Kg/m)	110	764	1637	2509	2618	2618	2618	2618
		PRE	PRESIÓN TOTAL	TAL					
11	11 pdes prom.=Cdpst+pecc (Kg/m2)	748	5938	11022	15756	19408	21520	22399	22995
		FUERZ	FUERZAS DE FRICCÓN	ICCÓN					
12	Fuerza de fricción total acumulada (ec. 3-21, Kg/m)	0	12494	31573	55824	84138	115645	132375	149659
13	Fricción para cada segmento (Físeg, Kg/m)		3804	5304	6483	7408	8136	8438	8707
14	Presión en losa fondo (q des=pdes/k, Kg/m2)								44802

TABLA 5-3

DATOS PARA EL ANÁLISIS DE SILO CON LOSA PLANA Y H/D = 1.5, USANDO EL MÉTODO I

	PRESIÓ	N ESTÁT	ICA MÁS	PRESIÓN ESTÁTICA MÁS SOBREPRESIÓN	RESIÓN				
_	Profundidad Y (m.)	0	9	12	18	24	30	33	36
7	Presión estática (p st, kg/m2) (ec. 3-1)	0	3564	6538	6106	11090	12818	13571	14259
٣	Altura H1 (m.) (H1=D tan ρ)	11.2							
4	(H-H1)/4	6.2							
٠,	Factor de sobrepresión (Cd) (Tabla C.1, ACI 313)	1.35	1.35	1.45	1.55	1.65	1.65	1.65	1.65
9	Cd pst (kg/m2)	0	4811	9480	13980	18298	21149	22392	23528
7	Cd pst (promedio, kg/m2)	643	5348	1966	14409	18679	21467	22682	23528
	PRESIÓN EXCÉNTRICA SEGÚN SAFARIAN (Secc. 3.4.6)	ÉNTRIC	A SEGÚN	SAFARIA	NN (Secc.	3.4.6)			
•	Presión imaginaria (pi) a prof. H(kg/m2)	16635							
0	Pesión estática pH (kg/m2)	14259							
10	pecc promedio (Kg/m)	148	1035	2217	2365	2365	2365	2365	2365
		PRE	PRESIÓN TOTAL	TAL					
11	pdes prom.=Cdpst+pecc (Kg/m2)	791	8889	12178	16774	21044	23832	25048	25893
		FUERZ	FUERZAS DE FRICCÓN	ICCÓN					
12	Fuerza de fricción total acumulada (ec. 3-21, Kg/m)		15450	62828	18199	99243	136409	156298	176959
13	Fricción para cada segmento (Físeg, Kg/m)		4567	6195	7553	8687	9633	10045	10422
14	Presión en losa fondo (q des=pdes/k, Kg/m2)								51822

TABLA 5-4

DATOS PARA EL ANÁLISIS DE SILO CON LOSA CÓNICA CONCÉNTRICA Y H/D = 3, USANDO EL MÉTODO I (INFORMACIÓN PARA LOSA CÓNICA)

	d	PRESIONES					
-	Profundidad Y (m.)	36	37.5	39	40.5	42	43.5
7	Presión estática (pst, kg/m2) (ec. 3-1)	9536	9642	9739	9828	6066	866
m	Factor de sobrepresión (Cd) (Tabla C.1, ACI 313)	1.5	1.5	1.5	1.5	1.5	1.5
4	Cd pst (kg/m2)	14304	14463	14609	14742	14863	14974
ς.	Cd pst (promedio, kg/m2)	14384	14536	14675	14802	14918	7487
9	Altura de losa cónica(m.)	7.5	0.9	4.5	3.0	1.5	0.0
7	Diámetro(d) de losa cónica en prof. Y (m.)	12.00	06.6	7.80	5.70	3.60	1.50
∞	Diámetro de salida de losa cónica(m.)	1.5	1.5	1.5	1.5	1.5	1.5
6	Ángulo inclinación losa cónica V (en grados)	55.0	55.0	55.0	55.0	55.0	55.0
10	Pres. norm. $q \alpha_{des} = C dq \operatorname{st}(\cos^2 2\theta) + C dp \operatorname{st}(\operatorname{sen}^2 2\theta)$ (Kg/m2)	21193	21429	21645	21841	22021	22185
11	Presión normal prom. q a des (Kg/m2)	21311	21537	21743	21931	22103	11093
		FRICCIÓN					
12	Fricción en losa cónica = $q \alpha des x \mu'$ (Kg/m2)	9505	9605	2696	18/6	9858	4947
	FUERZAS DE TE	ZAS DE TENSIÓN EN	LOSA CÓNICA	IICA			
13	Area superior de losa cónica (m2)	100.82	67.78	41.28	21.32	7.89	06'0
14	Area inferior de losa cónica (m2)	06.0	06.0	06'0	06.0	06.0	06'0
15	Peso de material dentro de losa cónica (kg)	444966	244767	115859	42554	9164	0
16	Peso propio de losa cónica (kg)	281214	171473	93402	42080	12586	0
17	Tensión meridional últ. Fmu (Kg) (ec. 5-22)	256674	208799	161993	116364	71984	28712
18	Tensión horizontal últ. Ftu (Kg) (ec. 5-23)	263897	220137	175185	129183	82261	34531

TABLA 5-5

DATOS PARA EL ANÁLISIS DE SILO CON LOSA CÓNICA EXCÉNTRICA Y H/D=3, USANDO EL MÉTODO I (INFORMACIÓN PARA LOSA CÓNICA)

	d .	PRESIONES					
_	Profundidad Y (m.)	36	37.5	-68	40.5	42	43.5
7	Presión estática (pst, kg/m2) (ec. 3-1)	9236	9642	9739	9828	6066	866
ო	Factor de sobrepresión (Cd) (Tabla C.1, ACI 313)	1.5	1.5	1.5	1.5	1.5	1.5
4	Cd pst (kg/m2)	14304	14463	14609	14742	14863	14974
2	Cd pst (promedio, kg/m2)	14384	14536	14675	14802	14918	7487
9	Altura de losa cónica(m.)	7.500	9.000	4.500	3.000	1.500	0.000
7	Diámetro(d) de losa cónica en prof. Y (m.)	12.000	006'6	7.800	5.700	3.600	1.500
∞	Diámetro de salida de losa cónica(m.)	1.500	1.500	1.500	1.500	1.500	1.500
0	Ángulo mínimo de inclinación losa cónica V (en grados)	42.27	42.27	42.27	42.27	42.27	42.27
10	Pres. norm. $q \alpha des = Cdq st(cos^2 2^3) + Cdpst(sen^2 2^3)$ (Kg/m2)	25769	26056	26318	26557	26776	26975
1	11 Presión normal máxima prom. $q \alpha des$ (Kg/m2)	25913	26187	26438	26666	26876	
		FRICCIÓN					
12	12 Fricción máxima en losa cónica = $q \alpha des x \mu'$ (Kg/m2)	11557	61911	16/11	11893	98611	
	FUERZAS MÁXIMAS I	DE TENSIĆ	MÁXIMAS DE TENSIÓN EN LOSA CÓNICA	CÓNICA			
13	Area superior de losa cónica (m2)	100.82	87.79	41.28	21.32	68°L	06'0
14	14 Area inferior de losa cónica (m2)	06'0	06.0	06:0	06.0	06.0	06'0
15	15 Peso de material dentro de losa cónica (kg)	444966	244767	115859	42554	9164	0
16	Peso propio de losa cónica (kg)	401617	244890	133392	26009	17975	0
17	Tensión meridional últ. Fmu (Kg) (ec. 5-22)	319215	259181	200665	143798	88651	
18	Tensión horizontal últ. Ftu (Kg) (ec. 5-23)	392926	327595	260575	192069	122258	

TABLA 6-1

DATOS PARA EL ANÁLISIS DE SILO CON LOSA PLANA Y H/D=3, USANDO EL MÉTODO II

<u>'</u>		!!!							•
l P	Profundidad Y (m.)	0	9	12	18	24	30	33	36
2 C	Cd pst (promedio, kg/m2)	675	5406	8945	12023	14599	15886	16374	16688
3 12	pdes prom. nudo= C d p st. $b riangleday$ (Kg)	597	9553	15806	21247	25799	28072	28935	29491
	PRESIÓN EXC	ÉNTRIC	A SEGÚN	SAFARI	EXCÉNTRICA SEGÚN SAFARIAN (Secc. 3.4.6)	3.4.6)			
4 P	Presión imaginaria (p i) a prof. H(kg/m ²)	12350							
<u>ب</u>	Pesión estática pH (kg/m2)	9236					_		
7 9	$p_{\rm exc}$ promedio (Kg/m)	88	610	1306	2003	5696	2786	2786	2786
7 7	p ecc prom. nudo= C d p st. b \triangle Y (Kg)	78	1077	2308	3539	4770	4924	4924	4923
		PRE	PRESIÓN TOTAL	TAL					
$t \mid s \mid$	pdes total = C d p st+ p ecc (Carga en nudo, Kg)	674	10630	18114	24786	30569	32996	33859	34414
		FUERZ/	FUERZAS DE FRICCIÓN	ICCIÓN					
9 F	Fuerza de fricción total acumulada (ec. 3-21, Kg/m)	0	9470	24811	44240	\$1599	72106	103448	116409
10 F	Fricción para cada segmento (Físeg, Kg/m)	0	3002	4277	5165	5783	6214	6377	6513
11 E	F22. frice. elem. $(kg/m)=(Fiseg)*b/\Delta Y$		2358	3359	4057	4542	4880	2008	5115
12 P	12 Presión en losa fondo (q des=p des/k, Kg/m2)								34657

TABLA 6-2

DATOS PARA EL ANÁLISIS DE SILO CON LOSA PLANA Y H/D = 2, USANDO EL MÉTODO II

	PRESIÓ	ESIÓN ESTÁTICA MÁS SOBREPRESIÓN	ICA MÁS	SOBREP	RESIÓN				
	Profundidad Y (m.)	0	9	12	18	77	30	33	36
7	Cd pst (promedio, kg/m2)	638	5175	9386	13247	16790	18901	19781	20377
3	pdes prom. nudo=Cd pst.b AY (Kg)	846	13716	24878	35114	44505	50102	52433	54013
	PRESIÓN EX	EXCÉNTRICA SEGÚN SAFARIAN (Secc. 3.4.6)	A SEGÚN	SAFARI	AN (Secc.	3.4.6)			
4	Presión imaginaria (pi) a prof. H(kg/m2)	14993							
s	Pesión estática pH (kg/m2)	12350							
9	pecc promedio (Kg/m)	110	764	1637	2509	2618	2618	2618	2618
7	pecc prom. nudo= C d pst. $b \triangle Y$ (Kg)	146	2024	4338	6652	6941	6941	6941	6941
		PRE	PRESIÓN TOTAL	TAL					
8	pdes total = $C dp$ st+ p ecc (Carga en nudo, Kg)	665	15741	29216	41766	51445	57043	59374	60954
		FUERZ	FUERZAS DE FRICCIÓN	ICCIÓN					
6	9 Fuerza de fricción total acumulada (ec. 3-21, Kg/m)	0	12494	31573	55824	84138	115645	132375	149659
10	Fricción para cada segmento (Físeg, Kg/m)	0	3804	5304	6483	7408	8136	8438	8707
11	Fza. frice. elem. $(kg/m)=(Fiseg)*b/\Delta Y$		4481	6546	7637	8728	9585	9941	10258
12	Presión en losa fondo (q des=p des/k, Kg/m2)						_		44802

TABLA 6-3

DATOS PARA EL ANÁLISIS DE SILO CON LOSA PLANA Y H/D = 1.5, USANDO EL MÉTODO II

	PRESIÓ	N ESTÁT	ICA MÁS	PRESIÓN ESTÁTICA MÁS SOBREPRESIÓN	RESIÓN				
_	Profundidad V (m.)	0	9	12	18	77	30	33	36
7	Cd pst (promedio, kg/m2)	643	5348	1966	14409	62981	21467	22682	23528
m	P des prom. nudo= C d p st.b ΔY (Met.II kg)	757	12600	23469	33950	44012	50580	53444	55436
	PRESIÓN EXC	ÉNTRIC	A SEGÚN	EXCÉNTRICA SEGÚN SAFARIAN (Secc. 3.4.6)	AN (Secc.	3.4.6)			
4	Presión imaginaria (pi) a prof. H(kg/m2)	16635							
S	Pesión estática pH (kg/m2)	14259							
9	pecc promedio (Kg/m)	148	1035	2217	2365	2365	2365	2365	2365
7	p ecc prom. nudo= $C_{\rm d} p_{\rm st.} b \triangle Y$ (Kg)	174	2438	5225	5573	5573	5573	5573	5573
		PRE	PRESIÓN TOTAL	TAL					
8	p des total = $C dp$ st+ p ecc (Carga en nudo, Kg)	931	15039	28694	39523	49585	56153	\$9018	61006
		FUERZ/	FUERZAS DE FRICCIÓN	ICCIÓN					
6	9 Fuerza de fricción total acumulada (ec. 3-21, Kg/m)	0	15450	37879	18199	99243	136409	156298	176959
10	Fricción para cada segmento (Físeg, Kg/m)	0	4567	6195	7553	8687	9633	10045	10422
11	Fza. frice. elem. $(kg/m)=(Fiseg)*b/\Delta Y$		4782	6487	7910	2606	10088	10520	10914
12	Presión en losa fondo (q des=pdes/k, Kg/m2)								51822

TABLA 6-4

DATOS PARA ANÁLISIS DE SILO CON LOSA CÓNICA CONCÉNTRICA Y H/D = 3, USANDO EL MÉTODO II (INFORMACIÓN PARA LOSA CÓNICA)

		PRESIONES					
-	Profundidad Y (m.)	36	37.5	39	40.5	42	43.5
7	Cd pst (promedio, kg/m2)	14384	14536	14675	14802	14918	7487
ო	Diámetro(α) de losa cónica en prof. Y (m.)	12.00	9.90	7.80	5.70	3.60	1.50
4	Angulo inclinación losa cónica V (en grados)	55.0	55.0	55.0	55.0	55.0	55.0
3	Ancho del segmento $(b cono) = \pi d/32$	1.178	0.972	0.766	0.560	0.353	0.147
9	Pres. norm. $q \alpha des = C dq \operatorname{st}(\cos^2 2 \theta) + C d p \operatorname{st}(\operatorname{sen}^2 \theta)$ (Kg/m2)	21193	21429	21645	21841	22021	22185
7	Presión normal prom. q a des (Kg/m2)	21311	21537	21743	21931	22103	11093
•	$q \alpha des seg.= q \alpha des. b cono (Kg/m/segm)$	24968	20828	16575	12222	7783	3267
0,	q a des seg. prom. (Kg/m/segm)	22898	18701	14398	10003	5525	1634
10	$q \alpha des nudo = (0.5 \Delta Y/sen \vartheta) * q \alpha des seg. prom.(Kg)$	20965	17122	13183	9158	5059	1496
1	∑ reacciones nudo (kg)	20965	38087	30305	22341	14217	6554
12	Componente horiz. Fx=∑reacc.cos v (kg)	12025	21846	17382	12814	8154	3759
13	Componente vert. Fy=∑reacc.sen v (kg)	17173	31199	24825	18301	11646	\$369
	FUERZ	FUERZAS DE FRIC	CCIÓN				
14	14 Fza. de fricción = $q \alpha$ des seg. prom. x μ' (Kg/m/segm)	10212	8341	6422	4461	2464	729

TABLA 6-5

DATOS PARA ANÁLISIS DE SILO CON LOSA CÓNICA EXCÉNTRICA Y H/D = 3, USANDO EL MÉTODO II (INFORMACIÓN PARA LOSA CÓNICA)

L		PRESIONES	S				
	Profundidad Y (m,)	36	37.5	39	40.5	42	43.5
7	Cd pst (promedio, kg/m2)	14384	14536.0	14675	14802.0	14918	7487.0
m	Diámetro(d) de losa cónica en prof. Y (m.)	12	6.6	œ	5.7	4	1.5
4	Angulo inclinación mínimo losa cónica 0 (en grados)	42.27	42.27	42.27	42.27	42.27	42.27
2	Ancho del segmento $(b cono) = \pi d/32$	1.178	0.972	0.766	0.560	0.353	0.147
9	Pres. norm. q α des=Cdq st(cos^2θ)+Cdpst(sen^2θ) (Kg/m2)	25769	26056	26318	26557	26776	26975
7	Presión normal prom. q a des (Kg/m2)	25913	26187	26438	76666	26876	13488
∞	$q \alpha des seg.=q \alpha des. bcono (Kg/m/segm)$	30359	25325	20153	14861	9463	3972
6	$q \propto des seg. prom. (Kg/m/segm)$	27842	22739	17507	12162	81/9	1986
2	$q \alpha \text{des nudo} = (0.5 \Delta \text{V/sen} \vartheta) * q \alpha \text{des seg. prom.(Kg)}$	31042	25353	19520	13561	7490	2215
11	Σ reacciones nudo (kg)	31042	56396	44873	33081	21051	9705
12	12 Componente horiz. Fx=∑reacc.cos 3 (kg)	22970	41729	33204	24478	15576	7181
13	13 Componente vert. Fy= \(\sum_{\text{reacc.sen}} \gamma\) (kg)	20881	37936	30185	22252	14160	6528
	FUERZ	FUERZAS DE FRI	CCIÓN				
14	14 Fza. de fricción = $q \alpha$ des seg. prom. X μ (Kg/m/segm)	12417	10142	7808	5424	2996	988

DATOS PARA EL ANALISIS DE SILO CON LOSA PLANA Y H/D = 3, USANDO EL METODO III

	PRESIÓN	ESTÁTI	ICA MÁS	ESTÁTICA MÁS SOBREPRESIÓN	RESIÓN				
Ĺ	Profundidad Y (m.)	0	9	12	18	24	30	33	36
2	Cd pst (promedio, kg/m2)	675	5406	8945	12023	14599	15886	16374	16688
		FUERZ/	FUERZAS DE FRICCÓN	uccón					
٣	Fuerza de fricción total acumulada (ec. 3-21, Kg/m)	0	9470	24811	44240	66515	90772	103448	116409
4	Kg/m)		3002	4277	5165	5783	6214	6377	6513
3	Funif. fricc,/elem,=Ffseg/ \triangle Y (kg/m2)		2002	2852	3443	3855	4142	4251	4342
9	Presión en losa fondo (q des=pdes/k, Kg/m2)								34657
	PRESIÓN EXCÉNTRICA	NTRIC/	A SEGÚN		SAFARIAN (Secc. 3.4.6)	.4.6)			
7	Presión imaginaria (p i) a prof. H(kg/m2)								12350
••	Pesión estática pH (kg/m2)								9536
	Angulo alrededor de circunf. (grados):				pecc (Kg/m2				
0	0	88	019	1306	2003		2787	2787	1407
10	11.25	98	586	1256	1926	2596	2679	2679	2759
1	22.5	81	540	1157	1775	2392	2469	2469	2599
12	33.75	73	473	1015	1556	2097	2164	2164	2339
13	45	62	389	833	1277	1721	1776	1776	1989
14	56.25	49	586	619	949	1279	1320	1320	1563
15	67.5	34	178	381	584	787	813	813	1077
16	78.75	17	9	129	161	266	274	274	549
<u> </u>	06	0	09	-129	-197	-266	-274	-274	0
18	101.25	-17	-178	-38]	-584	-787	-813	-813	-549
15	112.5	-34	-289	-619	-949	-1279	-1320	-1320	-1077
<u>2</u>		49	-389	-833	-1277	-1721	-1776	-1776	-1563
21	135	-62	473	-1015	-1556	-2097	-2164	-2164	-1989
22	_	-73	-540	-1157	-1775	-2392	-2469	-2469	-2339
23		-81	-586	-1256	-1926	-2596	-2679	-2679	-2599
74	168.75	-86	-610	-1306	-2003	-5696	-2786	-2786	-2759
25	180	-88	-610	-1306	-2003	-2699	-2786	-2786	-2813

TABLA 7-2

DATOS PARA EL ANALISIS DE SILO CON LOSA PLANA Y H/D=2, USANDO EL METODO III

	PRESIÓN		ICA MAS	ESTATICA MAS SOBREPRESION	RESIÓN				
	Profundidad Y (m.)	0	9	12	18	24	30	33	36
2	Cd pst (promedio, kg/m2)	638	5175	9386	13247	16790	18901	19781	20377
		FUERZAS		DE FRICCÓN					
٣	Fuerza de fricción total acumulada (ec. 3-21, Kg/m)	0	12494	31573	55824	84138	115645	132375	149659
4	Fricción para cada segmento (Físeg, Kg/m)		3804	5304	6483	7408	8136	8438	8707
~	Funif. fricc./elem.=Ffseg/ AY (kg/m2)		2536	3536	4322	4939	5424	2626	5805
9	Presión en losa fondo (q des= p des/k, Kg/m2)								44802
	PRESIÓN EX	EXCENTRICA	A SEGUN		SAFARIAN (Secc. 3.4.6)	3.4.6)			
7	Presión imaginaria (pi) a prof. H(kg/m2)								14993
00	Pesión estática pH (kg/m2)								12350
	Angulo alrededor de circunf. (grados):				pecc (Kg/m2)	/m2)			
0	0	011	764	1637	2510	2619	5619	5619	2619
10	11.25	108	734	1574	2413	2518	2518	2518	2518
=	22.5	102	219	1450	2224	2320	2320	2320	2320
12	33.75	92	593	1271	1949	2034	2034	2034	2034
13	45	78	487	1043	1600	1669	1669	1669	1669
14	56.25	61	362	775	1189	1240	1240	1240	1240
15	67.5	42	223	477	732	764	764	764	764
16	78.75	21	75	191	247	258	258	258	258
17	06	0	-75	-161	-247	-258	-258	-258	-258
28	101.25	-21	-223	477	-732	-764	-764	-764	-764
19	112.5	42	-362	-775	-1189	-1240	-1240	-1240	-1240
20	123.75	-61	487	-1043	-1600	-1669	-1669	-1669	-1669
71	135	-78	-593	-1271	-1949	-2034	-2034	-2034	-2034
22	146.25	-92	-677	-1450	-2224	-2320	-2320	-2320	-2320
23	157.5	-102	-734	-1574	-2413	-2518	-2518	-2518	-2518
24	168.75	-108	-764	-1637	-2509	-2618	-2618	-2618	-2618
25	180	-110	-764	-1637	-2509	-2618	-2618	-2618	-2618

TABLA 7-3

DATOS PARA EL ANÁLISIS DE SILO CON LOSA PLANA Y H/D = 1.5, USANDO EL MÉTODO III

L	PRESIÓ	N ESTÁT	ICA MÁS	PRESIÓN ESTÁTICA MÁS SOBREPRESIÓN	RESIÓN				
ニ	Profundidad Y (m.)	0	9	12	18	24	96	33	36
2	Cd pst (promedio, kg/m2)	643	5348	9961	14409	18679	21467	22682	23528
L		FUERZ	FUERZAS DE FRICCÓN	ICCÓN					
3	Fuerza de fricción total acumulada (ec. 3-21, Kg/m)	0	15450	37879	18199	99243	136409	156298	176959
4	Fricción para cada segmento (Físeg, Kg/m)		4567	6195	7553	8687	9633	10045	10422
()	Funit. fricc./elem.=Fiseg/ AY (kg/m2)		3044	4130	\$036	5791	6422	2699	6948
9	Presión en losa fondo (q des=pdes/k, Kg/m2)								51822
	PRESIÓN EXC	EXCÉNTRICA	<u>a</u> según		SAFARIAN (Secc. 3.4.6)	4.6)			
7	Presión imaginaria (p i) a prof. H(kg/m2)								16635
<u>~</u>	Pesión estática pH (kg/m2)								14259
	Ángulo alrededor de circunf. (grados):				pecc (Kg/m2)	n2)			
2	0	148	1035	2217	2365	2365	2365	2365	2365
<u> </u>	15	143	982	2104	2245	2245	2245	2245	2245
1	30	129	862	1848	1971	1971	161	1971	1971
Ϊ	45	105	684	1465	1563	1563	1563	1563	1563
<u>-</u>	09	74	459	983	1048	1048	1048	1048	1048
<u> </u>	4 75	38	202	434	462	462	462	462	462
<u> </u>	06 .	0	89-	-145	-155	-155	-155	-155	-155
9		-38	-333	-714	-762	-762	-762	-762	-762
_	7 120	-74	-576	-1235	-1317	-1317	-1317	-1317	-1317
- 18	8 135	-105	-780	-1671	-1782	-1782	-1782	-1782	-1782
61		-129	-930	-1993	-2126	-2126	-2126	-2126	-2126
<u>ನ</u>	165	-143	-1017	-2180	-2325	-2325	-2325	-2325	-2325
7	1 180	-148	-1035	-2217	-2365	-2365	-2365	-2365	-2365

TABLA 7-4

DATOS PARA EL ANÁLISIS DE SILO CON LOSA CÓNICA CONCÉNTRICA Y H/D = 3, USANDO EL MÉTODO III (INFORMACIÓN PARA LOSA CÓNICA)

		PRESIONES					
<u> </u>	1 Profundidad Y (m.)	36	37.5	39	40.5	42	43.5
2	Cd pst (promedio, kg/m2)	14384	14536	14675	14802	14918	7487
٣	Altura de losa cónica(m.)	7.5	6.0	4.5	3.0	1.5	0.0
4	Diámetro(d) de losa cónica en prof. Y (m.)	12.00	06.6	7.80	5.70	3.60	1.50
2	Diámetro de salida de losa cónica(m.)	1.5	1.5	1.5	1.5	1.5	1.5
9	Angulo inclinación losa cónica 0 (en grados)	55.0	55.0	55.0	55.0	55.0	55.0
7	Pres. $q \alpha des = C dq st(cos^2 y) + C dpst(sen^2 y)$ (Kg/m2)	21193	21429	21645	21841	22021	22185
∞	Presión normal prom. Q a des (Kg/m2)	21311	21537	21743	21931	22103	11093
		FRICCIÓN					
6	9 Fricción q α des x μ' (Kg/m2)	9505	9605	<i>L</i> 696	9781	8586	4947

DATOS PARA ANÁLISIS DE SILO CON LOSA CÓNICA EXCÉNTRICA Y H/D=3, USANDO EL MÉTODO III (INFORMACION PARA LOSA CONICA)

TABLA 7-5

	PRESIONES	ESIONES Y FRICCIÓN (Kg/m2)	(Kg/m2					
_	Profundidad Y (m.)		36	37.5	39	40.5	42	43.5
7	Cd pst (promedio)		14384	14536.0	14675	14802.0	14918	7487
	Longitud de meridiano (m)	Angulo V						
	11.1496	42.27						
m	$q \alpha des prom = Cdq st(cos^2 3) + Cdpst(sen^2 3)$	2	25866	26140	26390	26618	26827	
4	Fricción $q \alpha des x \mu'$ (Kg/m2)		11536	11658	11770	11872	11965	
_	11.0415	42.79						
3	q ades prom. (Kg/m2)	2	25725	25998	26246	26474	26681	
9	Fricción $q \alpha des x \mu'$ (Kg/m2)		11473	11595	11706	11807	11900	
	10.2405	47.09						
7	q a des prom. (Kg/m2)	2	24146	24402	24635	24848	25043	
∞	Fricción $q \alpha des x \mu'$ (Kg/m2)	1	10769	10883	10987	11082	11169	
	6:6339	51.12						
<u> </u>	q ades prom. (Kg/m2)		22679	22919	23138	23339	23522	
10	Fricción q a des x \(\mu' \) (Kg/m2)		10115	10222	10320	10409	10491	
	8,9865	56.57						
=	q ades prom. (Kg/m2)	2	20774	20994	21195	21378	21546	
12	Fricción q a des x \(\mu' \) (Kg/m2)	Ś	9265	9363	9453	9535	6096	
	7,9819	66'69						
13	q ades prom. (Kg/m2)	_	16850	17028	17191	17340	17476	
14	Fricción $q \alpha des x \mu'$ (Kg/m2)		7515	7594	1667	7734	7794	
	7.8302	73.30						
15	15 q ades prom. (Kg/m2)	_	16122	16293	16449	16591	16721	
16	16 Fricción $q \alpha des \times \mu'$ (Kg/m2)		7191	7267	7336	7400	7458	

TABLA 8-18

RESULTADOS DEL ANÁLISIS PARA SILO CON LOSA PLANA Y H/D = 3

FUE	FUERZA DE TENSIÓN CIRCUNFERENCIAL (Kg/m)	FENSIÓN	CIRCU	NFEREN	CIAL (K	(m/g				
Profundidad Y (m.)	0	9	12	18	24	30	33	36	40.5	45
1. Presión estática+sobrepresión (Cdpst)				l						
Feircunf. prom.= $pdes(D/2)$ Met. I	4051	32435	53667	72139	87596	95313	98242	100130		
Fza. strut Met. II (Fdes, kg/m/segm)	607	9556	15860	21218	25830	28021	30182	20260	30	0
Fcircunf.=Fdes(D/2)/(b∆Y),Met. II	2061	32445	53849	72041	87701	95140	102477	3921	102	0
Fcircunf. Prom. Met. II	6913	35763	56732	73697	88756	96574	90167	844	56	0
Fcircunf. Met. III	1705	28973	51269	70819	86208	92893	107349	1272	153	2
Fcircunf. Prom. Met. III	4881	32418	53884	72297	87337	94855	94188	-103	84	1
2. Presión excentrica pecc										
Foircunf. prom.= $pecc(D/2)$ Met. I	528	3657	7837	12016	16196	16718	16718	16718		
Fza. strut Met. II (Fecc, kg/m/segm)	77	1385	2616	3847	4916	4916	5129	5833	5	0
Fcircunf.= Fecc(D/2)/($b\triangle Y$),Met. II	261	4702	8882	13062	16991	16991	17414	1129	17	0
Fcircunf. Prom. Met. II	915	5225	9403	13585	16718	16802	15274	391	00	0
Fcircunf. Met. III	1809	2877	6156	9793	14077	15578	22284	-33564	3209	-68524
Fcircunf. Prom. Met. III	1018	3276	6586	10302	14369	16934	10771	-27458	5947	-34262
3. Presión total (inc. fricc. y viva fondo)										
Fricunf. prom.= $ptot(D/2)$ Met. I	4579	36092	61504	84155	103792	112031	114960	116848		
Fza. strut Met. II (Ftot, kg/m/segm)	684	10941	18476	25065	30746	32998	34672	26094	-1038	0
Fcircunf. = $Ftot(D/2)/(b\Delta Y)$, Met. II	2322	37148	62732	85103	104392	112038	117722	5050	-3524	0
Fcircunf. Prom. Met. II	7828	40988	66137	87281	105478	115369	64731	40867	-1898	0
Fcircunf. Met. III	3408	32158	57863	81141	100852	108360	134332	-51285	-4222	-113964
Fcircunf. Prom. Met. III	5930	36020	60921	83136	102306	114875	77341	-599	3932	-56982

TABLA 8-1b

RESULTADOS DEL ANÁLISIS PARA SILO CON LOSA PLANA Y H/D = 3

FUERZAS AXIALES EN PAREDES DE	SAXIA	LES E	V PARE	DES DE	SILO	(Kg/m)					
Profundidad Y (m.)	0	9	12	18	24	30	33	36	37.5	40.5	45
1. Cargas axiales											
a) Paredes (peso propio)	0	6480	12960	19440	25920	32400	35640	38880	40500	43740	48600
b) Techo (muerta + viva)	4490	4490	4490	4490	4490	4490	4490	4490	4490	4490	4490
c) Losa de fondo (peso propio + material)								112341	112341	112341	112341
2. Fuerza de fricción		·									_
Ffricc. (Met. I)	0	9470	24811	44240	66515	90772	103448	116409	116409	116409	116409
Ffricc seg. (Met. II, Kg/segm.)	0	111157	29229	52119	78361	106938	121871	137139	137139	137139	137139
Ffrice. = Ffrice. seg./ b (Met. II)	0	9470	24810	44240	66515	90772	103447	116407	116407	116407	116407
Ffrice. (Met. III)	878	7905	22584	41551	63507	87563	99930	114885	114577	116762	120329
3.Fza. axial por desc. excént.(Fecc)											
Met.1	0	0	0	0	0	0	0	0	0	0	0
Met. II	0	0	0	0	0	0	0	0	0	0	0
Met. III	15	-830	-4236	-15867	43169	-97356	-137750	-191805	-205829	-247551	-310706
4. Faxial total = P.po.+Cm+Cv+Ffricc+Cexc.											
Met.I	4490	20440	42261	68170	96925	127662	143578	272120	273740	276980	281840
Met. II	4490	17993	37366	60830	87139	115429	130122	145099	283868	285884	288908
Met. III (Faxial máxima)	6491	16001	38310	72952	126139	126139 208396	261956	332333	458092	508212	575624
Met. III (Faxial mínima)	6521	14341	29839	41220	39795	13657	-13592	-51366	46413	13234	43362
Met. III (Faxial sin excentricidad)	6506	15171	34074	57085	82970	111040	124206	140528	252263	260661	264918

TABLA 8-1c

RESULTADOS DEL ANÁLISIS PARA SILO CON LOSA PLANA Y H/D = 3

33 36 37.5 4 8032 -255 3987 39 -382 4911 74 1606 797 -74 989 19 1341 -42 663 -3 449 6084 -590 268 133 -824 1214 -119 9373 -1666 31777 1937 -2344 26708 -1504 1875	MOMENTOS FL	OS FL	EXION,	ANTES	EXIONANTES EN PAREDES (Kg-m/m)	EDES (Kg-m/m					
0 0 0 4 13 -255 3987 39 5 3 14 -23 -36 27 -382 4911 74 2 2 4 -23 -36 27 -382 4911 74 2 2 4 -3 -5 8 -74 989 19 0 0 0 0 3 42 663 -3 -3 -501 -364 -530 -224 -449 6084 -590 -3 -501 -367 -5215 -2239 -1399 -824 1214 -119 0 0 0 0 0 83 -1666 31777 1937 2 -201 -356 -531 -571 -76 -2344 26708 -1504 2 -201 -356 -531 -571 -76 -2344 26708 -1504 3 -201 -356 -531 -571 -76 -2344 26708 -1504 <td>Profundidad Y (m.)</td> <td></td> <td>9</td> <td>12</td> <td>18</td> <td>24</td> <td>30</td> <td></td> <td>36</td> <td>37.5</td> <td>40.5</td> <td>45</td>	Profundidad Y (m.)		9	12	18	24	30		36	37.5	40.5	45
0 0 0 4 13 -255 3987 39 5 3 14 -23 -36 27 -382 4911 74 2 2 4 -23 -36 27 -382 4911 74 2 2 4 -3 -5 8 -74 989 19 0 0 0 0 3 -74 989 19 -3 -201 -367 -504 -530 -224 449 6084 -590 -30 -3 -224 449 6084 -590 -3 -307 -1677 -2215 -2224 449 6084 -590 0 0 0 0 0 824 1214 -119 0 0 0 0 0 83 -1666 31777 1937 0 0 0 0 0 0 83	1. Debidos a pres. estática + sobrepresión											
0 0 0 4 13 -255 3987 39 5 3 14 -23 -36 27 -382 4911 74 2 2 4 -23 -36 27 -382 4911 74 2 2 4 -3 -5 8 -74 989 19 0 0 0 0 3 -74 989 19 -3 -201 -367 -504 -530 -224 449 6084 -590 -3 -201 -367 -504 -530 -1399 -824 1214 -119 -307 -975 -1677 -2215 -2239 -1399 -824 1214 -119 0 0 0 0 0 83 -1666 31777 1937 2 -201 -356 -531 -571 -76 -2344 26708 -1504 <	Mom. Vert. (pdes) Met I								8032			
5 3 14 -23 -36 27 -382 4911 74 2 2 4 -3 -5 8 -74 989 19 0 0 0 0 0 3 -42 663 -3 -3 -201 -367 -504 -530 -224 -449 6084 -590 -307 -975 -1677 -2215 -2224 -449 6084 -590 0 0 0 0 83 -1666 31774 -119 -307 -975 -1677 -2215 -2239 -1399 -824 1214 -119 0 0 0 0 83 -16666 31777 1937 2 -201 -356 -571 -76 -2344 26708 -1504 2 -201 -351 -571 -76 -2344 26708 -1504 3 -255 <t< td=""><td>Mom. Vert. (pdes) Met II</td><td>0</td><td>0</td><td>0</td><td>0</td><td>4</td><td>13</td><td>-255</td><td>3987</td><td>39</td><td>0</td><td>0</td></t<>	Mom. Vert. (pdes) Met II	0	0	0	0	4	13	-255	3987	39	0	0
2 4 -3 -5 8 -74 989 19 0 0 0 0 3 -42 663 -3 -3 -201 -367 -504 -530 -224 -449 6084 -590 -307 -975 -1677 -2215 -2239 -1399 -824 1214 -119 0 0 0 0 83 -1666 31777 1937 2 -201 -356 -531 -571 -76 -2344 26708 -1504 2 -201 -356 -531 -571 -76 -2344 26708 -1504	Mom. Vert. (pdes) Met. III	ς.	m	14	-23	-36	27	-382	4911	74	φ	m
2 4 -3 -5 8 -74 989 19 0 0 0 0 3 -42 663 -3 -3 -201 -367 -504 -530 -224 449 6084 -590 -307 -975 -1677 -2215 -2239 -1399 -824 1214 -119 0 0 0 0 83 -1666 31777 1937 2 -201 -356 -531 -571 -76 -2344 26708 -1504 2 -201 -356 -531 -571 -76 -2344 26708 -1504 1875 -555 -571 -76 -2344 26708 -1504	Mom. Horiz. (Ddes) Met I								1606			
2 2 4 -3 -5 8 -74 989 19 0 0 0 0 3 -42 663 -3 -3 -201 -367 -504 -530 -224 -449 6084 -590 -307 -975 -1677 -2215 -2239 -1399 -824 1214 -119 0 0 0 0 83 -1666 31777 1937 2 -201 -356 -531 -571 -76 -2344 26708 -1504 2 -201 -356 -531 -571 -76 -2344 26708 -1504 1875 -535 -571 -76 -2344 26708 -1504	Mom. Horiz. (pdes) Met II								767			
0 0 0 3 -42 663 -3 -3 -201 -367 -504 -530 -224 -449 6084 -590 -307 -975 -1677 -2215 -2239 -1399 -824 1214 -119 0 0 0 0 83 -1666 31777 1937 2 -201 -356 -531 -571 -76 -2344 26708 -1504 2 -201 -356 -531 -571 -76 -2344 26708 -1504 1875 -535 -531 -571 -76 -2344 26708 -1504	Mom. Horiz. (pdes) Met. III	7	2	4	ņ	ئ-	∞	-74	686	61	0	1
0 0 0 3 42 663 -3 -3 -201 -367 -504 -530 -224 449 6084 -590 -307 -975 -1677 -2215 -2239 -1399 -824 1214 -119 0 0 0 0 83 -1666 31777 1937 2 -201 -356 -531 -571 -76 -2344 26708 -1504 2 -201 -356 -531 -571 -76 -2344 26708 -1504 1875 -535 -571 -76 -2344 26708 -1504	2. Debidos a presión excentrica											
0 0 0 3 42 663 -3 -3 -201 -367 -504 -530 -224 -449 6084 -590 -307 -975 -1677 -2215 -2239 -1399 -824 1214 -119 0 0 0 0 83 -1666 31777 1937 2 -201 -356 -531 -571 -76 -2344 26708 -1504 2 -201 -356 -531 -571 -76 -2344 26708 -1504 1875 -535 -571 -76 -2344 26708 -1504	Mom. Vert. (pex) Met I				_				1341			
-3 -201 -367 -504 -530 -224 -449 6084 -590 -307 -307 -1677 -2215 -2239 -1399 -824 1214 -119 0 0 0 0 83 -1666 31777 1937 2 -201 -356 -531 -571 -76 -2344 26708 -1504 2 -201 -356 -531 -571 -76 -2344 26708 -1504 1875 -355 -3655 -3555 -3655 -3555 -356 -3556 <td>Mom. Vert. (pex) Met II</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>m</td> <td>45</td> <td>663</td> <td>r,</td> <td>0</td> <td>0</td>	Mom. Vert. (pex) Met II	0	0	0	0	0	m	45	663	r,	0	0
-307 -975 -1677 -2215 -2239 -1399 -824 1214 -119 0 0 0 0 83 -1666 31777 1937 2 -201 -356 -531 -571 -76 -2344 26708 -1504 2 -201 -356 -531 -76 -2344 26708 -1504 1875 -355 -571 -76 -2344 26708 -1504 6355 -355 -571 -76 -2344 26708 -1504	Mom. Vert. (pex) Met. III	ကု	-201	-367	-504	-530	-224	-449	6084	-590	629	-6815
-307 -975 -1677 -2215 -2239 -1399 -824 1214 -119 0 0 0 0 83 -1666 31777 1937 2 -201 -356 -531 -571 -76 -2344 26708 -1504 1875 1875 6355 6355 -1504 -1504 -1504	Mom. Horiz. (pex) Met I								268		_	
-307 -975 -1677 -2215 -2239 -1399 -824 1214 -119 0 0 0 0 83 -1666 31777 1937 2 -201 -356 -531 -571 -76 -2344 26708 -1504 1875 1875 6355 6355 -1504 -1504 -1504	Mom. Horiz.(pec) Met II								133			
0 0 0 0 83 -1666 31777 1937 2 -201 -356 -531 -571 -76 -2344 26708 -1504 1875 1875 6355	Mom. Horiz. (Decc) Met. III	-307	-975	-1677	-2215	-2239	-1399	-824	1214	-119	173	-1534
0 0 0 0 83 -1666 31777 1937 2 -201 -356 -531 -571 -76 -2344 26708 -1504 1875 1875 6355 -1504	3.Debidos a Cdpsr+pecc (c/fricc.+viva fondo)											
0 0 0 0 83 -1666 31777 1937 2 -201 -356 -531 -571 -76 -2344 26708 -1504 1875 1875 6355	Mom. Vert. (Dtotal) Met I			_					9373			
2 -201 -356 -531 -571 -76 -2344 26708 -1504 1875 1875	Mom. Vert. (Dtotal) Met II	0	0	0	0	0	83	-1666	31777	1937	4	9,
	Mom. Vert. (ptotal) Met. III	7	-201	-356	-531	-571	-76	-2344	26708	-1504	783	36
	Mom. Horiz.(Dtotal) Met I								1875			
	Mom. Horiz.(ptotal) Met II								6355			
Mom. Horiz. (2010tal) Met. III -321 -990 -1690 -2236 -2266 -1402 -1235 5351 -291	Mom. Horiz. (Ptotal) Met. III	-321	-990	-1690	-2236	-2266	-1402	-1235	5351	-291	227	-161

TABLA 8-2a

RESULTADOS DEL ANÁLISIS PARA SILO CON LOSA PLANA Y H/D = 2

	FUERZA		SIÓN CI	RCUNFE	DE TENSIÓN CIRCUNFERENCIAL (Kg/m)	L (Kg/m)				
Profundidad Y (m.)	0	0.9	12.0	18.0	24.0	30.0	33.0	36.0	40.5	45.0
1. Presión estática+sobrepresión (Cdpst)										
Foircunf. prom.= $p_{des}(D/2)$ Met. I	5742	46571	84470	119224	151107	170111	178025	183390		
Fza. strut Met. II (Fdes, kg/m/segm)	881	13876	24870	35097	44519	51463	49228	53488	-77	0
Fcircunf.=Fdes(D/2)/(b∆Y),Met. II	2991	47113	84441	119165	151155	174732	167144	9492	-261	0
Fcircunf. Prom. Met. II	2686	52350	88604	122918	153707	178117	131468	2951	-75	0
Fcircunf. Met. III	1860	42121	80279	115029	147505	173267	169867	6475	471	-743
Fcircunf. Prom. Met. III	6870	47241	84288	118746	150255	178334	132538	1943	342	-371
2. Presión excéntrica pecc										
Foircunf. prom.= $pex(D/2)$ Met. I	991	6873	14729	22584	23566	23566	23566	23556		
Fza. strut Met. II (Fecc, kg/m/segm)	145	2603	4920	6894	6938	7115	6219	6893	-10	0
Fcircunf.= Fecc(D/2)/(b∆Y),Met. II	492	8838	16705	23407	23557	24158	22134	1223	-34	0
Fcircunf. Prom. Met. II	1720	6186	17710	23533	23545	24326	17330	377	-10	0
Fcircunf. Met. III	2437	4862	11907	18988	20548	24125	19205	-26579	5791	41753
Fcircunf. Prom. Met. III	1040	5738	12845	19359	20702	24642	7306	-35363	-1731	-20877
3. Presión total (inc. fricc. y viva fondo)										
Feircunf. prom.= p tot(D/2) Met. I	6733	53444	66166	141808	174673	193677	201591	206946		
Fza. strut Met. II (Ftot, kg/m/segm)	1026	16479	29790	41991	51455	58646	54962	60393	-22	0
Fcircunf. = $Ftot(D/2)/(b\triangle Y)$, Met. II	3484	55951	101146	142572	174705	199121	186612	10717	-75	0
Fcircunf. Prom. Met. II	11617	62170	106314	146453	177245	203046	144297	6419	œ ĕ	0
Fcircunf. Met. III	4071	47389	92747	134696	168749	200986	177285	-44896	10552	-81629
Fcircunf. Prom. Met. III	7945	53407	97711	138798	171599	206261	114009	-24684	-2963	-40814

TABLA 8-2b

RESULTADOS DEL ANÁLISIS PARA SILO CON LOSA PLANA Y H/D = 2

FUERZAS AXIA	AXIA		PARE	DES DE	LES EN PAREDES DE SILO (Kg/m)	Kg/m)					
Profundidad Y (m.)	0	9	12	18	24	30	33	36	37.5	40.5	45
1. Cargas axiales											
a) Paredes (peso propio)	0	6480	12960	19440	25920	32400	35640	38880	40500	43740	48600
b) Losa de fondo (p. propio + mat. c/área tribut.)									81410	81410	81410
2. Fuerza de fricción											
Ffricc. (Met. 1)	0	12494	31573	55824	84138	84138 115645 132375	132375	149659	149659	149659	149659
Frince seg. (Met. II, Kg/segm.)	0	22080	55795	98652	148688 204365		233928	264471	248729	248729	248729
Frice. = Frice. seg./ b (Met. II)	0	12495	31573	55825	84140	115647	132376	149660	140751	140751	140751
Firice. (Met. III)	1259	10514	28815	52463	80314	111570	126786	150958	125509	121182	126866
3.Fza. axial por desc.excént.(Fecc)											
Met.I	0	0	0	0	0	0	0	0	0	0	0
Met. II	0	0	0	0	0	0	0	0	0	0	0
Met. III	217	888	1775	-5927	-30983	-77880	-77880 -112163	-151427	-151652	-176818	-214292
4. Faxial total = Pprop+Frdcc+Fecc											
Met.I	0	18974	44533	75264	110058 148045 168015	148045	168015	188539	271569	274809	279669
Met. II	0	18974	44533	75264	110057	110057 148043	168013	188536	232486	235725	240585
Met. III (Faxial máxima)	2885	14230	38324	76160	135612 219596 277245	219596	277245	339273	399574	427775	473241
Met. III (Faxial mínima)	3318	16006	41873	64305	73646	63835	52919	36418	69796	74138	44656
Met. III (sin excentricidad)	3102	15118	40099	70233	104629	141716	70233 104629 141716 165082	187846	247922	250957	258949

TABLA 8-2c

RESULTADOS DEL ANALISIS PARA SILO CON LOSA PLANA Y H/D = 2

MOMENTOS FLEXIONANTES EN PAREDES (Kg-m/m)	S FLE	XIONAL	VTES EP	N PARE	DES (K	g-m/m)					
Profundidad Y (m.)	0	9	12	18	24	30	33	36	37.5	40.5	45
1. Debidos a presión estática + sobrepresión											_
Mom. Vert. (pdes) Met I								23271			
Mom. Vert. (pdes) Met II	0	55	24	œ٠	-101	98	-4237	16514	396	-86	14
Mom. Vert. (pdes) Met. III	7	23	-23	-67	-184	270	-4824	16908	685	44	801
Mom. Horiz. (pdes) Met I								4654			
Mom. Horiz. (pdes) Met II								3303			
Mom. Horiz. (pdes) Met. III	∞	:	7	-13	-30	62	-957	3452	146	-5	162
2. Debidos a presión excéntrica											
Mom. Vert. (pecc) Met I								2990			
Mom. Vert. (pecc) Met II	0	0	m	-55	0	12	-541	2151	-51	-11	2
Mom. Vert. (pec) Met. III	-7	-701	-994	-1233	-1002	-454	-1494	8409	25	-596	-13582
Mom. Horiz. (pecc) Met I								298			
Mom. Horiz.(pex) Met II								430			
Mom. Horiz. (pecc) Met. III	-2400	-3227	-4004	-4307	-3660	-2102	-1333	1672	8	-25	-3408
3.Debidos a Cdpst+pecc (c/fricc.+viva fondo)											
Mom. Vert. (ptotal) Met I								26261			
Mom. Vert. (ptotal) Met II	0	55	27	-64	-101	99	4959	21314	4	38	'n
Mom. Vert. (ptotal) Met. III	0	-670	-1010	-1325	-1192	-308	-7895	38451	-2200	-938	-22138
Mom. Horiz. (ptotal) Met I								5252			
Mom. Horiz.(ptotal) Met II								4263			
Mom. Horiz. (Dtotal) Met. III	-2378	-3203	-3992	-4314	-3693	-2077	-2611	7775	-458	-62	-5159

TABLA 8-3a

RESULTADOS DEL ANÁLISIS PARA SILO CON LOSA PLANA Y H/D = 1.5

	FUERZA	DE TEN	DE TENSIÓN CIRCUNFERENCIAL (Kg/m)	CUNFER	ENCIAL	(Kg/m)				
Profundidad Y (m.)	0	9	12	18	24	30	33	36	40.5	45
1. Presión estática+sobrepresión (Cd $p_{ m st}$)										
Feircunf. prom.= $p_{des}(D/2)$ Met. I	7714	64173	119526	172904	224149	257602	272190	282333		
Fza. strut Met. II (Fdes, kg/m/segm)	818	12545	23124	33482	43523	52588	39902	76647	-732	0
Fcircunf.=Fdes(D/2)/(b∆Y),Met. II	4166	63891	117769	170522	221660	267828	203219	19523	-3728	0
Fcircunf. Prom. Met. II	13463	70405	124273	176695	228039	261785	152256	5794	-2490	0
Fcircunf, Met. III	2125	57369	110969	163793	214746	267459	201476	13410	-2292	-1831
Fcircunf. Prom. Met. III	9231	63931	117636	170136	221735	261456	150885	4624	196	-915
2. Presión excéntrica pecc										
Feircunf. prom.= $pec(D/2)$ Met. I	1782	12418	26610	28384	28384	28384	28384	28384		
Fza. strut Met. II (Fecc, kg/m/segm)	172	3168	5455	5885	5572	5765	4191	7764	-76	0
Feircunf. = $Fex(D/2)/(b\Delta Y)$, Met. II	876	16134	27782	28444	28378	29361	21345	1978	-387	0
Fcircunf. Prom. Met. II	3091	17950	28146	28411	28470	28363	15918	576	-257	0
Feircunf, Met. III	570	9181	21727	23920	25109	29081	16975	-21733	4655	-33109
Feircunf. Prom. Met. III	56	11043	22380	24007	25461	27916	7798	-27637	-9289	-16554
3. Presión total (inc. fricc. y viva fondo)								ı		
Feircunf. prom.= p tot(D/2) Met. I	9466	76591	146136	201288	252533	285986	300574	310717		
Fza. strut Met. II (Ftot, kg/m/segm)	066	15713	28579	39062	49114	58190	42657	84414	-170	0
Fcircunf.= Ftot(D/2)/($b\triangle Y$),Met. II	5042	80025	145551	198956	250135	296359	217250	21501	-866	0
Fcircunf. Prom. Met. II	16557	88355	152419	205093	256677	288034	159862	11025	-652	0
Fcircunf. Met. III	2339	87079	133379	188503	240974	297346	193570	-37591	-655	-77811
Fcircunf. Prom. Met. III	9319	75519	140720	194924	248678	285727	125365	-33355	-8477	-38906

TABLA 8-3b

RESULTADOS DEL ANÁLISIS PARA SILO CON LOSA PLANA Y H/D = 1.5

FUERZAS AXIA		LES EN		DES DE	PAREDES DE SILOS (Kg/m)	(Kg/m)					
Profundidad Y (m.)	0	9	12	18	24	30	33	36	37.5	40.5	45
1. Cargas axiales											
a) Paredes (peso propio)	0	10080	10080 20160	30240	40320	50400	55440	60480	63000	68040	75600
b) Losa de fondo (p. propio + mat. c/área tribut.)				_					111804	111804	111804
2. Fuerza de fricción											
Ffrice. (Met. I)	0	15450	37879	66131	99243	136409	156298	176959	176959	176959	176959
Ffrice seg. (Met. II, Kg/segm.)	0	24268	59499	103878	155889	214271 245513	245513	277965	262797	262797	262797
Ffrice. = Ffrice. seg./ b (Met. II)	0	15449	37878	66131	99242	136409	156298	176958	167301	167301	167301
Ffrice. (Met. III)	1642	13075	34671	62238	94868	130818	149376	178960	138077	127939	137831
3.Fza. axial por desc. excént.(Fecc)											
Met.I	0	0	0	0	0	0	0	0	0	0	0
Met. II	0	0	0	0	0	0	0	0	0	0	0
Met. III	127	1720	2351	-7273	-30540	-69777	-97066	-97066 -125839	-116967 -133453 -159721	-133453	-159721
4. Faxial total = Pprop+Fricc+Fecc											
Met.I	0	25530	58039	96371	139563	186809	211738	237439	351763	356803	364363
Met. II	0	25525	58028	96343	139541	186783	211709	237407	326980	332017	403235
Met. III (Faxial máxima)	4250	18734	49785	97147	163032	249413	308812	366465	399429	418417	455120
Met. III (Faxial mínima)	4506	22181	54520	82670	102066	110045	110045 114937	115068	166710	153992	140888
Met. III (sin excentricidad)	4377	20454	20454 52136	89874	132492	132492 179636 211746 240626	211746	240626	282462	284964	295399

TABLA 8-3c

RESULTADOS DEL ANALISIS PARA SILO CON LOSA PLANA Y H/D = 1.5

MOMENTOS FI	TOS FI	EXIO	ANTE	S EN M	LEXIONANTES EN MUROS (Kg-m/m)	(m/m-gy					
Profundidad Y (m.)	0	9	12	18	24	30	33	36	37.5	40.5	45
1. Debidos a presión estática + sobrepresión											
Mom. Vert. (pdes) Met I								54630			
Mom. Vert. (pdes) Met II	0	-50	-188	-255	-175	4036	-12249	40469	2748	-262	43
Mom. Vert. (pdes) Met. III	7	-85	-123	-179	82	4348	-12910	40229	3500	158	3509
Mom. Horiz. (pdes) Met I								10926			
Mom. Horiz. (pdes) Met II	0	0	0	0	0	0	0	8094	0	0	0
Mom. Horiz. (pdes) Met. III	21	1	-7	-19	33	-850	-2556	8123	708	41	719
2. Debidos a presión excéntrica											
Mom. Vert. (pecc) Met I								5491			
Mom. Vert.(pe∞) Met II	0	1	-241	10	59	403	-1204	4179	284	-27	4
Mom. Vert. (pecc) Met. III	φ	-1523	-2206	-1934	-1514	-1430	-2275	8543	2814	-2417	-10979
Mom. Horiz. (pecc) Met I						-		1098			,
Mom. Horiz.(pecc) Met II	0	0	0	0	0	0	0	836	0	0	0
Mom. Horiz. (pecc) Met. III	-6498	-6831	-7093	-6515	-5084	-2975	-1750	1627	626	-206	-5308
3.Debidos a Cdpsr+pecc (c/fricc.+viva fondo)											
Mom. Vert.(ptotal) Met I								60121			
Mom. Vert. (ptotal) Met II	0	49	430	-247	-131	4792	-13193	50646	784	<i>L</i> 9	-52
Mom. Vert. (ptotal) Met. III	1	-1570	-2298	-2094	-1311	-7235	-16000	89779	1386	-4435	-12475
Mom. Horiz. (Dtotal) Met I								12024			
Mom. Horiz. (ptotal) Met II	0	0	0	0	0	0	0	10129	0	0	0
Mom. Horiz. (ptotal) Met. III	-6381	-6743	-7032	-6488	-5006	4110	-4439	13482	281	-639	-5671

TABLA 8-48

RESULTADOS DEL ANALISIS PARA SILO CON LOSA CONICA CONCENTRICA Y H/D = 3

	FUERZA	DE TE	NOISN	DE TENSIÓN CIRCUNFERENCIAL (Kg/m)	FEREN	CIAL (K	(m/g				
Profundidad Y (m.)	0	9	12	18	24	30	33	36	37.5	40.5	45
1. Presión estática+sobrepresión (Cd $p_{ m st}$)											
Fcircunf. prom.=pdes(D/2) Met. I	4051	32435	23667	72139	87596	95313	98242	100130			
Fza. strut Met. II (Fdes, kg/m/segm)	607	9226	15860	21218	25830	28032	29878	16254	700	42	0
Losa cónica								16254	3718	-231	
Fcircunf.=Fdes(D/2)/(b∆Y),Met. II	2036	10533	16709	21706	26141	28389	27575	8477	168.5	-13.5	0
Losa cónica								9866	632	-78	
Fcircunf, Prom. Met. II	6913	35763	56732	73697	88756	96387	93624	28782	572	4	0
Losa cónica								33905	2146	-265	
Fcircunf. Met. III	1706	28973	\$1268	70818	86210	93310	103500	34923	-3528	475	-36
Losa cónica								36978	-5679	1358	
Fcircunf. Prom. Met. III	4881	32418	53883	72296	87332	94421	99654	15698	-3472	437	-18
Losa cónica								15650	-4040	427	=-,
2. Presión total (inc. fricc. y viva fondo)											
Feircunf. prom.= p tot(D/2) Met. I	4051	32435	53667	72139	87596	95313	98242	100130			
Losa cónica	·							120	103	4	
Fza. strut Met. II (Fdes, kg/m/segm)	607	9556	15860	21218	25830	28003	30781	40748	-1238	78	0
Losa cónica								-40748	18143	27874	0
Fcircunf.= Ftot(D/2)/(b∆Y),Met. II	2036	10533	16709	21706	26143	28626	23091	-20993	-240	23	0
Losa cónica								-11302.5	29216	21964	
Feircunf. Prom. Met. II	6913	35763	S67 32	73697	88762	97192	78401	-71277	-815	78	0
Losa cónica								-38375	26166	74573	
Fcircunf, Met. III	1586	29289	51713	71357	86803	92807	114710	-57618	-3943	-2715	-45851
Losa cónica								-59311	06006	86011	
Fcircunf. Prom. Met. III	4916	32755	54345	72848	87949	96150	86431	-30781	1893	\$	-22926
Losa cónica								15390	114386	06699	

TABLA 8-4b

RESULTADOS DEL ANÁLISIS PARA SILO CON LOSA CÓNICA CONCÉNTRICA Y H/D = 3

EUE	FUERZAS	AXIAL	AXIALES EN PAREDES DE SILOS (Kg/m)	AREDE	S DE S	ILOS (F	(g/m)				
Profundidad Y (m.)	0	9	12	18	24	30	33	36	37.5	40.5	45
1. Cargas axiales											
a) Paredes (peso propio)	0	4032	8064	12096	16128	16128 20160 22176	22176	24192	25200	27216	30240
b) Techo (muerta + viva)	4470	4470	4470	4470	4470	4470	4470	4470	4470	4470	4470
c) Tolva (peso propio + material)								19760	19760	19760	19760
2. Fuerza de fricción											
Ffrice. (Met. I)	0	9470	24811	44240	66515	90772	44240 66515 90772 103448 116409	116409	165821	165821	165821
Ffrice. on tolva $q \alpha des x \mu'$ (Met. I)								9505	9605	9781	
Ffrice seg. (Met. II, Kg/segm.)	0	11157	29230	52119	78361	106938 121871	121871	137139	184989	184989	184989
Fricc seg. en tolva (Met. II, Kg/segm.)								-55662	41032	-13006	
Ffrice. = Ffrice. seg./ b (Met. II)	0	9470	24811	44240 66515		90772	90772 103447	116407	157023	157023	157023
Frice. = Frice. seg./ b en tolva (Met. II)								47247	-34829	-11040	
Fírice. (Met. III)	878	7905	22584	41524	63467	87678 99647	99647	117045	151398	157846	162349
Fírice. en tolva (Met. III)								-38045	48746	-27480	
3. Faxial total=P.prop.+Cmuer.+Cviva+Frricc											
Met.I	4470	17972	37345	90809	87113	115402	130094	60806 87113 115402 130094 164831	215251	217267	220291
Met.II	4470	17973	37346	60810	87119	115409	130102	60810 87119 115409 130102 145079	286074	288090	291113
Met. III	6206	16762	34126	57199	83172	111622	124586	153740	248525	16762 34126 57199 83172 111622 124586 153740 248525 260100 270777	27077

TABLA 8-4c

RESULTADOS DEL ANALISIS PARA SILO CON LOSA CONICA CONCENTRICA Y H/D = 3

MOM	ENTC	S FLE	MOMENTOS FLEXIONANTES EN PAREDES (Kg-m/m)	YTES E	N PARE	DES (K	(m/m-g				
Profundidad Y (m.)	0	0.9	12.0	18.0	24.0	30.0	33.0	36.0	37.5	40.5	45.0
1. Debidos a pres. estática + sobrepresión											
Mom. Vert. (pdes) Met I								8032			
Mom. Vert. (pdes) Met. II (Kg-m/segm)	0	0	0	0	0	90	-176	2536	593	-27	0
Mom. Vert. (pdes) Met. II tolva (Kg-m/segm)								2411	4065	86-	
Mom. Vert. (pdes) Met II	0	0	0	0	0	7	-149	2153	503	-23	0
Mom. Vert. (pdes) tolvaMet II								2047	3450	-83	
Mom. Vert. (pdes) Met. III	0	0	0	0	0	0	-38	1982	941	88 <u>-</u>	6-
Mom. Vert. (pdes) tolva Met. III								-320	-921	0	
Mom. Horiz. (pdes) Met I								1606			
Mom. Horiz. (pdes) Met II								431			
Mom. Horiz. (pdes) Met. III	0	0	0	0	0	0	ထု	193	188	-17	-5
2.Debidos a Capst (c/fricc.+viva fondo)											
Mom. Vert. (ptotal) Met I								8032			
Mom. Vert. (Dtotal) Met. II (Kg-m/segm)	0	0	0	0	0	39	-740	12719	-1206	57	0
Mom. Vert.(ptotal) tolva Met. II (Kg-m/segm)								-13268	13785	440	
Mom. Vert.(Pototal) Met II	0	0	0	0	0	33	-628	10796	-1024	48	0
Mom. Vert. (Dtotal) tolva Met II								-11262	11701	-373	
Mom. Vert.(ptotal) Met. III	S	4	-5	-22	-37	71	-932	11201	-2025	569	6878
Mom. Vert. (ptotal) tolva Met. III								-10252	12550	-1425	
Mom. Horiz. (ptotal) Met I								1606			
Mom. Horiz. (ptotal) Met II								2159			
Mom. Horiz. (ptotal) tolva Met II								-2252			
Mom. Horiz. (ptotal) Met. III	ī	-	14	-7	φ	14	-186	2240	405	54	1378
Mom. Horiz. (Dtotal) tolva Met. III								-169	4642	-868	

IADLA 0-28

RESULTADOS DEL ANALISIS PARA SILO CON LOSA CÓNICA EXCENTRICA Y H/D = 3	SIS PA	RA SIL	O CON	LOSA	CONIC	SA EXC	ENTRIC	CAYH/	D = 3		
	FUERZ	A DE TE	NOISN	CIRCU	NFERE	FUERZA DE TENSIÓN CIRCUNFERENCIAL (Kg/m)	Kg/m)				
Profundidad Y (m.)	0	9	12	81	24	30	33	36	37.5	40.5	45
1. Presión estática+sobrepresión (Cd $p_{ m st}$)											
Fcircunf. prom.= $pdes(D/2)$ Met. I	4051	32435	53667	72139	87596	95313	98242	100130			
Fza. strut Met. II (Fdes, kg/m/segm)	607	9226	15860	21218	25830	28032	29878	16254	700	42	0
Fcircunf.=Fdes(D/2)/(b△Y),Met. II	2036	10533	16709	21706	26141	28388.5	27575	8477	168.5	-13.5	0
Fcircunf. Prom. Met. II	6913	35763	56732	73697	88756	96387	93624	28782	572	4	0
Fcircunf. Prom. Met. III	4881	32417	53883	72296	87333	94421	10966	14680	-3548	396	-1
2. Presión excéntrica $p_{ m ecc}$											
Fcircunf. prom.= $pec(D/2)$ Met. I	528	3657	7837	12016	16196	16718	16718	16718			
Fza. strut Met. II (Fex, kg/m/segm)	77	1385	2616	3847	4916	4915	5119	5738	4	2	0
Fcircunf.= Fecc(D/2)/(b∆Y),Met. II	270	1539	2770	4001	4924	4946	4524	2849	-29	7	0
Fcircunf. Prom. Met. II	915	5225	9403	13585	16718	16793	15359	9672	86-	5	0
Fcircunf. Prom. Met. III	1061	3268	6580	10259	14174	16185	9935	-7283	428	6162	-34237
3. Presión total (inc. fricc. y viva fondo)			ı								
Fcircunf. prom.= p tot(D/2) Met. I	4579	36092	61504	84155	84155 103792	112031	114960	116848			
Losa cónica								350816	303135	190409	
Fza. strut Met. II (Ftot, kg/m/segm)	684	10941	18477	25065	30746	32897	36560	-95199	-2584	168	0
Losa cónica								-95199	37344	51497	-
Fcircunf.= Ftot(D/2)/(b \Delta Y), Met. II	2306	12072	19480	25707	31066	33748.5	24265	-48892	-509.5	48.5	0
Losa cónica								-28928	58234	41093.5	
Fcircunf. Prom. Met. II	7828	40988	66139	87281	105477	114586	82385	-166001	-1730	165	0
Losa cónica								-98217	197722	139525	
Fcircunf. Met. III	3544	32108	57781	81008	100650	107533	139847	-117828	1718	4	-114994
Losa cónica								-110559	118143	111093	
Fcircunf. Prom. Met. III	5961	35966	60834	82995	102082	113057	91854	-58055	8148	5483	-57497
Losa cónica								3792	156723	84215	

TABLA 8-5b

RESULTADOS DEL ANÁLISIS PARA SILO CON LOSA CÓNICA EXCÉNTRICA Y H/D = 3

FUE	RZAS A	XIALI	ES EN F	AREDI	FUERZAS AXIALES EN PAREDES DE SILOS (Kg/m	ILOS (F	(g/m)				
Profundidad Y (m.)	0	9	12	18	24	30	33	36	37.5	40.5	45
1. Cargas axiales											
a) Paredes (peso propio)	0	6480	12960	19440	25920	32400	35640	38880	40500	43740	48600
b) Techo (muerta + viva)	4470	4470	4470	4470	4470	4470	4470	4470	4470	4470	4470
c) Tolva (peso propio + material)								19760	19760	19760	19760
2. Fuerza de fricción											
Ffrice. (Met. I)	0	9470	24811	44240	66515	90772	103448	116409	237645	237645	237645
Ffrice. en tolva $q \alpha des x \mu'$ (Met. I)								29248	24836	14299	
_	0	11157	29229	52119	78361	106938	121870	137139	195320	195320	195320
Ffrice seg. en tolva (Met. II, Kg/segm.)								-80276	-61964	-18686	
Ffrice. = Ffrice. seg./ b (Met. II)	0	9470	24810	44240	66515	90772	103446	116407	165792	165792	165792
Ffrice. = Ffrice. seg./ b en tolva (Met. II)								-68140	-52597	-15861	
Ffrice. (Met. III)	878	7982	22874	41453	63503	87555	90866	115512	153726	169799	193228
Ffrice. en tolva (Met. III)								41713	-60345	-33938	
3.Fza. axial por desc. excént.(Fecc)											
Met.I	0	0	0	0	0	0	0	0	0	0	0
Met. II	0	0	0	0	0	0	0	0	0	0	0
Met. III	18	-912	-4495	-16677	-43917	-96611	-135591	-187346	-211395	-249946	-311385
4. Faxial total = P.po.+Cm+Cv+Ffricc+Cexc.											
Met.I	4470	20420	42241	68150	50696	127642	143558	179519	302375	305615	310475
Met. II	0	19983	45836	75780	108569 143339	143339	161272	179489	352342	357597	365482
Met. III (Faxial máxima)	6473	16013	38195	72423	124628 205127	205127	256660	339416	457709	513207	584678
Met. III (Faxial mínima)	6466	14270	29444	40257	38189	12023	-15017	-41875	52138	20099	-29663
						1					

TABLA 8-5c

RESULTADOS DEL ANALISIS PARA SILO CON LOSA CONICA EXCENTRICA Y H/D = 3

	MOMENIO	SFLE	XIONA	NTES	EN PAR	EDES (FOS FLEXIONANTES EN PAREDES (Kg-m/m)				
Profundidad Y (m.)	0	9	12	18	24	30	33	36	37.5	40.5	45
1. Debidos a pres. estática + sobrepresión											
Mom. Vert. (pdes) Met I				_				8032			
Mom. Vert. (pdes) Met II	0	0	0	0	0	9	-130	1796	762	12	0
Mom. Vert. (pdes) Met. III	S	m	13	-23	-37	ņ	43	1044	866	- 8	5
Mom. Horiz. (pdes) Met I		-						1606			
Mom. Horiz. (pdes) Met II								359			
Mom. Horiz. (pdes) Met. III	1	1	3	-5	-7	-1	-10	200	183	-17	1
2. Debidos a presión excéntrica											
Mom. Vert. (pex) Met I								1341			
Mom. Vert. (pecc) Met II	0	0	0	0	0	7	-21	303	127	ю	0
Mom. Vert.(pex) Met. III	ကု	-205	-375	496	-542	-297	-223	2544	48	621	-6774
Mom. Horiz. (pecc) Met I								268			
Mom. Horiz. (pecc) Met II								19			
Mom. Horiz.(pe∞) Met. III	-309	-1001	-1734	-2210	-2321	-1584	-950	426	-96	130	-1525
3. Debidos a Capst+pecc (c/fricc.+viva fondo)											
Mom. Vert. (ptotal) Met I								9373			
Mom. Vert. (ptotal) Met II	0	0	0	0	-14	-1412	-1026	17899	-2120	102	-
Mom. Vert. (ptotal) tolva Met II								18837	-21011	532	
Mom. Vert. (Diotal) Met. III	7	-217	-379	-564	-620	-203	-1767	20758	-3376	966	178
Mom. Vert. (ptotal) tolva Met. III								-21077	15427	\$	
Mom. Horiz. (ptotal) Met I								1875			
Mom. Horiz. (ptotal) Met II			_					3580			
Mom. Horiz. (ptotal) tolva Met II								3767			
Mom. Horiz. (ptotal) Met. III	-373	-1074	-1808	-2398	-2480	-1647	-1318	3992	-826	173	-130
Mom. Horiz. (Dtotal) tolva Met. III								1688	15428	5435	

FIGURAS

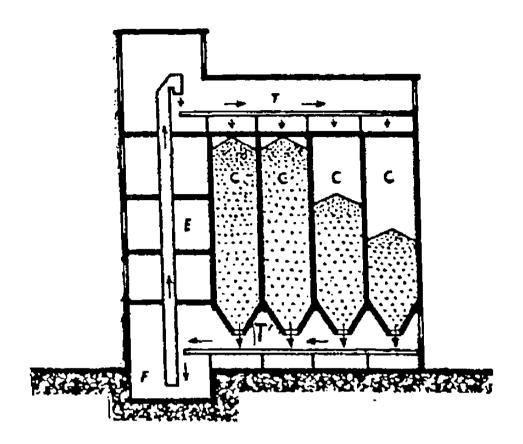


Figura 3-1. Esquema típico de manejo de materiales.

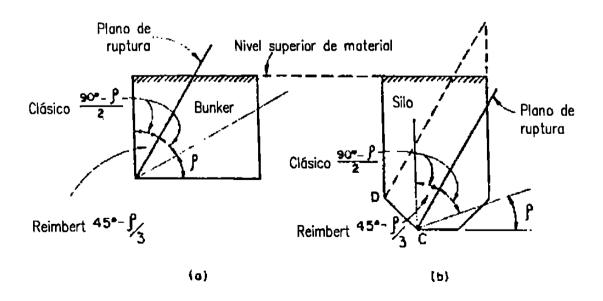
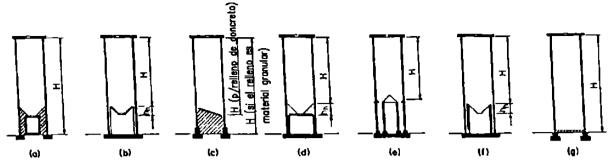



Figura 3—2. Clasificación de silos, usando el plano de ruptura.

- (a) Paredes de silo sobre zapatas continuas, sistema de fondo con túnel y relleno alrededor del túnel.
- (b) Silo sobre losa de ciementación con tolva soportada sobre pilastras adosadas a las paredes.
- (c) Silo con zapatas y losa de fondo independiente soportada sobre relleno.
- (d) Silo con tolva formada con relleno y losa soportada sobre paredes inferiores de mayor espesor.
- (e) Silo con varias aberturas de descarga y tolva soportada en losa de fondo sobre columnas.
- (f) Silo con losa de cimentación y tolva apoyada sobre viga perimetral y columnas independientes.
- (g) Silo con paredes sobre zapatas continuas y losa de fondo soportada sobre el terreno.

Figura 3-3. Secciones transversales típicas de silos.

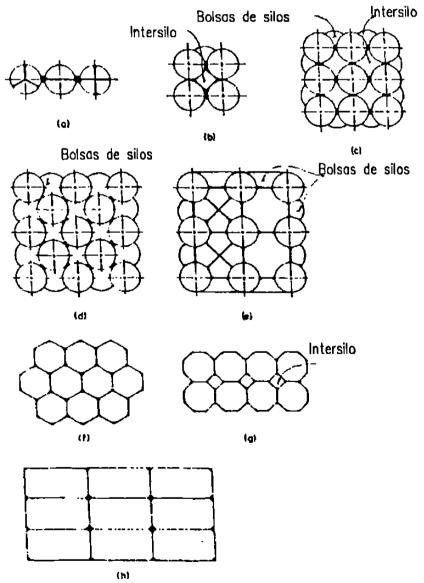


Figura 3-4. Grupos de silos típicos.

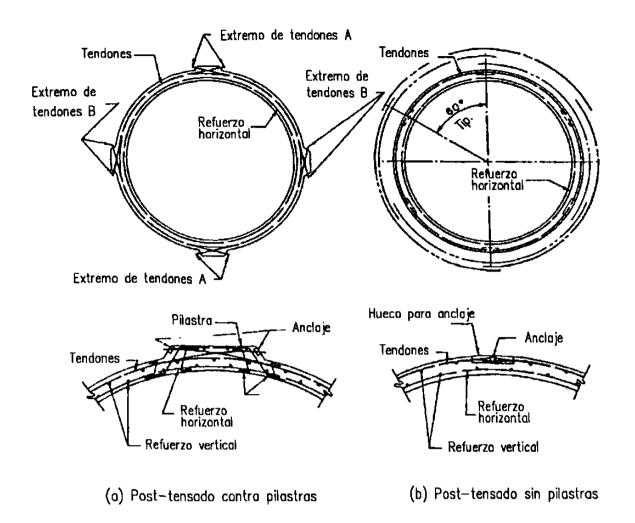


Figura 3-5 Presfuerzo circunferencial mediante traslape de tendones.

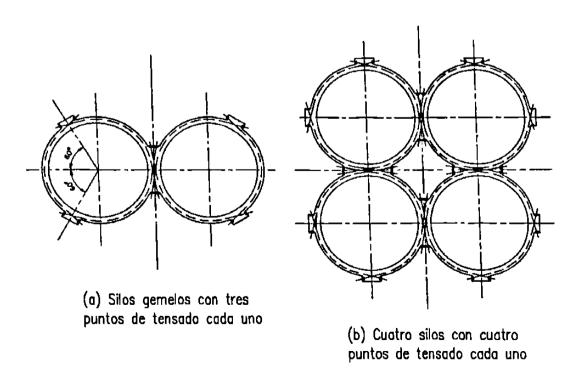


Figura 3-6. Post-tensado de silos múltiples.

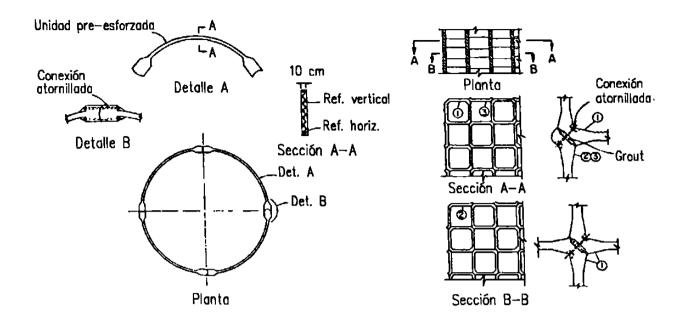


Figura 3-7. Silos de 6 m de diám. fabricado con unidades curvas presforzadas atornilladas.

Figura 3—8. Unidades precoladas y uniones para grupos de silos rectangulares.

Figura 3-9. Silo octagonal con unidades precoladas, unidas con concreto colado en el lugar.

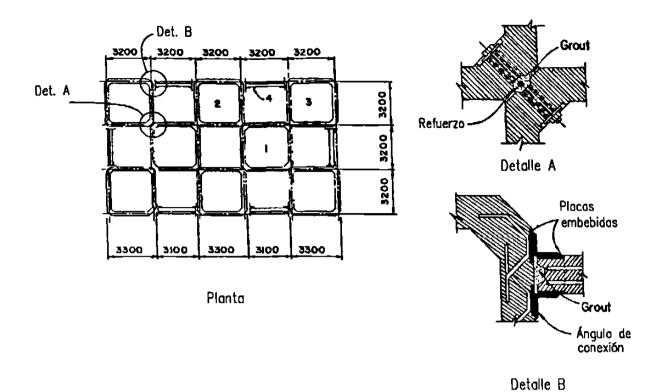


Figura 3-10. Grupo de silos precolados rectangulares.

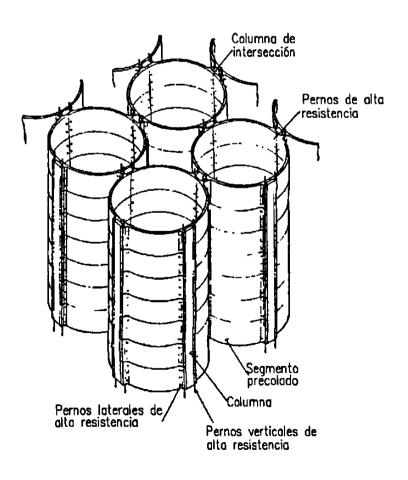


Figura 3–11. Silos circulares prefabricados.

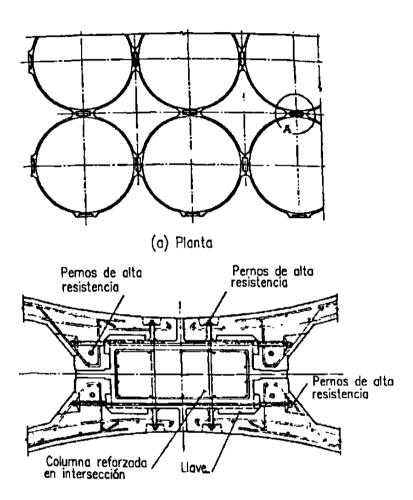


Figura 3-12. Silos precolados. Planta y detalles de conexión.

(b) Detalle de unión

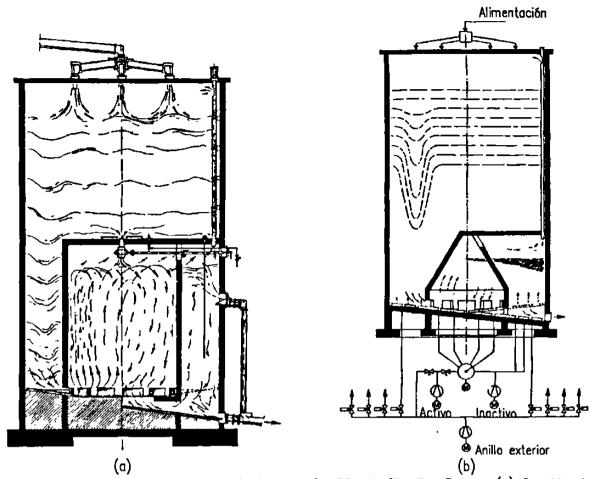


Figura 3-13. Sección transversal de silo de homogenización de Claudius Peters. (a) Sección de una cámara de homogenización. (b) Flujo de una cámara de mezclado.

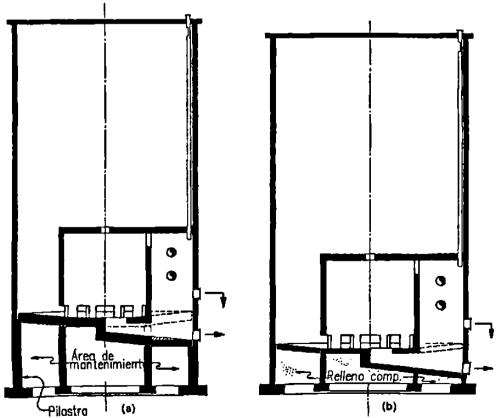


Figura 3—14. Sistema de mezclado con cámara cilíndrica interior.

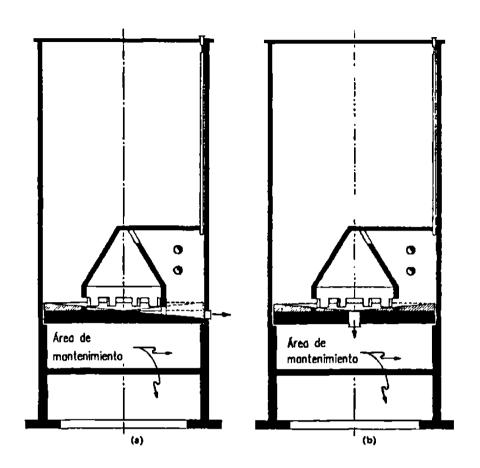


Figura 3-15. Sistema con cámara de cono invertido dentro del silo.

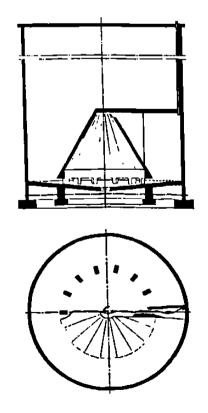
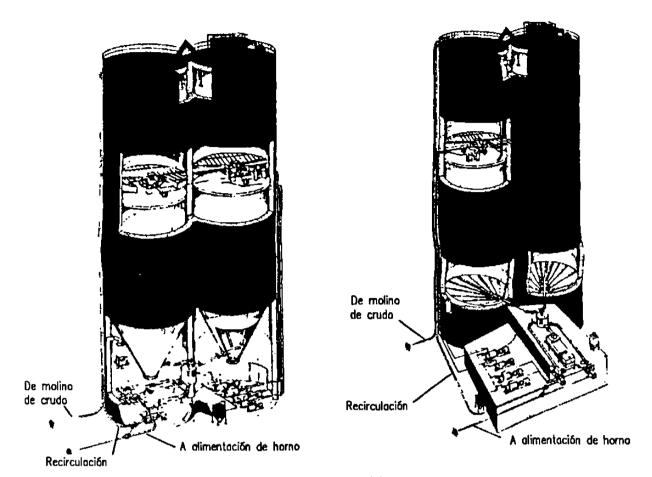



Figura 3—16. Planta típica de silo y cámara de mezclado.

(a) Sistema de mezclado con aireación discontinua. (b) Sistema de mezclado con aireación continua. Figura 3—17. Silos de homaenización Fuller, vistas isométricas.

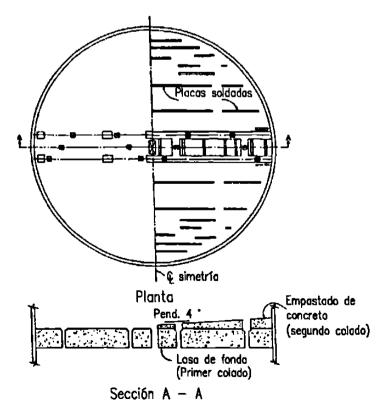
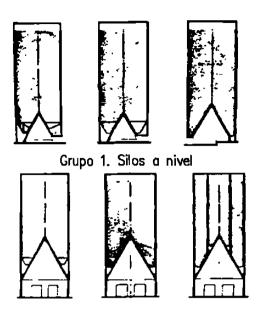



Figura 3—18. Fondo de silo para sistema de aireación Fuller, con descarga central.

Grupo 2. Silos con fondo elevado que permiten el paso de vehículos.

Figura 3—19. Tipos de silos de almacenamiento, con fondos de cono invertido.

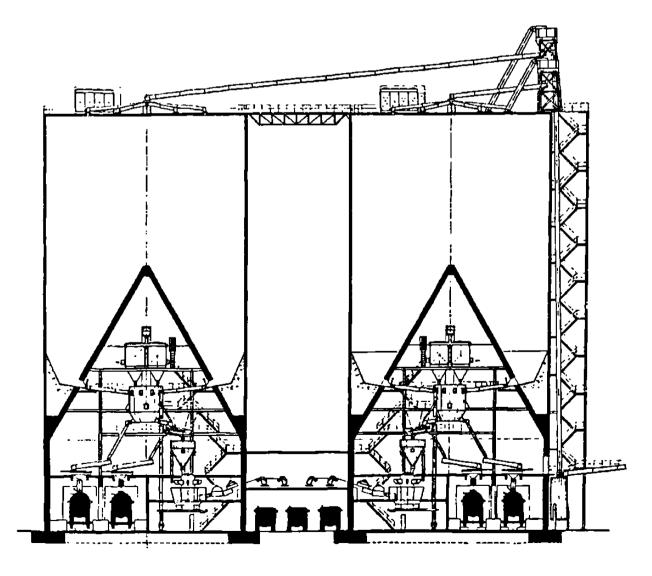


Figura 3-20. Silos de cemento con facilidades de envase y embarque de cemento y carbón.

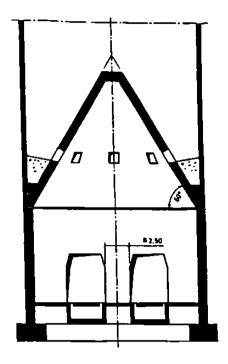


Figura 3-21. Soprte de fondo cónico elevado.

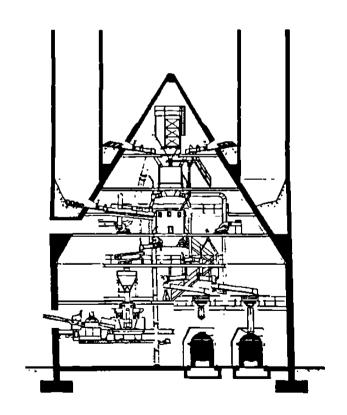
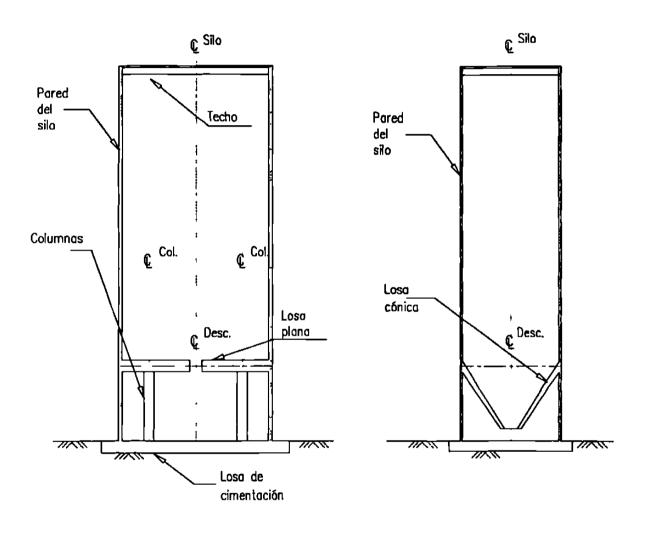



Figura 3-22. Silos concéntricos con cono invertido, soportado en el interior del silo.

a) Silo con losa plana

b) Silo con losa cónica

Figura 3-23. Elementos estructurales típicos de los silos de concreto.

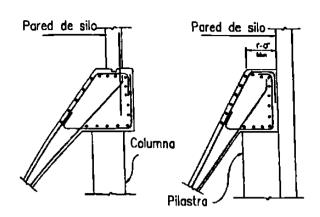


Figura 3—24. Detalles típicos de viga de soporte de tolva.

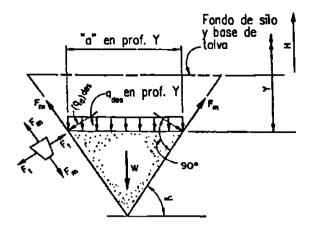
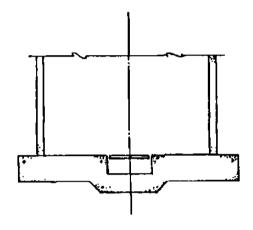
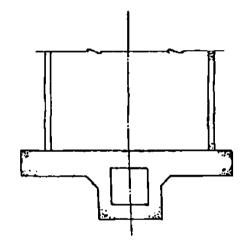




Figura 3—25. Fuerzas en tolva cónica.

(a) Losa de cimentación con báscula.

(b) Losa de cimentación con túnel.

Figura 3-26. Tipos de losas de cimentación para silos.

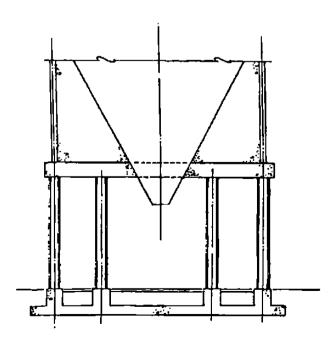


Figura 3-27. Cimentación con trabes y pedestales sobre losa.

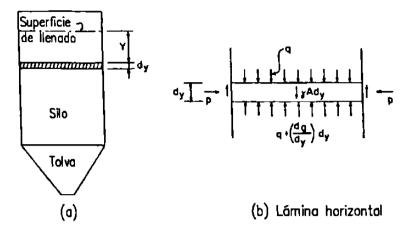


Figura 3-28. Lámina horizontal para las ecuaciones de Janssen.

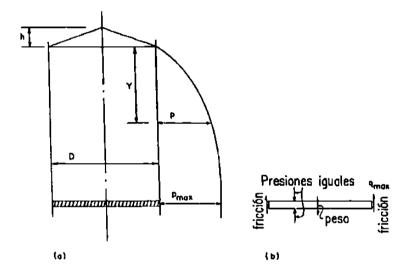


Figura 3—29. Lámina de material almacenado para la ecuación de Reimbert.

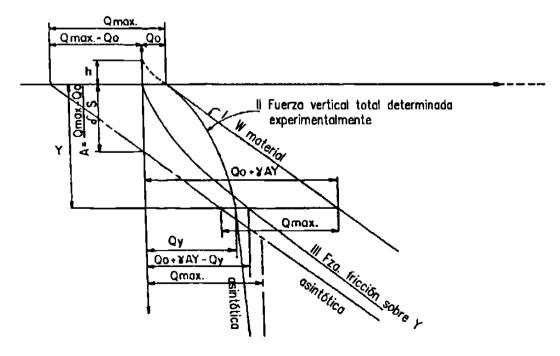


Figura 3—30. Curvas de presión vertical, lateral y fricción para ecs. de Reimbert.

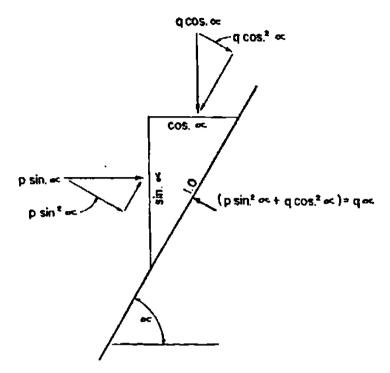


Figura 3-31. Presiones sobre superficies inclinadas.

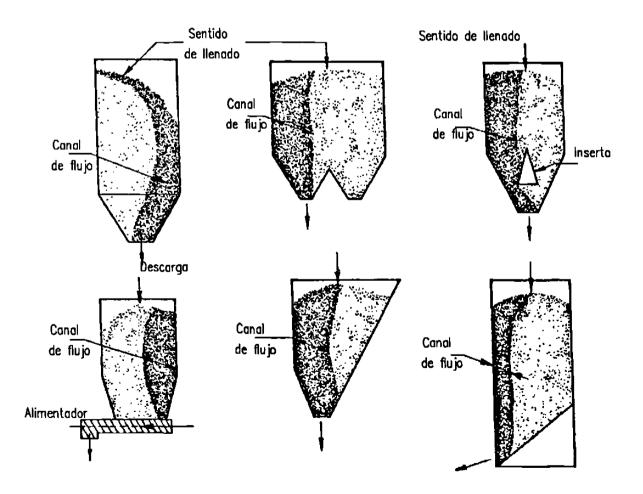
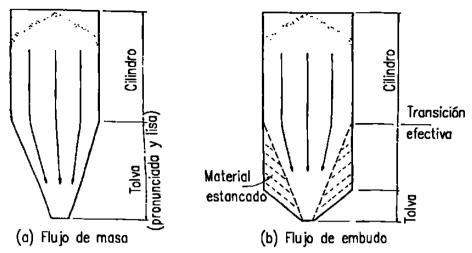
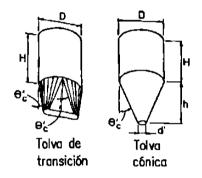
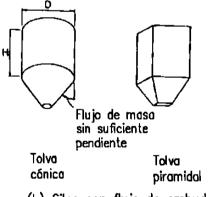
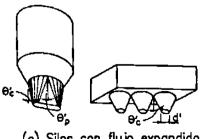


Figura 3—32. Patrones de canales de flujo con diferentes descargas excéntricas.


Figura 3-33. Flujos de masa y embudo.

(a) Silos con flujo de masa

(b) Silos con flujo de embudo

(c) Silos con flujo expandido

Figura 3—34. Silos con diferentes flujos de material.

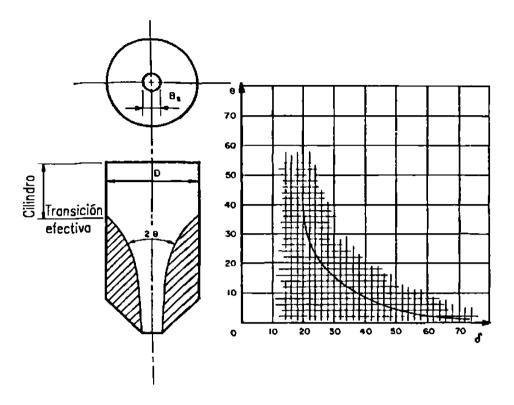


Figura 3-35. Silo con flujo de embudo incluyendo el ángulo del canal.

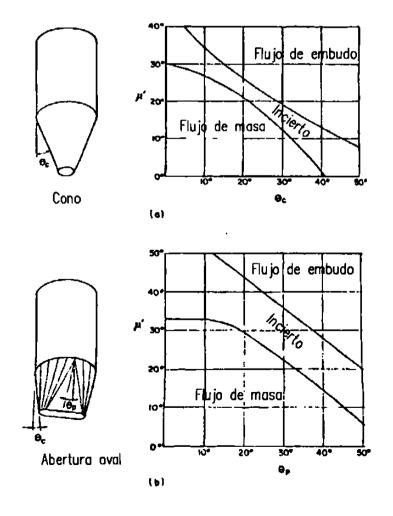


Figura 3-36. Límites para flujos de masa y embudo.

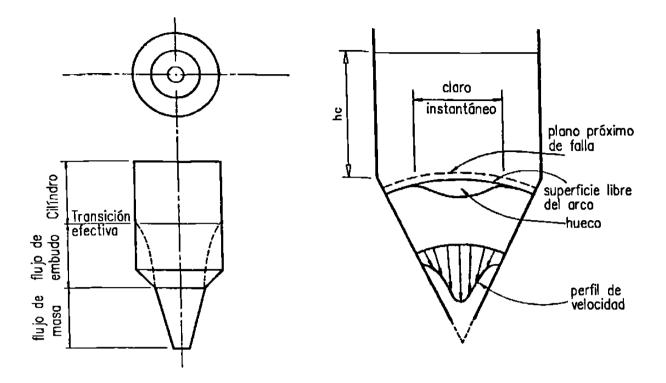


Figura 3-37. Silo con flujo expandido.

Figura 3-38. Mecanismos de pulsación.

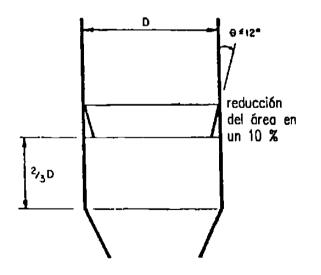


Figura 3—39. Silo con saliente circunferencial.

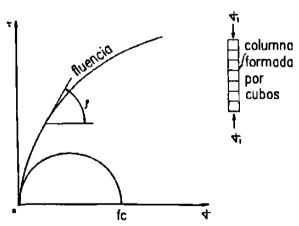


Figura 3—40. Modelo para material con pulsación.

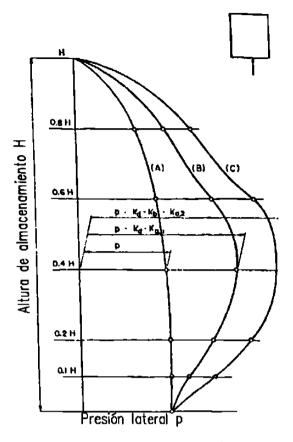


Figura 3-41. Curva de diseño para presión lateral, según Reimbert.

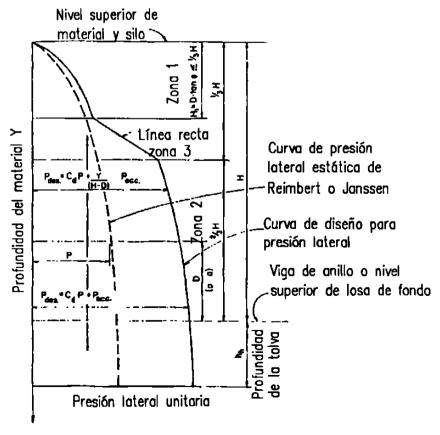


Figura 3—42. Curva de diseño para presión lateral, según Safarian.

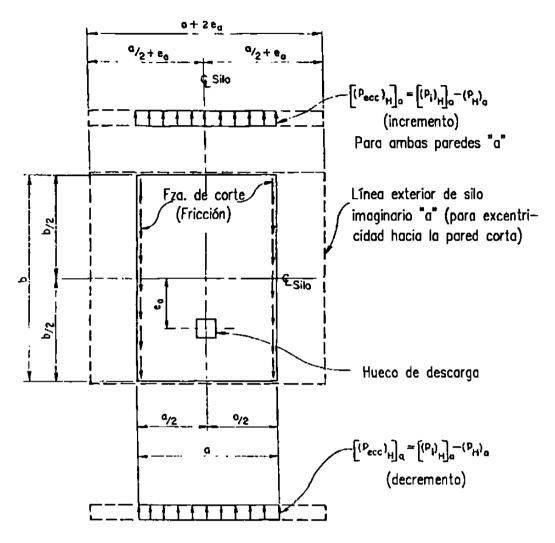


Figura 3-43. Modificación de presión, debido a descarga excétrica en silo rectangular.

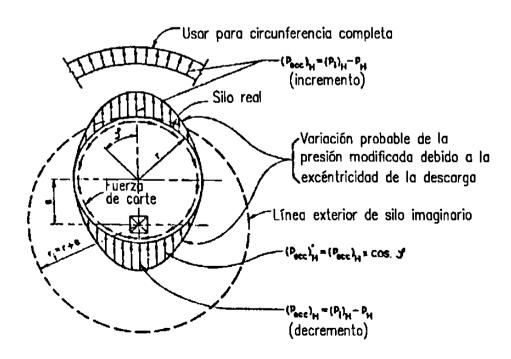


Figura 3-44. Modificación de presión, debido a descarga excétrica en silo circular.

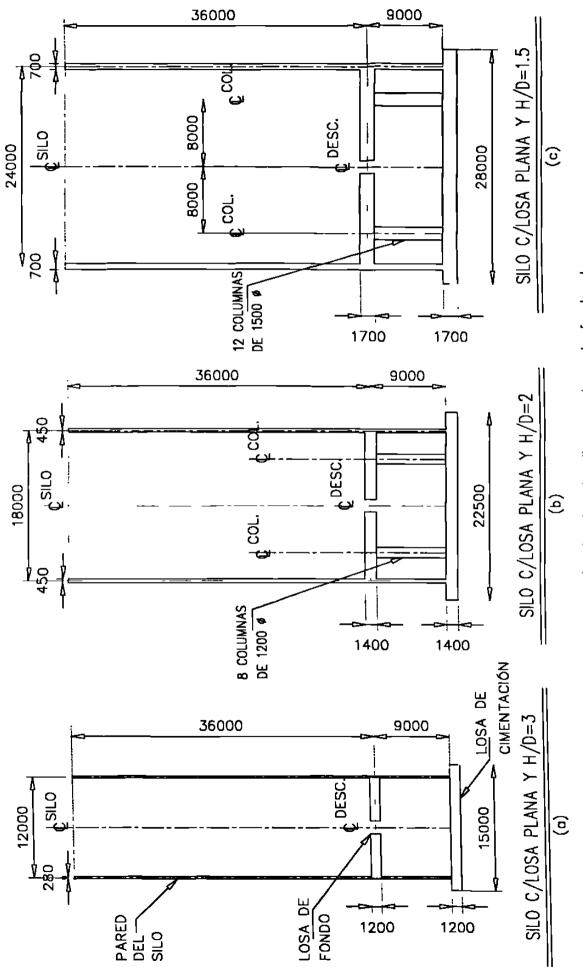
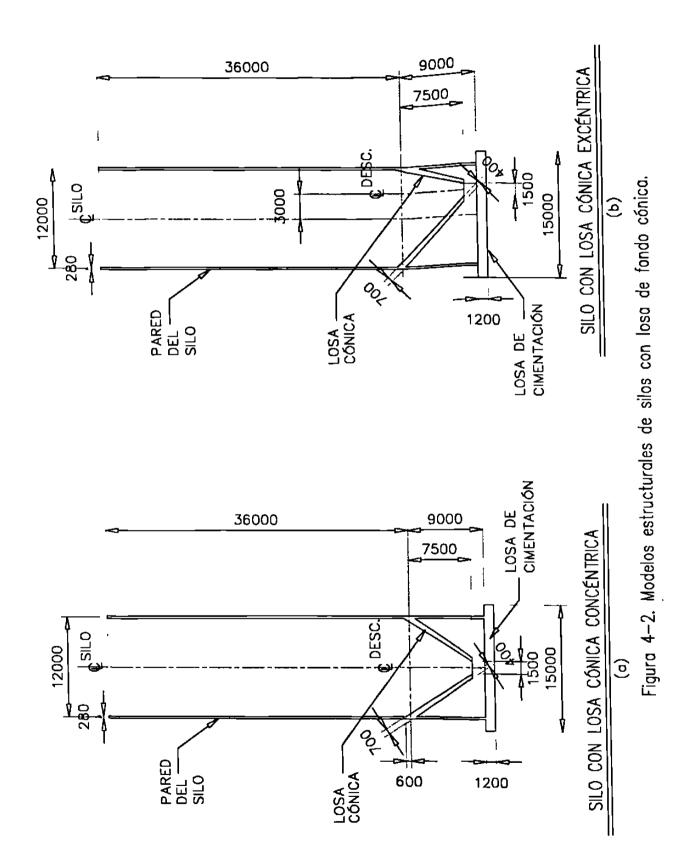



Figura 4—1. Modelos estructurales de silos con losa de fondo plana.

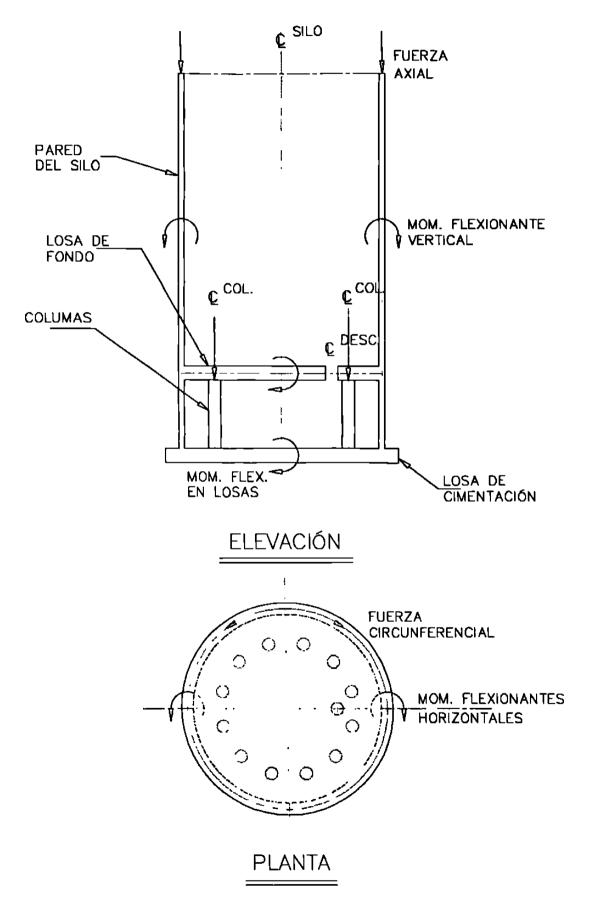


Figura 4—3. Acciones mecánicas y elementos estructurales en silo típico.

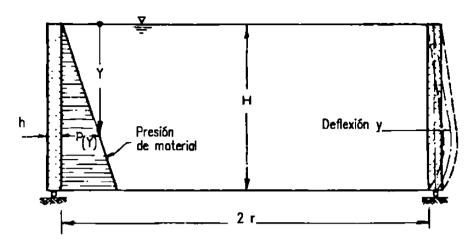


Figura 5—1. Silo o tanque con base articulada bajo presión de material.

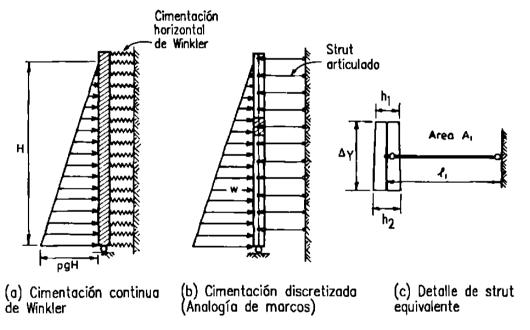


Figura 6—1. Viga sobre cimentación elástica y simulación de la analogía de marcos.

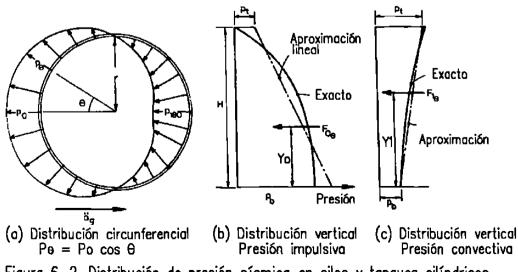
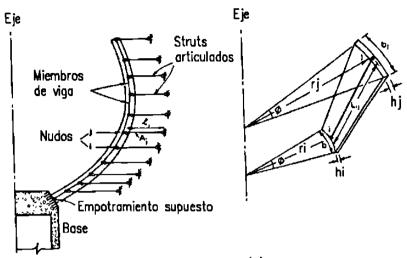
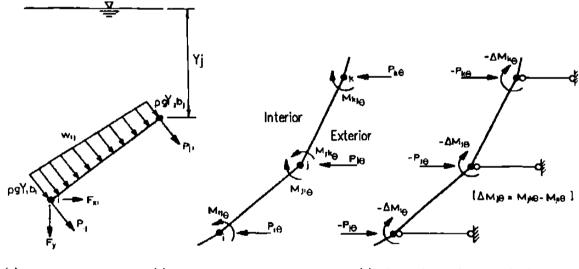




Figura 6-2. Distribución de presión sísmica en silos y tanques cilíndricos.

- (a) Simulación mediante vigas y struts
- (b) Miembro de viga típico

Figura 6-3. Simulación de analogía de marcos para silos y tanques elevados no cilindricos.

- (a) Carga de material
- (b) Fuerzas de restricción térmica (c) Liberación de fuerzas térmicas $\Theta_0 > \Theta_1$ $\Theta_0 > \Theta_i$

Figura 6-4. Cargas equivalentes en nudos para la simulación de marcos.

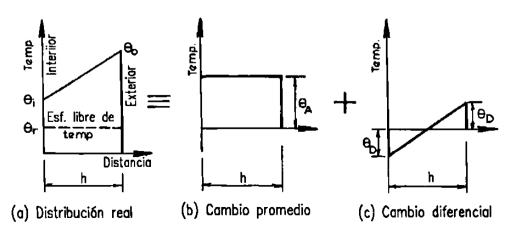


Figura 6—5. Distribución de los cambios de temperatura en paredes de silos o tanques.

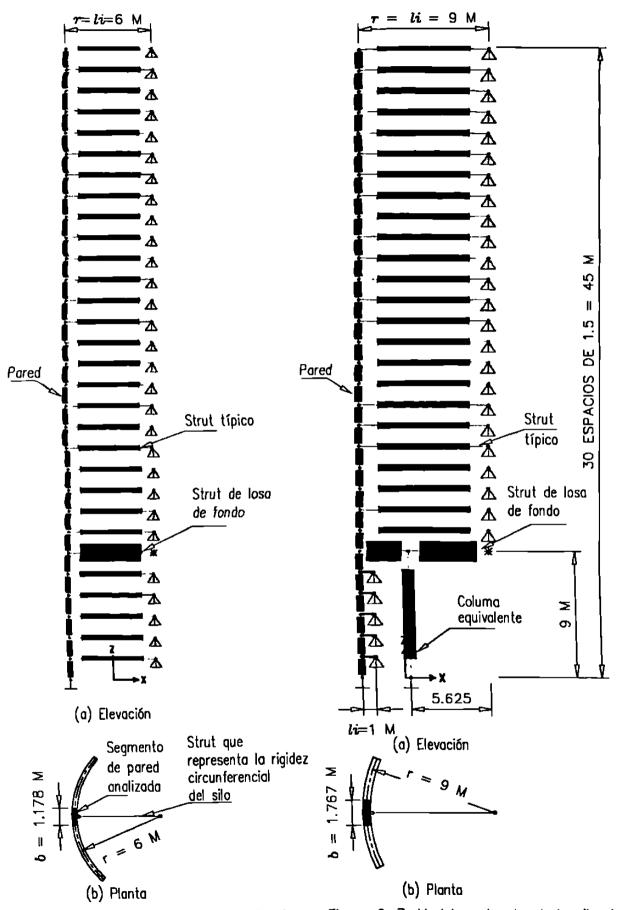


Figura 6-6. Modelo estructural de silo de 12 m diam., H/D=3 y losa de fondo plana para el análisis con el Método II.

Figura 6-7. Modelo estructural de silo de 18 m diam., H/D = 2 y losa de fondo plana para el análisis con el Método II.

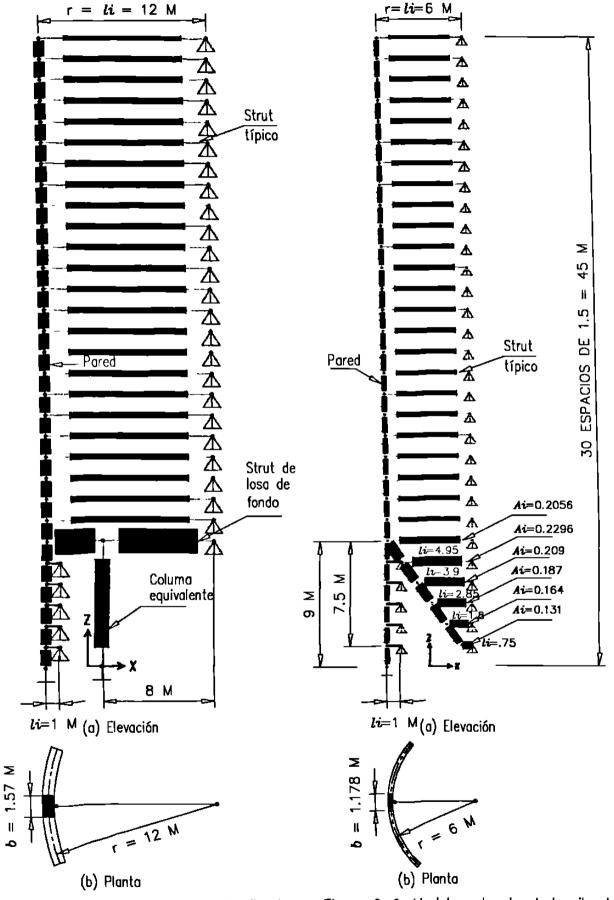


Figura 6-8. Modelo estructural de silo de 24 m diam., H/D = 1.5 y losa de fondo plana para el análisis con el Método II.

Figura 6-9. Modelo estructural de silo de 12 m diam., H/D = 3 y losa cónica concentrica para análisis con el Método II.

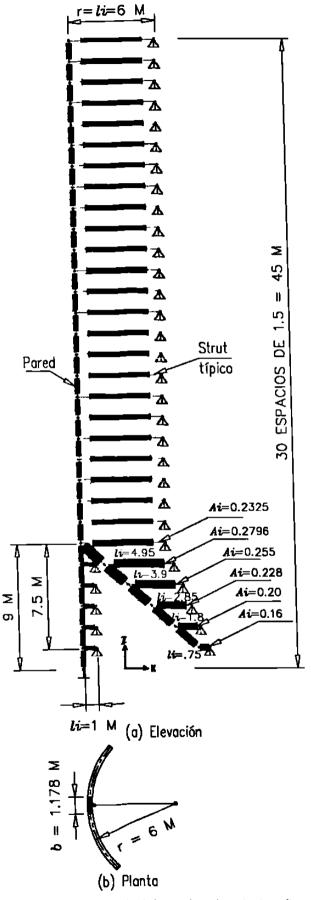


Figura 6-10. Modelo estructural de silo de 12 m diam., H/D=3 y losa cónica excéntrica para análisis con el Método II.

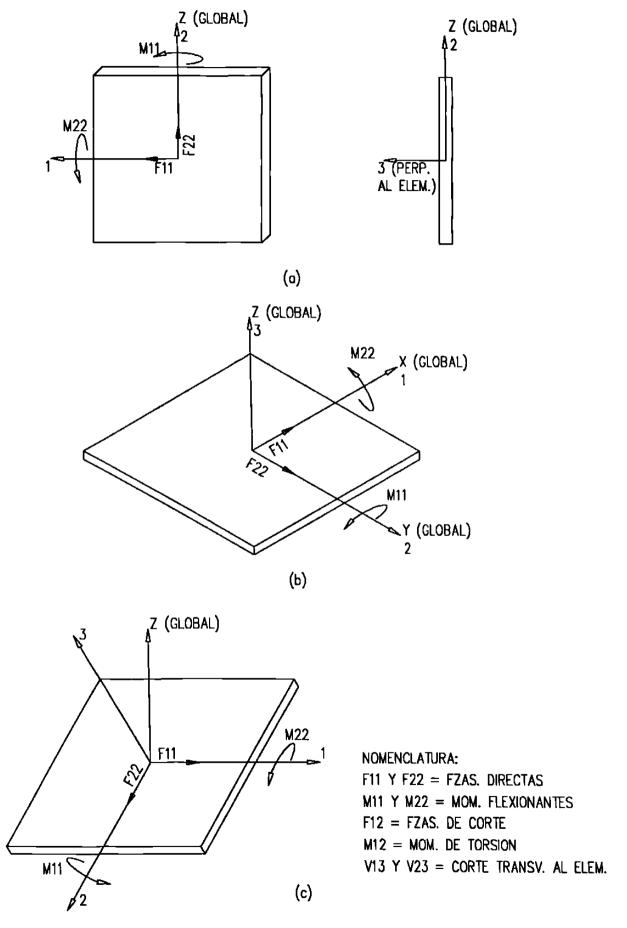


Figura 7—1. Elementos típicos de silo para el programa SAP 2000. a) Elemento vertical (pared). b) Elemento horizontal (losa de fondo). c) Elemento inclinado (losa cónica).

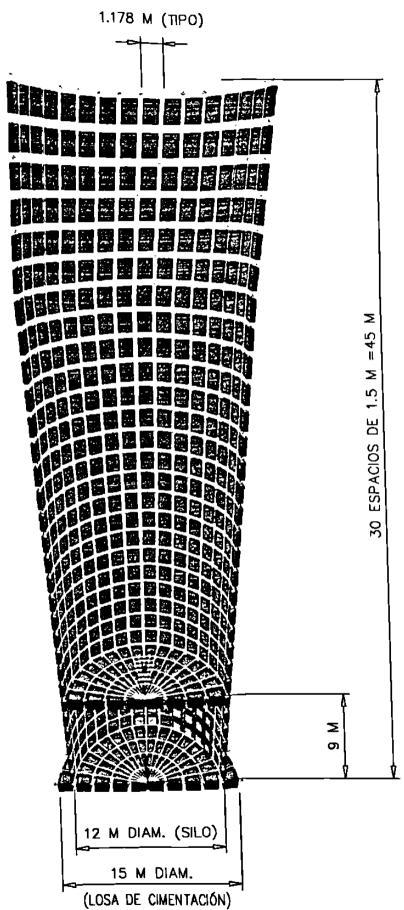


Figura 7-2. Geometría de medio silo de 12 m diam., H/D=3 y losa de fondo plana. (Modelo estructural para utilizarse en el análisis con el Método III)

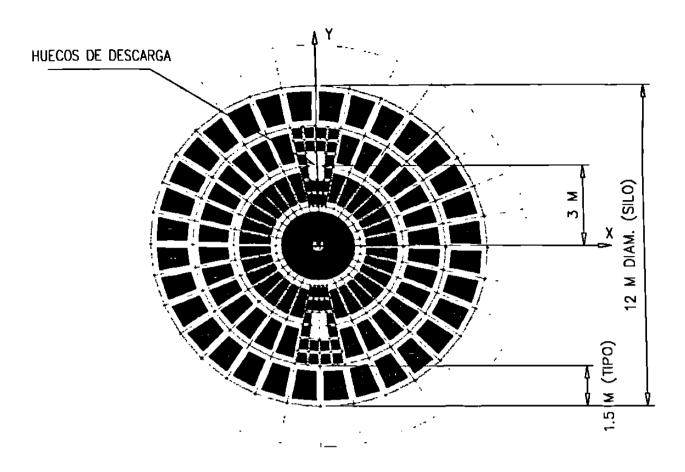


Figura 7-3. Planta de losa de fondo plano de silo de 12 m de diámetro.

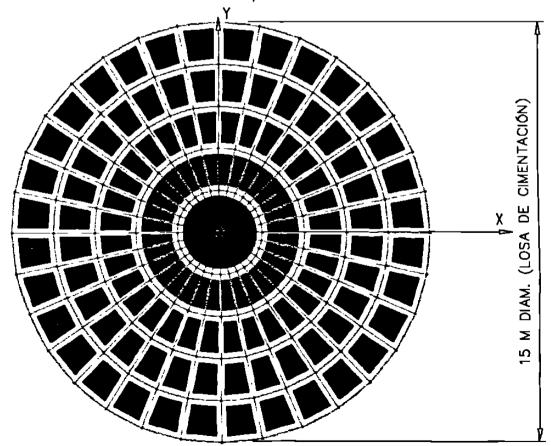


Figura 7-4. Planta de losa de cimentación de silo de 12 m de diámetro.

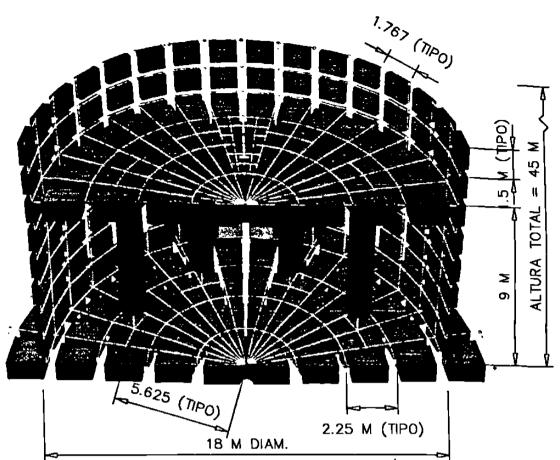


Figura 7-5. Geometría de medio silo de 18 m diam., H/D = 2 y losa de fondo plana. (Modelo estructural para utilizarse en el análisis con el Método III)

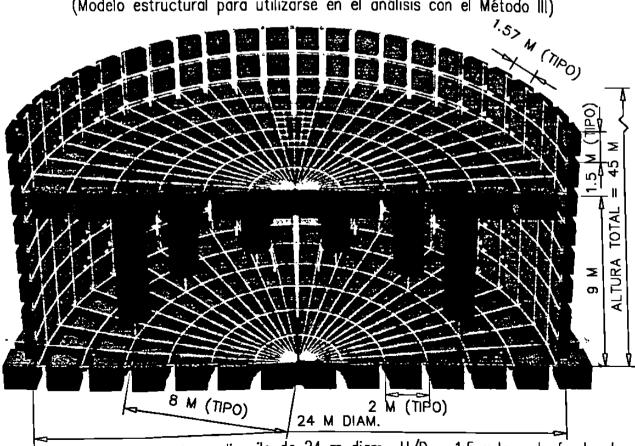


Figura 7-6. Geometría de medio silo de 24 m diam., H/D = 1.5 y losa de fondo plana. (Modelo estructural para utilizarse en el análisis con el Método III)

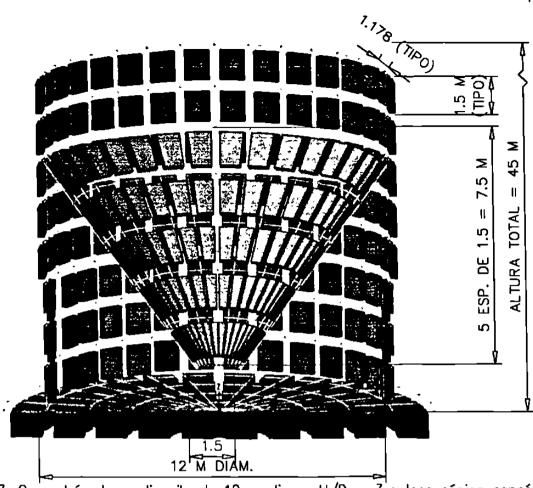


Figura 7-7. Geometría de medio silo de 12 m diam., H/D=3 y losa cónica concéntrica. (Modelo estructural para utilizarse en el análisis con el Método III)

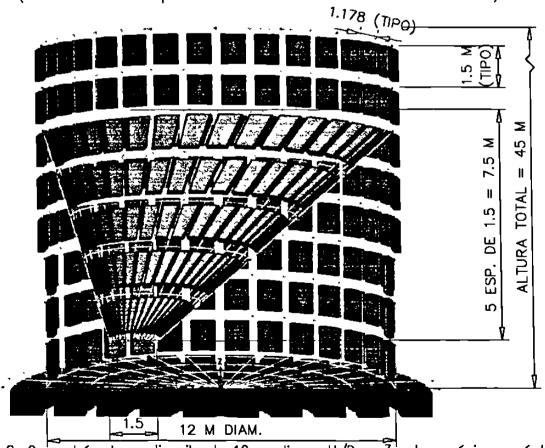


Figura 7-8. Geometría de medio silo de 12 m diam., H/D = 3 y losa cónica excéntrica. (Modelo estructural para utilizarse en el análisis con el Método III)

H/D - 3

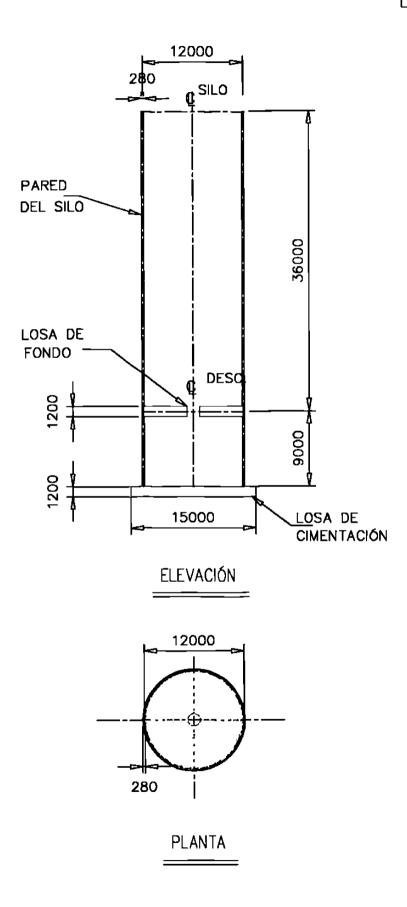
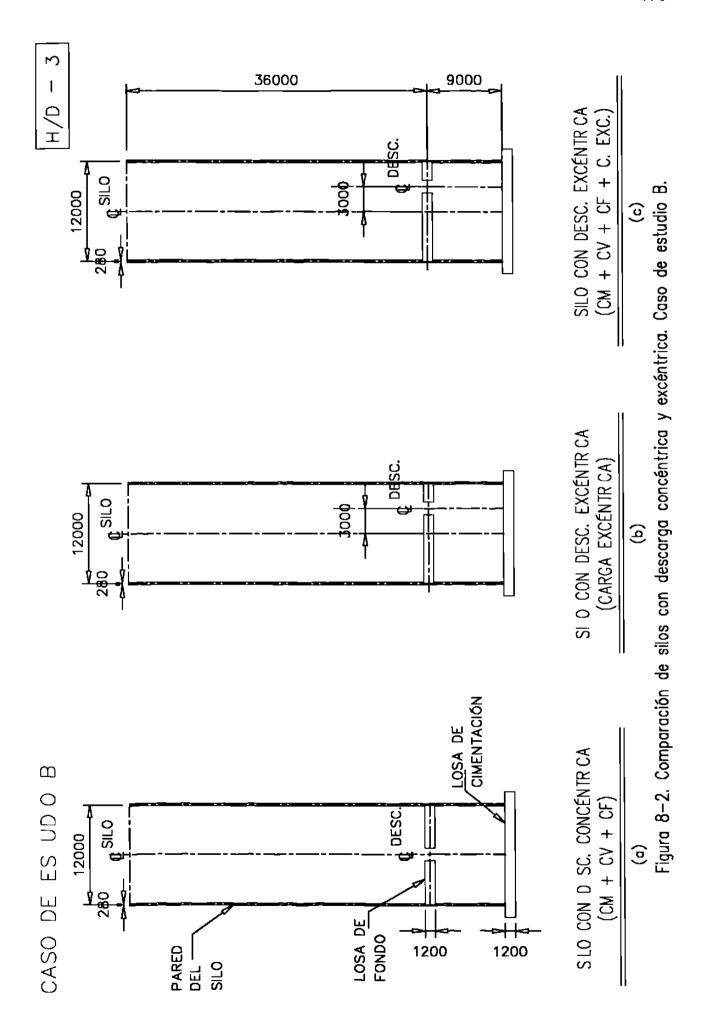
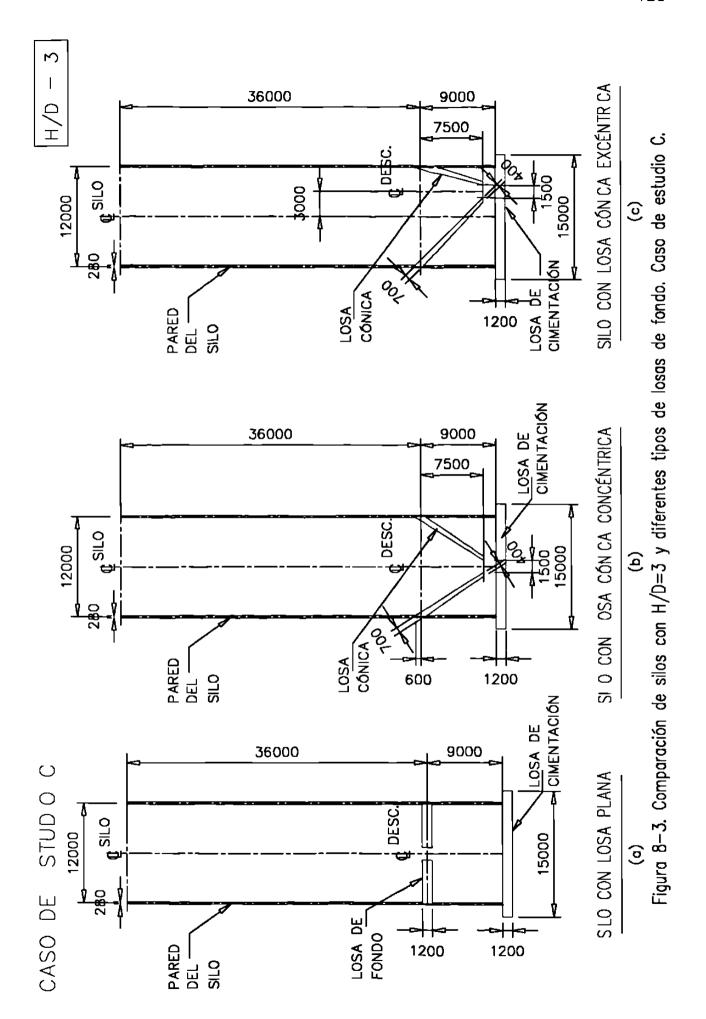




Figura 8—1 Silo de 12 m de diámetro con H/D=3 y losa plana. Caso de estudio A.

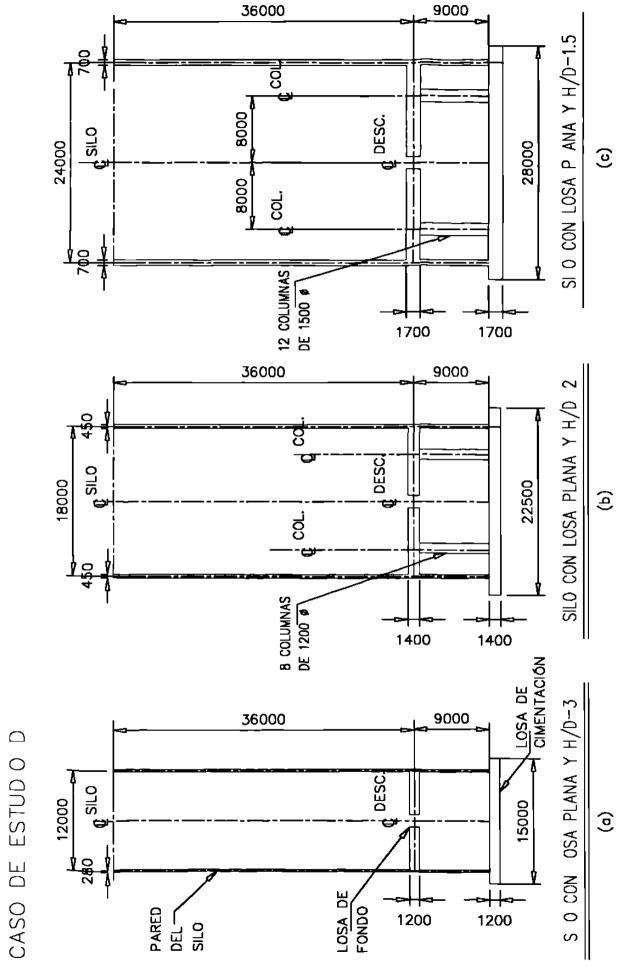


Figura 8—4. Comparación de silos con losa de fondo plana para diferentes relaciones H/D con desc. concéntrica. Caso de estudio D.

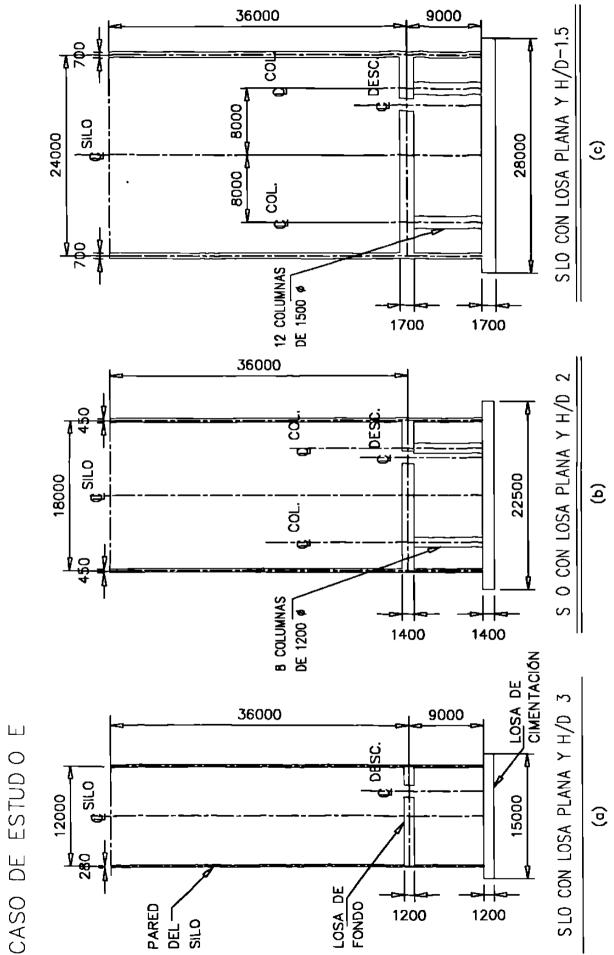
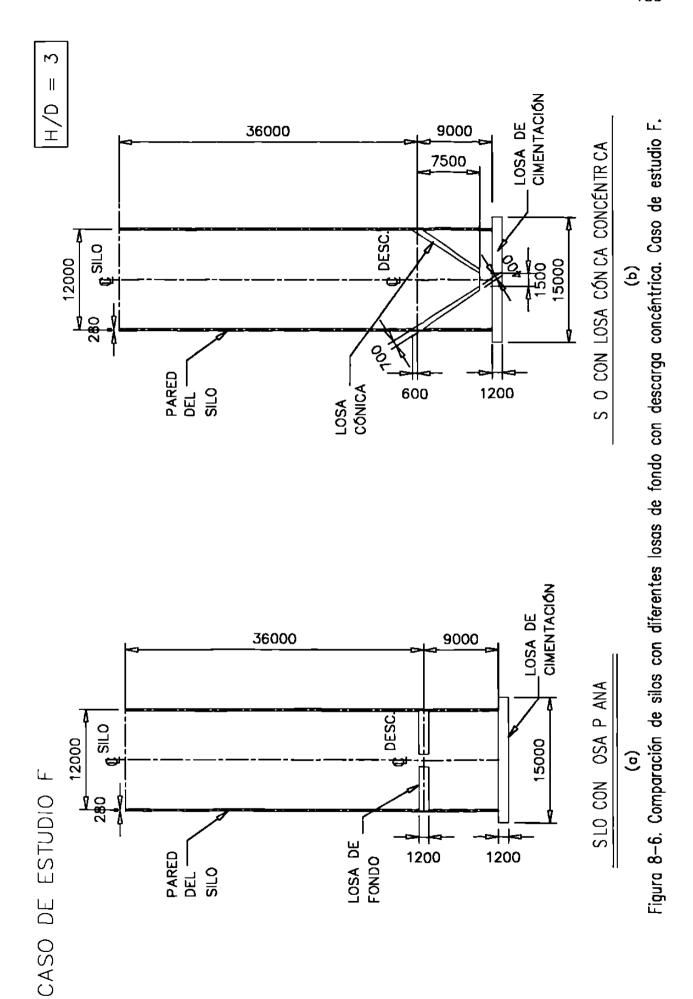
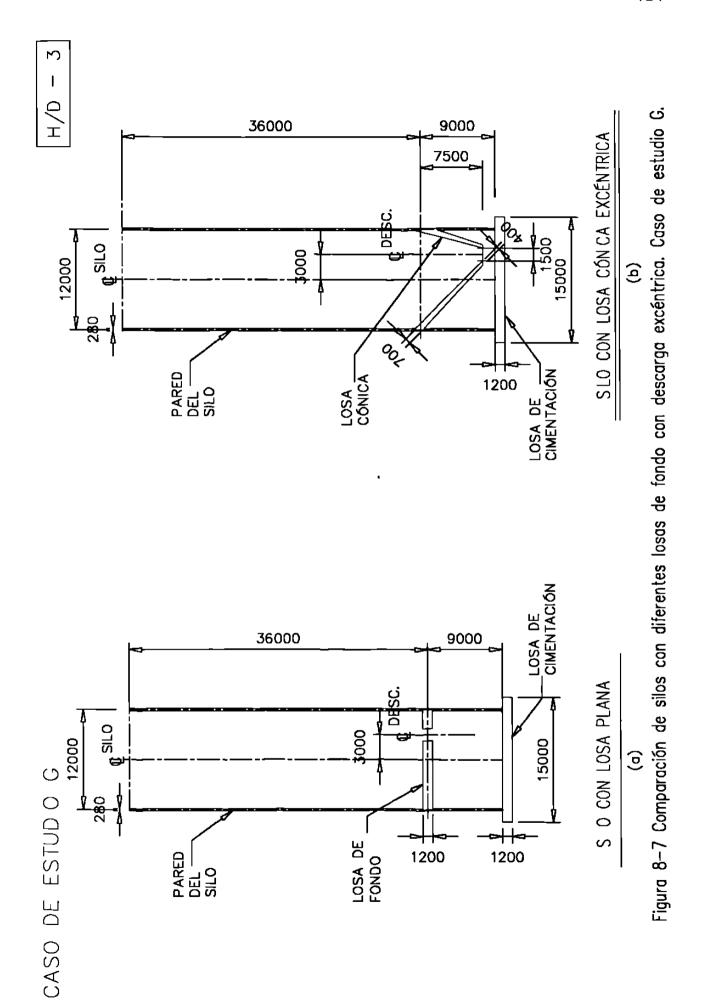




Figura 8-5. Comparación de silos con losa de fando plana para diferentes relaciones H/D con descarga excéntrica. Caso de estudio E.

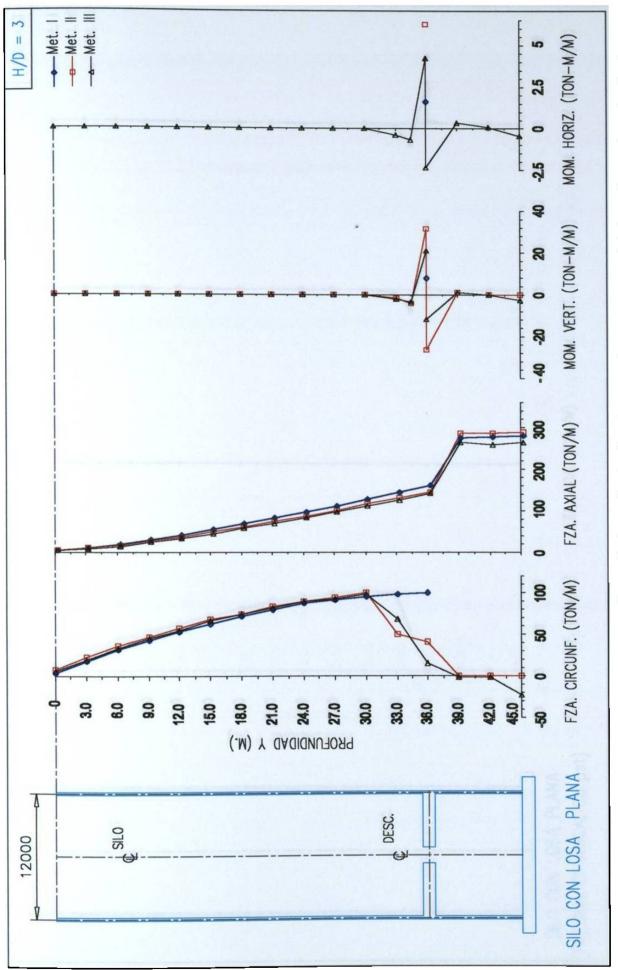


Figura 8—8. Acciones mecánicas en silo con H/D = 3, losa de fondo plana y descarga concéntrica. Caso de estudio A.

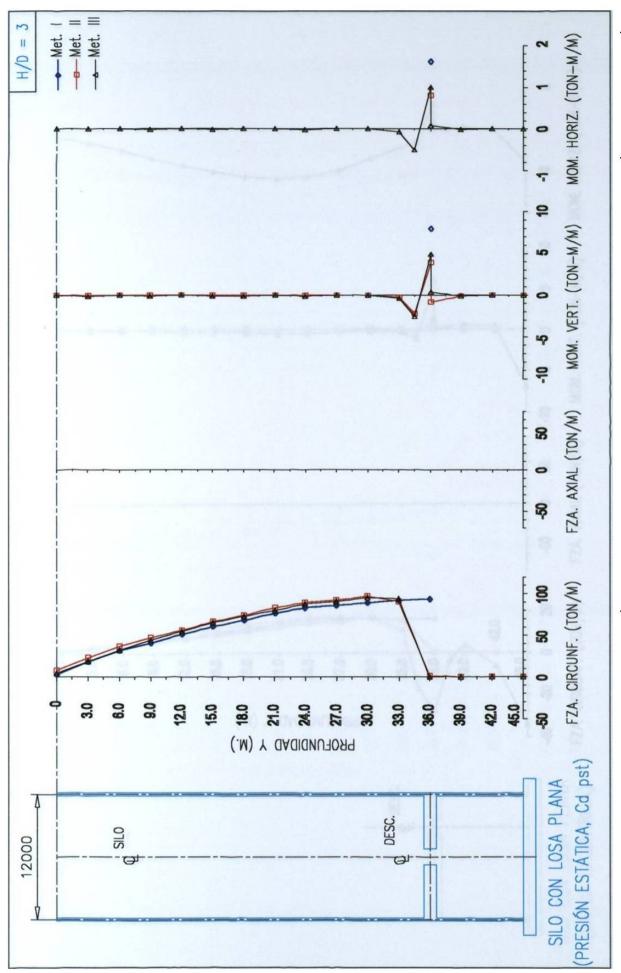


Figura 8—9. Acciones mecánicas en silo con H/D =3, losa plana y desc. concéntrica. Caso de estudio B. (Presión estática.)