UNIVERSIDAD AUTONOMA DE NUEVO LEON

FACULTAD DE INGENIERIA MECANICA Y ELECTRICA

DIVISION DE ESTUDIOS DE POST-GRADO

RELEVADORES DE PROTECCION APLICADOS A LAS LINEAS DE TRANSMISION

POR

ING. FRANCISCO JOEL OLVERA BLANCO

TESIS

EN OPCION AL GRADO DE MAESTRO EN CIENCIAS DE LA INGENIERIA ELECTRICA CON ESPECIALIDAD EN POTENCIA

MONTERREY, N. L.

DICIEMBRE DE 1999

TM TK28

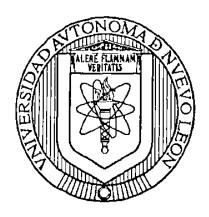
UNIVERSIDAD AUTOMOMA DE MUEVO LEON

FACULTAD DE INGENIERIA MECANICA Y ELECTRICA

DIVING DESTAUDA E DE ROMAGRADO

APLICADOS A LAS LINEAS DE TRANSMISION

POR ING. FRANCISCO JOEL OLVERA BLANCO


TESIS

DE LA INGENIERIA ELECTRICA CON ESPECIALIDAD EN POTENCIA

UNIVERSIDAD AUTONOMA DE NUEVO LEON

FACULTAD DE INGENIERIA MECANICA Y ELECTRICA

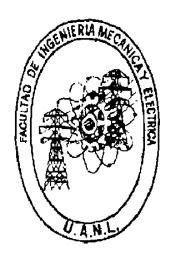
DIVISION DE ESTUDIOS DE POST-GRADO

RELEVADORES DE PROTECCION APLICADOS A LAS LÍNEAS DE TRANSMISIÓN

POR

ING. FRANCISCO JOEL OLVERA BLANCO

TESIS EN OPCION AL GRADO DE MAESTRO EN CIENCIAS DE LA
INGENIERIA ELECTRICA CON ESPECIALIDAD EN POTENCIA


MONTERREY, N.L.

DICIEMBRE 1999

UNIVERSIDAD AUTONOMA DE NUEVO LEON

FACULTAD DE INGENIERIA MECANICA Y ELECTRICA

DIVISION DE ESTUDIOS DE POST-GRADO

RELEVADORES DE PROTECCIÓN APLICADOS A LAS LÍNEAS DE TRANSMISIÓN

POR

ING. FRANCISCO JOEL OLVERA BLANCO

TESIS
EN OPCION AL GRADO DE MAESTRO EN CIENCIAS DE LA
INGENIERIA ELECTRICA CON ESPECIALIDAD EN POTENCIA

MONTERREY, N.L.

DICIEMBRE 1999

UNIVERSIDAD AUTONOMA DE NUEVO LEON FACULTAD DE INGENIERIA MECANICA Y ELECTRICA DIVISION DE ESTUDIOS DE POST-GRADO

Los miembros del comité de tesis recomendamos que la tesis "Relevadores de Protección Aplicados a las Líneas de Transmisión", realizada por el alumno Ing. Francisco Joel Olvera Blanco, matricula 0589279 sea aceptada para su defensa como opción al grado de Maestro en Ciencias de la Ingeniería Eléctrica con especialidad en Potencia.

El Comité de Tesis

/ Aseson

M.C. Evelio/P. González Flores

M.C. Felix González Estrada

, cousesor

M.C. Armando Paez Ordoñes

Vo. Bo.

M.C. Roberto Villarreal Garza División de Estudios de Post-grado

AGRADECIMIENTOS

A mi familia por su confianza, compresión y apoyo que siempre me han brindado.

A mi novia y futura esposa la Srita. Perla Gámez Quiroz, ya que sin su ayuda, apoyo, motivación e inmenso amor no hubiera decidido realizar esta maestría.

Deseo expresar mi más sincero agradecimiento al MC Evelio P. González Flores asesor de este trabajo, al MC Félix Estrada y al MC Armando Paez consejeros de esta tesis, al MC Marco A. Méndez Cavazos por su valiosa atención dedicada en la elaboración de este trabajo, también al Dr. Cesar Elizondo, Dr. Fernando Betancourt Ramírez así como también al MC Enrique Betancourt Ramírez con los cuales curse mis materias de maestría, y de los cuales aprendí muchas cosas, gracias por su experiencia y apoyo.

Al Director y Subdirector de la Escuela Industrial y Preparatoria Técnica "Alvaro Obregón" Ing. José Efrén Castillo Sarabia e Ing. José A. Ovalle respectivamente, por la oportunidad que me brindaron para llevar a cabo esta maestría.

DEDICATORIAS

A Dios... Por permitirme nacer y brindarme la oportunidad en

esta vida de cumplir mis metas y hacer feliz a los que

me rodean. Gracias Dios por todo esto.

A mis Padres... Francisco Olvera Medina

Magdalena Blanco morales

Por permitirme nacer, su apoyo incondicional, sus consejos y su inmenso amor. Dios los Bendiga

siempre.

A mis hermanos... Miguel Angel

Juan Gabriel

María Antonieta

Por su gran comprensión, efecto, cariño y amor. Doy gracias a Dios por regalármelos como mis hermanos.

A mi novia Y futura esposa... Srita. Perla Gámez Quiroz

Por su paciencia, comprensión, su apoyo y el inmenso amor que me ha brindado durante todo este tiempo. Te amo mucho Perla. Dios te Bendiga

siempre.

A mis amigos... Por regalarme algo que es muy valioso... su amistad.

A todas aquellas personas que de una manera u otra han estado junto a mí en las situaciones buenas y malas de la vida.

A Todos, Muchas Gracias.

Ing. Joel Olvera

PROLOGO

La técnica de la protección de sistemas eléctricos de potencia ha tenido que experimentar un acelerado desarrollo, originado por el crecimiento constante y avanzado de la población, origina una gran en cuanto al consumo de la energía eléctrica, esto debido principalmente a la unión de sistemas pequeños, así como a las grandes distancias que existen entre los puntos donde se localizan las grandes centrales de generación. Por tal motivo, los sistemas eléctricos deberán ser de mayor calidad para poder competir ante la situación actual, la calidad del servicio depende en gran medida de la selección adecuada de los diversos sistemas de protecciones eléctricas que nos garanticen un funcionamiento confiable y seguro de los sistemas eléctricos de potencia.

Debido a que en su muchos países, el equipo eléctrico de generación de potencia eléctrica por lo regular es importado de otros países, ha traído como consecuencia que exista una gran variedad de equipos, o cual dificulta que en la preparación del personal que enfrenta los problemas de proteger los equipos eléctricos, les demanda constantemente un alto nivel de preparación para que puedan salvaguardar toda situación que se pueda presentar.

Por lo que se ha expuesto en el anterior escrito, el presente trabajo está orientado a brindar al personal del área de protección de sistemas eléctricos, un estudio de los diversos relevadores de protección empleados en las líneas de transmisión, sin pasar por alto los conceptos generales del funcionamiento de los relevadores.

Existe un acelerado desarrollo de nuevas tecnologías en la construcción, funcionamiento y aplicación de nuevas relevadores de protección, esto como consecuencia de la creación de nuevas plantas generadoras, líneas de transmisión, subestaciones, etc., que acarrean como resultado de estos avances un cambio en la topología de los sistemas eléctricos de potencia. Ante tal situación, se aclara que el presente trabajo no pretende cubrir análisis de estudio muy profundos acerca del funcionamiento del relevador, así como de sus principios de operación, ya que esto demandaría de mucha información adicional, cursos de especialización y actualización y, sobre todo, de muchos años de experiencia en el campo de protección de equipos eléctricos.

INDICE

Sintesis	3
1. Introducción	
1.1 Descripción del problema a resolver	7
1.2 Objetivo de la tesis	9
1.3 Justificación de la tesis	9
1.4 Limites del estudio	9
1.5 Metodología	10
1.6 Revisión bibliográfica	11
2. Formas generales de la protección eléctrica	13
2.1 Antecedentes	13
2.2 Apartarayos	14
2.3 Sistema de tierra	15
2.4 Fusibles	15
2.5 Relevadores	16
2.6 Estadísticas de fallas	17
2.7 Causas que originan fallas en el sistema	18
2.7.1 Sobrecarga	18
2.7.2 Corto circuito	19
2.7.3 Caída de tensión	19
2.7.4 Elevación de tensión	20
2.7.5 Inversión en el sentido de la potencia	20
2.7.6 Variación de frecuencia	20
2.8 Elementos que intervienen en un sistema de protección	20
2.8.1 Transformador de instrumento	22
2.8.2 Transformadores de corriente	23
2.9 Evaluación de la protección por relevadores	23

3. Fundamentos de la protección por relevadores	25
3.1 Introducción	25
3.2 Función de la protección por relevadores	27
3.3 Formas de disparo de los interruptores del relevador	31
3.4 Claves y nomenclaturas de los términos utilizados en los	
diagramas eléctricos	33
3.5 Protección primaria	47
3.6 Protección de respaldo	48
3.7 Zonas de detección y zonas de libramiento	51
3.8 protección de respaldo falla de interruptor	52
3.81 Respaldo local	53
3.8.2 Respaldo remoto	54
3.9 Características de operación	54
4. Funcionamiento de los relevadores de protección	56
4.1 Introducción	56
4.2 Clasificación de los relevadores	57
4.3 Principios de operación de los relevadores	58
4.4 Características	63
4.5 Reposición (Reset)	65
4.6 Funcionamiento	66
4.7 Indicadores de funcionamiento	66
4.8 Bobinas de sello	67
4.9 Acción retardada y sus definiciones	67
5. Descripción los tipos de relevadores de protección	69
5.1 Filosofía de la protección por relevadores	69
5.2 Tipos de relevadores de protección	71
5.2.1 Relevadores de sobrecorriente (50/51)	72
5.2.2 Relevadores restricción de voltaje o control de voltaje	73
5.2.3 Relevadores direccionales (67)	73
5.2.3.1 Construcción y operación	74
5.2.3.2 Relevador direccional falla a tierra	77

	5.2.4 Relevadores diferenciales (87)	80
	5.2.5 Relevador de fallas a tierra (64)	83
	5.2.6 Relevador verificación de sincronismo (25)	85
	5.2.7 Relevadores de voltaje (47)	85
	5.2.8 Relevadores de distancia (21)	86
	5.2.9 Relevadores de secundario de fase o fase invertida (46)	87
	5.2.10 Relevador de frecuencia (81)	88
	5.2.11 relevadores sensores de temperatura (26)	88
	5.2.12 Relevadores sensores de presión de gas (63)	89
	5.2.13 Relevador de temperatura tipo replica	89
	5.2.14 Relevadores auxiliares	90
6. R	elevadores de Sobrecorriente	91
	6.1 Introducción	91
	6.2 Aplicación	91
	6.3 Selección de la característica de tiempo	93
	6.4 Relevadores de sobrecorriente instantánea	94
	6.5 Relevadores de sobrecorriente direccionales	94
	6.6 Polarización	97
	6.7 Unidad de secuencia negativa contra fallas a tierra	100
	6.8 Dos relevadores contra tres relevadores para falla de fase	101
	6.9 Ajuste	103
	6.9.1 Relevadores de fase	103
	6.9.2 Relevadores de tierra	106
	6.10 Factores que afectan el ajuste	107
	6.10.1 Errores transitorios de los TC'S	107
	6.10.2 Resistencia de arco y de tierra	107
	6.10.3 Sobrealcance	109
	6.11 Coordinación	110
	6.11.1 Circuitos radiales	110
	6.11.2 Circuitos en anillo	113
	6.11.3 Recierre automático	113

7. Relevadores de Distancia	115
7.1 Introducción	115
7.2 Principio de operación	116
7.2.1 Ecuación general del par de un elemento ohmico	117
7.3 Tipos de relevadores de distancia	121
7.4 Tipos de fallas en las líneas de transmisión	121
7.5 Estructura del relevador de distancia	125
7.6 Deducción de que reciben los (21)	126
7.7 Tiempos de operación y zonas de protección	133
7.8 Líneas multi-terminales	135
7.9 Efectos de las oscilaciones del sistema	138
7.10 Bloqueo de disparo a causa de las oscilaciones	145
7.11 Disparo a causa de una oscilación	146
7.12 Ajuste y coordinación (tiempos de operación)	147
7.12.1 De fase línea con dos terminales	148
7.12.1.1 Ajuste	148
7.12.1.2 Coordinación	149
7.12.2 De fase líneas con tres terminales	149
7.12.2.1 Ajuste	149
7.12.2.2 Coordinación	150
7.12.3 De tierra	151
7.12.3.1 Ajuste	151
7.13.2.2 Coordinación	153
8. Relevadores tipo piloto	154
8.1 Introducción	154
8.2 Principios de operación y clasificaciones	155
8.3 Canales piloto	157
8.3.1 Hilo piloto	157
8.3.2 Canal de onda portadora	161
8.3.3 Canal de microondas	164
8.3.4 Canal de fibra óptica	164

8.4 Principio de operación protección diferencial	165
8.4.1 Relevadores de porcentaje diferencial	170
8.5 Protección por hilo piloto	173
8.6 Piloto por comparación de fase	178
8.6.1 Piloto de media onda de bloqueo ("ON-OFF")	183
8.6.2 Piloto de media onda de disparo ("ON-OFF")	185
8.6.3 Piloto de media onda de bloqueo	
(corrimiento de frecuencia)	186
8.6.4 Piloto de media onda de disparo	
(corrimiento de frecuencia)	187
8.6.5 Piloto de media onda de pérdida de bloqueo	
(corrimiento de frecuencia)	188
8.6.6 Piloto de comparación de fase de onda completa	190
8.6.7 Consideraciones acerca de las señales a comparar	191
8.6.8 Comparación de fase segregada	193
8.6.9 Ventajas	194
8.7 Piloto por comparación direccional	194
8.7.1 Protección piloto de bloqueo	196
8.7.2 Protección piloto de pérdida de bloqueo	199
8.7.3 Piloto de disparo de sobrealcance	201
8.7.4 Piloto de disparo de subalcance	202
8.7.5 Ventajas	204
8.7.6 Desventajas	205
8.8 Piloto por comparación combinada de fase y direccional	205
9. Conclusiones y recomendaciones	208
9.1 Conclusiones	208
9.2 Recomendaciones	209
Bibliografía	211
Listado de tablas	
Listado de figuras	
Glosario	