Las ecuaciones 34 y 35, proporcionan resultados razonables para valores X entre 0.0 y 1.0. Cuando se produce la sobre saturación durante largos periodos (> de 15 minutos), es difícil estimar la demora con exactitud, pues las filas pueden utilizarse para valores de X de hasta 1.2 ó 1/FHP. Pero no se recomienda para valores de X superiores a lo anterior. La sobresaturación es decir X > 1.0, es una situación no deseable que debe mejorarse si es posible.

Al no ser recomendable calcular la demora en la intersección le corresponde un Nivel de servicio "F. Puede deducirse que la relación de v/c de los cuatro accesos es aceptable ya que se encuentran por debajo de 1.0, aunque el nivel de servicio en los accesos rumbo hacia el norte (RN) y hacia el sur (RS) presentan un nivel de servicio "E".

Observando estos resultados se pueden sugerir algunas medidas para mejorar el nivel de servicio de la intersección, esto puede ser: una longitud del ciclo apropiada, así como sus fases, mejora en los radios de giro para vueltas izquierdas, proponer una nueva distribución de carriles, prohibición de algunos movimientos de vuelta izquierda, etc.

MODULO DE ENTRADA

Intersect	ción:	Blvd Diaz Orda: con Av. Corre						Fecha: 25-Aug-99				ug-99
Analis	16:	МУЛ	'L		Periodo A	nalizado: ˌ	18-30 - 19.30	Tipo de	e Area:		CBD	X OTRO
Proyecto	. No.	<u> </u>		1			Ciu	dad / Est	sdo:	San I	Pedro Gar	za Garcia N L
GEOMETRÍA y VOLUMEN RS TOTAL Av. Corregidora												
	A					474				207	. •	
					<u> </u>	↓				2481		2934
	NORTE			38		170	266				· •—	O TOTAL
										246	·	
Identifica	r en el Diagram	a									*	 -
1. Volúm	enes									Blvd. Di	iáz Ordaz	
2. Ancho	de Carril											
3. Movim	iento en el Carr	il			_		145		212		180	320
4. Locali:	ación de Estaci	onamiento							Ι,		4	
-	uda de Carriles	de Almacenami	ento		3796	 -	3191					
•	isica o pintada				RE TOTAL	L				•	<u> </u>	, ' l
6. Parada	de Autobús				-	-	460_				7/2	
						•		J	ı	,	RN TOTAL	L
CONDIC	IONES GEOM	ETRICAŞ Y DE	LA CIRC	ULACIÓ	ĎN	_						_
ACCESO	PENDIENTE	%HV	Carr		Auto	bus	FHP	Con	Aicto	Semáfo	ro Para	Tipo de
	(%)		Estacion	amiento	(N	, l	Peatonal			Pear	Arribo	
			Adya	cente				(реа	t/hr.)			
	1		SeN	Nm						SON	Tiempo	
			 _		<u> </u>		_			<u> </u>	Min.	
RE	,	7.86	N	9	1:		0.90	ł	0	N -	22	3
RO RN	1 3	4.84	N	0	10		0.90			N N	22 20	3
RS	3	10.95 5.29	N	0	12		0.90	_	0	N N	20	3
	e: + ascendente		1	•	Parada de				1	Tiempo:		
descende	nie			FHP	= Factor d	e Hora Pic	co.		Para	Cruce Po	atonaL	
HV: Veh.	Con más de 4 r	uedas		Confi	licto Peator	al = pead	Ihr.		Tipo	de arribo	: Tipo 1-5	:
Nm: Man	iobras de Estac	ion/hr.							<u> </u>			
FASES												
D I	RE - RO	RN	R	s								
4	_				İ	ı				1	ı	
G R	→	↓ ❖	ار ا	, '							ļ	
4	~	↑ ♈		*						1	1	
M A	*											[
Tiempo	1'- 82	l' = 30	ν-	29	V =		ν-	V =		1'-		V =
		A+R 3	A + R	3	A + R		A + R	A + R		A + R		A + R
	Actuado											
	Fijo	<u> </u>							I_			
Vuelta Pr	otegida	. F	ueita Perm	itida		Peaton	es — <u>—</u> ——			ón del iclo		io seg
Vuelta Pr	rotegida	. M	ielta Perm	itida j		Peaton	es		Duracu			iO seg
								_	<u>, c</u>	IETO		

Figura 14. Modulo de Entrada, Ejemplo 1.

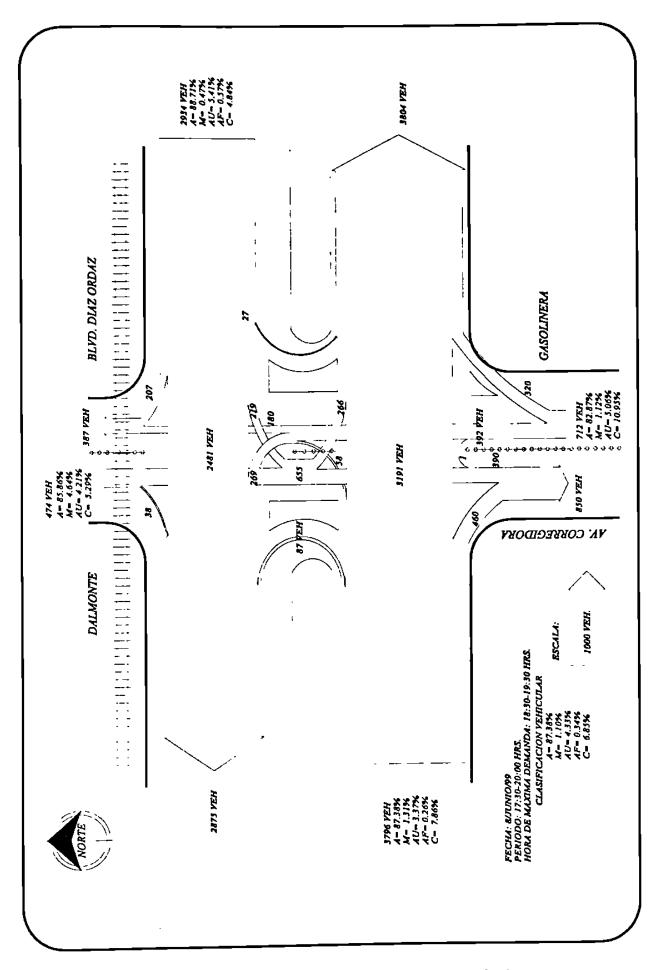


Figura 15 Volúmenes Direccionales, Ejemplo 1

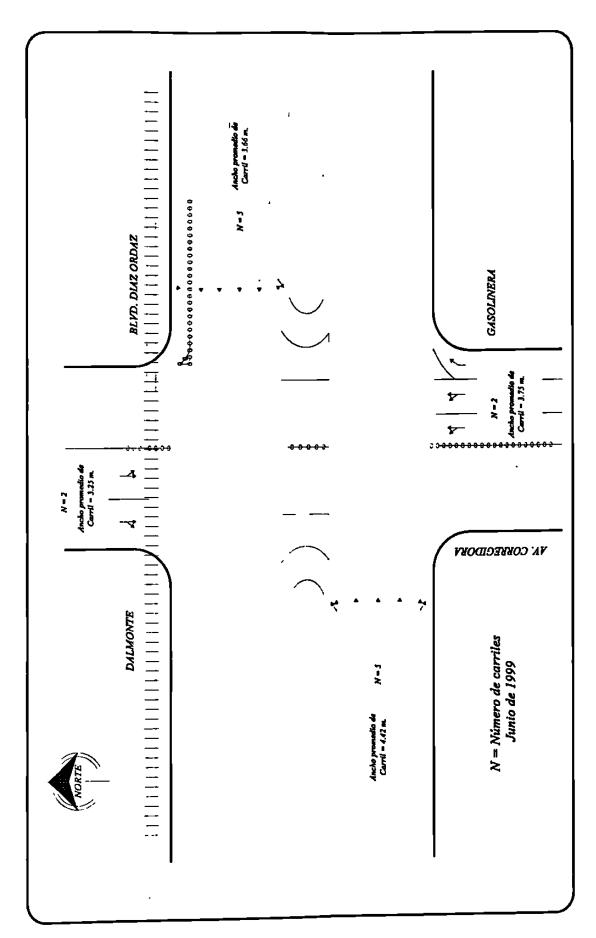


Figura 16 Inventario Geométrico, Ejemplo 1

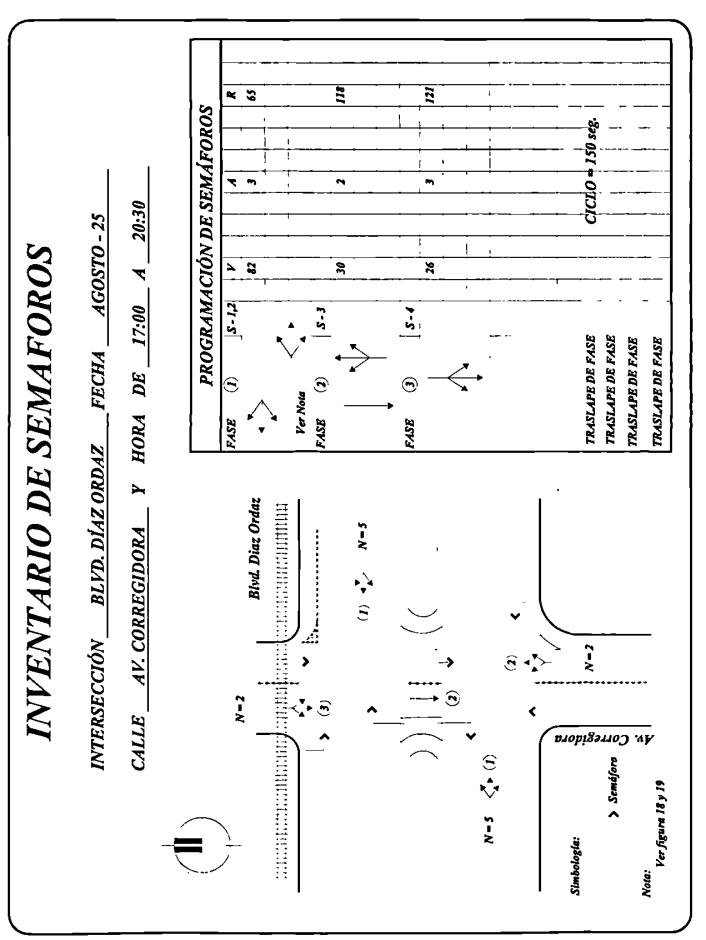
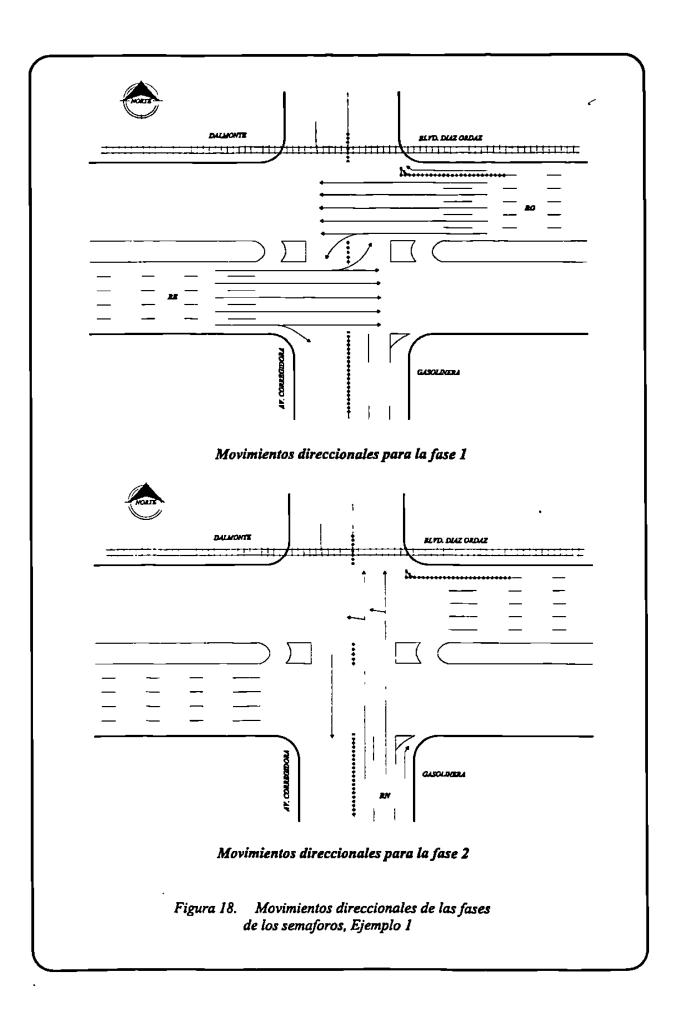
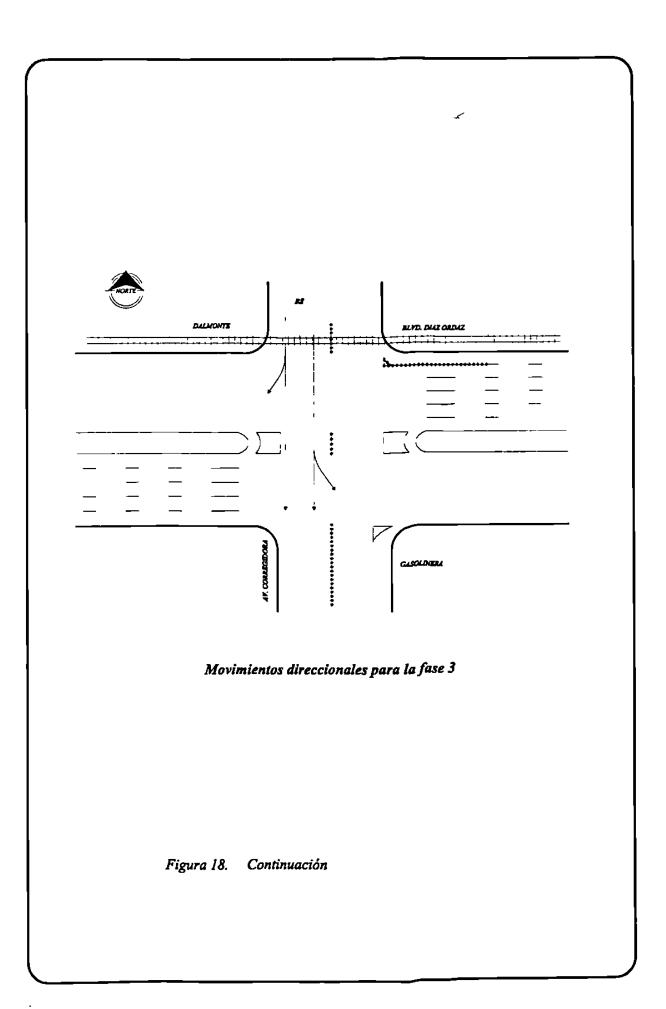




Figura 17. Inventario de Semáforos, Ejemplo 1

			MO	DULO D	E AJUST	E DE VOL	UMENE	S		
î Accese	2 Movimiento	3 Volumen Movimiento (whr)	4 Factor de Horo Pico FHP	5 Intensidad Máxima (whr) 3/4	6 Grupo de Carriles	7 Intensidad en Carriles de Grupo wg (v/hr)	8 Número de Carriles N	9 Utilización de Carril Factor U Tabla 6	10 Intensidad Ajustada V (v/hr) 7x9	II Prop. de LT o RT P _{LT} o P _{RT}
	LT Izquierda	58	0.90	64						LT 0 02
RE	TH De frente	3191	0.90	3546	1 111	4121	5	1.10	4533	
	RT Derecha	460	0.90	511						RT 0.12
	LT Izquierda	219	0.90	243						LT 0.08
RO	TH De frente	2481	0.90	2757	*	3000	5	1 10	3300	
	RT Derecha									
_	LT Izquierda	212	0.90	236	_ 	136	2	1 03	119	LT 054
RN	TH De frente	180	0.90	200						
	RT Derecha									
	LT Izquierda	.266	0 90	296						LT 0 56
RS	TII De frente	170	0 90	189	→	527	2	1 05	.553	
	RT Derecha	38	0 90	4						RT 0 08

Figura 19. Modulo de Entrada, Ejemplo 1.

	MODULO DEL VALOR DE FLUJO DE SATURACIÓN											
Gener	de Carriles					Face	ores de Ajuste					13
l Acceso	2 Movimiento de los grupos de corriles	3 Intensidad de Saturación Ideal (vVhr/c)	4 No. De Carriles N	S Ancho de Carril fw	6 Vehiculos Pesados I uv	7 Pendiente Se	& Estacionem.	9 Bioqueo de Autobuses Su	10 Tipo de Area S.	II Giro Der. f ma	12 Giro Izq. Smi	Intensidad Saturación Ajustada S (vh/he)
				Tablo 8	Tabla 9	Tabla 10	Tabia II	Tabla 12	Tabia 13	Tabla 14	Tabla IS	
	LT Izquierda										_	
RE	TH De frente	2050	5	1.08	0.93	1.0	1.0	0.98	1.0	0.98	10	9863
 	RT Derecha										_	
	LT Izquierda		_									
RO	TH De frente	2050	5	1.00	0.95	1.0	1.0	0.99	1.0	1.0	10	9652
	RT Derecha	_			<u> 18</u>						_	
	LT Izquierda	2050	2	1.01	0.90	0.99	1.0	0.98	10	1.0	0.95	3426
RN	TH De frense											
	RT Derecha	_										
	LT Izquierda											
RS	TH De frente	2050	2	0 96	0.93	0.99	10	0.97	10	0 99	0.97	3432
	RT Derecks	_										

Figura 20. Módulo del Valor de flujo de Saturación, Ejemplo 1.

MODULO DE ANALISIS DE CAPACIDAD										
l Accese	2 Movimiento de Grupos de Carriles	} Volumen Ajustado V (who)	4 Intensidad Saturación Ajustada S (whr)	5 Relación de Intensidad W2 3/4	6 Relación Tiempo de inz verde g/C	7 Capacidad Grupo de Carriles C (Whr) 4x6	a Relación V/C 3/7 X	9 Grupo de Carriles Crítico (°)		
RE										
, KE		4533	9863	0.460	0.547	5393	0 841	•		
RO	→	3300	9652	0.342	0.547	5277	0.625	 		
			_							
		449	3426	0.131	0.200	685	0.635	,		
RN										
RS	→	553	3432	0 161	0 193	663	0 833			
Bussell	and Class C	150				Web: -		Crima		
	Duración del Ciclo C 150 segundos $\Sigma(w s) = 1.093$ Crinco iempo Perdido por Ciclo L 9 segundos $x = \frac{\sum (w s) C}{C - L} = \frac{1.163}{C}$									

Figura 21. Módulo de Análisis de Capacidad, Ejemplo 1.

				MOD	ULO DE	NIVEL I	E SER	VICO				
Grup	o de Carriles		Prime	a Demora		Seg	unda Demo	re	Demor Grupo da	a y NS Carriles	Demora 1	Total y NS
Accese	Movimiento de Grupo de Carriles	Relación WC X	d Relación de luz verde g/C	5 Demora uniforme d ₁ seg/reh.	6 Adjuste foctor DF Tabla 16	7 Capacidad de Grupos de Carriles C (whr)	å d ₃ , cal. periodo m. Table 16	9 Demora Incremental d; seg./veh	jo Demora, d	II N.S. Grupe De	I2 Dem. Acc. (seg./veh.)	13 N.S. Acc. Total Tabla 3
RE	<i>→</i>	0.841	0 547	21.67	10	5393	16	0.93	22 61	с	22 61	c
_			1									
RO		0 623	0 547	17.80	10	5277	16	0.17	17.97	c	17.97	<i>c</i>
RN	_# _#,	0 655	0 300	41.98	1.0	685	16	1.59	43 57	Ε	43 57	E
RS	→ *	0 833	0.193	44.22	1.0	663	16	6.27	50 49	ε	30 49	ε
Den	nora en la Interso	rcción	23.68	seg Arch.				NS de la In	tersección		(Tabla 3)	

Figura 22. Módulo de Nivel de Servcio, Ejemplo 1.

VI. DETERMINACIÓN DEL FACTOR POR PRESENCIA DE VEHÍCULOS PESADOS EN LA CORRIENTE DEL TRANSITO

VI.1 Estudios de ingeniería de tránsito

Los estudios más frecuentes están dirigidos básicamente a los problemas que existen en el tránsito. De aquí la importancia que ocupan estos estudios, los cuales en las grandes ciudades son muy complicados pero se obtienen resultados satisfactorios para resolver los problemas del tránsito.

No importa qué tan simple parezca el problema, el éxito de las mejoras al tránsito se basa en hechos confiables.

La planeación de los estudios de tránsito para recopilar los datos, incluye la selección y capacitación del personal, la adquisición de equipos, la preparación de formas de campo y el desarrollo de programas para la obtención de los datos.

Otras veces, la organización de un estudio requiere la contratación de más personal, y el diseño de programas detallados.

El producto final, ya sea un simple aforo de tránsito o una investigación más amplia, debe presentarse de tal forma que sea de fácil comprensión y aplicación, para su uso actual y futuro.

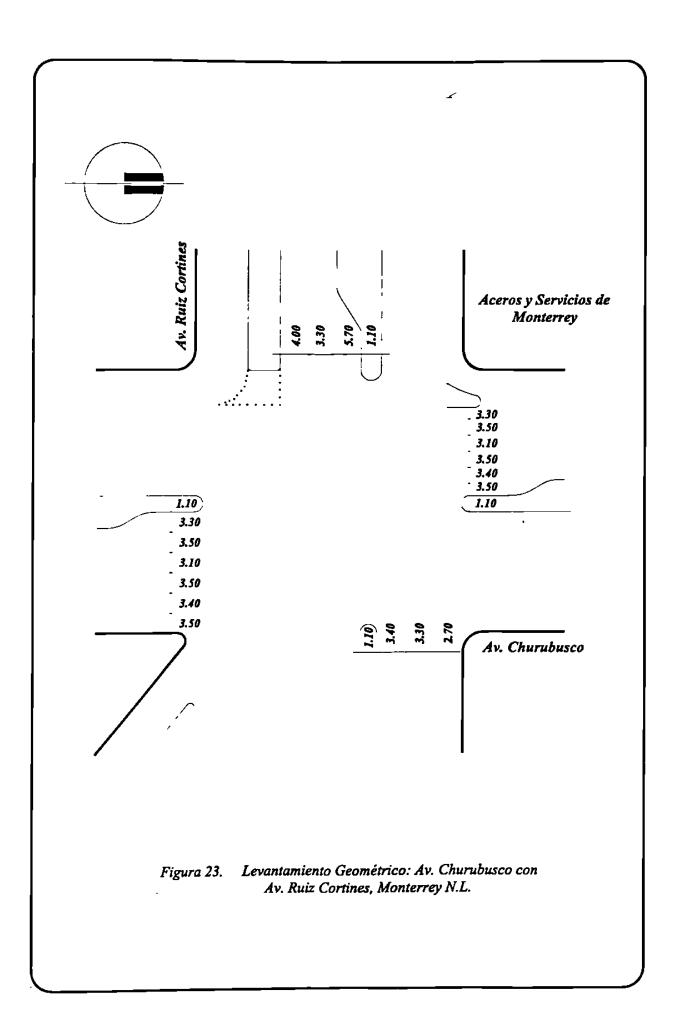
VI.1.1 Inventario Geométrico

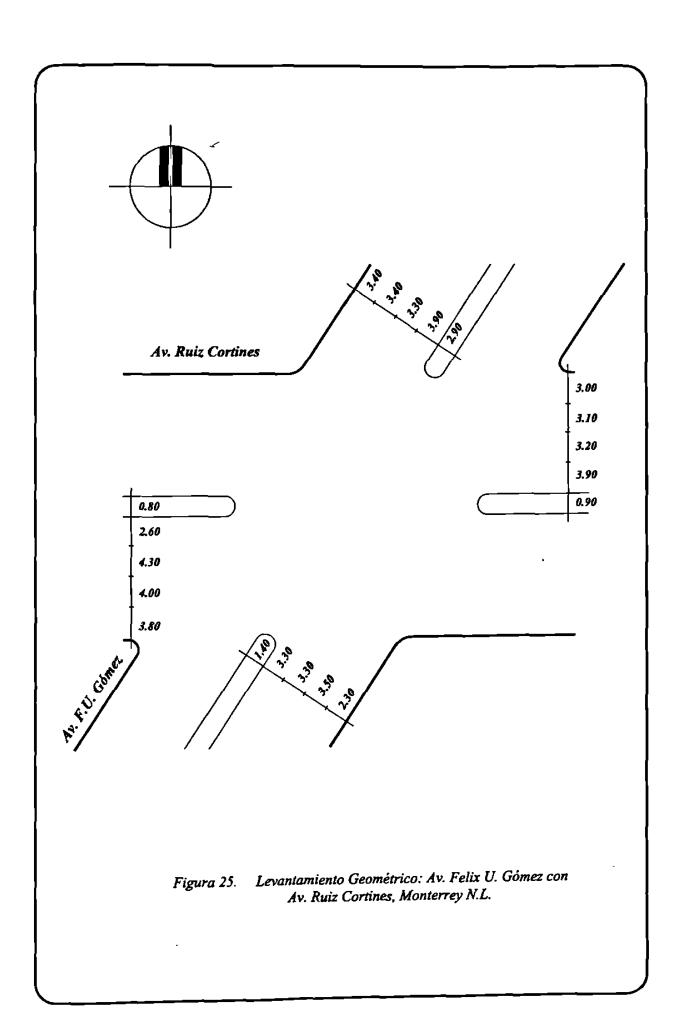
Inventarios para Estudios de Tránsito.

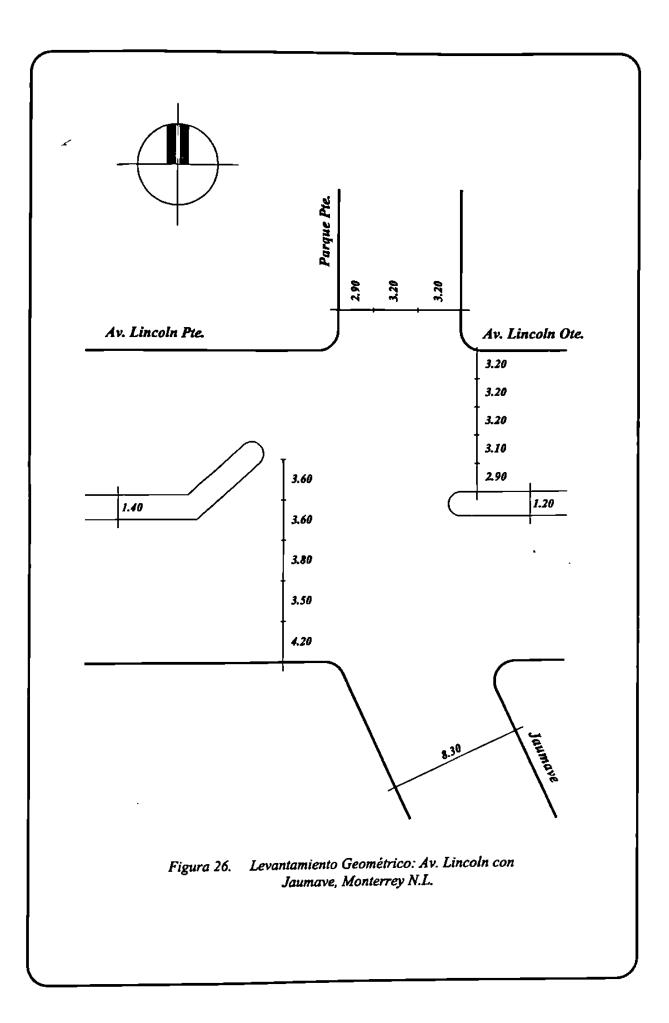
Existen varios tipos y formas de inventarios para los diferentes estudios en ingenieria de tránsito.

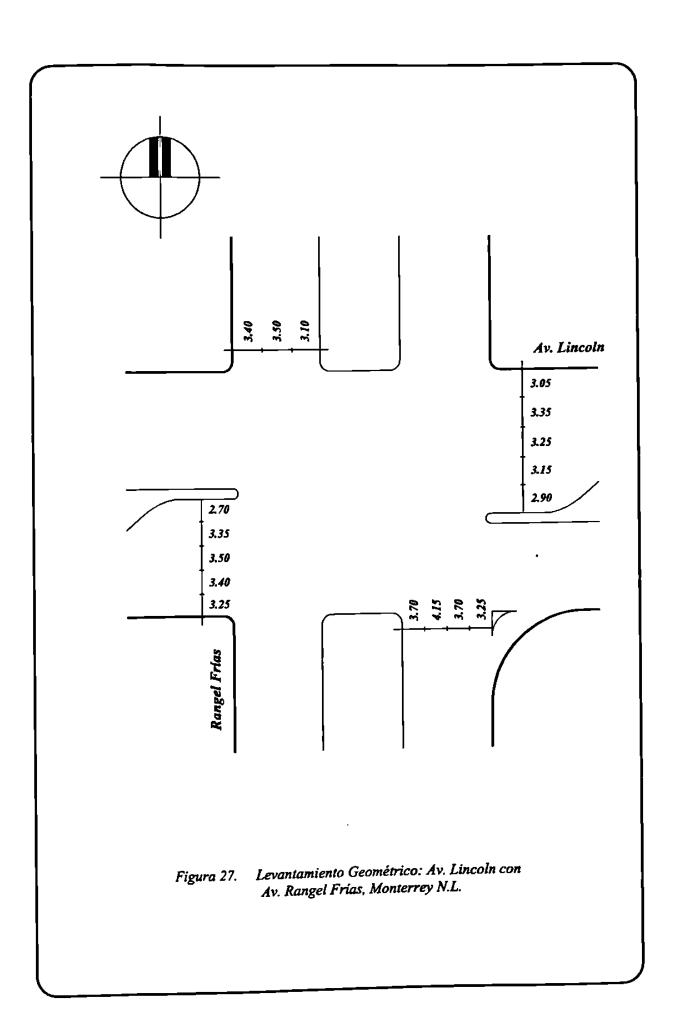
Inventario de señales:

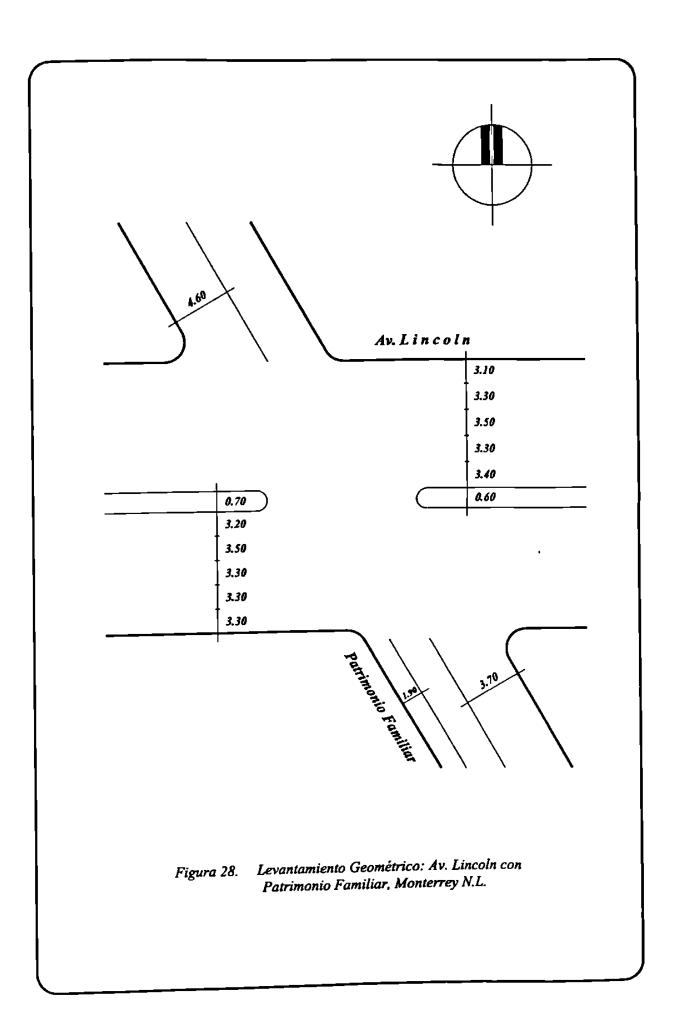
Consiste en una revisión periódica de su estado de funcionalidad y de los elementos de soporte, según sea el caso.

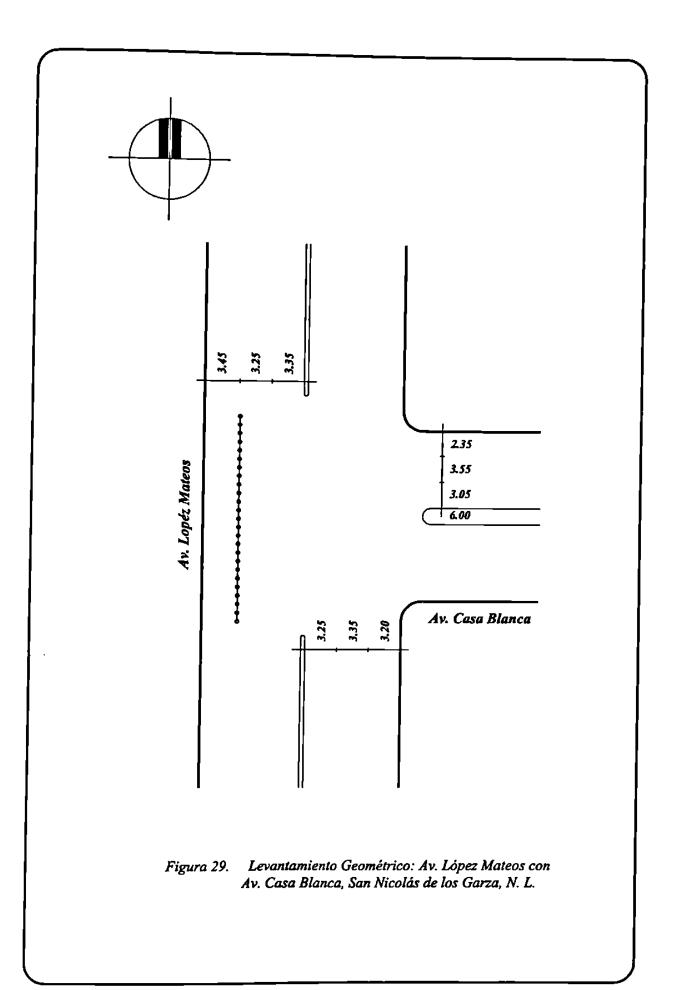

Señales verticales:

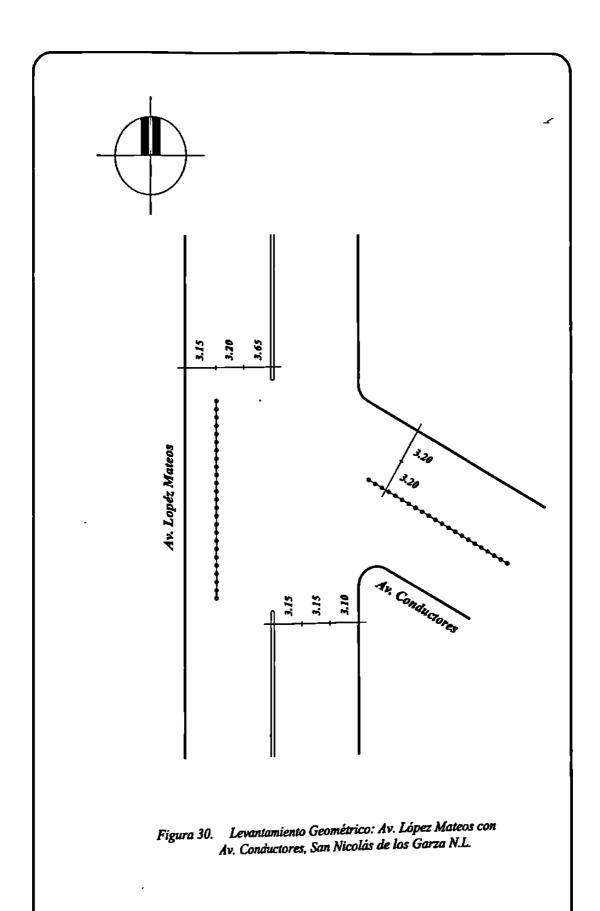

- Posición de la señal en la intersección.
- & Tipo y tamaño de la señal.

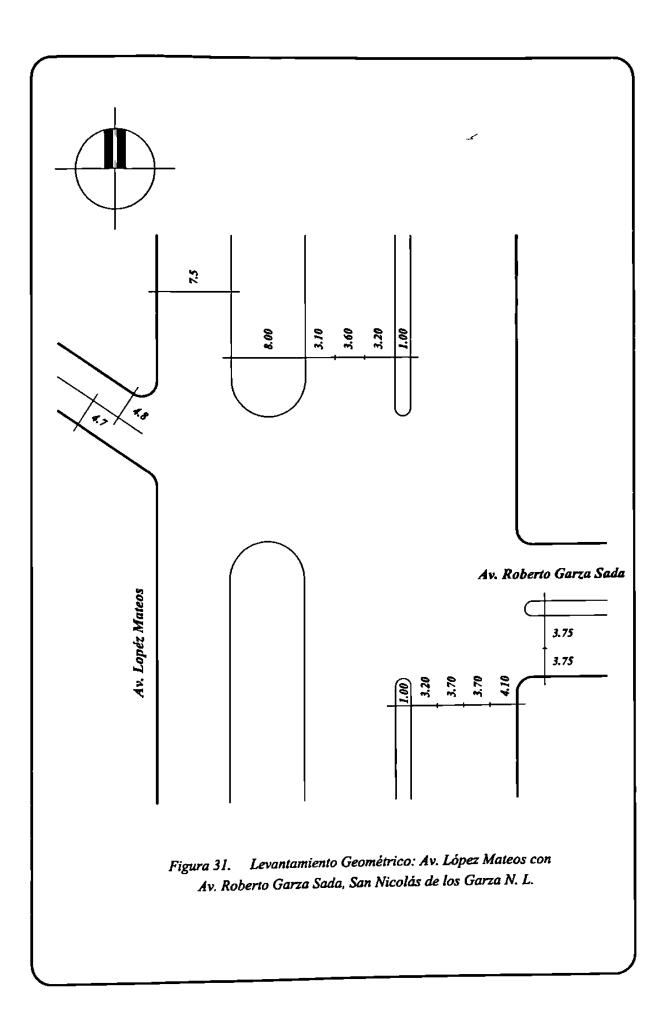

<u>Señales horizontales</u>:


- ${\cal S}$ Flecha vuelta izquierda, vuelta en U
- 🗈 Boyas para división de sentido de circulación.
- 🗗 Pintura de guarnición.


A continuación se presentan los croquis de las intersecciones analizadas:







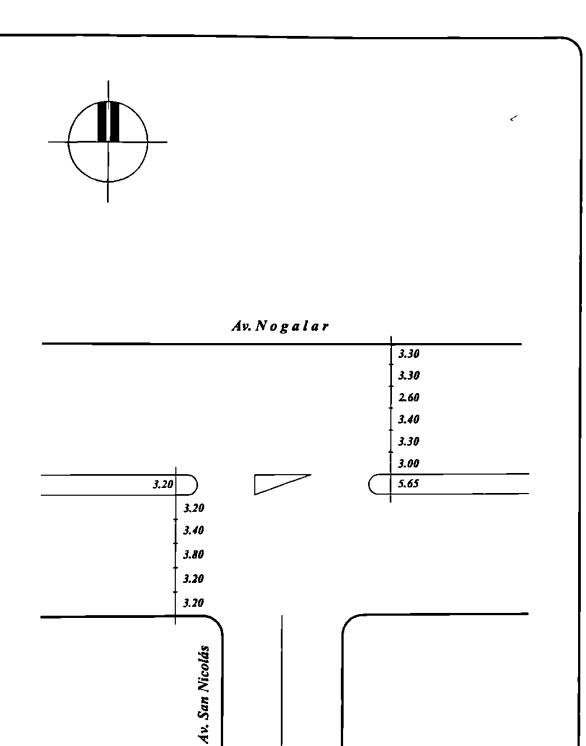
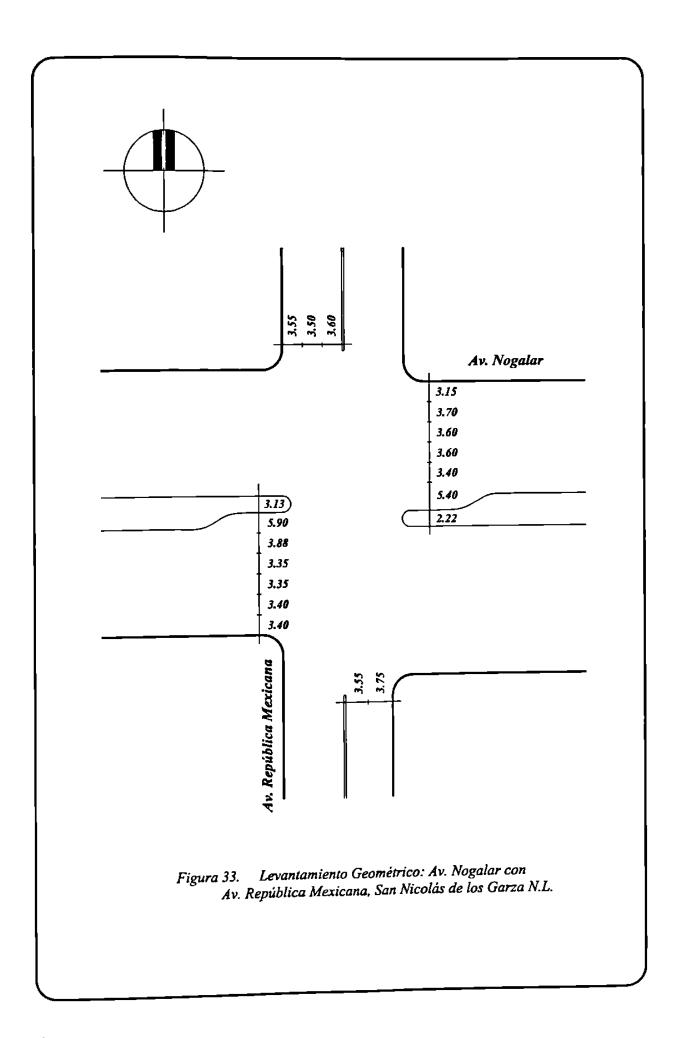
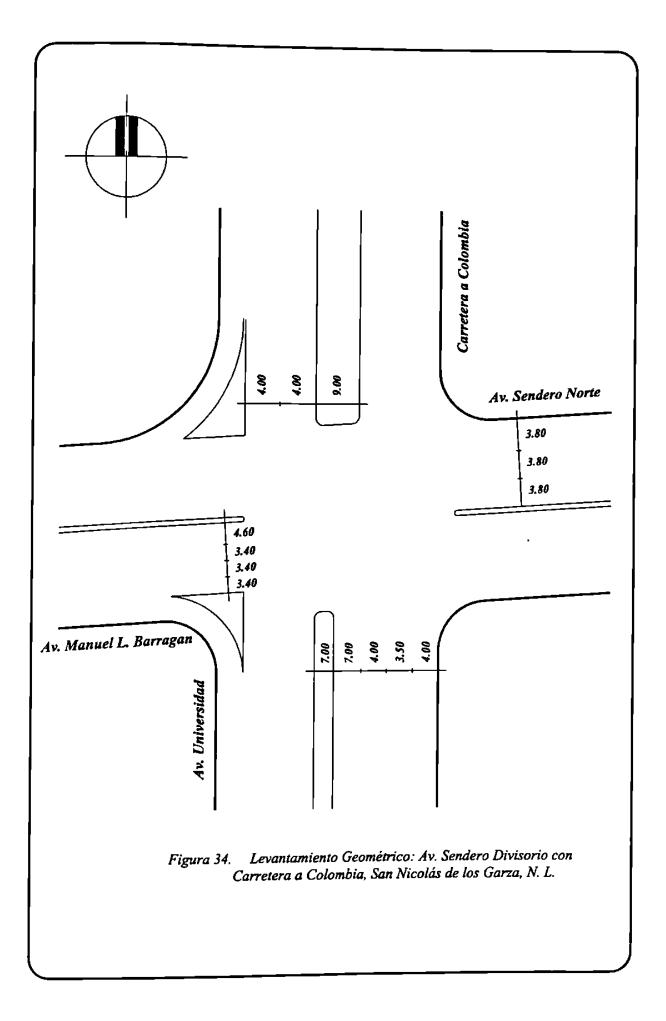
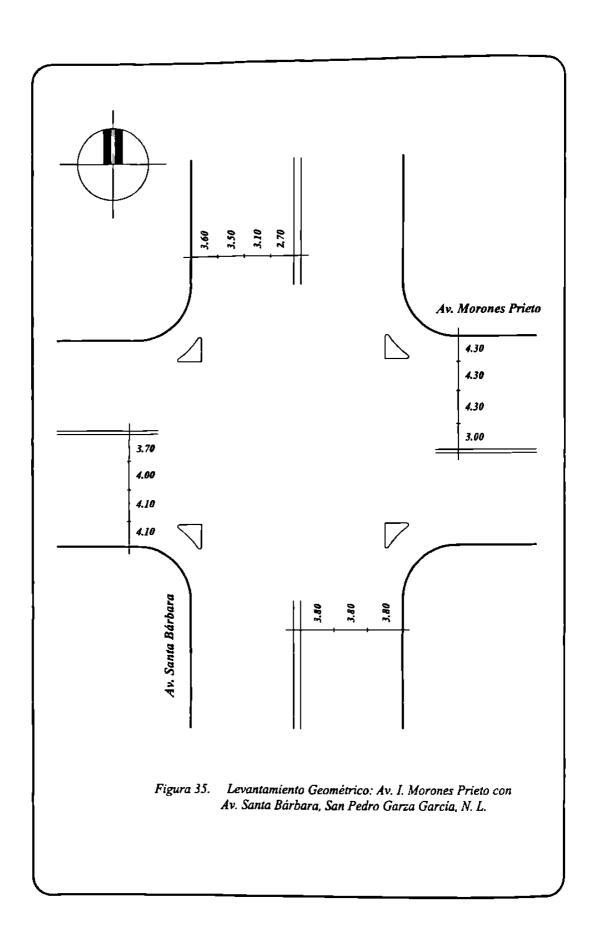
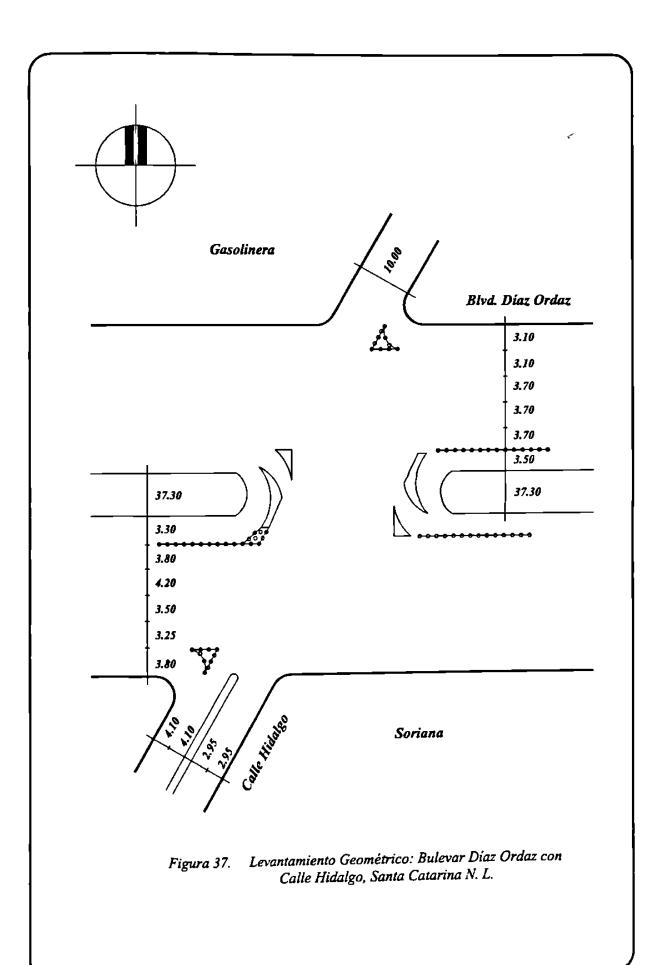






Figura 32. Levantamiento Geométrico: Av. Nogalar con Av. San Nicolás, San Nicolás de los Garza, N. L.

VI.1.2 Muestreo en campo del factor por presencia de vehículos pesados en la corriente del tránsito

El flujo de saturación básico utilizado en el análisis de capacidad en intersecciones semaforizadas es de 2050 vl hr c, esta cifra nos ayudará a medir los valores, para diferentes porcentajes por presencia de vehículos pesados, ya que éstos se presentan, como una condición distinta a las condiciones ideales en el tránsito y por lo tanto es motivo de ajuste. Como procedimiento alternativo, el flujo de saturación prevaleciente puede medirse directamente en el campo.

Las distintas condiciones prevalecientes en el tránsito, como los vehículos pesados, han sido medidas e investigadas por muchos grupos, en los Estados Unidos de Norteamérica. Las condiciones climáticas extremas, o la composición de tránsito inusuales, o bien otras condiciones locales críticas varian en relación con las estimadas con los cálculos recomendados en el método. A continuación se resume el procedimiento de observación de la intensidad de saturación, en la figura 37 y se muestra el formato de campo para el registro de las observaciones.

Se recomienda utilizar una brigada de dos personas; una, en funciones de cronometrador y la otra, como registrador.

Procedimiento en campo:

- 1. Cumplimiento del formato de la figura 37, en su totalidad.
- 2. Selección de un punto de observación en donde se vean con claridad de la línea de parada o el paso peatonal y las señales semafóricas.
- 3. Selección de un punto de referencia, normalmente el paso peatonal o la linea de parada. Los vehículos deben parar habitualmente detrás de esta referencia. Se considerará que un vehículo entre en la intersección cuando cruce esta referencia.
- 4. Se debe realizar un estudio para cada ciclo.

Obligaciones del observador:

- 1. Percibir cuál es el último vehículo detenido en la fila cuando el semáforo cambia y emite la luz verde.
- 2. Descripción de este último vehículo al cronometrador.
- 3. Anotar en el formulario los vehículos pesados
- 4. Anotar el tiempo que dicta el cronometrador.

Obligaciones del cronometrador:

- 1. Dar marcha al cronómetro al comienzo del tiempo de luz verde y anunciarlo (voceándolo) al observador.
- 2. Anunciar cada vehículo según cruce éste el punto de referencia con su eje trasero ejemplo: "uno", "dos", "tres", etc.).
- 3. Anunciar el tiempo del cuarto, décimo y último vehículo de la fila. Esto puede hacerse al salir de la fila con la ayuda de un cronómetro clásico. Los cronómetros nuevos, más sofisticados con memoria, permiten al cronometrador anunciar estos tiempos después de que se haya disipado la fila.

Se deben anotar todos aquellos sucesos especiales que puedan haber influido en el flujo de saturación, como son los autobuses, los vehículos que paran por avería. Se deben medir y anotar el tipo de zona y la anchura e inclinación del carril que se estudia.

El período definido como flujo de saturación comienza cuando el eje trasero del cuarto vehículo en la fila cruza la línea de parada o de referencia, y termina cuando el último eje del último vehículo que estaba en la fila al comienzo del periodo en luz verde cruza el mismo punto. Como se ha descrito en las instrucciones, las medidas se hacen en cada ciclo y carril. Para reducir los datos, se resta el tiempo registrado para el cuarto vehículo del tiempo registrado para el último vehículo de la fila. Esta cifra es el intervalo total de n-4 vehículos, siendo n el numero total de vehículos en la fila al comienzo del verde (o el número del último vehículo en la fila). Se divide el intervalo

total entre n-4 obteniéndose el intervalo medio por vehículo en flujo saturado. El flujo de saturación se calcula dividiendo 3,600 entre este valor.

$$S = 3600 \ [(T_u - T_s) \ (n_u - s)] \tag{40}$$

Donde:

S - Flujo de saturación en campo

 $T_u = Tiempo del último vehículo en segundos.$

 T_4 = Tiempo del cuarto vehículos en segundos.

 $n_u = N$ úmero del último vehículo.

	HOJA	DE CAMP	O - ESTUD	OO DEL F	LUJO DE S	ATURACIO	ÓN				
Lugar Fecha Sentido del Ti Observador:	ránsito hacia (Hora el		Ciudad				<u> </u>			
Movimientos p () De frente () Vuelta dere () Vuelta izqu	cha										
Veh. En	Cica		Cic	lo 2 VP		lo 3		lo 4 VP			
fila I	Tiempo	VP	Tiempo	VP	Tiempo	VP	Тіетро	VP			
2 3		-						-			
4		-						_			
5	-	_	-	-			-				
7 8 9			-			•	-				
10 11	_				_	-					
12 13	1	-			-	-					
14 15 16			•		-		.				
17 18					-						
19 20 21											
22 23	<u>. </u>		-			_					
24 25 26							-				
27 28			-								
29 30 31											
Fin de la saturación											
Fin del verde No. De Veh.		· .									
No. De Veh. en	,		-								
ambar								_			
	P = Vehiculos pesados (de más de 4 ruedas)										
Inclinac	Inclinación o Pendien <u>te</u> Tipo de Area										

Figura 38 — Formato de campo para el registro de las observaciones del flujo de saturación

VI.1.3 Información Fotográfica

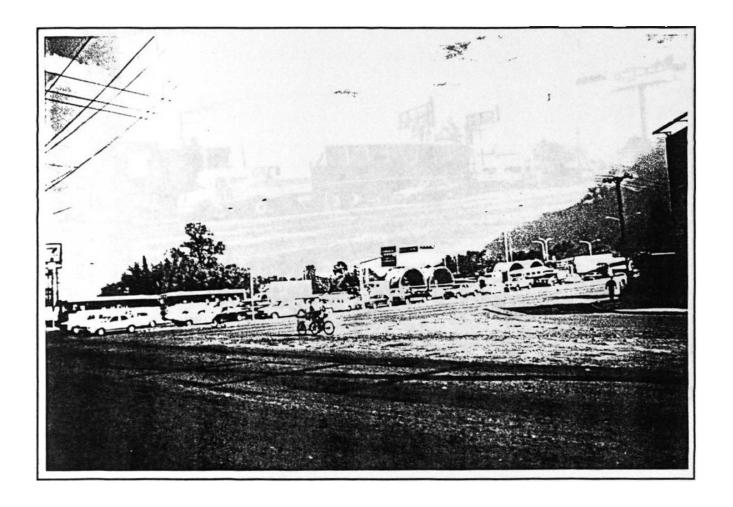


Figura 39. Intersección Av. Churubusco con Av. Ruiz Cortines, se observa las filas de vehículos que se generan en el acceso de Norte a Sur, así como la presencia, de diferentes tipos de vehículos pesados.

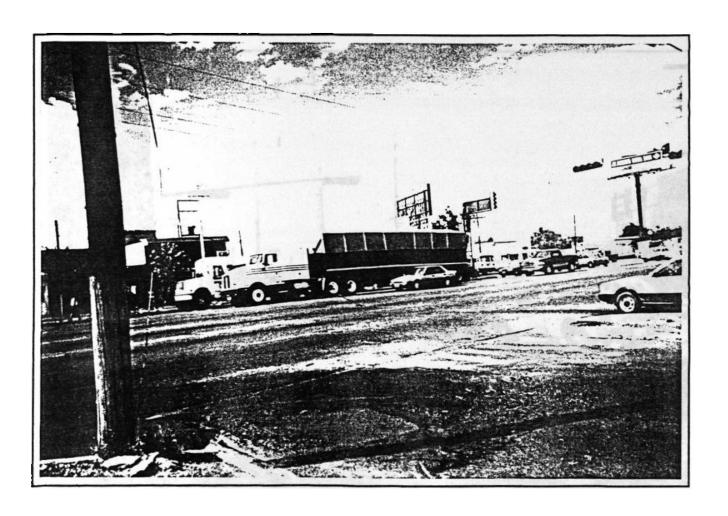


Figura 40. Intersección Av. López Mateos con Av. Rodolfo Garza Sada, nótese el espacio que ocupa el vehículo pesado en comparación al vehículo ligero en flujo vehícular.

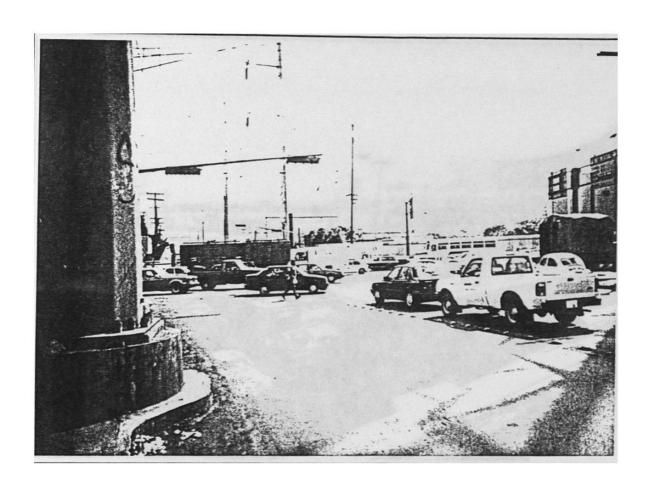


Figura 41. Intersección Av. Nogalar con Av. República Mexicana, muestra el flujo vehicular existente, así como la presencia de vehículos pesados en ambos sentidos.

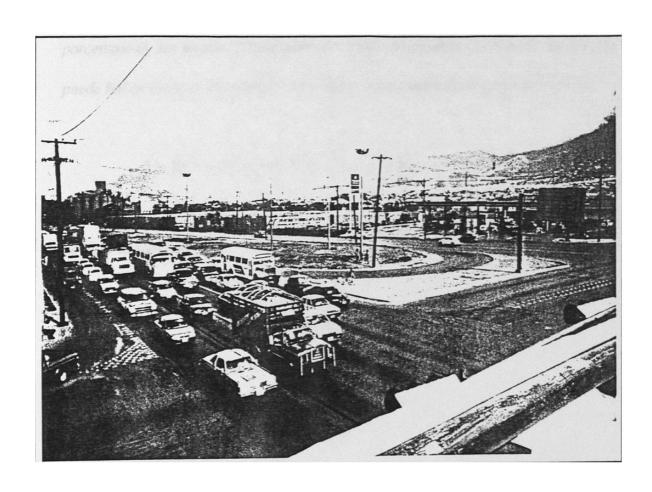


Figura 41. Intersección Av. Díaz Ordaz con Av. Corregidora, muestra la saturación vehicular en el acceso de oriente a poniente, así como también un porcentaje considerable de vehículos pesados.

VI.2 Proceso de la Información

Una vez encontrado el valor de flujo de saturación en campo, en condíciones ideales, excepto por la presencia de vehículos pesados en la corriente de tránsito, así como el porcentaje de los mismos y aplicando el método del módulo del flujo de saturación se puede hallar el factor de corrección por vehículos pesados de la siguiente manera:

$$S = So * f_{HV} * f_g * f_P * f_{bb} * f_a * f_{RT} * f_{LT}$$
(8)

Se tiene lo siguiente:

So = 2050 veh hr carr
$$f_{Hl} = ?$$

$$f_g = 1$$

$$f_{P} = 1$$

$$f_{bh} = 1$$

$$f_a$$
 – I

$$f_{RT} = I$$

$$f_{LT} - I$$

Sustituyendo los valores anteriores en la ecuación (8) queda como sigue:

$$S = So * f_{HV}$$
 (8a)

Para obtener el valor de flujo en campo se empleo la siguiente formula:

$$S = 3600 [(T_n - T_s) (n_n - s)]$$
 (40)

Si el número de vehículos que llegan en fase roja es igual al:

$$N = vl(1 + \%H.V.)$$

Donde:

vl Vehiculos ligeros

%H.V. = Porcentaje de vehiculos pesados

Si se iguala la ecuación 8a con 40 se obtiene lo siguiente:

$$f_{HI'} = ((vl (1 - \%H.V.) - 4) * 3600 ((T_f - T_4) * So)$$
 (41)

Para el proceso de los datos tomados en campo se utilizó el apoyo del paquete de computadora Excel, los resultados obtenidos se muestran en la Tabla 18.

Tabla 18.- Proceso de datos de campo

Carril	T_f	T_{4}	No. V.I.	No. V.H.	Total de	%H.V.	f_{HV}
			velı.	11	velı. (N)		

	•			-			
	Int	ersecci	ón: Av. Ch	urubusco co	on Av. Ruiz	Cortines	
2	21	7	10	1	11	9.09%	0.878
2	24	11	9	1	10	10.00%	0.811
2	21	8	9	$-\frac{1}{l}$	10	10.00%	0.811
2 2 2	21	9	9	1	10	10.00%	0.878
2	24	13	9	$-\frac{1}{1}$	10	10.00%	0.958
2	23	12	9 ~	1 -	10	10.00%	0.958
2	24	10	9	1	10	10.00%	0.753
2	24	11	9	1	10	10.00%	0.811
2	21	10	9 7	1	10	10.00%	0.958
2 2	16	8	7	1	8	12.50%	0.878
2	16	10	6	1	7	14.29%	0.878
2	16	10	6	$\overline{1}$	7	14.29%	0.878
2	12	$1\overline{0}$	4	1	5	20.00%	0.878
2	22	$1\overline{I}$	8	2	10	20.00% .	0.958
2	21	11	7	2	9	22.22%	0.878
2	20	11	6	2	8	25.00%	0 .780
2	21	14	5	2	7	28.57%	0.753
2	23	14	4	3	7	42.86%	0.585
		Inte	rsección: A	lv. <i>Churubu</i>	sco con An	des	
2	20	8	9		10	10.00%	0.878
2 2 2	25	9	10	2	$\frac{12}{11}$	16.67%	0.878
2	26	12	9	2		18.18%	0.878
2	23	10	8	2	10	20.00%	0.811
2	24	11	_ 8	2	10	20.00%	0.811
2	26	12	- 8 -	3	II	27.27%	0.878
2	17	10	5	2_	7_	28.57%	0.753
	Inter.	sección	ı: Av. Ruiz	Cortines co	n Av. Félix	U. Gómez	_
2	28_	6	15	1	16	6.25%	0.958
2	28	6	15	1	16	6.25%	0.958
2	29	9	13		<u> </u>	7.14%	0.878
2 2	29	9	13	$-\frac{1}{I}$	14	7.14%	0.878
	27	9	12	1	13 [7.69° o	0.878
2	24	10	10	I I	[11 [9.09%	0.878
2	27	12	10	I	11	9.09%	0.820

Tabla 18.- Continuación

Carril	T_f	T_4	No. V.l.	No. V.H.	Total de	%H.V.	f_{HV}
	seg	seg	veh.	veh.	veh. (N)		
L	,	'	<u> </u>				·
2	31	5	15	2	17	11.76%	0.878
2	26	18	7	$\overline{1}$	8	12.50%	0.878
$\frac{2}{2}$	30	7	12	2	14	14.29%	0.764
$\overline{2}$	29	7	12	2	14	14.29%	0.798
2	28	11	11	2	13	15.38%	0.930
2	31	18	9	2	11	18.18%	0.946
2	28	13	9	2	11	18.18%	0.820
2	28	6	13	3	16	18.75%	0.958
2	29	9	11	3	14	21.43%	0.878
2	29	10	10	3	13	23.08%	0.832
2	28	9	10	3	13	23.08%	0.832
2	18	11	5	2	7	28.57%	0.753
2	19	12	5	2	7	28.57%	0.753
2	27	13	7	3	10	30.00%	0.753
2	18	9 -	5	3	8	37.50%	0.780
		Inte	ersección: .	Av. Lincoln	con Jauma	ve	"
2	32	5_	_18	1	19	5.26%	0.976
2	24	5	13	1	14	7.14%	0.924
3	28	9	13	\overline{I}	14	7.14%	0.924
3	24	8	11	$-\overline{1}$	12	8.33%	0.878
3	20	7	9	$\overline{1}$	10	10.00%	0.811
3	21	9	9	-1	10	10.00%	0.878
3	17	7	8	1_1_	9	11.11%	0.878
3	18	8	8 <u> </u>	- <u>-</u> -	9	11.11%	0.878
3	15	6	8	1	9	11.11%	0.976
2	19	9	8	1	9	11.11%	0.878
2 2 3 2 3	15	7	7 5	1	8	12.50%	0.878
3	13	9	5	1	6	16.67%	0.878
2	15	11	5	1	6	16.67%	0.878
3	11	7	5	1 -	- 6	16.67%	0.878
3	13	9	5 -	1	6	16.67%	0.878
3	13	9	5	1	6	16.67%	0.878
	21	7	9	2	11	18.18%	0.878
2 3	24	11	9	$-\frac{2}{2}$	11	18.18%	0.946
<u>3</u>	32	11	11	3	14	21.43%	0.836

Tabla 18.- Continuación

Carril	T_f	T_{4}	No. V.L.	No. V.H.	Total de	%H.V.	f_{HV}	
	seg	seg	veh.	velı.	veh. (N)			
3	27	10	8	3	11	27.27%	0.723	
3	16	8	5	2	7	28.57%	0.659	
3	19	9	5	3	8	37.50%	0.702	
		Inter	sección: A	v. Lincoln co	on Rangel F	rias		
2	35	10	17	1	18	5.56%	0.983	
2	35	10	17	1	18	5.56%	0.983	
$\frac{2}{2}$	35	10	16	1	17	5.88%	0.913	
	35	12	15		16	6.25%	0.916	
2	33	_8	15	1	16	6.25%	0.843	
2	35	12	14	1_	15	6.67%	0.840	
2	35	11	14	1	15	6.67%	0.805	
2 2 2 2 2	29	11	13	1	14	7.14%	0.976	
2	28	10	12	1	13	7.69%	0.878	
2	22	9	10	\overline{I}	11	9.09%	0.946	
	22	10	9	1	10	10.00%	0.878	
2	24	11	9	1	10	10.00%	0.811	
2 2 2	22	10	9	l	10	10.00%	0.878	
2	21	7	9	1	10	10.00%	0.753	
2 2	18	8	-8	1	9	11.11%	0.878	
	18	12	6 5	1	-7-	14.29%	0.878	
2 3	17	13	5	1	6	16.67%	0.878	
3	14	12	4	i_{I}	5	20.00%	0.878	
2	23	11	8	2	10	20.00%	0.878	
2	20	10	7	$\frac{1}{2}$	9	22.22%	0.878	
2 2 3	33	8	7	5	12	41.67%	0.562	
3	20	17	1	4	5	80.00%	0.585	
	Int	tersecc	ión: Av. Li	ncoln con P	atrimonio 1	Familiar		
3	32	9	14	11	15	6.67%	0.840	
3	30	14	_11	1	12	8.33%	0.878	
3	27	15	_ ₉	1	10	10.00%	0.878	
3	17	11	6	1 1	7	14.29%	0.878	
3	23	8	9	2	11	18.18%	0.820	
3	31	17	9	2	11	18.18%	0.878	
3	10	8	4	1	5	20.00%	0.878	
_ 3	13	11	4	I	5	20.00%	0.878	

Tabla 18.- Continuación

Carril	T_f	T_4	No. V.I.	No. V.H.	Total de	%H.V.	f_{HV}	
	seg	seg	veh.	velı.	veh. (N)			
<u></u>								
3	21	11	7	2	9	22.22%	0.878	
	It	itersec	ción: Av. L	ópez Mateo.	s con Casa	Blanca		
2	20	14	6	1	7	14.29%	0.878	
2	17	11	6	1	7	14.29%	0.878	
2	13	11	4	1	5	20.00%	0.878	
2	19	14	4	2	6	33.33%	0.702	
2	25	22	2	3	5	60.00%	0.585	
	Ii	itersec	ción: Av. I	.ópez Mateo	s con Cond	uctores		
2	25	8	11	1	12	8.33%	0.826	
2	25	10	<u> 11</u>	1	12	8.33%	0.937	
2	22	13	7	1	8	12.50%	0.780	
2	19	13	6	1	7	14.29%	0.878	
2	17	12	5	1	6	16.67%	0.702	
2	24	9	10	2	12	16.67%	0.937	
2	24	7	10	2	12	16.67% ·	0.826	
2	26	10	10	2	12	16.67%	<i>0.878</i>	
2	26	II	9	2	11	18.18%	0.820	
$\frac{2}{2}$ -	24	11	8	2	10	20.00%	_0.811	
2	25	12	8	2	10	20.00%	0.811	
2	25	18	5	2	7	28.57%	0.753	
2	25	10	6	4	[10]	40.00%	0.702	
2	23	16	4	3	7	42.86%	0.753	
	Interse	cción:	Av. Lopez .	Mateos con .	Av. Roberto	Garza Sada	!	
2	57	7	30	1	31	3.23%	0.948	
2	40	8	18	1	19	5.26%	0.823	
1	37	8	17	1	18	5.56%	0.848	
2	56	9	28	2	30	6.67%	0.971	
2	51	6	22	2	24	8.33%	0.780	
2	82	8	35	4	39	10.26%	0.831	
2 2 2 2 2 2	40_	10	16	2	18	11.11%	0.820	
$\begin{bmatrix} 2 \end{bmatrix}$	55	10	23	3	26	11.54%	0.859	
2	31	8	_15	2	17	11.76%	0.993	
2	28	6	14	2	16	12.50%	0.958	
2	60	8	27	4	31	12.90%	0.912	
2	27	5	13	2	15	13.33%	0.878	

Tabla 18.- Continuación

Carril	T_f	T_{4}	No. V.l.	No. V.H.	Total de	%H.V.	f_{HV}
	seg	seg	veh.	veh.	veh. (N)		
<u> </u>		u					
2	79	8	34	6	40	15.00%	0.890
2	35	1	14	3	17	17.65%	0.815
2	54	13	19	5	24	20.83%	0.857
1	27	11	9	3	12	25.00%	0.878
2	31	15	8	3	11	27.27%	0.768
1	25	10	8	3	11	27.27%	0.820
2	41	9	12	5	17	29.41%	0.713
_2	31	10	6	6	12	50.00%	0.669
2	32	16	3	6	9	66.67%	0.549
		Interse	cción: Av.	Nogalar cor	ı Av. San N	icolás	
3	32	11	14	1	15	6.67%	0.920
3	26	8	12	1	13	7.69%	0.878
3	32	17	11	1	12	8.33%	0.937
3	22	7	- 11	$\begin{bmatrix} 1 \end{bmatrix}$	12	8.33%	0.937
3	23	8_	11	1	12	8.33%	0.937
3	23	7	11_	1	12	8.33%	0.878
3	26	8	II^-	[- I	12	8.33%	0.780
3	38	10	17	2	19	10.53%	0.941
3	17	7]	8	1	9 _	11.11%	0.878
3	14	6	7		8	12.50%	0.878
3	12	8	5	I^{-}	6	16.67%	0.878
3	42	8	17	4	21	19.05%	0.878
3	14	12	4		5	20.00%	0.878
3	28	15	8	2	10	20.00%	0.811
3	16	9	5	2 .	7	28.57%	0.753
3	_13	10	2	3	5	60.00%	0.585
	Inter	secció	n: Av. Nog	alar con Av.	República	Mexicana	
3	34	10	15	\overline{l}	16	6.25%	0.878
2	30	8	15	1	16	6.25%	0.958
4	28	8	13	1	14	7.14%	0.878
3	29	12	12	I	13	7.69%	0.930
3	27	11	12	1	13	7.69%	0.988
4	28	13	11	1	12 -	8.33%	0.937
3	30	13	11	1	12	8.33%	0.826
. 3	25_	9	10	1		9.09%	0.768

Tabla 18.- Continuación

Carril	T_f	T_{4}	No. V.l.	No. V.H.	Total de	%H.V.	f_{HV}
	seg	seg	veh.	veh.	veh. (N)		
2	21	7	10	1	11	9.09%	0.878
3	18	9	8	\overline{I}	9	11.11%	0.976
3	$2\bar{I}$	12	8	1	9	11.11%	0.976
2	18	9	8	1	9	11.11%	0.976
3	30	10	13	2	15	13.33%	0.966
4	26	8	11	2	13	15.38%	0.878
4	40	8	16	3	19	15.79%	0.823
3	15	11	5	1	6	16.67%	0.878
2	14	10	5	1	6	16.67%	0.878
4	38	8	15	3	18	16.67%	0.820
$\frac{3}{3}$	22	7	10	2	12	16.67%	0.937
3	22	7	9	2	11	18.18%	0.820
4	26	13	8	2	10	20.00%	0.811
$-\frac{2}{2}$	13	6	5	2	7	28.57%	0.753
2	21	7	7	3	10	30.00%	0.753
	ntersec	ción: A	4v.Sendero	Divisorio c	on Carreter	a a Colombi	<u>a</u>
2	22 _	11	9	1	_10	10.00%	0.958
2	28	16	9	1	10	10.00%	0.878
2 _	24	15	8	Ī	9	11.11%	0.976
2	16	12	5	I	6	16.67%	0.878
2	21	8	8	2	10	20.00%	0.811
3	16	14	4	1	5	20.00%	0.878
	Inter	rsecció	n: Av. I. M	orones Prie	to con Sant	a Bárbara	
3	22	16	6	I	7_	14.29%	0.878
3	18	12	6		7	14.29%	0.878
3	21	15	5_	$\frac{2}{2}$	$\frac{7}{7}$	28.57%	0.878
3 3_ 2 3_ 3_	20	14	5		7_7_	28.57%	0.878
3	22	17	4	2	6	33.33%	0.702
3	22	14	3	4	7	57.14%	0.659
_	In	tersecc	ión: Bulev	ar Díaz Ord	az con Cori	egidora	
3	72	12	30	_ 3	33	9.09%	0.849
3	72	10	28	_ 5	33	15.15%	0.821
3 2 3	15	7	_ 6	$\frac{2}{3}$	8]	25.00%	0.878
	23	7	8	3	[11]	27.27%	0.768
3	22	6	8	3	11	27.27%	0.768

Tabla 18.- Continuación

Carril	T_f	T_{4}	No. V.I.	No. V.H.	Total de	%H.V.	$f_{\scriptscriptstyle HV}$
	seg	seg	velı.	velı.	veh. (N)		
	•			<u> </u>			
5	28	12	8	3	11	27.27%	0.768
5 .3	20	13	5	2	7	28.57%	0.753
3	34	12	9	4	13	30.77%	0.718
3	59	12	15	8	23	34.78%	0.710
3	20	10	5	3	8	37.50%	0.702
2	58	19	10	8	18	44.44%	0.630
3	47	10	10	8	18	44.44%	0.664
3	27	14	5	4	9	44.44%	0.675
3	32	10	7	6	13	46.15%	0.718
3	26	12	5	5	10	50.00%	0.753
3	51	17	5	9	14	64.29%	0.516
3	49	13	5	11	16	68.75%	0.585
		Interse	cción: Bul	evar Díaz O	rdaz con Hi	dalgo	
3	41	10	18	1	19	5.26%	0.850
3	47	21	15	1	16	6.25%	0.811
3	45	9	18	2	20	10.00%	0.780
3	64	9	26	3	29	10.34%	0.798
3	25	18	6	1	7	14.29%	0.753
3	15	9	6	1	7	14.29%	0.878
3	48	14	17	3	20	15.00%	0.826
3 _	30	12	11	2	13	15.38%	0.8-8
3	47	16	15	4	19	21.05%	0.850
3	45	14_	12	5	17	29.41%	0.736
3	29	8_	9	5 4 5	13	30.77%	0.753
3	48	_20	11 _	5	16	31.25%	0.753
3	31	15	6	4	10	40.00%	0.659
3	46	27_	5	5	10_	50.00%	0.555
3	48	II	8	9	17	52.94%	0.617
3	46	16	5	9	14	64.29%	0.585

VI.3 Análisis de la Información

Las actividades que se desarrollan en México, en relación con la Ingeniería de Tránsito, van acordes con la creciente demanda de una tecnología más avanzada y de mejores métodos de trabajo. Uno de éstos, de indudable valor, es el tratamiento estadístico de los datos relacionados con los factores involucrados en el tránsito.

La Estadística es la ciencia matemática que se basa en la recopilación sistemática de datos numéricos relativos a fenómenos económicos, científicos, culturales, demográficos, etc., para analizarlos y llegar a conclusiones que permitan tomar decisiones. El primer paso es la obtención de datos de diversas fuentes: censos, encuestas, sondeos, etc.; viene luego su clasificación, evaluación y depuración; enseguida la presentación de los datos en tablas y cuadros, y su interpretación y descripción: finalmente, se hacen generalizaciones, predicciones y cálculos; se comprueban las hipótesis y se toman decisiones.

La variabilidad es resultado de los cambios que ocurren en las condiciones en las cuales se hacen las observaciones, y existe en todo tipo de proceso. Estas variabilidades están en todos los medios; las aplicaciones de la probabilidad y la estadistica son numerosas en todos los casos de la ciencia aplicada en donde existan variaciones y donde las conclusiones acerca de un sistema estén basadas en datos observados. En

realidad, todo el trabajo experimental tiene esta naturaleza y la variabilidad es el común denominador de estos problemas.

Finalmente, le resulta muy útil al Ingeniero de Tránsito poder evaluar el resultado de su acción a través del tratamiento estadístico de las situaciones antes y después de un cambio operado, así como poder determinar las tendencias y pronósticos de los parámetros relacionados con la circulación vial, para establecer relaciones matemáticas, que pudiesen aplicarse, ya sea a poblaciones enteras, o a muestras.

A menudo, los datos disponibles resultan de una muestra, y en ocasiones el objetivo del responsable de la toma de decisiones es utilizar la información en la muestra para extraer una conclusión (o una deducción) acerca de la población de la que se extrajo la muestra.

A continuación, se presentan las técnicas básicas de estadística descriptiva que son útiles en los problemas deductivos y de toma de decisiones.

<u>Tamaño de la muestra</u>:

La importancia de la técnica del muestreo en la investigación, se debe a que no podemos investigar a toda la población objeto de estudio. En la mayoría de los casos se llevan a cabo las investigaciones en un reducido número de unidades de análisis, denominado "Muestra", con el fin de conocer el comportamiento de las distintas variables en el ámbito de toda la población.

La teoria del muestreo indica que se puede trabajar sobre la base de muestras para tener conocimiento de las medidas de la población.

Tamaño de lamuestra
$$(n) = \frac{z^2 pq}{\varepsilon^2}$$
 (42)

Donde:

- z = Nivel de confianza requerido para generalizar los resultados hacia toda la población.
- p = Significa el porcentaje probable de respuestas afirmativas del instrumento.
- q Significa el porcentaje probable de respuestas negativas del instrumento.
- ε Precisión con que se generalizan los resultados, no es el complemento del nivel de confianza (z)

Presentación gráfica de datos:

Hay muchos métodos gráficos y tabulares útiles en el resumen de datos. En esta sección se presentan unas cuantas de las técnicas de mayor utilidad.

Diagrama de dispersión:

Se utiliza para estudiar la posible relación entre dos variables. Este tipo de diagrama se usa para probar posibles relaciones entre la causa y

el efecto; no puede probar que una variable causa la otra, pero si aclara si existe alguna relación y la intensidad que pudiera tener la misma.

El diagrama de dispersión se traza de tal forma, que el eje horizontal (eje x) represente los valores de una variable y el eje vertical (eje y) represente los valores de la otra.

En la figura 43, se muestra un diagrama de dispersión. Nótese que los puntos siguen un comportamiento exponencial.

Regresión curvilínea:

Aunque la regresión lineal es adecuada para muchas situaciones, algunas variables no se conectan entre sí por una relación tan simple. El descubrir una descripción precisa de la relación entre dos o más cantidades es uno de los problemas de ajuste de curva que se conoce como regresión curvilinea. Desde este punto de vista general, el ajuste de la recta no es más que un caso especial, que es el más sencillo de todos y en realidad el de mayor utilidad.

Son varios los motivos para ajustar curvas a datos no lineales. Algunas veces una buena estimación de la variable dependiente es la que se busca, correspondiente a cualquier valor particular de la independiente. Esto puede comprender el pulir datos irregulares y la interpolación de las Y estimadas para valores de X que no están dentro de la serie observada. Algunas veces la idea de probar alguna ley que relacione las variables.

como una curva de crecimiento que haya sido propuesta por alguna investigación anterior, o del análisis matemático del mecanismo que conecta las variables. Otras veces, la forma en sí de la relación es de poco interés; teniendo como finalidad la eliminación de imprecisiones que pudiese introducir la ausencia de linealidad de la regresión en un coeficiente de correlación o en un error experimental.

Es práctica común, entre ingenieros, marcar en papel graficado los datos apareados de diversas clases, con objeto de determinar si los puntos siguen más o menos una linea recta, tomando unas convenientes escalas transformadas. Si así ocurre, la naturaleza de la transformación utilizada conduce a la forma funcional de las ecuaciones de regresión, las constantes (parámetros) necesarias se pueden determinar aplicando el método de mínimos cuadrados a los datos transformados.

En la figura 44 se graficaron los puntos en papel semilogaritmico, con objeto de determinar si los puntos siguen más o menos una línea recta.

Si un conjunto de datos apareados consisten en n puntos (x_i, y_i) "se sitúan en linea recta" al ser marcados en un papel semilogaritmico, esto indica que la curva de regresión de "y" es exponencial, es decir que, para cualquier "x" dada, la media de la distribución de las "y" está dada por AB^x .

Tomando $B = e^b$ y logaritmos naturales en ambos lados de la ecuación de predicción, Obtenemos:

$$y = Ae^{\pi x}$$
 (43)

$$In y = In(Ae^{bx})$$

$$In y = In A + In e^{bx}$$

$$In y - In A + bx$$
(44)

Y podemos, ahora, obtener estimaciones de "In A" y "b", por consiguiente, de A y B, aplicando el método de mínimos cuadrados a los n pares de valores $(x_n, In y_i)$.

Método de mínimos cuadrados:

El ajuste de una recta a un conjunto de puntos, en lugar de alguna otra curva, se hace de acuerdo con la apariencia de los mismos puntos. Este método es de uso común y tiene la ventaja de que es aplicable a caso más generales.

Si:

$$y = a + bx \tag{45}$$

$$e_i = y_i - (a - bx)$$
 (46)

Podemos decir que e, representa la diferencia entre la ordenada real y, de un punto y su ordenada teórica a + bx. A la cantidad e, se llama frecuentemente residuo o error. Puede ser positiva o negativa.

La recta de mejor ajuste es aquella para la cual la suma de cuadrados Σe_i^2 , es minima. Sea:

$$S = \Sigma e_t^2 \left[\Sigma \left[y_t - (a + bx_t) \right] \right] \tag{47}$$

Para calcular los valores de a y b que minimizan esta suma, igualamos a cero las derivadas parciales con respecto a "a" y a "b"; esto es, primero diferenciamos S con respecto a "a" únicamente, y luego con respecto a "b" únicamente. Nótese que x_i y y_i son constantes, son los datos dados.

$$\frac{\partial S}{\partial a} = 2\sum (y_i - a - bx_i)(-1) = 0, \tag{48}$$

$$\frac{\partial S}{\partial a} = 2\sum (y_i - a - bx_i)(-x_i) = 0. \tag{49}$$

Estas dos ecuaciones se reducen a:

$$\sum y_t - na - b\sum x_t = 0, \tag{50}$$

$$\sum x_i y_i - a \sum x_i - b \sum x_i^2 = 0, \qquad (51)$$

Resolviendo las ecuaciones 50 con 51, se encuentra los valores que satisfacen este par de ecuaciones lineales en a y b:

$$b = \frac{n\Sigma x_i \Sigma y_i - \Sigma x_i \Sigma y_i}{n\Sigma x_i^2 - (\Sigma x_i)^2}$$
 (52)

$$a = \frac{\sum x_i^2 \sum y_i - \sum x_i \sum x_i y_i}{n \sum x_i^2 - (\sum x_i)^2} = \overline{y} - b\overline{x},$$
 (53)

donde n es el número de puntos (x, y,).

Ajuste de una curva:

El ajuste de una curva a un conjunto de puntos, en lugar de una línea recta, se hace como sigue:

Teniendo la ecuación:

$$In y = In A + bx (44)$$

$$y' = a + bx \tag{54}$$

donde $y' = In \ y$, $a = In \ A$, $y \ b = b$. Esto significa que si $In \ y$ en lugar y', se gráfica contra x, la gráfica será lineal. Lo anterior se puede observar en la figura 46.

Si In A = a, y si se le aplica logaritmo base e, se tiene lo siguiente:

$$e(In A) = e^a$$

$$A = e^a$$

Tomando $A = e^a$, $y' = \ln y$, b - b, sustituyendo estos valores en las ecuaciones 52 y 53 encontramos las siguientes expresiones para obtener los coeficientes de la curva de regresión exponencial.

$$A = e^{\left(\frac{\sum x_i^2 \sum \ln(y_i) - \sum x_i \sum x_i \ln(y_i)}{n \sum x_i^2 - (\sum x_i)^2}\right)}$$
 (55)

$$b = \frac{n\Sigma x_i \Sigma (\ln y_i) - \Sigma x_i \Sigma \ln(y_i)}{n\Sigma x_i^2 - (\Sigma x_i)^2}$$
 (56)

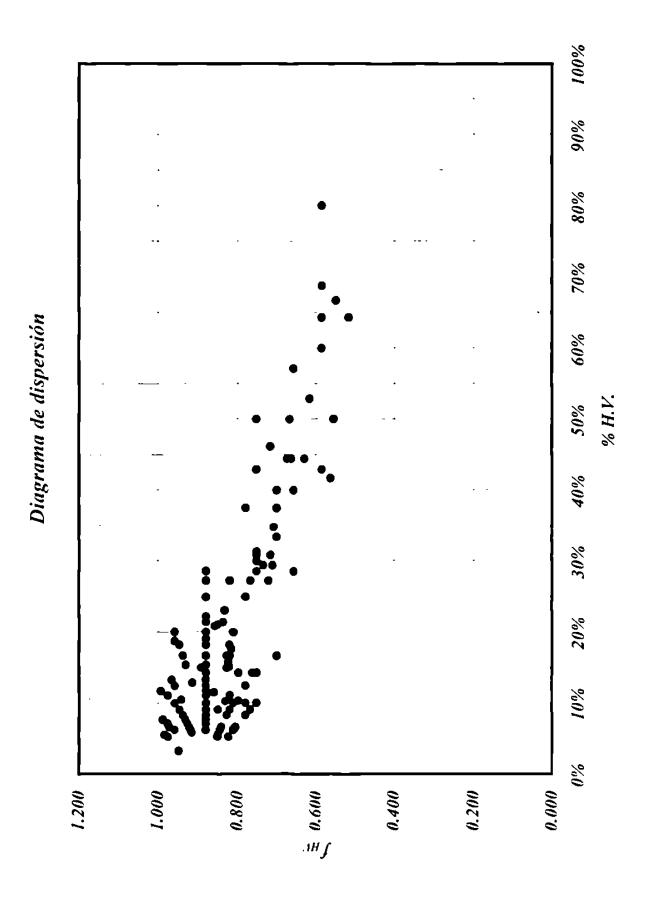


Figura 43. Diagrama de dispersión de cómo varia f_{HV} en función de %H.V.

Figura 44. Gráfico del comportamiento de las variables en estudio usando papel semilogarítmico

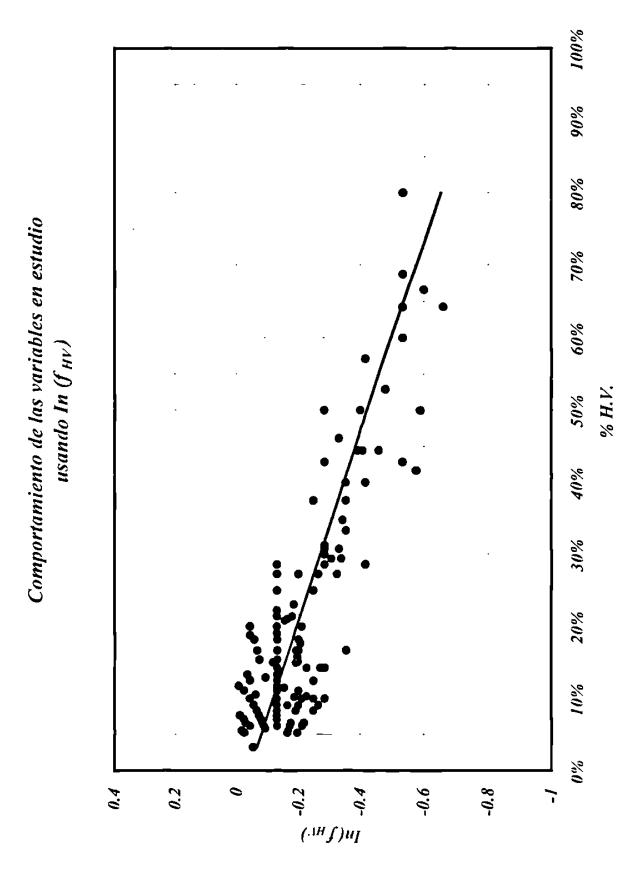


Figura 45. Gráfico del comportamiento de las variables en estudio usando $ln(f_H)$.

Correlación:

La correlación simple puede definirse como "la cantidad de semejanza en dirección y grado, en variaciones de parejas correspondientes en observaciones de dos variables". El problema principal de la correlación simple es determinar el grado de asociación entre estas parejas de observaciones. El análisis de correlación trata de medir el grado de tales relaciones entre dos variables por medio de un simple número, denominado coeficiente de correlación (r).

$$r^{2} = \left[\frac{n\Sigma xy' - \Sigma x\Sigma y'}{\sqrt{\left(n\Sigma x^{2} - (\Sigma x)^{2}\right)\left(n\Sigma (y')^{2} - (\Sigma y')^{2}\right)}} \right]^{2}$$
 (57)

$$r = \frac{n\Sigma xy' - \Sigma x \Sigma y'}{\sqrt{(n\Sigma x^2 - (\Sigma x)^2)(n\Sigma (y')^2 - (\Sigma y')^2)}}$$
(58)

Tomando y' = Iny, y la ecuación queda:

$$r = \frac{n\Sigma x(Iny) - \Sigma x\Sigma In(y)}{\sqrt{(n\Sigma x^2 - (\Sigma x)^2)(n\Sigma (Iny)^2 - (\Sigma Iny)^2)}}$$
(59)

El coeficiente de correlación (r), varia entre 0 y 1, así como la r². Para r² = 0 no puede encontrarse relación o correlación entre "y" y "x". Para r² = 1, la bondad de ajuste es máxima. Esto quiere decir que todos los puntos están sobre la linea de regresión. Usualmente se considera que un valor positivo de r indica que "y" tiende a aumentar con "x"; un valor negativo, que "y" tiende a disminuir cuando x aumenta. Para valores de r entre -1 y 1, se debe tener cuidado con su interpretación. Por ejemplo, los valores de r iguales a 0.3 y a 0.6 sólo significan que se tienen dos correlaciones positivas, una

de ellas más fuertes que la otra. Es erróneo concluir que r=0.6 indica una relación lineal dos veces mejor que la indicada por el valor r=0.3. Por otro lado r^2 que es por lo general denominado coeficiente de determinación de la muestra, expresa la proporción de la variación total de los valores de la variable "y" que puede ser considerada o explicada por una relación lineal con los valores de la variable aleatoria "x". Así pues, una correlación de 0.6 significa que 0.36 o el 36% de la variación total de los valores de "y" en la muestra está explicado por una relación lineal con valores de "x".

Análisis de variancia para probar la exponencialidad de la regresión:

Los cálculos necesarios para probar la hipótesis en un problema de regresión con mediciones repetidas en la respuesta, pueden resumirse como sigue:

Tabla 19. Análisis de variancia

Fuente de variación	Suma de cuadrados –	Grados de libertad	Cuadrado medio	f calculada
Regresión	SSR	1	SSR	$\frac{SSR}{s^2}$
Error	SSE	n - 2		
Carencia de Ajuste	SSE - SSE(puro)	k - 2	<u>SSE - SSE(puro)</u> k - 2	<u>SSE -</u> <u>SSE(puro)</u> s²(k-2)
Error puro	SSE(puro)	n - k	$S^2 = \underbrace{SSE(puro)}_{n-k}$	3 (K-2)
Total	SST	n - 1		

Donde:

$$SST = \Sigma y^{2} - (\Sigma y^{2})^{2}/n$$

$$SSR = \left[\sum xy' - (\sum n_i x)(\sum y')/n \right]^2 / \sum n_i x^2 - (\sum n_i x)^2/n$$

$$SSE = SST - SSR$$

$$SSE(puro) = \Sigma y' - \Sigma (T/n_i)$$

$$T = \Sigma y_{\iota}'$$

n = Tamaño de la muestra.

 $k = al \ n\'umero \ total \ de "n_i" presentes en los puntos.$

 $n_i = al$ número de observaciones repetidas de la respuesta para cada valor de x.

 $\Sigma y_t = a$ la sumatoria de las observaciones repetidas para cada valor de x.

Para probar la carencia de ajuste, se procede de la manera usual:

- 1. Ho: la regresión es exponencial en x.
- 2. H1: la regresión no es lineal en x.
- 3. Elegir un nivel de significancia (a).
- 4. Región crítica: $f > f\alpha$ (sobre la base del nivel de significancia y los grados de libertad de (k-2) y (n-k)).

Para los cálculos estadísticos antes mencionados se utilizó el paquete de computadora Excel, en la tabla 19 se muestra los resultados obtenidos.

Tabla 20. Resultados estadísticos de las muestras obtenidas en campo.

Factor de ajust	e por vehículos pesados, f _{HV}
Tamaño de la Muestra (N):	196
Nivel de Confianza requerido	95%
<i>z</i>	1.96
p	50%
q	50%
ε.	7%
Regresión exponencial:	
A	0.96053
b	<i>-0.76651</i>
Σr.	42.8607
$\frac{\Sigma \mathbf{r}_{t}}{\Sigma \mathbf{r}_{t}^{2}}$	12.3320
$\Sigma x(lny)$	-11.1788
$\Sigma ln(y_i)$	-41.9194
$\Sigma(lny_i)^2$	11.353
<u>Correlación</u> :	
r	0.83
r^2	0.69
<u>Análisis de variancia</u> :	
SSR	2.4485
SST	3.5449
SSE	1.0965
SSE(puro)	-147.5959
n	225
k	60
α	0.05
k - 2	58
n - k	165
f_{lpha}	1.32
f.	-2.8660

VI.4 Determinación del Factor de ajuste por la presencia de vehículos pesados en la corriente de tránsito

Con ayuda del paquete de computación Excel, se analizaron, graficaron y se calcularon los parámetros estadísticos.

Con base en los parámetros estadísticos obtenidos y mostrados en la tabla 19, se puede definir de la ecuación que describe cómo se comporta el factor de ajuste por presencia de vehículos pesados, cuando el porcentaje de los mismos aumenta, en la corriente de tránsito. La cual se define como:

$$f_{HV} = 0.96053e^{-0.76651}$$
 (H.11)

con un coeficiente de determinación de la muestra y correlación de:

$$r^2 = 0.69$$

$$r = 0.83$$

En la figura 46, se muestra la curva de regresión exponencial de f_{HV} sobre %H.V.

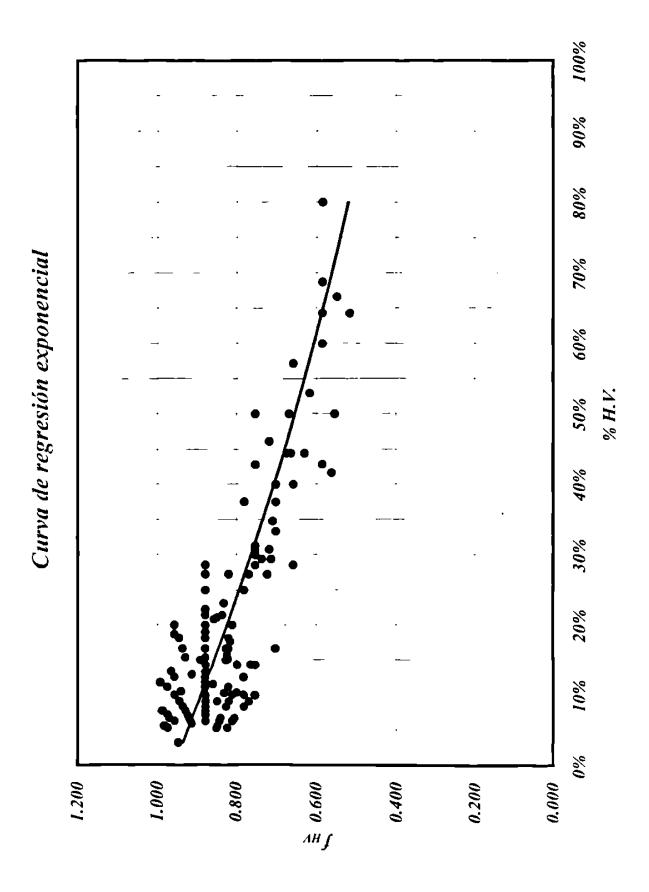


Figura 46. Curva de regresión exponencial del factor de ajuste por presencia de vehículos pesados en la corriente de tránsito

Para probar la carencia de ajuste, se procede de la siguiente manera:

- 1. Ho: la regresión es exponencial en H.V.
- 2. H1: la regresión no es exponencial en H.V.
- 3. Tomando un nivel de significancia de $\alpha = 0.05$

Los resultados de este análisis se presentan en la siguiente tabla:

Tabla 21. Resultados del análisis de la variancia

Fuente de variación	Suma de cuadrados	Grados de libertad	Cuadrado medio	f calculada
Regresión	2.4485	1	2.4485	- 2.7372
Error	1.0965	223		
Carencia de Ajuste	148.6923	58	2.5637	-2.8660
Error puro	- 147.5959	165	-0.8945	
Total	3.5449	224		

Si:

$$f = -2.8660 < f_{\alpha} = 1.32$$

Por lo tanto:

Se acepta la hipótesis nula

La partición de la variación total de esta forma revela una variación poco significativa explicada por el modelo exponencial y una cantidad insignificante de variación debida a la carencia de ajuste. Así pues, los datos experimentales no parecen sugerir la necesidad de considerar otros modelos de regresión.

La tabla 22, nos presenta los diferentes valores que toma el factor de ajustes por presencia de vehículos pesados (f_{HV}) para cualquier porcentaje de vehículos pesados (f_{HV}) dado por $f_{HV} = 0.96053e^{-0.76651(H.V.)}$.

Tabla 22. Factor de ajuste por vehículos pesados, f_{HV}.

Porcentaje de Vehículos Pesados, % HV.	Factor por vehículos Pesados, f _{HV.}	
0	1.000	
2	0.946	
4	0.932	
6	0.917	
8	0.903	
10	0.890	
15	0.856	
20	0.824	
25	0. ~93	
30	0. ~63	
35	0. ~35	
40	0. ~07	
45	0.680	
50	0.655	
. 75	0.541	
100	0.446	

VII. ANÁLISIS DE CAPACIDAD UTILIZANDO EL FACTOR DE AJUSTE POR VEHÍCULOS PESADOS OBTENIDO

VII.1 Ejemplo 2

Se realiza el análisis de la Intersección semaforizada Blvd. Díaz Ordaz con Av. Corregidora, misma del ejemplo del Capitulo V.4., pero ahora utilizando el factor de ajuste por presencia de vehículos pesados en la corriente de tránsito, mostrado en la tabla 22, y se comparan los resultados.

Solución:

a) <u>Módulo de E</u>ntr<u>ada</u>.

El formulario del Módulo de Entrada de este ejemplo aparece en la figura 47.

b) <u>Módulo de Ajuste de Volúmenes</u>.

La figura 48, muestra el formulario de Módulo de Ajuste de Volúmenes.

c) Módulo de Intensidad de Saturación.

La figura 49, muestra el formulario para el Módulo del flujo de saturación, para el ejemplo 2. En la columna 2 de este módulo se repiten las descripciones de los grupos de carriles. Se asume como factor de vehículos pesados para el acceso RE de 0.90, para RO de 0.93, para RN de 0.88 y para RS de 0.96, estos valores se obtuvieron de la interpolación de los datos de la tabla 22, como resultado de esta investigación.

d) <u>Módulo de Análisis de Capacidad</u>.

La figura 50, muestra el módulo de Análisis de Capacidad. En la columna 2 se repite la descripción del grupo de carriles. En la columna 3 se escriben los flujos ajustados (V) obteniendo del módulo de ajustes, en la columna 4 se escriben las intensidades de saturación (S) obtenidas del módulo del valor de flujo de saturación. Con estos valores se obtienen la relación V S las cuales se colocan en la columna 5.

Ahora se aprecia cuáles son los grupos de carriles críticos, es decir los de mayor relación VS en cada acceso. La relación de la suma de carriles críticos es 1.037, es decir.

$$\Sigma(VS) = 0.471 + 0.352 - 0.134 - 0.166$$

 $\Sigma(VS)$ critico 1.123

Este valor se coloca en la sección inferior del módulo.

En la columna 6, se escribe la relación del tiempo de verde de cada fase con respecto a la longitud del ciclo, esto es:

$$g/c$$
 (Blvd Diaz Ordaz) = $\frac{82}{150}$ = 0.547

$$g \ c \ (Av. \ Corregidora) = \frac{30}{150} = 0.200$$

$$g c (Av. Corregidora) = \frac{29}{150} = 0.193$$

- En la columna 7 se calcula la capacidad de los grupos de carriles (c), esto es multiplicando la columna 4 (S) por la columna 6 (g/c).
- En la columna 8 se calcula la relación v/c (volumen entre la capacidad de cada grupo de carriles), dividiendo la columna 3(v) entre la 7(c).
- En la columna 9 se marca con un asterisco el grupo de carriles crítico para cada acceso.

La relación critica v/c, Xc, se calcula con la ecuación 7 mostrada en el formato

$$Xc = \frac{\sum (v - s)C}{C - L}$$
 $Xc = \frac{1.123(150)}{150 - 9}$ $Xc = 1.195$

e) Módulo de Nivel de Servicio

La figura 51, muestra el módulo de nivel de servicio. Las descripciones de los grupos de carriles se anotarán en la columna 2. En la columna 3 se escribe la relación volumen/capacidad (X), en la columna 4 la relación de verde (g/C), en la columna 5 se calcula la demora uniforme d₁ (ecuación 34).

$$d_1 = 0.38 \frac{C(1 - g/c)^2}{[1 - (g/c)X]}$$
 (34)

Calculando d₁ para todos los grupos de carriles:

$$d_{1}(RE) = 0.38(150)(1-0.547)^{2}/(1-(0.547)(0.862)) = 22.16$$

$$d_{1}(R0) = 0.38(150)(1-0.547)^{2}/(1-(0.547)(0.644)) = 18.08$$

$$d_{1}(RN) = 0.38(150)(1-0.200)^{2}/(1-(0.200)(0.669)) = 42.11$$

$$d_{1}(RS) = 0.38(150)(1-0.193)^{2}/(1-(0.193)(0.859)) = 44.47$$

En la columna 6 se coloca el factor de ajuste por DF. de la tabla 15, con tipo de control semáforo de tiempo fijo, siendo una intersección no sincronizada, le corresponde. DF=1.0.

En la columna $\overline{\ }$, se describe la capacidad del grupo de carriles (c), en la columna 8 se coloca el factor m, de la tabla 15, con el tipo de llegada 3, m=16.

En la columna 9, se calcula la demora d2, con la ecuación 35.

$$d_{2} = 173X^{2} \left[(X - 1) + \sqrt{(X - 1)^{2} + (m(X - c))} \right]$$

$$d_{2}(RE) = 1.18 \text{ seg/veh } (X = 0.862, c = 5258, m = 16)$$

$$d_{2}(RO) = 0.20 \text{ seg/veh } (X = 0.644, c = 5122, m = 16)$$

$$d_{2}(RN) = 1.80 \text{ seg/veh } (X = 0.669, c = 671, m = 16)$$

$$d_{2}(RS) = 7.89 \text{ seg veh } (X = 0.859, c = 644, m = 16)$$

En la columna 10 se calcula la demora (d) por grupo de carriles con la ecuación 35:

Demora =
$$d_1DF + d_2$$

Demora (RE) = $22.16(1) + 1.18 = 23.34$
Demora (R0) = $18.08(1) + 0.20 = 18.28$
Demora (RN) = $42.11(1) + 1.80 = 43.91$
Demora (RS) = $44.47(1) + 7.89 = 52.36$

La columna 11, se describen los niveles de servicio por grupo de carril, utilizando la demora total (columna10) con la tabla 3.

En la columna 12, se calcula la demora promedio por acceso, ecuación 36:

$$Dem\ Acc = \frac{\sum (Demora)(Vol.\ Ajustado)}{\sum Volumen\ Ajustado}$$

$$Dem RE = \frac{23.34(4533)}{4533} = 23.34 \text{ seg } v$$

$$Dem RO = \frac{18.28(3300)}{3300} = 18.28 \text{ seg } v$$

Dem
$$RN = \frac{43.91(449)}{449} = 43.91 \text{ seg } v$$

Dem
$$RS = \frac{52.36(553)}{553} = 52.36 \text{ seg } v$$

Comparando estas demoras en la tabla 3. Se establece el Nivel de Servicio por acceso y se coloca en la columna 13.

La demora Media por vehículo en toda la intersección se calcula, como la media ponderada de los valores de cada acceso, ecuación 37.

Demora en la Intersección por vehiculo =
$$\frac{\sum (d_A * V_A)}{\sum V_A}$$

Demora en la Intersección =
$$\frac{23.54(4533) + 18.29(3300) + 43.91(449) + 52.36(533)}{4533 + 3300 + 449 + 533}$$

Demora en la Intersección = 24.31 seg./veh

Comparando el valor anterior con la tabla 3, le corresponde un Nivel de servicio "C" en toda la intersección.

VII.2 Comparación de los resultados.

Tabla 23. Factor de ajustes pór presencia de vehículos pesados del manual de Capacidad Vial de E.E.U.U. y de la investigación.

Porcentaje de Vehículos	Factor de ajuste por presencia de vehículo pesados en la corriente de tránsito.					
Pesados, %H.V.	f _{HV} *	f _{HV} **				
0%	1.000	1.000				
2%	0.980	0.946				
4%	0.962	0.932				
6%	0.943	0.917				
8%	0.926	0.903				
10%	0.909	0 .890				
15%	0.870	0.856				
20%	0.833	0.824				
25%	0.800	0.793				
30%	0.769	0.763				
35%	0.741	0.735				
40%	0.714	0.707				
45%	0.690	0.680				
50%	0.667	0.655				
75%	0.571	0.541				
100%	0.500	0.446				

Intersección Blvd. Díaz Ordaz con Av. Corregidora:

Factor de ajuste por presencia de vehículos pesados	Nivel de servicio	Demora de la Intersección
fHV*	С	23.68
fHV **	С	24.31

^{*} Manual de Capacidad vial de E.E.U.U. (1995).

^{**} Investigación.

Se observa en la tabla 23 que los valores del factor que se obtienen en la investigación son menores a los del manual de capacidad, en un rango de 0.8% a 10.8%. El efecto que causa la presencia de vehículos pesados es disminuir la capacidad del carril ósea el flujo de saturación del mismo, esta disminución se presenta siguiendo un modelo exponencial, el cual esta en función del aumento del porcentaje de los vehículos pesados. Ahora, si analizamos condiciones ideales a excepción de la condición por presencia de vehículos pesados se puede obtener el flujo de saturación real para cada porcentaje de vehículos pesados, en este caso se aplicara al 10% dando:

	Flujo de				Investigación			
% H.V.	saturación Ideal	(fuv)	Flujo real	(f _{Hv})	Flujo real	Diferencia vl/h/carr		
10	2050	0.909	1863	0.890	1825	38		

Lo anterior refleja que el utilizar el factor del manual se cae en un error ya que el flujo de saturación en las condiciones del área metropolitana en Monterrey, es menor a lo que presenta el manual, esto trae como consecuencia que se obtengan menores demoras y por lo tanto un mayor nivel de servicio o una capacidad mayor por carril.

El nuevo factor de ajuste por vehículos pesados se emplearía para el análisis operacional, así como para diseñar los tiempos de las fases de un semáforo, estos cálculos serán representativos de las condiciones prevalecientes del tránsito y de los usuarios en le área Metropolitana de Monterrey.

MODULO DE ENTRADA

Intersec	ción:		llvd Diaz	Orduz co	n Av. Corr	egidora		. Fea	ha:		25-A	ug-49
Analis	sta:	MUN	<u>'L</u>		Periodo A	Inalizado:	18 30 - 19 30	Tipo de	e Area:		CBD	\ OTRO
Proyecte	o No			1			Ciu	dad / Est	ado:	San	Pedro Gai	za Garcia N L
GEOME	TRÍA y VOLUM	/E.N				RS TOTAL		Corregio	tora			
	A				1	474	<u>}</u>				-	-
	NORTE			38	لسي	↓ 170	266			_ 2481	- _	2934 RO TOTAL
	NORIE				•	170	200	1	1	246		OTOTAL
Idenufici	ar en el Diagram	I.a]			_ ▼	_
I. Volúm	renes					_				Blvd. D	iá: Ordaz	
2. Ancho	de Carril								ļ .			
3. Movim	siento en el Carr	र्ध					145		212	_	180	320
4. Locali.	zación de Estacu	onamiento						1		_	•	_
S. Longit	uda de Carriles	de Almacenami	ento		3796		3191		l `		Ī	_
6. Isleta j	física o pintada				RE TOTA	ι				1	1	i
-	a de Autobûs						460		[712]
										ı	RN TOTA	L L
								•	•			
CONDIC	CIONES GEOMI	ETRICAS \ DE	LA CIRC	ULACIO)N				_			
ACCESO	PENDIENTE	%H1'	Cari	il de	Aut	obus	FHP	Conj	nflicio Semáforo Para			Tipo de
	(%)		1	amiento		/ _#)			Peatonal		tones	Arribo
			Adya		•	•-		(peavhr.)				1
			SON	Nm	1			,,,	,	SON	Tiempo	1
l			"	17	ļ						Min.]
RE	J	7.86	N	0	١ ,	5	0.90	 ,	0	! N	22	3
RO	1	1.81	N	0		0	0.90	 	0	N	22	3
RN	3	10.95	N	0		0	0.90	+	0	N	20	3
RS	3	5.29	N	0		5	0.90		0	, <u>v</u>	20	3
	e; + ascendente -	·	1 '+	_	Parada d		1			Tiempo:		
		•								•		erue
descende.		_			= Factor (l	a Cruce P		_
	. Con más de 4 r			Conf	licto Peato	nai = peat	Vhr.		Tipo	de arriba	o: Tipo 1-2	5
_	niobras de Estaci	on/hr.							<u> </u>			
FASES D							1	Γ				
ī	RE - RO	R.N	R	s]							
4	_		1		<u> </u>							1
G	→] _{i ▲.}	l				\	Ĺ				
R -4		↓ ₩		4						1		
M	→	'	1	,						1		
А										<u> </u>		
Tiempo	V = 82	1 - 30	V =	29	V=		l' =	V =		11		J =
<u> </u>	A + R = 3	A+R 3	A + R		A + R		A + R	A + R		A + R		A + R
	Actuado Eilo											
l ucita Pi	Fijo		uelta Perm	.eida		Pears		<u> </u>	Duracu	on dal	7.	\$0
wella Pi	roieriaa i	4 1 1 2	uelta Perm	maa ,		Peasor	763		puracu	yn aet		SO seg

Figura 47. Modulo de Entrada, Ejemplo 2.

			MO	DULO D	E AJUST	E DE VOL	UMENE	S		
l Accese	2 Afovimiento	} Volumen Movimienta (whr)	4 Factor de Hora Pico FHP	5 Intensidad Máxima (Whr) 3/4	6 Grupo de Carriles	7 Intensidad en Carrules de Grupo Wg (w/hr)	å Número de Carriles N	9 Utilización de Carril Factor U Tabla 6	10 Intensidad Ajustada V (v/hr) 7x9	II Prop. dc LT o RT P _{LT} o P _{RT}
	LT Izquierda	58	0.90	64						LT 0 02
RE	TH De frente	3191	0.90	3546	1 11 1	4121	5	1.10	4533	
	RT Derecha	160	0.90	511						RT 012
	LT Izquierda	219	0.90	243						LT 0 08
RO	TH De frense	2481	0 90	2757	→	3000	5	1 10	3300	
	RT Derecha			i						
	LT Izquierda	2/2	0 90	236	_ * *	136	:	1 03	419	LT 0 Sa
R.N	TH De frente	180	0.90	:00						
	RT Derecha									
	LT I:quierda	266	0 90	296						LT 0 56
RS	TII De frente	170	0 90	189	<i>→</i>	527	,	1 05	553	
	RT Derecha	38	0 90	42						RT 0 0S

Figura 48. Modulo de Entrada, Ejemplo 2.

MODULO DEL VALOR DE FLUJO DE SATURACIÓN												
Gruna	rupo de Carriles Factores de Ajuste										13	
l Acceso	2 Movimiento de los grupos de carriles	3 Intensidad de Saturactón Ideal (vVhr/c)	4 No. De Carriles N	S Ancho de Carril fu	6 Vehiculas Pesados S HV	7 Pendiente f:	8 Estacionam.	9 Bloqueo de Autobuses Su	10 Tipo de Area	II Giro Der. f mb	12 Gira Izq. f ui	Intensidad Saturación Ajustada S (vh/hr)
				Tabla 8	Tabla 9	Tabla 10	Tabia 11	Tabla 12	Tabia 13	Tabla 14	Tabla 15	
	LT Izquierda											
RE	TH De frente	2050	5	1 08	0.90	10	1.0	0.98	10	0 98	10	9618
	RT Derecha											
	LT Izquierda											
RO	TII De frense	2050	5	1 00	0.93	10	10	0 99	10	1.0	10	9369
	RT Derecha											
	LT Izquierda	2050	2	101	0.88	0 99	10	0 98	10	10	0.95	3355
R.V	Tii De frense											
	RT Derecha							_				
	LT Izquierda											
RS	TH De frense	2050	2	0 96	093	0 99	10	0 97	10	0 99	09-	3332
	RT Derecha											

Figura 49. Módulo del Valor de flujo de Saturación, Ejemplo 2.

MODULO DE ANALISIS DE CAPACIDAD											
l Accese	2 Monmiento de Grupos de Carriles	3 Volumen Ajustado V (Whr)	4 Intensidad Saturación Ajustada S (s/hr)	5 Relación de Intensidad Ws 3/4	6 Relación Tiempo de luz verde g/C	7 Capacidad Grupo de Carriles C (v/hr) 4x6	Relación V/C 3/7 X	g Grupo de Carriles Crítica (°)			
_	_A_	, , , , , ,	3 (****)			32		.,			
RE	⇒	4533	9618	0 473	0.547	5258	0 862				
RO	→	3300	9369	0 352	0 547	5122	0 611				
				_							
		449	3355	0 134	0 200	671	0 669				
RA											
			•								
			_								
RS	<u>-</u> 4 -→	553	3332	0.166	0 193	644	0 859	•			
		_									
	o del Ciclo C						1 123				
icmpo Pera	lido por Ciclo L	9	segundos		x	$= \frac{\sum (v/s) C}{C - L} = .$	1 195	- 			

Figura 50. Módulo de Análisis de Capacidad, Ejemplo 2.

	MODULO DE NIVEL DE SERVICO													
Grupo de Carriles		Primera Demora				Seg	un de Demo	rrd	Demor Grupo de		Demora Total 3 NS			
Access	Movimiento de Grupo de Carriles	Relación Wc X	4 Relación de luz verde g/C	S Demora uniforme d; seg./veh.	6 Adjuste factor DF Tabla 16	7 Capacidad de Grupos de Carnies C (whr)	& d ₁ , cal. periodo m. Tabla 16	9 Demora Incremental 4; seg_/veh	10 Demora, d	11 N.S. Grupo De	12 Dem. Acc. (seg./veh.)	i3 N.S. Acc. Total Tabla J		
RE														
		0 862	0 547	22 16	10	5258	16	118	23.34	С	23.34	¢		
	-4,													
RO	<u></u>	0 644	0 547	18 08	10	<i>\$122</i>	16	0.20	18 28	с	18 28	с		
		0 669	0 200	4211	1.0	671	16	1 80	43 91	Ε	13 91	E		
RN														
							-							
RS	→	0 359	0 193	44 47	10	644	16	7 89	52 36	Ε	52.76	Ε		
Den	nora en la Interse	rcción	24.31	seg /veh.				NS de la In	l tersección	С	Tarla vi			

Figura 51. Módulo de Nivel de Servcio, Ejemplo 2.

VIII. CONCLUSIONES Y RECOMENDACIONES

Actualmente para los análisis de capacidad y nivel de servicio, para intersecciones semaforizadas se utiliza el Manual de Capacidad Vial, el cual se basa principalmente en los estudios que se han realizado en los Estados Unidos de América; sin embargo, las condiciones que se presentan en México, varían a las de aquel país.

Por lo tanto, se propone que después de la realización de esta investigación, se continúe con el análisis de los demás factores para verificar y comprobar que realmente representan las condiciones en que operan las intersecciones semaforizadas en el área Metropolitana de Monterrey.

Esta investigación brinda un valor de flujo de saturación representativo para las condiciones que prevalecen en México; además, muestra la información, necesaria para realizar un análisis de capacidad en intersecciones semaforizadas. Con estos resultados se podrán estimar con mayor exactitud los siguientes parámetros:

- *♣* Los Tiempos de recorrido.
- *♪ La Disminución en los grados de Contaminación.*
- *♣* La Menor ocurrencia de Accidentes.

Con la estimación representativa para México de estos parámetros, al ingeniero o el planificador se ayudarán para incrementar la información en que se sustente su criterio para la toma de decisiones, en materia de:

- *❖* Evaluación de proyectos.
- Diseño de intersecciones, en Nivel y Desnivel.
- Diseño de tiempos de semáforos.
- Dustificación de la colocación de un semáforo.

En el capitulo VII se efectuó un ejemplo comparativo entre el considerar o no los valores nuevos del factor de ajuste por vehiculos pesados. Se observó que los niveles de servicio obtenidos en los análisis son muy similares a los que se presentan en la realidad; ya que con los valores del factor de ajuste por vehiculos pesados del manual se podían obtener niveles de servicio altos y demoras inferiores a los reales.

Actualmente, el Manual de capacidad Vial, no es una norma; pero define los niveles de servicio en una forma cuantitativa y cualitativa y no recomienda niveles mínimos de aceptabilidad, ya que esto dependerá de los recursos económicos con los que se cuente. Con el tiempo, este Manual pasará a formar parte de las normas, tal como lo requieren diversos organismos y los especialistas en esta área.

- U.S.A National Research Council
 Transportation Research Board
 Higway Capacyty Manual
 Washington D.C.
 1992
- Cal y Mayor Rafael
 Ingeniería de Tránsito
 México
 Representaciones y Servicios de Ingeniería
 1994
- Radelat Egúes Guido

 Manual de Ingeniería de Tránsito

 Buenos Aires, Argentina

 Internacional Road Federacion.
- Aldape Cantu Rodolfo y
 Jose Jalle Alari
 Los Semáforos y el Control Dinámico del Tránsito.
 México
 Representaciones y Servicios de Ingeniería.
 1992
- Box Paul C. y
 Joseph C. Oppenlander
 Manual de Estudios de Ingeniería de Tránsito.
 México
 Representaciones y Servicios de Ingeniería.
 1988

Decretaría de Comunicaciones y Transporte
Manual de Proyecto Geométrico de Carreteras.
4ta. Reimpresión, México
Talleres Gráficos de la Nación
1991

Lazo Margain Leonardo y
Gilberto Sánchez Angeles
Una Fisonomía de la Ingeniería de Tránsito.
3a. Edición. México
Porrúa
1985

Milliam G. Cochran
Métodos Estadísticos.
9a. Edición. México
C.E.C.S.A.
1985

☐ Schwar Johannes F. y
José Puy Huarte
Asociación Mexicana de caminos A.C.
Métodos Estadísticos en Ingeniería de Tránsito.
Representaciones y Servicios de Ingeniería, S.A.
1975

Probabilidad y Estadística para Ingenieros de Miller y Freud.
5a. Edición. México,
Prentice Hall, Hispanoamericana.
1985

Miller Irwin
John E. Freund y
Carlos Ordoñez Romero R.
Probabilidad y Estadística para Ingenieros.
Reverté Mexicana, S.A.
1990

Walpole R. E. y
R.H. Myers
Probabilidad y Estadística para Ingenieros
3a. Edición. México,
Interamericana
1990

Mode Elmer B. y
R. García Garza
Elementos de Probabilidad y Estadística.
2a. Edición. México,
Reverté Mexicana, S.A.
1979

Benjamin Jack R.,
C. Allin Cornell y otros.
Probabilidad y Estadística en Ingenieria Civil.
México,
McGraw Hill
1981

Rafael Gallegos López
Efecto de las condiciones superficiales del pavimento
en la capacidad vial de las carreteras multicarriles
Universidad Autónoma de Nuevo León
Facultad de Ingeniería Civil
1997

Dosé Federico López Vázquez,

Determinación del máximo valor de flujo de saturación en Intersecciones semaforizadas.

Universidad Autónoma de Nuevo León

Facultad de Ingeniería Civil
1998

