ÍNDICE

	Pág
Indice de tablas	Ш
Indice de figuras	.IV
Resumen	.VII
Capítulo I: Introducción	
1.1 Introducción	.1
1.2 Antecedentes	.2
1.3 Objetivos	.5
Capítulo II: Métodos Experimentales	
2.1 Síntesis de los materiales de partida	.6
2.2 Caracterización	.7
2.2.1 Método de Rietveld	.8
2.3 Técnicas de inserción electroquímica	.9
2.3.1 Método Galvanostático Intermitente (GITT)	.10
2.3.2 Método Galvanostático Continuo	.11
2.3.3 Método Potenciostático Intermitente	.11
2.3.4 Condiciones Experimentales	.13
2.4 Rayos-x in situ	.15
2.4.1 Diseño de la celda	.16
2.4.2 Montaje de la celda	.19
2.4.3 Toma de rayos-x in situ	.20

Capítulo III: Resultados

3.1 Carac	terización estructural	22
3.2 Vanad	latos de níquel	23
3.2.1	Estructura del vanadato de níquel 1:1 (NiO:V ₂ O ₅)	
[N	iV ₂ O ₆ celda monoclínica, grupo espacial P21/c]	23
3.2.2	Estructura del vanadato de níquel 2:1 (NiO:V ₂ O ₅)	
	[Ni ₂ V ₂ O ₇ celda monoclínica grupo espacial P21/c]	24
3.2.3	Estructura del vanadato de níquel y vanadato de	
	zinc 3:1 (MO:V ₂ O ₅) [M ₃ V ₂ O ₈ celda ortorrómbica,	
	grupo espacial Cmca	24
3.2.4	Electroquímica del sistema Li//Ni _x V ₂ O _{5+x} (x= 1,2 y 3)	25
3.3 Vanad	latos de zinc	28
3.3.1	Estructura del vanadato de zinc 1:1 (ZnO:V ₂ O ₅)	
	[ZnV ₂ O ₆ celda monoclínica grupo espacial C2,	
	estructura tipo: Branerita]	28
3.3.2	Estructura del vanadato de zinc 2:1 (ZnO:V ₂ O ₅)	
	[Zn ₂ V ₂ O ₇ celda monoclínica grupo espacial C2/c]	28
3.3.3	Electroquímica del sistema Li//Zn _x V ₂ O _{5+x} (x= 1,2 y 3)	29
3.3.4	Rayos-x in situ	38
3.4 Vanad	latos de cadmio	41
3.4.1	Estructura del vanadato de cadmio 1:1 (CdO:V ₂ O ₅)	
	[CdV ₂ O ₆ celda monoclínica, grupo espacial C2/m,	
	estructura tipo: Branerita]	41
3.4.2	Vanadato de cadmio [Cd ₂ V ₂ O ₇ 2:1celda monoclínica,	
	grupo espacial C2/m, estructura tipo: Tortveitita]	41
3.4.3	Electroquímica del sistema Li//CdV ₂ O ₆	42
3.4.4		
3.4.5	·	
3.4.6	-	
	_ _ •	

3.5 Relación del comportamiento electroquímico de la inserción
de litio con la estructura de las fases estudiadas62
Capítulo IV: Conclusiones63
Apéndice I
Pruebas electroquímicas de la celda de rayos-x in situ64
Apéndice II
Resultados gráficos del refinamiento de los materiales de estudio66
Literatura consultada71

ÍNDICE DE TABLAS

Tabla		Pág	
1.	Reactivos utilizados en la síntesis de los materiales de estudio	6	
2.	Condiciones de reacción para la síntesis de los materiales de partida	7	
3.	Parámetros de celda y resultados de ajuste para los materiales de partida	22	

ÍNDICE DE FIGURAS

Fi	gura	Pág
1.	Relación entre la variable controlada (a) y la respuesta del sistema (b)	10
2.	Esquema de una celda Swagelok utilizada para la inserción electroquímica	13
3.	Celda para rayos-x in situ:	17
4.	Dimensiones de la celda para rayos-x in situ	18
5.	Aspecto final de la celda electroquímica para toma de rayos-x in situ	19
6.	Representación poliédrica para el vanadato de níquel 1:1 a) a lo largo del	
	eje y b) a lo largo del eje z	23
7.	Representación poliédrica para el vanadato de níquel 2:1 a) a lo largo del	
	eje z b) a través del eje y	24
8.	Representación poliédrica para el vanadato de níquel o zinc 3:1 a lo	
	largo del eje y	25
9.	(a) Diagrama E vs. x obtenido para la primera descarga para celdas de	
	configuración Li//Ni _x V ₂ O _{5+x} para valores de x= 1, 2 y 3,	
	(b) comportamiento de los materiales en un intervalo de x=0.0-0.5	25
10	. Diagrama E vs. x para la celda Li//Ni _x V ₂ O _{5+x} (a) primera carga y segunda	
	descarga (b) ciclo 2 y ciclo 19 para el compuesto NiV ₂ O ₆	27
11	. Representación poliédrica para el vanadato de zinc 1:1 vista a lo largo	
	del eje y	28
12	. Representación poliédrica para el vanadato de zinc 2:1 (a) Cadena de	
	bipirámides triangulares vista desde el eje y (b) Vista a lo largo del eje z	29
13	. Diagrama E vs. x obtenido para la primera descarga (a). La primera y	
	segunda descarga para las celdas de configuración Li//Zn _x V ₂ O _{5+x}	
	(x= 1,2 y 3) (b)	29
14	. Voltamograma para el primer ciclo de carga/descarga de una celda de	
	configuración Li//Zn ₂ V ₂ O ₇	31

15. Voltamograma para el segundo ciclo de carga/descarga de una celda de	
configuración Li//Zn ₂ V ₂ O ₇	32
16. Curvas de descarga (a) y carga (b) de una celda de configuración	
Li//Zn ₂ V ₂ O ₇ en un intervalo de potencial de 3.2-0.5V vs. Li ⁺ /Li ^o	.34
17. Curvas de descarga (a) y carga (b) de una celda de configuración	
Li//Zn ₂ V ₂ O ₇ en un intervalo de potencial de 3.2-0.5V vs. Li ⁺ /Li°,	
segundo ciclo	37
18. Difractogramas realizados in situ para la descarga de una celda de	
configuración Li//Zn ₂ V ₂ O ₇	39
19. Representación poliédrica para el vanadato de cadmio 1:1 a lo largo del	
eje <i>y</i>	.41
20. Representación poliédrica para el vanadato de cadmio 2:1 vista a lo largo	
del eje x (a) y a lo largo del eje z (b)	.42
21. Diagrama E vs. x obtenido del ciclado de la celda Li//CdV ₂ O ₆ para un	
intervalo de potencial de 3.2-0.5V vs. Li ⁺ /Li ^o	43
22. Voltamograma resultante del primer ciclo de carga/descarga (a) y	
segunda carga/tercera descarga (b) de una celda de configuración	
Li// CdV ₂ O ₆ en un intervalo de potencial de 3.2-0.5V vs. Li ⁺ /Li ^o	45
23. Curvas de 1ª descarga (a) y 1ª carga (b) de una celda de configuración	
Li//CdV ₂ O ₆ en un intervalo de potencial de 3.2-0.5V vs. Li ⁺ /Li ^o	47
24. Curvas de 2ª descarga (a) y 2ª carga (b) de una celda de configuración	
Li//CdV ₂ O ₆ en un intervalo de potencial de 3.2-0.5V vs. Li ⁺ /Li ^o	49
25. Difractogramas obtenidos para distintas composiciones de Li _x CdV ₂ O ₆	
durante la descarga de una celda de configuración Li//CdV2O6 seguida a	
través de la técnica de difracción de rayos-x in situ (*=Be)	51
26. Evolución de potencial (E) frente a la cantidad de litio insertado	
(x) después de un ciclo completo de carga/descarga de una celda	
de configuración Li//Cd ₂ V ₂ O ₇ en un intervalo de potencial de	
3.2-0.5V vs. Li ⁺ /Li ^o	52

3
4
5
7
9
1
4
5
5
6
7
7
8

40.Difractograma experimental, calculado y diferencia para el compuesto	
Zn ₂ V ₂ O ₇ obtenido por el método de Rietveld	68
41. Difractograma experimental, calculado y diferencia para el compuesto	
Zn ₃ V ₂ O ₈ obtenido por el método de Rietveld	69
42. Difractograma experimental, calculado y diferencia para el compuesto	
CdV2()6 obtenido por el método de Rietveld	69
43. Difractograma experimental, calculado y diferencia para el compuesto	
Cd ₂ V ₂ O ₇ obtenido por el método de Rietveld	70