UNIVERSIDAD AUTONOMA DE NUEVO LEON FACULTAD DE INGENIERIA MECANICA Y ELECTRICA DIVISION DE ESTUDIOS DE POSTGRADO

"CONEXION A TIERRA EN SISTEMAS ELECTRICOS DE DISTRIBUCION EN CORRIENTE ALTERNA Y CONTINUA"

POR
ING. JOSEFAT GAMEZ GOMEZ
TESIS

EN OPCION AL GRADO DE MAESTRO EN CIENCIAS DE LA INGENIERIA ELECTRICA CON ESPECIALIDAD EN POTENCIA

CD. UNIVERSITARIA DICIEMBRE DE 2000

UNIVERSIDAD AUTONOMA DE NUEVO LEON FACULTAD DE INGENIERIA MECANICA Y ELECTRICA DIVISION DE ESTUDIOS DE BOSTGRADO

"CONC.

DE LE CONC.

DE LE CONC

FCR
ING. JOSEFAT GAMEZ GOMEZ
TESIS

EN OPCION AL GRADO DE MAESTRO EN CIENCIAS DE LA INGENIERIA ELECTRICA CON ESPECIALIDAD EN POTENCIA

UNIVERSION MITOHOMA DE NUEVO LEON FACULTADO DE PERMENA MECANICA Y ELECTRICA DIVISION DE POSTGRADO

DE DE

ALTERNA

POR

ING, JOSEFAT GAMEZ GOMEZ

TESIS

LA INGENIERIA ELECTRICA CON ESPECIALIDAD

EN POTENCIA

CD. UNIVERSITARIA DICTEMBRE DE 2000

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA DIVISIÓN DE ESTUDIOS DE POSTGRADO

Los miembros del comité de tesis recomendamos que la tesis: "CONEXIÓN SISTEMAS ELÉCTRICOS DE DISTRIBUCIÓN EN A TIERRA EN CORRIENTE ALTERNA Y CONTINUA", realizada por el Ing. Josefat Gámez Gómez sea aceptada para su defensa como opción al Grado de Maestro en Ciencias de la Ingeniería Eléctrica con Especialidad en Potencia.

EL COMITÉ DI

MC. EVELIO GONZALEZ FLORES

M.C. FÉLIX GONZALEZ ESTRADA M.C. ARMANDO PÁEZ ORDOÑEZ

Vo.Bo.

M.C. ROBÉRTO VILLARREAL GARZA DIVISION DE ESTUDIOS DE POSTGRADO

San Nicolás de los Garza, N.L. Diciembre de 2000

Prólogo

En las últimas décadas, el equipo de control y protección de los sistemas eléctricos, así como el equipo utilizado en el control de los procesos industriales y del equipo en general han sufrido una total transformación. Actualmente las cargas ya no son puramente lineales, sino que la gran mayoría del equipo está constituido por componentes electrónicos de estado sólido, los cuales por su operación instantánea son más sensibles a las irregularidades en la alimentación y por consecuencia hay una mayor exigencia en la pureza y estabilidad de la señal alimentada.

Por otra parte, el equipo electrónico de estado sólido que prácticamente compone el grueso de las cargas alimentadas, genera distorsiones, deformaciones y alteraciones en la señal de alimentación, haciendo más complejo el proceso de protección y operación.

La reciente y cada día más creciente aparición de equipos electrónicos de control, comunicaciones, computación, etc. ha originado nuevos factores que han de ser controlados, tales como las distorsiones armónicas, ruido eléctrico, interferencias electromagnéticas, y de radio frecuencia, que aunadas a los efectos inherentes a las condiciones geográficas como los rayos y descargas electrostáticas exigen sistemas de protección más efectivos y completos.

Como podrá observarse, los sistemas de conexión a tierra requeridos actualmente difieren de los utilizados en épocas anteriores y requieren una actualización constante tanto en su desarrollo tecnológico como de los especialistas y constructores.

Estamos conscientes de que el dominio del presente tema sólo es posible con la experiencia práctica en el campo, con la continua actualización y con la relación oportuna de datos e información proporcionadas por los fabricantes de equipos y de instituciones especializadas que se preocupan por ésta actividad.

El presente trabajo muestra en forma general los diferentes métodos de conexión a tierra en los actuales sistemas de distribución considerando el equipo eléctrico y electrónico alimentado y contiene información actualizada acerca de los mismos.

Ante el alto costo de los equipos instalados y su mantenimiento es exigible una instalación apropiada de los mismos; además, la protección al personal humano involucrado en su operación justifica sobradamente la instalación de un sistema de tierras eficiente y seguro.

Ing. Josefat Gámez Gómez

Indice

C	CAPÍTULO			
1	SÍNTESIS	10		
2	INTRODUCCIÓN	14		
	2.1 Planteamiento del problema a resolver	14		
	2.2 Definición de Hipótesis	15		
	2.3 Justificación del trabajo	15		
	2.4 Objetivo buscado	15		
	2.5 Limites del estudio	16		
	2.6 Metodología a emplear	16		
	2.6.1 Definición de la muestra	16		
	2.6.2 Descripción de experimentos a realizar	16		
	2.6.3 Descripción de métodos estadísticos a emplea	ar 17		
	2.6.4 Material utilizado	18		
	2.7 Revisión bibliográfica	18		
	2.7.1 Estudios anteriores relacionados con el tema la tesis	de 18		
3	IMPORTANCIA DE LOS SISTEMAS DE CONEXIÓN A TIERRA	A 19		
	3.1 Introducción	19		
	3.2 Consideraciones más importantes al diseñar un Siste	ma de		
	Conexión a Tierra	19		
	3.3 Objetivo de las Reglamentaciones del NEC	20		
	3.4 Conexión a Tierra a la Entrada de Servicio	21		
4	CLASIFICACIÓN GENERAL DE LAS TÉCNICAS DE CONEXI	ÓN A		
	TIERRA EN LOS SISTEMAS DE DISTRIBUCIÓN	22		
	4.1 Sistema de Electrodo de Tierra	22		
	4.2 Sistema de Tierra Contra Rayos	22		
	4.3 Sistema de Tierra de Seguridad	22		
	4.4 Sistema de Neutro Conectado a Tierra	22		
	4.5 Sistema de Tierra Aislada	22		
	4.6 Sistema de Señal de Referencia de Tierra	24		

	5.0	Introducción	24
	5.1	Componentes del sistema electrodo de tierra	24
	5.2	Dimensiones del conductor del electrodo de tierra	29
	5.3	Efectos de la Resistividad de suelo	30
	5.4	Técnicas de conexión a tierra para el sistema electrodo	
		De tierra	32
		Prueba de resistencia de tierra	34
	5.6	Prácticas comunes de violación a las estipulaciones de	
		conexión a tierra	36
6	CONEX	IÓN A TIERRA PARA PROTECCIÓN CONTRA RAYOS	
	6.0	Introducción	38
		Tipos de sistemas de protección contra rayos	40
	6.2	Diseño e Instalación de los sistemas de protección contra	
		rayos	42
		Impedancia del Suelo a los Rayos	46
	6.4	Requerimientos para las Uniones	47
7		ACIONES ESPECÍFICAS DE LAS TÉCNICAS DE KIÓN A TIERRA EN SISTEMAS DE DISTRIBUCIÓN DE C. A	.
	7.1		52
		7.1.1 Propósito	53
		7.1.2 Corrientes de Falla	55
		7.1.3 Seguridad al Contacto	56 50
		7.1.4 Calibre de la Tierra de Seguridad 7.1.5 Color del Conductor de Conexión a Tierra	58 64
		7.1.5 Color del Conductor de Conexion a ficita	UT
	7.2	NEUTRO (Conductor Conectado a Tierra)	64
		7.2.1 Propósito	64
		7.2.2 Conexión a Tierra del Conductor Neutro	67
		7.2.3 Cálculo del Neutro para Cargas Lineales	68
		7.2.4 Cálculo del Neutro para Cargas No Lineales	70
		7.2.5 Color del Conductor Neutro	74
	7.0	OLOMBIAAA BUDODBOG DE DDOMBOGIÓN A	
	7.3		74
		TIERRA / NEUTRO	14
8		CAS DE CONEXIÓN A TIERRA EN SISTEMAS DE IBUCIÓN DE C.C.	
	8.1	CONSIDERACIONES GENERALES	78
			_
		8.1.1 Campo de Tierra de la Oficina Central	81

			Tierra Aislada (IGZ)	88
			Tierra No - Aislada	90
			n de la Distribución Principal	90
•			de Entrada	91
	8.1.7	Instalac	ción del Conductor de Tierra	93
8.2			S ESPECÍFICAS DE LAS TÉCNICAS	DE
	CONEX		A TIERRA EN SISTEMAS	S DE
	DISTRI	BUCIÓI	N DE CORRIENTE CONTINUA	
			AS DE CONEXIÓN A TIERRA	PARA
	D	ESCAR	GAS ELECTROSTÁTICAS (ESD)	91
		.2.1.1	0	93
			Resistividad de la superficie	94
			Consideraciones de Manufactura	95
	8	.2.1.4	Descarga y Decaimiento	96
	8	.2.1.5	El cuerpo Humano como Conductor	
			A Tierra 📡	97
	8	.2.1.6	Control de Humedad	99
	8	.2.1.7	Superficies de Trabajo	100
	8	.2.1.8		cargas
			Electrostáticas	102
	8	.2.1.9	Agentes Tópicos contra Estática	103
	8.2.2 TI	ÉCNICA	S DE CONEXIÓN A TIERRA PARA	
	II	NTERFE	RENCIAS ELECTROMAGNÉTICAS (EMI) Y	DE
	R	ADIOFF	RECUENCIA (RFI)	105
			Acoplamiento Inductivo	106
	8.	2.2.2	Malla de Referencia para Señales	107
	8.	2.2.3	Efecto Pelicular	110
	8.	2.2.4	Impedancia de los Conductores redondos	111
	8.	2.2.5	Unión Permanente	112
	8.	2.2.6	Blindaje o Apantallamiento	115
	8.2.3	CONEX	KIÓN A TIERRA PARA LÍNEAS DE DATOS	E
		INSTU	MENTACIÓN	118
	8.	2.3.1	Conexión a Tierra para Blindaje de Baja	
			Frecuencia	119
	8.	2.3.2	Conexión a Tierra de Blindaje de Alta	
			Frecuencia	121
	8.	2.3.3	Cables Coaxiales	122
	8.	2.3.4	Terminación de Cables	124
	8.	2.3.5	Conexiones a Tierra para cables de varios	
			Edificios	126
	8.	2.3.6	Conexión correcta a Tierra para los Protec	tores
			-	127

		Lineas Telefónicas por Linea Conmutada	127	
		Lineas Privadas Interfaces de Datos RS-232	129 130	
	0.2,0.9	interfaces de Datos RS-252	100	
8.2.4 PROTECCIÓN CATÓDICA				
	8.2.4.1	Métodos para la aplicación de Protección		
	C	Catódica	134	
8.2.4.2 Ánodos Galvánicos				
	8.2.4.3	Sistemas de Cama de Suelo Rectificador	136	
	8.2.4.4 (Corrientes Parásitas	138	
9 CONCL	USIONES Y REC	COMENDACIONES		
9.1	AUDITORÍA D	E SITIOS	140	
	9.1.1 Introduc	ción	140	
	9.1.2 Resultad	do del estudio de Potencia	141	
	9.1.3 Resultad	dos Obtenidos de la Inspección de Tierras	143	
	9.1.4 Resultad	dos de Transitorios	145	
	9.1.5 Datos de	e reporte	146	
	9.1.5.1	Registro de la Inspección del sisten		
		Potencia	146	
	9.1.6 Resume		158	
	9.1.7 Recome	ndaciones	150	
10 BIBLIC	OGRAFÍA		153	
11 LISTAI	OO DE FIGURAS	3	156	
12 LISTAI	OO DE TABLAS		158	
APÉNI	DICE		159	