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MARÍA ANGÉLICA SALAZAR AGUILAR
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CIUDAD UNIVERSITARIA, ABRIL DE 2010



Universidad Autónoma de Nuevo León

Facultad de Ingenierı́a Mecánica y Eléctrica
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ABSTRACT

In general, distribution firms have complex product distribution networks which are formed

by thousands of sales points. In this kind of industry there are many interesting problems

from the logistic point of view that can appear in different stages of the decision process.

For instance, when a firm is starting, a first problem could be the facility location: where to

install the warehouses and/or distribution centers. After that, in order to provide efficient

service and to reduce total costs (i.e., production, stock and distribution costs) some ques-

tions such as how many products need to be produced, and how to deliver the products to

the final customer, need to be answered.

The problem addressed in this work is motivated by a real-world application from

a beverage distribution firm in the city of Monterrey, Mexico. The problem consists of

finding a partition of the entire set of geographical basic units (BUs) into p territories,

such that a measure of territory compactness and the maximum deviation with respect

to the target number of customers are both minimized. In addition, it is required to find

territories that are connected and balanced (similar in size) with respect to sales volume.

A territory is connected if the set of BUs belonging to it induces a connected subgraph.

This problem can be found in every distribution firm and it appears before the routing plan

takes place. Having shorter routes in product distribution is a direct consequence of having

compact territories in the design stage. Additionally, it is well established by the firm that

compact territories reduce the number of unsatisfied customers caused by different deals

offered to their customers.

This dissertation includes the study and development of new optimization models

and procedures for a commercial territory design problem. The core of this work focuses

on the bi-objective version of this commercial territory design problem, which has not

been studied before to the best of my knowledge. For this case, an exact solution procedure

vii
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and heuristic methods (GRASP and Scatter Search) are developed in this dissertation.

In addition, another area of opportunity was detected: the lack of an exact method

for solving the single-objective version of this problem. So, this work contributes with an

exact procedure for solving this version of the problem as well.

The proposed solution procedures were tested over a set of instances randomly gen-

erated according to the real-world cases faced by the firm. The proposed solution proce-

dures were compared to two of the most popular and successful methods in multiobjective

optimization (NSGAII and SSPMO). It was observed that over all instances tested the

proposed solution procedures have better performance than the NSGA-II and SSPMO

methods.

Additionally, one of the proposed heuristic was applied to a large scale real-world

instance provided by the firm with excellent results. The solution found by the heuristic

was significantly better than the one obtained by the company.

As a conclusion, the methods developed in this work are a significant advance to the

state of the art from both the scientific and practical perspective.
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CHAPTER 1

INTRODUCTION

This chapter is organized as follows: Section 1.1 establishes the motivation for pursuing

this research work and Section 1.2 describes the problem addressed in this dissertation.

The relevance of this work is given in Section 1.3 and the research objectives are presented

in Section 1.4. Finally, the organization of this dissertation is presented in Section 1.5.

1.1 MOTIVATION

Territorial design is a hard task and is very common in every enterprise dedicated to prod-

uct sales and product distribution, specifically when the firm needs to divide the market

into smaller regions to delegate responsibilities and to facilitate the sales and distribution

of goods. These decisions need to be constantly evaluated due to the frequent market

changes such as introduction of new products or changes in the workload, which are fac-

tors that affect the territory design. Additionally, the large amount of customers that need

to be grouped makes this difficult task more critical. An efficient tool with capacity to

provide good solutions to large problems is needed. In this sense decision sciences play

an important role in the development of efficient optimization procedures to give support

to the decision maker and to make this hard task easier.

Specifically, the problem addressed in this work is motivated by a real-world appli-

cation from a beverage distribution firm in the city of Monterrey, Mexico. This problem

belongs to the family of territory design or districting.

Single-objective versions of this problem have been studied by Rı́os-Mercado and

Fernández [63] and Segura-Ramiro et al. [67] from the heuristic perspective. To the best

of my knowledge, the multiobjective version of this problem has never been studied in

1



CHAPTER 1. INTRODUCTION 2

the literature, and additionally, there is not an exact solution procedure for solving the

single-objective version either.

Although several approaches have appeared in the territory design literature, a few

address the study of multiobjective cases which are very common in the real world. More-

over, most of these few multiobjective cases are addressed from a single objective point of

view. That is, the multiple objective functions are put together into a single weighted sum

function which is optimized.

Evolutionary procedures such as SPEA, NSGA-II, MOMGA, MOMGAII, and PESA,

are the most popular techniques adopted by researchers in the multiobjective optimization

field. However, the development of efficient constraints-handling strategies on evolution-

ary algorithms (EA) has proven a very challenging task. In contrast, heuristics such as

Greedy Randomize Adaptive Search Procedure (GRASP) and Scatter Search (SS) widely

used in constrained optimization, give us the flexibility of exploiting the problem features

in order to converge to better results than those obtained by EAs when many and diffi-

cult constraints are present. Therefore, the development of GRASP and SS strategies for

this multiobjective optimization problem is an area of opportunity in this research. These

strategies are compared with both NSGA-II, a state-of-the-art evolutionary algorithm, and

SSPMO, a state-of-the-art metaheuristic based on the SS scheme.

1.2 PROBLEM STATEMENT

Territory design or districting consists of dividing a set of basic units (typically city blocks,

zip-codes or individual customers) into subsets or groups according to specific planning

criteria. These groups are known as territories or districts. Diverse applications from

different areas require a territory design. For instance, school districts, political districting,

and sales territory design. Kalcsics, Nickel, and Schröder [43] present a survey of these

applications. The problem addressed in this work has features that make it very unique

and not addressed before to the best of my knowledge. The single-objective version of

this problem was introduced by Rı́os-Mercado and Fernández [63]. Different versions of

this problem have been studied by Segura-Ramiro et al. [67] and Caballero-Hernández et
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al. [10].

Specifically, the firm wants to partition the basic units (blocks) of the city into a spe-

cific number of disjoint territories that are suitable according to their logistic, marketing,

and planning requirements. The company wishes to create a specific number of territories

(p) that are balanced with respect to each of two attributes (number of customers and sales

volume). Additionally, each territory needs to be connected, so basic units (BUs) in the

same territory can reach each other without leaving the territory. Territory compactness is

required to guarantee that customers within a territory are relatively close to each other.

The problem is modeled by a graph G = (V,E), where V is the set of nodes (city

blocks) andE is the set of edges that represents adjacency between blocks. That is, a block

or BU j is associated with a node, and an edge connecting nodes i and j exists if BUs i and

j are located in adjacent blocks. Multiple attributes like geographical coordinates (cx, cy),

number of customers and sales volume are associated to each node j ∈ V . It is required

that each node be assigned to only one territory (exclusive assignment). In particular, the

firm seeks perfect balance among territories. This means each territory needs to have the

same number of customers and sales volume associated to it. Let A = {1, 2} be the set of

node activities, where 1 refers to the number of customers and 2 refers to sales volume. Let

us define the size of territory Vk with respect to activity a as w(a)(Vk) =
∑

i∈Vk(w
(a)
i ), a ∈

A, where w(a)
i is the value associated to activity a in node i ∈ V . Hence, the target value

is given by µ(a) =
∑

j∈V w
(a)
j /p. Another important constraint is that of connectivity, i.e.,

for each pair of nodes i, j that belong to the same territory, there must exist a path between

them such that it is totally contained in the territory. In addition, in each territory the BUs

must be relatively close to each other (compactness).

All parameters are assumed to be known with certainty. The problem consists of

finding a p-partition of V according to the specific planning requirements of balancing,

connectivity and compactness. For instance, the right graph in Figure 1.1 shows an 8-

partition from the original instance drawn in the left graph. This partition is a feasible

solution only if each Vk ⊂ V with k ∈ {1, 2, . . . p} is compact, connected, and balanced.

Due to the discrete nature of the data, a perfect balance is practically impossible. So,

a tolerance parameter (τ (a)) that represent a relative deviation from the target value is
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Figure 1.1: Creation of a 8-partition of V .

allowed.

For instance, suppose that the firm wishes to find a 2-partition of 14 BUs where there

is a total of 42 customers, 128 units of demand, and a relative deviation τ(a) = 0.05. The

target value in the first activity (average number of customers) is given by µ(1) = 21 and

the average sales volume is given by µ(2) = 64. Figure 1.2 presents two partition alterna-

tives, where nodes with the same color belong to the same territory. Observe that in graph

a), node l is disconnected from its territory. In contrast, in graph b) it is possible to find

a path between any pair of BUs belongs to the same territory without leaving it, i.e., the

connectivity constraint is satisfied. According to the balancing requirements, the territo-

ries size in design a) present a relative deviation greater than 5% from the target values.

Therefore, the territory design shown in a) is not a feasible solution for the problem.

The compactness criterion is very important to the firm, because it promotes the

creation of better routes during the posterior routing process. Additionally, compact terri-

tories helps to reduce the number of dissatisfied customers due to the special offers given

by the firm. One can see that the number of neighboring nodes is smaller in a more com-

pact design. Different versions of this problem are studied in this work.

1.3 RELEVANCE

A single-objective version of this problem was introduced by Rı́os-Mercado and Fernández

[63]. Segura-Ramiro et al. [67] and Caballero-Hernández et al. [10] studied another vari-
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Figure 1.2: Illustration of connectivity.

ant to the single-objective problem. The basic components of this research are the study

and the development of solution techniques for a class of territory design problems with a

high degree of complexity.

This work introduces an exact solution procedure for the commercial territory de-

sign problem with a single-objective. To the best of my knowledge, this is the first time in

which exact solutions are obtained for the single-objective version. Moreover, the core of

this research focuses on the bi-objective version of this problem. That is, the commercial

territory design problem is modeled as a bi-objective territory design problem in which

balancing with respect to number of customers and compactness are considered as objec-

tive functions. Balancing with respect to product demand and connectivity are treated as

constraints. In the bi-objective case, this research comprises both the development of exact

optimization methods for solving medium-size instances, and the development of intelli-

gent heuristics based on Greedy Randomized Adaptive Search Procedure (GRASP) and

Scatter Search (SS) schemes for larger instances. The latter are developed by adequately

exploiting the problem structure for providing diverse approximate Pareto frontiers of high

quality to large instances.

The obtained solutions have the objective of giving support to the decision maker

upon designing the distribution routes and the workload distribution. In addition, the par-

titioning permits a more efficient management of marketing offers as it reduces the num-

ber of dissatisfied customers by applying special offers in each territory. That is, efficient

solutions contribute to create better route design during the routing process due to com-

pactness (minimum dispersion) property in the territories. In addition, it provides support
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to the decision maker for elaborating the marketing plan and for making the best workload

and resource distribution. The latter is possible because the territories are balanced with

respect to both number of customers and sales volume.

1.4 OBJECTIVES

1. Development of a multiobjective model for this problem based on collaboration with

industry.

2. Verification that intended optimizing criteria are indeed in conflict.

3. Development of proof of NP-completeness of this problem.

4. Design and development of exact method for finding optimal Pareto fronts to small

and medium-size instances.

5. Design and development of a metaheuristic based on Scatter Search that includes

the implementation of key components such as a method for generating diverse so-

lutions, a method for solution improvement, and a method for combining solutions,

which are crucial and require intelligent exploitation of problem structure.

6. Experimental verification and testing of proposed procedures.

This work contributes with the introduction of new models and procedures for solv-

ing the commercial territory design problem in its single-objective and multiobjective ver-

sions. These procedures include two variants: exact methods and heuristic procedures.

For the single-objective version, the exact method is based on an iterative procedure that

uses branch and bound and a cut generation scheme. The heuristic approach for this ver-

sion is based on the optimization of a quadratic model through a successive dichotomies

procedure. In contrast, for the multiobjective version, the exact methods are based on

two variants of the ε-constraint method. The heuristic procedures includes the develop-

ment of novel GRASP strategies for generating diverse solutions, which are incorporated

in a Scatter Search scheme. Each component of these metaheuristic procedures is intelli-

gently designed by taking advantage of the problem structure. An additional contribution
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of this work is that the proposed solution procedures are successfully applied on a large

real-world instance from a beverage distribution firm.

1.5 ORGANIZATION

This dissertation is organized as follows: Chapter 2 presents an extensive literature review

of diverse applications of Territory Design Problems (TDPs). Applications developed

in fields such as political districting, sales territory design, services territory design, and

commercial territory design are discussed in this chapter. An interesting observation is

the relatively low number of applications addressed from a multiobjective perspective.

Even though multiple objectives are present in the original problem, most of the time it is

transformed into a single-objective problem. Commonly, the single-objective function is

a weighted sum of the multiple original objectives and the solution technique is a heuristic

method.

Chapter 3 introduces a new Integer Quadratic Programming (IQP) model and an ex-

act optimization framework based on both Mixed Integer Linear Programming (MILP) and

IQP models. In addition, a successive dichotomies heuristic procedure (called IQPHTDP)

is proposed. It allows to obtain locally optimal solutions for large instances of the single-

objective problem. The chapter includes a full evaluation of the models and the proce-

dures.

In Chapter 4, the multiobjective version of the commercial territory design problem

is described. The problem is modeled as a bi-objective MILP problem. A dispersion

measure and the maximum deviation with respect to the number of customers are the

objective functions that are minimized. The minimization process is subject to multiple

constraints such as exclusive assignment, balancing with respect to the sales volume, and

connectivity. The NP-completeness proof of the addressed problem is developed in this

chapter.

Previous work in commercial territory design have been practically focused on heuris-

tic methods. In this dissertation, an important contribution is an exact solution procedure

for obtaining efficient solutions for the bi-objective version described in the Chapter 4.
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Chapter 5 describes the proposed procedure. It is a combination of a cut generation pro-

cedure and the ε-constraint method. Two variants of the ε-constraint method are imple-

mented: i) the traditional version that guarantees obtaining weakly efficient solutions, and

ii) a modified improved version that assures obtaining efficient solutions. Experimental

work over a set of instances shows the effectiveness of the proposed approaches.

The development of heuristic procedures for NP-hard problems is a common prac-

tice in the literature. However, even though the optimization problem addressed in this

work is NP-hard, it is possible to solve medium-size instances by applying the exact pro-

cedure discussed in Chapter 5. For large instances of the problem, the exact solution

procedure can not be used due to its inherent computational complexity. One can see the

dramatic increase in time when attempting to solve larger instances. Therefore, the intro-

duction of heuristic procedures is required. Chapter 6 describes the proposed multiobjec-

tive heuristic procedures. The heuristic procedures developed in this research are based

on two well-known metaheuristics, GRASP and Scatter Search. Four strategies (called

BGRASP-I, BGRASP-II, TGRASP-I, and TGRASP-II) based on GRASP are developed.

The method based on scatter search is called SSMTDP, and it uses BGRASP-I as a diver-

sification method. The combination method allows to obtain good and diverse solutions.

That is, when combining a pair of solutions, the best features of these solutions are taken

to generate three new solutions that provide diversity during the searching process.

The performance of the proposed heuristic procedures is evaluated by using different

instance sets. Chapter 7 contains a detailed computational evaluation of these methods.

Different metrics such as number of points, k-distance, size of space covered (SSC), and

the coverage of two sets measure C(A,B) are used to evaluate the proposed procedures.

These are defined in Appendix A. The evaluation includes a comparison with two of the

most used multiobjective heuristics such as NSGA-II and SSPMO. NSGA-II is one of

the most popular and efficient evolutionary algorithms. In contrast, SSPMO is a scatter

search method that has showed successful performance over a variety of multiobjective

problems. The computational work reveals the proposed GRASP procedures outperform

the NSGA-II procedure, and the proposed SSMTDP outperforms SSPMO.

Conclusions, contributions, and directions for future research are highlighted in
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Chapter 8. Additionally, Appendix A contains mathematical notation, basic concepts,

brief description of multiobjective methods, and definitions of performance measures used

in multiobjective optimization.



CHAPTER 2

RELATED WORK

Territory design or districting consists of dividing a set of basic units (typically city blocks,

zip-codes or individual customers) into subsets or groups according to specific planning

criteria. These groups are known as territories or districts. An extensive number of works

have investigated, modeled, and developed algorithms for several applications of territory

design problem (TDP). Most applications in the real world seek to satisfy more than one

objective simultaneously. The problem addressed in this work is not an exception. So, a

multiobjective optimization method is needed for solving the commercial territory design

problem studied in this work.

Most of the TDP applications can be found in sales territories and political district-

ing. For instance, in political districting works developed by Hess et al. [37], Fleischmann

and Paraschis [29], Hojati [38], Garfinkel and Nemhauser [31], Mehrotra, Johnson, and

Nemhauser[52], Bozkaya, Erkut, and Laporte [8], Ricca and Simeone [62] can be found.

In sales territory design, works like the developed by Hess and Samuels [36], Marlin [50]

as well as Drexl and Haase [20] can be found. For a more extensive review related to the

sales territory design problem see Zoltners and Sinha [81] and for a complete survey of

different applications of territory design see Kalcsics, Nickel, and Schröder [43].

This chapter includes an extensive review of the relevant work in territory design.

Section 2.1 discusses single-objective models and Section 2.2 surveys multiobjective mod-

els. A summary of the most relevant work in territory design is presented in Section 2.3.

10
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2.1 SINGLE-OBJECTIVE TERRITORY DESIGN

APPLICATIONS

Most of the works in the territory design field address single-objective models and a few

works address multiobjective models. Literature review shows this fact. The analyzed

works are classified according to the application addressed on each of them.

POLITICAL DISTRICTING

Hess et al. [37] present a location-allocation technique for political districting. They con-

sider population equality, compactness, and contiguity as planning criteria. They seek to

minimize the sum of squared distances between each unit and its district center. In their

empirical work, their heuristic was applied to instances of up to 35 territories and 299

nodes.

Garfinkel and Nemhauser [31] present an enumeration algorithm for obtaining op-

timal solutions to a political districting under contiguity, compactness, and limited popu-

lation deviation requirements. In their empirical work, they solved problems with 40 or

fewer units.

Hojati [38] addresses a political districting problem in the city of Saskatoon, Canada.

He uses a three-stage approach where Lagrangian relaxation is used first to determine

district centers, then an assignment problem is solved for allocating population units to

districts, and finally a sequence of capacitated transportation problems are solved for ob-

taining fewer splits than the existing districting plan implemented by the city.

Mehrotra, Johnson, and Nemhauser [52] address the problem of political redistrict-

ing from a column generation perspective, and present a heuristic based on branch and

price for a case study in the state of South Carolina, USA. They used their method to

attempt to solve a 46-county problem with 6 districts. Their method was able to obtain

feasible solutions for a tolerance of 2% with respect to the target value (balancing con-

straint) outperforming a clustering heuristic.

Bozkaya, Erkut, and Laporte [8] address a political districting problem subject to

constraints such as contiguity, population equality, compactness, and socio-economic ho-
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mogeneity. They developed a tabu search procedure and used it to find solutions for a

real-world case in Edmonton, Canada, with 828 basic units and 19 districts. Their proce-

dure integrates several of the criteria into a single-objective function. Their results indicate

that the algorithm produced better maps than the existing one, while improving some of

the other constraints at the same time.

Bação, Lobo, and Painho [2] propose a genetic algorithm for a political districting

problem. Compactness and population equality are used as objective functions. They

solved the problem by optimizing the objective functions independently. In both cases

connectivity is treated as a constraint. The algorithm was applied to a case provided by

the Portuguese government.

SALES DISTRICTING

Hess and Samuels [36] address a sales TDP with workload balancing constraints and com-

pactness minimization criteria. As a dispersion measure they use squared Euclidean dis-

tances. They present a heuristic based on a location-allocation scheme where a linear

transportation problem is used to solve the assignment phase. Then, splits are resolved by

means of a tie-breaking heuristic which assigns an area to the territory with the maximum

of the area’s activity. Connectivity was not considered.

Zoltners and Sinha [81] present the first review of sales territory design models.

They develop a framework for sales territory alignment and several properties, which are

incorporated into a general sales territory model.

Fleischmann and Paraschis [29] address a sales territory design problem arising in

a German company for consumer goods. They formulate the problem as a MILP and

develop a procedure based on a location-allocation approach. Specifically they have to

allocate 168 sales agents in 1400 postal areas. They consider balancing workload (25%

tolerance) and compactness as planning criteria. To ensure compact districts, they use

weighted squared Euclidean distances as a dispersion measure. Connectivity was not con-

sidered.

Drexl and Haase [20] study the solution of sales force deployment which involves

the solution of four interrelated subproblems namely: sales force sizing, salesman lo-
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cation, sales territory alignment, and sales resource allocation. They present a MILP

model for the problem of maximizing revenue subject to connectivity and profit-related

constraints for their subproblems. They propose an approximation method based on suc-

cessively solving a series of MILPs.

PUBLIC SERVICE DISTRICTING

D’Amico et al. [16] present a simulated annealing algorithm to the problem of redistrict-

ing or redrawing police command boundaries. They model the problem as a constrained

graph-partitioning problem involving partitioning of a police jurisdiction into command

districts subject to constraints of contiguity, compactness, convexity, and size. Since the

districting plan affects urban emergency services, they also consider quality-of-service

constraints. They tested their method in a case study in the Buffalo Police Department,

New York. They were able to significantly reduce the officer workload disparity while

maintaining current levels of response time in a 409-node network with 5 districts.

Blais, Lapierre, and Laporte [5] describe a districting study undertaken for a local

community health clinic in Montreal. In their problem, a territory had to be partitioned

into six districts and five disticting criteria had to be met: indivisibility of basic units,

respect for borough boundaries, connectivity, visiting personnel mobility, and workload

equilibrium. The last two criteria are combined into a single-objective function and the

problem was solved by a tabu search technique that iteratively moves a basic unit to an ad-

jacent district or swaps two basic units between adjacent districts. Their proposed solution

procedure generates solutions at least as good as those produced by a team of experts.

COMMERCIAL TERRITORY DESIGN

Commercial territory design is a recent territory design application. It was introduced

by Rı́os-Mercado and Fernández [63]. They consider the objective function of the well-

known p-Center Problem (pCP) to create compact territories. They use three different

balance requirements: number of customers, sales volume, and workload. Due to the

complexity of the problem, they developed a reactive GRASP procedure to solve it. Their
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proposed procedure outperformed the company method in both, solution quality and de-

gree of infeasibility with respect to the balancing requirements. Different versions of this

problem have been studied by Segura-Ramiro et al. [67] and Caballero-Hernández et al.

[10]. In [67] they use another dispersion measure that is very common in facility loca-

tion. It is the objective function of the p-Median Problem (pMP). Balancing requirements

are considered as constraints. They solved the problem by an implementation of a well-

known heuristic technique called location-allocation. The results showed good heuristic

performance.

All previous work in commercial territory design address single-objective versions

and all from the heuristic perspective. This motivates one of the contributions in this

dissertation, the proposal of an exact optimization method for solving the single-objective

version of this problem.

2.2 MULTIOBJECTIVE TERRITORY DESIGN

APPLICATIONS

POLITICAL DISTRICTING

Tavares et al. [71] study a multiobjective public service districting problem. They consid-

ered multiple criteria such as location of the zone with respect to the network, mobility

structure within a zone, zone corresponding to administrative structures, centers of attrac-

tion in the zone, social nature and geographical nature. They proposed an evolutionary

algorithm with local search and applied it to a real-world case of the Paris region public

transportation. They discussed results for bi-objective cases considering different criteria

combination.

Guo, Trinidad, and Smith [34] propose a multi-objective zoning and aggregation

tool (MOZART). MOZART is an integration of a graph partitioning engine with a Geo-

graphic Information System (GIS) through a graphical user interface. They illustrated the

performance of MOZART by solving two zoning problems from three government local

areas in Victoria: Kingston, Bayside, and Glen Eira. The first part of their experimental
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work was carried out taking into account one single objective of equality in population

size. In contrast, in the second part of their experimental work both equity in population

and compactness were treated as objective functions. They report a case with 577 cen-

sus collection districts and 20 zones, the inclusion of compactness as the second zoning

objective yields zones of better shapes.

Bong and Wang [6] present a multi-objective hybrid metaheuristic approach for GIS-

based spatial zoning model. Their heuristic procedure is a combination of tabu search and

scatter search. They show the procedure performance by solving a political districting

problem with 55 basic units and 3 districts. Equity in population, compactness, and socio-

economic homogeneity are treated as objectives.

Ricca and Simeone [62] address a multiple criteria political districting problem.

Such criteria were connectivity, population equality, compactness, and conformity to ad-

ministrative boundaries. They transformed the multiobjective model into a single-objective

model, where the objective function is a convex combination of three objective functions

(inequality, noncompactness, and nonconformity to administrative boundaries), and con-

nectivity is considered as a constraint. They compared the behavior of four local search

metaheuristics (descent, tabu search, simulated annealing, and old bachelor acceptance)

over a sample of five Italian regions. The old bachelor acceptance produced the best re-

sults in most of the cases.

SCHOOL DISTRICTING

Bowerman, Hall, and Calamai [7] present a multiobjective approach for solving a school

bus routing problem. Their proposed a heuristic technique that at first it groups students

into clustering using a multiobjective districting algorithm. After that, a school bus route

and the bus stops for each cluster are generated by using a combination of a set covering

procedure and a traveling salesman problem procedure. They report experimental results

for a real-world instance in Wellington County, Ontario. The districting algorithm con-

siders four objectives: minimizing the number of routes, minimizing the length of the

routes, load balancing, and compactness of the routes. The three last criteria are placed

in a weighted objective function and the number of routes is the dominant objective, i.e.,
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a solution with fewer routes is always favored over a solution with more. Different plans

were designed using different set of weights over the optimization criteria.

Scott, Cromley, and Cromley [65] make a multiobjective analysis of school district-

ing in a case study from Connecticut. They propose a mixed-integer goal programming

model where the goal constraints are to minimize disparities in: minority enrollments,

grand-list/student ratios, student-teacher ratios, and overall enrollment. The number of

districts is not fixed and the contiguity criterion is not formulated in an explicit way. Ex-

perimental work using different weighting scenarios reveals that the traditional distance-

minimizing or transportation-minimizing objectives are in conflict with all other aims of

equity and quality of educational opportunities.

MISCELLANEOUS

Ricca [61] address a territory aggregation problem in Rome. A heuristic procedure based

on an old bachelor acceptance is implemented. Compactness, population equality, and

inner variance are the optimization criteria. Inner variance is used to guarantee homoge-

neous zones according to some socio-economic factors such as the population, number

of schools, hospitals, and shopping centers. The objective function used in this work is

a convex combination of the optimization criteria. Different sets of weights were used

to obtain approximate efficient solutions. The heuristic technique reported better designs

than the existing design.

2.3 SUMMARY

Tables 2.1 and 2.1 contain a summary of the most important work on territory design that

have been developed in diverse fields such as political districting, sales districting, and

public services. This table illustrates the main features included on theses applications.

Planning criteria (third column) as balancing, connectivity, and fixed number of territories

are shown as ’B’, ’C’, and ’F’, respectively. In those works where the number of territory

is not fixed, the capital letter ’F’ is replaced by ’V’, and ’-’ appears in the cases where

connectivity is not a constraint. In the fourth column, ’Single(
∑

)’ means that two or
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more criteria were placed together in a weighted sum objective function.

Observe that the literature reviewed on territory design reveals the following facts.

Very few works address multiobjective models and all of these are basically heuristic tech-

niques for obtaining approximate Pareto fronts. To the best of my knowledge, this work

is the first to provide a method for obtaining efficient frontiers for the bi-objective terri-

tory design problem with compactness, multiple balancing, and connectivity as planning

criteria. In particular, the problem studied in this work can be seen as the bi-objective

extension to the model developed in [67].
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Table 2.1: A) Summary of territory design applications.

Author Application Criteria Objective Solution Technique
Hess and Weaver [37] Political B,C,F Single Location-allocation

Garfinkel and
Nemhauser [31]

Political B,C,F Single Exact procedure

Hess and Samuels [36] Sales B,-,F Single Location-allocation

Bertolazzi et al. [4] Services B,-,F Single Exact procedure

Marlin [50] Services B,-,F Single Location-allocation

Pezzella et al. [58] Services B,C,F Single Location-allocation

Fleischman and
Paraschis [29]

Sales B,-,F Single Location-allocation

Hojati [38] Political B,C,F Single Location-allocation

Mehrotra [52] Political B,C,V Single Heuristic based on
Branch & Price

Drexl and Haase [20] Sales B,C,V Single Heuristic

Guo et al. [34] Political B,C,F Bi-
objective

MOZART

Muyldermans et al.
[55]

Services B,C,F Single(
∑

) Heuristic of two
phases

Blais et al. [5] Services B,C,F Single(
∑

) Tabu search
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Table 2.2: B) Summary of territory design applications.
Author Application Criteria Objective Solution Technique
Bozkaya et al. [8] Political B,C,F Single(

∑
) Tabu search and adap-

tive memory

Ricca and Simeone [61] Political B,C,F Single(
∑

) Old bachelor accep-
tance

Bong and Wang [6] Political B,C,F Three-
objective

Tabu search and scatter
search

Bação et al. [2] Political B,C,F Single Genetic algorithms

Chou et al. [13] Political B,C,F Single(
∑

) Simulated annealing
and genetic algorithms

Tavares and Figueira
[71]

Services B,C,F Bi-
objective

Evolutionary algorithm
with local search

Caballero-Hernández et
al. [10]

Commercial B,C,F Single GRASP

Segura-Ramiro et al.
[67]

Commercial B,C,F Single Location-allocation

Ricca and Simeone [62] Political B,C,F Single(
∑

) Descent, tabu search,
old bachelor accep-
tance, and simulated
annealing

Rı́os-Mercado and
Fernández [63]

Commercial B,C,F Single Reactive GRASP
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THE SINGLE-OBJECTIVE COMMERCIAL

TERRITORY DESIGN PROBLEM

Segura-Ramiro et al. [67] introduced the first single-objective mixed integer linear model

(MILP) for the commercial territory design problem addressed in this research. Specif-

ically, they considered compactness as objective function and the rest of the planning

criteria were treated as constraints in their optimization model. They proposed the min-

imization of a dispersion measure based on the objective function of the well-known p-

Median Problem (pMP). They developed a location-allocation local search heuristic that

successfully handles the connectivity and the balancing constraints. The NP-completeness

of this problem was established by Segura-Ramiro et al. [67]. To the best of my knowl-

edge, no exact scheme has been developed for this problem. So, an important contribution

of this research is an Iterative Cut Generation Procedure for solving TDPs (ICGP-TDP)

that allows to find optimal solutions for the problem addressed in [67].

ICGP-TDP consists of iteratively solving a relaxed MILP model (relaxing the con-

nectivity constraints), identifying violated constraints by solving an easy separation prob-

lem, and adding these violated cuts to the model. The procedure continues until optimality

is reached. For the model with pMP objective, ICGP-TDP is successful in finding opti-

mal solutions for instances with up to 150 BUs and 8 territories, and even for some cases

with 200 BUs and 11 territories. In addition, a new integer quadratic programming (IQP)

formulation is proposed in this work. The IQP formulation reduces the number of binary

variables from n2 to 2np and it allows to solve larger instances than those solved by the

linear model. The ICGP-TDP framework can be applied to solve the problem by using

20
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both MILP and IQP models.

The organization of this chapter is the following. Section 3.1 contains a brief de-

scription and mixed integer linear formulations of the problem, Section 3.3 introduces

the IQP formulations proposed in this dissertation. The proposed solution procedure is

included in Section 3.4, and experimental work is discussed in Section 3.5. Finally, con-

clusions are drawn in Section 3.7.

3.1 PROBLEM STATEMENT

Given a set of city blocks or basic units (BUs), the firm wants to create a specific number

of territories according to some planning criteria such as compactness, connectivity, and

balancing with respect to both the number of costumers and sales volume. Due to the

discrete structure of the problem and to the unique assignment constraints, it is practically

impossible to have perfectly balanced territories with respect to each activity measure.

Thus, in order to model balancing, a tolerance parameter τ (a) for activity a is introduced.

This parameter measures the relative deviation from the average territory size with respect

to the activity a ∈ A. The target average is given by µ(a) = w(a)(V )/p. Another important

constraint is that of connectivity, i.e., for each i and j assigned to the same territory there

must exist a path between them totally contained in the territory. In addition, in each

territory the BUs must be relatively close to each other (compactness). One way to achieve

this requirement is to minimize a dispersion measure. Several measures have been used in

the literature. Two different measures were studied in this work, one based on the p-Center

Problem (pCP) objective and the other based on the p-Median Problem (pMP) objective.

This leads to two different models. Both are described below.

3.2 MIXED INTEGER LINEAR MODELS

The following notation (introduced in [67]) is used for modeling the problem.

Indices and sets
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n number of blocks

p number of territories

i, j block indices; i, j ∈ V = {1, 2, . . . , n}

a activity index; a ∈ A = {1, 2},

a = 1(2) refers to the number of customers (product demand)

N i set of adjacent nodes to node i, where

N i = {j ∈ V, (i, j) ∈ E ∨ (j, i) ∈ E}, i ∈ V .

Parameters
w

(a)
i value of activity a in node i; i ∈ V , a ∈ A

dji Euclidean distance between j and i; i, j ∈ V

τ (a) relative tolerance with respect to activity a ∈ A; τ (a) ∈ [0, 1]

Computed parameters

µ(a) = w(a)(V )/p average (target) value of activity a; a ∈ A

Decision variables

xji =

 1 if basic unit j is assigned to territory with center in i; i, j ∈ V

0 otherwise.

Note that xii = 1 implies i is a territory center.

(MPTDP) Minimize z=
∑
j∈V

∑
i∈V

djixji (3.1)

subject to
∑
i∈V

xii=p (3.2)∑
i∈V

xji=1 j ∈ V (3.3)∑
j∈V

w
(a)
j xji≥(1− τ (a))µ(a)xii i ∈ V ; a ∈ A (3.4)∑

j∈V

w
(a)
j xji≤(1 + τ (a))µ(a)xii i ∈ V ; a ∈ A (3.5)∑

j∈∪v∈S(Nv\S)

xji−
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j∈S

xji≥1− | S | i ∈ V ;

S ⊂ [V \ (N i ∪ {i})] (3.6)

xji∈{0, 1} i, j ∈ V (3.7)

Objective (3.1) represents a dispersion measure based on the pMP objective. In this

sense minimizing dispersion is equivalent to maximizing compactness. Constraint (3.2)

assures the creation of exactly p territories. Constraints (3.3) assure that each node is

assigned to only one territory. Constraints (3.4)-(3.5) represent the territory balance with

respect to each activity measure as they establish that the size of each territory must lie

within a range (measured by tolerance parameter τ (a)) around its average size. Constraints

(3.6) guarantee the connectivity of the territories. Note that there is an exponential number

of such constraints.

This model was used by [67], and it can be viewed as a pMP with multiple capacity

constraints, and with additional side constraints (3.4) and (3.6), respectively. Note that,

when the pCP objective is used as dispersion measure the objective (3.1) is replaced by

z = max
j,i∈V
{djixji}. (3.8)

The resulting model is called CPTDP and it was introduced by Rı́os-Mercado and Fernández

[63].

The NP-completeness of both MPTDP and CPTDP is well established [67, 63].

Rı́os-Mercado and Fernández [63] proposed a reactive GRASP to solve the CPTDP.

[67] proposed a location-allocation method to solve the MPTDP. However, to the best of

my knowledge no exact methods have been developed so far. Given that the connectivity

constraints cannot be explicitly written out, not even commercial solvers can be applied

directly. An exact solution procedure to solve MPTDP and CPTDP is proposed in this

dissertation. This procedure is easily implemented under any algebraic modeler system

and it can be solved by any off-the-shelf MILP solver.

Let R MPTDP denote the relaxed model obtained by relaxing (3.6) from MPTDP.

In a similar way, the relaxed model R CPTDP is defined as the resulting model obtained
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by relaxing (3.6) in CPTDP.

3.3 INTEGER QUADRATIC PROGRAMMING MODELS

The Integer Quadratic Programming (IQP) model introduced in this work reduces the

number of binary variables from n2 to 2np. An IQP model for the pMP was proposed by

[19]; however, this is the first quadratic formulation for territory design problems, to the

best of my knowledge.

In this new model, let Q = {1, 2, . . . , p} be the set of territory indices and let yiq,

and zjq be binary decision variables. Variables yiq are used to indicate the territory centers

and zjq are used to represent the assigning of BUs to territories. The parameters are the

same as those used in the linear model.

Decision variables for the IQP model

zjq =

 1 if unit j is assigned to territory q; i ∈ V, q ∈ Q

0 otherwise.

yiq =

 1 if unit i is the center of territory q; i ∈ V, q ∈ Q

0 otherwise.

According to this definition, the equivalence between the variables in the linear model and

the variables in the quadratic model is given by

xji =
∑
q∈Q

zjqyiq

The resulting IQP model is the following.

(QMPTDP) Min z=
∑
q∈Q

∑
j∈V

∑
i∈V

djizjqyiq (3.9)

s.t.
∑
i∈V

yiq=1 q ∈ Q (3.10)∑
q∈Q

zjq=1 j ∈ V (3.11)
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j∈V

w
(a)
j zjq≥(1− τ (a))µ(a) q ∈ Q, a ∈ A (3.12)∑

j∈V

w
(a)
j zjq≤(1 + τ (a))µ(a) q ∈ Q, a ∈ A (3.13)

zjq≥yjq q ∈ Q, j ∈ V (3.14)∑
q∈Q

∑
j∈∪v∈S(Nv\S)

zjqyiq−∑
q∈Q

∑
j∈S

zjqyiq≥1− | S | S ⊂ [V \ (N i ∪ {i})],

i ∈ V (3.15)

zjq∈{0, 1} q ∈ Q, j ∈ V (3.16)

yiq∈{0, 1} q ∈ Q, i ∈ V (3.17)

The QMPTDP model uses an equivalent dispersion measure as that of MPTDP. Con-

straints (3.10) are to guarantee the location of only one center for each territory. Con-

straints (3.11) are for exclusive node assignment. The set of constraints (3.12)-(3.13)

assure territory balance. Constraints (3.14) establish that BU j can not be the center of q if

j is not assigned to q. The last set of quadratic constraints (3.15) guarantees connectivity.

Again there is an exponential number of these constraints.

Under this quadratic formulation, a dispersion measure based on the pCP objective

is given by

min z = max
i,j∈V

{
dji
∑
q∈Q

zjqyiq

}
. (3.18)

Let QCPTDP be the resulting model when the objective function (3.9) is replaced

by the dispersion measure given by (3.18).

Note that these IQP formulations are new in the literature for commercial territory

design. QMPTDP is hard to solve due to the quadratic objective and quadratic connectivity

constraints. Additionally, it is not possible to write these explicitly due to its exponential

number. If the connectivity constraints are relaxed, the model may be solved using any

MINLP method. Let R QMPTDP be the relaxation of QMPTDP with respect to the con-

nectivity constraints (3.15). Clearly, a solution to R QMPTDP provides a lower bound to

QMPTDP.
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Note that, a feasible solution to R QMPTDP may yield unconnected territories. One

way to strengthen R QMPTDP is to introduce the following constraints:

∑
i∈Nj

ziq ≥ zjq q ∈ Q; j ∈ V (3.19)

These can be interpreted as follows. If j is assigned to territory q at least one of its

neighbors (i ∈ N j) must be assigned to the same territory. In this sense, these constraints

avoid the unconnected subsets S with |S| = 1. The motivation for this stems from the

fact that empirical work showed that a very large proportion of (unconnected) optimal

solutions to the relaxed models R MPTDP, R CPTDP, R QMPTDP, or R QCPTDP come

from subsets of cardinality equal to 1. Since there is a polynomial number of these, they

can be easily incorporated into the model.

Note that, for MILP formulations the equivalent valid inequalities are given by:

∑
j∗∈Nj

xj∗i ≥ xji i, j ∈ V (3.20)

Let R1 QMPTDP be the relaxation defined by R QMPTDP plus the additional con-

straints (3.19). The relaxed models for the QCPTDP model are defined in a similar way.

These are called R QCPTDP and R1 QCPTDP, respectively. Similarly, for both MPTDP

and CPTDP models, new relaxed models are obtained by adding (3.20) in the relaxed mod-

els R MPTDP and R CPTDP, respectively. We called these R1 MPTDP and R1 CPTDP,

respectively.

In the following section a solution framework is illustrated. This framework can be

used to solve the problem using both MILP and IQP formulations. The proposed pro-

cedure guarantees global optimal solution for MILP models and local or global optimal

solutions for IQPs, depending on what method is used for solving the relaxed subproblem.

3.4 THE ICGP-TDP PROCEDURE

One of the main difficulties for obtaining exact solutions for any of these models arise

from the exponential number of connectivity constraints. The explicit enumeration of
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these constraints results practically impossible. Thus, to get optimal solutions an itera-

tive procedure that uses branch and bound and a cut generation scheme is proposed. The

idea is relatively simple. By relaxing the connectivity constraints, a relaxed problem that

can be solved by branch and bound is obtained. The solution to this relaxed problem is

checked for connectivity. Then, a separation problem is solve. This problem is polyno-

mially solvable (see Algorithm 2). The violated valid inequalities (if any) are then added

to the relaxed model and the procedure continues until no more violated inequalities are

found. The ICGP-TDP procedure is outlined in Algorithm 1. For solving the MILP re-

laxed models, the SolveMILP method in ICGP-TDP uses any branch-and-bound method.

In contrast, the SolveIQP method may call either an exact or an approximate method. In

this case, in an attempt to come up with a way to find faster solutions, a local optimum

method was used for finding good feasible solutions for the IQP relaxed models. An issue

to investigate is precisely the trade-off between time and solution quality.

Algorithm 1 ICGP-TDP (P, DispMeasure, ModelType)
Input:

P:= Instance of the TDP problem
DispMeasure:= pCP or pMP objective function
ModelType:= MILP or IQP

Output: X = (X1, X2, . . . , Xp):= A feasible p-partition of V
Cuts← ∅ {Cut set}
Model← GenerateRelaxedModel(P, DispMeasure, ModelType)
while (Cuts 6= ∅) do

if (ModelType = MILP) then
X ← SolveMILP(Model)

else
X ← SolveIQP(Model)

end if
Cuts← SolveSeparationProblem(P,X)
AddCuts(Model, Cuts)

end while
return X
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3.4.1 THE SEPARATION PROBLEM

Suppose we have a graph G = (V,E) and a p-partition X = (X1, X2, . . . , Xp), where

each of these sets Xk induces a subgraph Gk = (Xk, E(Xk)) of G and a center ck ∈ Xk.

The separation problem consists of identifying all connected components of Gk. Each of

the connected components of Gk that does not contains the center ck is used to generate a

violated connectivity constraint in the problem. Algorithm 2 describes the steps to solve

the separation problem. Note that Step 3 can be efficiently done by breadth first search.

Algorithm 2 SolveSeparationProblem procedure.
Input:

P:= Instance of the TDP problem
X = (X1, X2, . . . , Xp):= A p-partition of V

Output: (Cuts)
Cuts := Set of violated connectivity constraints
Cuts← ∅
for (k = 1, . . . , p) do

Obtain connected components S1, S2, . . . , St of G(Xk, E(Xk))
For each St such that ck 6∈ St generate the violated cut and add it to Cuts

end for
return Cuts

To illustrate the separation problem consider an example with n = 11 nodes and

p = 2 territories (depicted in Figure 3.1). The doted lines represent the nodes belonging

to the same territory. Suppose that a solution to the relaxed problem after applying branch

and bound is given by the 2-partition X1 = {1, 4, 6, 7, 11} with center in c1 = 4 and

X2 = {2, 3, 5, 8, 9, 10} with center in c2 = 5, then the variables have the following values:

x14 = x44 = x64 = x74 = x114 = 1,

x24 = x34 = x54 = x84 = x94 = x104 = 0,

x25 = x35 = x55 = x85 = x95 = x105 = 1,

x15 = x45 = x65 = x75 = x115 = 0;

xjk = 0,∀j, k ∈ V, k 6= {4, 5}.

Given this solution, the separation problem (Algorithm 2) is solved to identify the

connectivity constraints violated by this solution. According to the connectivity con-

straints (3.6), the connected components S1, . . . , St are identified on each territory. As
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Figure 3.1: Example of an unconnected territory design for p = 2 and n = 11.

can be seen from X1 the connected component S1 = {6, 7} is unconnected from c1 then it

induces a violated constraint which is generated as

x24 + x34 + x54 + x94 − x64 − x74 ≥ −1.

Similarly, in X2 the connected component S1 = {2} is unconnected from c2 and the

violated constraint is given by

x15 + x65 − x25 ≥ 0.

Following the ICGP-TDP procedure, the cuts are added to the relaxed model and

it is solved again. We proceed iteratively until the final solution gives us a connected

territory design or a feasible solution is not found. The latter means the original problem

is infeasible. Note that the process for identifying unconnected subsets on each territory

can be efficiently done by Breath First Search (BFS).

The proposed procedure guarantees obtaining an optimal solution when the MILP

problem is feasible. In addition, on each iteration, the number of aggregated cuts is equal

to the total unconnected subsets identified from the given solution.

Observe that the number of (binary) decision variables in the MILP models is equal

to n2. In contrast, the IQP models have only 2np binary variables.
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3.5 COMPUTATIONAL RESULTS

The proposed ICGP-TDP method was coded in C++ and compiled with the Sun C++ 8.0

compiler. The MILP relaxations are solved by the CPLEX 11.2 callable libraries and the

IQP relaxations are solved by DICOPT [47]. Two stopping criteria were used, optimality

gap (gap ≤ 5 × 10−6) and time limit (7200 seconds). To speed up convergence the use

of priorities on the binary variables was done to ensure that xii are branched before than

xji, i 6= j, i, j ∈ V . Randomly generated instances based on real-world data provided

by the industrial partner were used. Each instance topology was randomly generated as

a planar graph. We considered a tolerance τ (a) = 0.05, a ∈ A, and generated three

different instance sets as (n, p) ∈ {(60, 4), (80, 5), (100, 6)}. For each of these sets, 20

different instances were generated. Additionally, two larger instance sets were generated

for (n, p) ∈ {(150, 8), (200, 11)}, where 10 different instances were generated for each of

them.

3.5.1 EVALUATION OF MILP MODELS

We first evaluate linear models CPTDP and MPTDP when the relaxed models R CPTDP

and R MPTDP, respectively, are used within the ICGP-TDP procedure.

Tables 3.1 and 3.2 show the results for CPTDP and MPTDP, respectively. The first

column indicates the instance size tested. The second column shows the percentage of

instances that were solved at the first iteration (out of 20 except for the set (150, 8)), that is,

the percentage of instances that did not find any unconnected territory in the first iteration.

The third column contains the average and the maximum number of iterations per instance

required by the algorithm to find the optimal solution. The fourth column displays the

percentage of instances solved within the specified time limit. The fifth column shows

the average and the maximum number of cuts added per instance solved. Finally, the

last column displays information about the CPU time (average and maximum) used per

instance.

For model CPTDP, Table 3.1 indicates that a very small proportion of the instances

were solved at the first iteration. As many as 26 iterations and 82 cuts were needed in the
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Table 3.1: Results for CPTDP under the R CPTDP relaxation.
size Solved at Iterations Solved Cuts/inst Time (sec)

(n, p) 1st iter (%) Ave Max (%) Ave Max Ave Max
(60,4) 20 5.3 26 100 12.1 82 381 1446
(80,5) 10 5.4 14 90 12.4 43 2682 7200

(100,6) 10 2.3 11 40 3.5 32 5812 7200
(150,8) 0 - - 0 - - 7200 7200

Table 3.2: Results for MPTDP under the R MPTDP relaxation.
size Solved at Iterations Solved Cuts/inst Time (sec)

(n, p) 1st iter (%) Ave Max (%) Ave Max Ave Max
(60,4) 80 1.4 6 100 0.5 5 7 33
(80,5) 70 1.4 4 100 0.5 4 53 235

(100,6) 75 1.4 4 100 0.5 4 95 438
(150,8) 75 1.8 5 80 1.6 6 1900 7200

worst case. At the end of the procedure, all 100 % instances of the (60,4) were solved

optimally. 90 % of the (80,5) set were solved optimally. However, the procedure struggles

with the larger sets. For the two smaller sets, around 5 iterations and 12 cuts were needed

on average. Note that, for a specific iteration the separation problem has the property

to identify more than one unconnected subset and it generates all violated connectivity

constraints at the same iteration. Note that for the (150,8) set, the procedure was unable to

terminate a single iteration within the time limit.

These statistics improve significantly for the MPTDP model (Table 3.1). Except

for a very few cases in the largest set, all other instances were solved optimally. A large

proportion of these were solved at the very first iteration. On average it required less than

2 iterations and a very few cuts for obtaining optimal solutions. This suggests not only

that the LP relaxation of the median-based model is tighter that the one of the center-based

model, but solutions to the R MPTDP relaxation yield near-connected solutions. This has

a positive impact in overall solution time.

Another issue to investigate is to whether or not the introduction of constraints (3.20)

have a positive effect on strengthening the model. Recall that constraints (3.20) elimi-

nate unconnected subsets of size 1. So, in this experiment the very first relaxation was

solved only for every instance and tallied the cardinality of all unconnected subsets for
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Table 3.3: Size of unconnected subsets for the R CPTDP relaxation.
size Cuts % cuts with
(n,p) identified |S| = 1 |S| = 2 |S| = 3 |S| ≥ 4

(60,4) 44 72.7 18.2 4.5 4.5
(80,5) 65 58.5 20 40 13.8

(100,6) 103 67 11.7 7.8 13.6
(150,8) - - - - -

Table 3.4: Size of unconnected subsets for the R MPTDP relaxation.
size Cuts % cuts with
(n,p) identified |S| = 1 |S| = 2 |S| = 3

(60,4) 4 100 0 0
(80,5) 6 83 17 0

(100,6) 5 80 20 0
(150,8) 6 83 17 0

both CPTDP and MPTDP. A summary of this experiment is shown in Tables 3.3 and 3.4.

Table 3.3 shows that most of the identified cuts for CPTDP correspond to unconnected

subsets of cardinality equal to 1. For the (60,4), (80,5), and (100,6) sets, the proportion of

unconnected subsets of cardinality 1 is 72.7, 58.5, and 67.0, respectively. This proportion

is even more dramatic for MPTDP (see Table 3.4). One can see that the number of total

unconnected subsets is considerable smaller than that of the R CPTDP relaxation. This

confirms that the MPTDP model not only has a better LP relaxation, but it also favors con-

nectivity, which is a very important issue. Hence, these results clearly justify and motivate

the introduction of the valid inequalities given by 3.20 into the relaxed models.

The following experiment clearly illustrates this issue. We now solve model MPTDP

under two different relaxations: R MPTDP and R1 MPTDP (incorporating the valid in-

equalities). We identify these with prefix R and R1, respectively. Table 3.5 displays the

results. The second and third columns show the number of instances (out of 20) that were

solved optimally at the very first iteration, that is, by solving the first relaxed models for

R MPTDP and R1 MPTDP, respectively. The fourth and fifth columns display the total

number of cuts added during the execution of the algorithm. The last two columns show

the percentage of instances that were optimally solved. As can be seen, relaxation R1

provides a more attractive choice in all senses. Therefore, the introduction of constraints
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Table 3.5: Comparison of relaxations R MPTDP and R1 MPTDP.
size Solved at 1st Cuts solved

(n, p) iteration (%) added (%)
R R1 R R1 R R1

(60,4) 80 100 9 0 20 100
(80,5) 70 95 9 1 20 100

(100,6) 75 90 9 2 20 100
(150,8) 5 45 6 3 80 90

(3.20) into the relaxed model provides a stronger LP representation of model MPTDP.

This has indeed a positive impact in solution times.

3.5.2 EVALUATION OF IQP MODELS

The IQP formulations QCPTDP and QMPTDP are considered under the R QCPTDP and

R QMPTDP relaxations, respectively. In a similar fashion as carried out with the linear

models, the distribution of the cardinality of the unconnected subsets was analyzed, when

only the very first relaxation is solved. Tables 3.6 and 3.7 display the results for QCPTDP

and QMPTDP, respectively. The description is similar to that of Table 3.3. It can be seen

that most of the unconnected subsets have cardinality 1, which is a similar behavior ob-

served in the linear models. Another observation is that the relaxation of the median-based

model provides solutions with a higher degree of connectivity that the one provided by the

center-based model. So a considerable less amount of effort will be needed to eventually

solved a median-based model with connectivity constraints. These results clearly motivate

the introduction of valid inequalities (3.19) into the relaxed models.

Table 3.6: Size of unconnected subsets for the R QCPTDP relaxation.
size Cuts % cuts with

(n, p) identified |S| = 1 |S| = 2 |S| = 3 |S| ≥ 4

(60,4) 662 68 21 6 5
(80,5) 956 73 17 6 4

(100,6) 1340 77 17 4 2
(150,8) 1088 82 14 3 1

The effect of incorporating constraints (3.19) into the relaxed model R1 QMPTDP

is evaluated. Table 3.8 shows the results when QMPTDP is solved under the R1 QMPTDP
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Table 3.7: Size of unconnected subsets for the R QMPTDP relaxation.
size Cuts % cuts with

(n, p) identified |S| = 1 |S| = 2 |S| = 3

(60,4) 3 100 0 0
(80,5) 5 40 20 40

(100,6) 6 67 33 0
(150,8) 5 60 40 0

Table 3.8: Solution of QMPTDP under the R1 QMPTDP relaxation.
size Solved at Cuts Iterations

(n, p) 1st iter (%) added Min Ave Max
(60,4) 95 1 1 1.1 2
(80,5) 85 4 1 1.2 2

(100,6) 95 1 1 1.1 2
(150,8) 100 0 1 1.0 1

relaxation. The second column shows the percentage of instances that were solved at the

very first iteration. The third column display the total average number of cuts added.

Columns 4 through 6 gives information on the number of iterations needed to reach op-

timality. As can be seen, the addition of constraints (3.19) gives excellent results as very

little additional effort in both cut generation and number of iterations was needed.

When attempting to carry out a similar experiment for the QCPTDP model under

the R1 relaxation, it was observed that the LP relaxation was still extremely weak. The

procedure could not terminate a single iteration within the specified time limit. The effect

of adding the cuts resulted in even higher running times. So, clearly this effort did not pay

off.

3.5.3 COMPARING MILP AND IQP

Clearly, it has shown that solving the quadratic models is faster than solving the linear

models. However, solving the quadratic model with local-optimum methods no longer

assures global optimality. Therefore, an important issue to investigate is precisely the

trade-off between solution quality and computational effort. We apply the solution pro-

cedure to models MPTDP and QMPTDP on two instance data sets (60,4) and (150,8).

Results are shown in Table 3.9 and 3.10, respectively. The fourth column shows the rela-
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Table 3.9: Comparison of MPTDP and QMPTDP models for instance set (60, 4).
Objective value Gap (%) Time (sec)

Inst MPTDP QMPTDP MPTDP QMPTDP
1 5305.57 5306.00 0.01 4 2
2 5451.68 5463.00 0.21 4 2
3 5507.88 5553.00 0.82 10 2
4 5935.67 6114.00 3.00 4 6
5 5303.20 5303.20 0.00 3 2
6 5253.94 5280.00 0.50 33 3
7 5460.18 5855.00 7.23 4 3
8 5309.96 5314.00 0.08 4 2
9 5224.51 5225.00 0.01 2 3

10 5350.15 6140.00 14.76 3 2
11 5150.91 5152.00 0.02 3 2
12 5597.50 5705.00 1.92 6 2
13 5731.99 5732.00 0.00 3 3
14 5462.96 5869.00 7.43 5 2
15 5332.77 5759.00 7.99 6 2
16 5399.54 5499.00 1.84 14 2
17 5602.86 5603.00 0.00 3 2
18 5773.96 6299.00 9.09 4 4
19 5543.45 5544.00 0.01 17 2
20 5767.54 5768.00 0.01 4 2

tive optimality gap of the solution found under the quadratic model (that is, with respect

to the optimal solution found by the linear model). For the instances marked with a star

(*), the MILP could not find an optimal solution within the specified time limit so a best

integer solution is used instead.

As it can be seen from Table 3.9, 19 out of 20 instances found with the quadratic

model fall within 10% of the optimal solution, and 60% of the solutions lay within 1%

of optimality. Time is not an issue in these sets as can be seen in the last two columns.

However, for the larger instances (displayed in Table 3.10), time becomes important. We

can see how time significantly increases for the MILP model. There are two instances

where time limit was reached when using the MILP model. When using the quadratic

model, all instances were solved within 1 minute of CPU time, delivering optimality gaps

of less than 5% in 90% of the instances. So this makes the quadratic model a very attractive

choice for relatively large instances.
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Table 3.10: Comparison of MPTDP and QMPTDP models for instance set (150, 8).
Objective value Gap (%) Time (sec)

Inst MPTDP QMPTDP MPTDP QMPTDP
1 9511.76 9979 4.91 1137 9
2 (*) 9404.60 9509 1.11 7200 29
3 9125.61 9130 0.05 90 32
4 9359.00 9646 3.07 147 30
5 9506.58 10494 10.39 455 42
6 9039.06 9088 0.54 78 25
7 9819.18 10017 2.02 1842 29
8 (*) 9202.13 9550 3.78 7200 34
9 9670.90 9972 3.11 730 28
10 9570.58 9794 2.33 125 26

Table 3.11: Time comparison for QMPTDP and MPTDP models.
size MPTDP time (sec) QMPTDP time (sec)

(n, p) Min Ave Max Min Ave Max
(60,4) 2 6.8 33 2 2.5 6
(80,5) 8 53.2 235 4 5.6 12

(100,6) 18 94.8 438 7 8.8 23
(150,8) 78 1900.4 7200 9 28.4 42

A summary of computational effort and solution quality over four different data sets

is shown in Tables 3.11 and 3.12, respectively. These tables show that the CPU time

employed for solving the quadratic model is relatively low compared with the time used

by the linear model. Furthermore, the average relative optimality gaps for the quadratic

model are less than 4%. In many cases the solution to the quadratic model was less than

1%.

Moreover, it was attempted to solve instances from a largest set (200,11) by us-

ing both MPTDP and QMPTDP models. In this case, the ICGP-TDP procedure reported

Table 3.12: Solution quality for QMPTDP.
size Gap (%)

(n, p) Min Average Max
(60,4) 0.00 2.75 14.80
(80,5) 0.01 2.61 8.15

(100,6) 0.06 3.14 7.56
(150,8) 0.05 3.13 10.39
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optimal solutions for 4 out of 10 instances tested (using MPTDP model). In contrast,

ICGP-TDP reported locally optimal solutions for 8 out of 10 instances tested by using

the QMPTDP model. Additionally, an instance with τ (a) = 0.05, a ∈ A; n = 280 and

p = 9 was generated. This instance was tested using the MPTDP formulation and in

the first relaxed model (R MPTDP), the branch and bound reported a percentage of rel-

ative optimality equal to 14.48%, after 24 hours. The same instance was tested by using

R1 QMPTDP and ICGP-TDP reported a connected solution in less than 4 minutes. Com-

paring the objective value for QMPTDP with the best lower bound found by branch and

bound, it reached a relative optimality of 12.17%. Finally, it was even tested the ICGP-

TDP procedure (with QMPTDP model) for instances with n = 500 and p = 20 and it

was observed that is possible to find locally optimal solutions to theses cases. Therefore,

the QMPTDP model is a fast and attractive alternative to find relatively good solutions for

large instances. It offers a good compromise between time and quality.

3.6 THE IQPHTDP PROCEDURE

During the experimental work for the IQMPTDP model, empirical results showed that the

QMPTDP model allows to obtain locally optimal solutions for larger instances than the

MILP model. In an attempt to exploit this, a new heuristic procedure, called IQPHTDP

is introduced in this dissertation. The procedure consists basically of a successive di-

chotomies process, where a (parent) problem is divided into two (children) subproblems

which are solved in an independent way. If the number of BUs in a children subproblem is

larger than the maxN parameter, this subproblem is divided in two smaller subproblems,

and so on. The process of successive dichotomies stops when the resulting subproblems

are small enough to be solved (exactly or approximately) by a MINLP method. For in-

stance, MINLP methods such as DICOPT [47] or AlphaECP [76] can be used. The final

solution for the original instance is formed by those partitions obtained by solving the

smaller subproblems. The IQPHTDP procedure can be easily implemented. In this work

it was coded in C++ and it calls to ICGP-TDP (see Algorithm 1) procedure for solving the

IQP subproblems.
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Computational results showed that, IQPHTDP is an attractive technique for obtain-

ing locally optimal solutions for instances with more than 500 nodes. However, its per-

formance depends on a control parameter ρ which helps to obtain feasible solutions or

at least to reduce the infeasibility value with respect to the balancing constraints. When

IQPHTDP reports an infeasible solution, a simple local search procedure can be applied

to reach feasibility. The infeasibility can be easily eliminated by applying a simple local

search procedure. The procedure was successful for solving the single-objective version

of the commercial territory design problem. However, it is not attractive for solving the

bi-objective version of the problem.

Algorithm 3 shows schematically the proposed solution procedure. It consists basi-

cally of solving a series of IQP models in such a way that those problems with more BUs

than the number allowed by the maxN parameter are solved using a p value equal to 2. It

means, given a TDP instance, if |V | > maxN the algorithm carries out a dichotomy of this

instance by solving the problem with p = 2. For example, suppose the size of the original

instance is given by (n, p) = (1000,49), let S = (V1, V2) be the solution of the original

instance with p = 2. Then the target size for V1 should be equal to the size determined

by the target value of 24 territories from the original instance, and the target size for V2

should be equal to the target value of 25 territories from the original instance. It is, this

dichotomy yields two smaller subproblems and each of them is analyzed to determine if

another dichotomy is required or not. If the instance (subproblem) given by V1 is such that

|V1| < maxN, then the subproblem is solved by using p = 24, and the target value for each

territory is given by the target value µ(a) and the tolerance τ (a), a ∈ A (obtained from the

original instance). In another case, the iterative process of successive dichotomies contin-

ues until all subproblems are solved with |V | <maxN. The final solution is obtained by

joint all partitions obtained by solving the smaller subproblems.

Observe that, IQPHTDP requires a TDP instance, maxN, and ρ as input specified by

the user. The control parameter ρ helps to keep balanced partitions as much as possible. It

is required because if the initial dichotomy produces a partition with high relative deviation

with respect to the average (target value), in the following dichotomies this value affects

in such a way that the final subproblems could not have a feasible solution with respect to
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the average size in the original instance.

3.6.1 EXAMPLE OF IQPHTDP

Suppose that IQPHTDP is used for solving an instance I with (n, p) = (1999,50) and

the input parameters are maxN = 300, and ρ = 0.8. Figure 3.2 shows the dichotomies

process, observe that, in the first dichotomy each partition V ′1 and V ′2 contains a half of

the total number of required territories (it is 25 out of 50) and the number of BUs on

each of them are greater than maxN , so another dichotomy is needed. Partitions V ′1

and V ′2 are used to generate two subproblems of TDP ((G′1 = (V ′1 , E(V ′1))) ⊂ G, and

(G′2 = (V ′2 , E(V ′2))) ⊂ G respectively) which are solved using p = 2. In Figure 3.2,

(V ′3 , V
′

4) corresponds to the 2-partition of V ′1 , and (V ′5 , V
′

6) is a 2-partition of V ′2 . These par-

titions V ′3 , V
′

4 , V
′

5 , and V ′6 contain more BUs than the allowed bymaxN , so the dichotomic

process is applied on each of them until the last obtained partitions V ′l : l = 7, ..., 14

contain less BUs than the limit value (given by maxN ). The latter are solved using the

number of territories contained on each partition. For instance, the subproblem given by

V ′7 is solved for p′7 = 6 and the subproblem given by V ′8 is solved for p′8 = 6. The upper

and lower balancing requirements are taken from the original instance I. Note that, the

balancing requirements for dichotomies are computed using the control parameter ρ and

the number of territories contained on each sub-instance (see Algorithm 3).

The final solution for instance I is computed by putting together all partitions ob-

tained for solving the small subproblems (in the example the small subproblems are those

generated by V ′l : l = 7, ..., 14). Figure 3.3 shows the final solution obtained for instance

I by applying of IQPHTDP procedure.

Some small subproblems can be infeasible with respect to the balancing constraints,

so the solution for the original instance will be infeasible. This can be avoided by selecting

a suitable value for the ρ parameter. In another case, a simple local search procedure can be

applied to the final solution given by the IQPHTDP procedure in order to reach a feasible

solution.
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Algorithm 3 IQPHTDP(I, maxN, ρ)
Input:
I:= Instance of TDP
maxN := Maximum number of BUs for solving the IQP model
ρ:= Control parameter

Output: S = (V1, ..., Vp): Solution, p-partition of V
I0(n0, p0, V0, w

(a)
i , τ (a)) = I:= Original instance

L = ∅:= Subproblems list
L = L ∪ I0, c = 0
while (L has instances to be solved) do

Take Ic ∈ L
if (nc > maxN ) then

The target value for those territories contained in Vc is given by

µ
(a)
Vc

=

∑
ı∈Vc w

(a)
i

pc

if (pc) is pair then
p′c1 = pc

2
; p′c2 = pc

2

else
p′c1 = pc+1

2
; p′c2 = pc−1

2

end if
Solve Ic for p = 2
Let Sc = (V ′c1, V

′
c2) be the obtained solution from Ic

the size for V ′c1 should be,

p′c1(1− ρτ (a))µ
(a)
Vc
≥
∑
i∈Vc

zi1 ≤ p′c1(1 + ρτ (a))µ
(a)
Vc

and the size for V ′c2 should be,

p′c2(1− ρτ (a))µ
(a)
Vc
≥
∑
i∈Vc

zi2 ≤ p′c2(1 + ρτ (a))µ
(a)
Vc
, a ∈ A

Add the instances defined by V ′c1 and V ′c2 in L. It is,
L = L ∪ Instance(V ′c1) ∪ Instance(V ′c2)

else
Solve Ic for p = pc and µ(a) {It uses the target value associated to the instance I}

end if
c = c+ 1

end while
Put together all partitions obtained from instances with nc < maxN
return S = (V1, ..., Vp)
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Figure 3.2: Successive dichotomies process for solving the instance I.

Figure 3.3: Final solution for instance I (using IQPHTDP).
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Table 3.13: Summary of instances tested by different values of ρ.
(n, p) ρ Feasible

(2000, 50) 0.2 9
(2000, 50) 0.1 7
(1000, 50) 0.1 10
(2000, 50) 1.0 0
(1000, 50) 1.0 0

3.6.2 EXPERIMENTAL WORK

The goal of this part was to evaluate the performance of the IQPHTDP procedure. The

experimental work was carried out over two instance sets (n, p) ∈ {(2000,50),(1000,50)}

with τ (a) = 0.05, for each of them 10 instances were randomly generated. Different

values of ρ were used in order to determine the effect yielded by this parameter in the final

solution reported by the IQPHTDP procedure. A summary of this experimental work is

shown in Table 3.13, first column contains the instance size, second column shows the

control parameter value (ρ), and third column displays the number of those instances in

which the IQPHTDP procedure reported a feasible final solution. When ρ = 1, it means

that the balancing deviation in all IQP subproblems is given by τ (a). It implies that, when

the size of a partition is really close to the balancing bounds, the following partitions

created from this partition may be really unbalanced with respect to the target value in the

original instance. In contrast, small values of ρ are very restrictive during the successive

dichotomies process and this fact permits to obtain locally optimal solution for the original

instance.

During the experimental work, it was observed that the computational effort of the

IQPHTDP procedure is relatively large. The worst case for solving the tested instances

required about 3 hours of CPU, and some times the obtained final solution was highly

infeasible. When the final solution is infeasible, the IQPHTDP procedure can be applied

by using another ρ value, however, this change does not guarantee that the new solution

will be feasible and the time increases for each trial-and-error attempt of the ρ value. A

local search procedure is another option for attempting to reach feasibility. The last option

increases the time as well.
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3.7 CONCLUSIONS

In this chapter, MILP and IQP models for the commercial territory design problem with

connectivity and multiple balancing constraints are described. The IQP formulations use

a significantly fewer number of binary variables than the MILP formulations. The IQP

models are new in the literature of territory design.

An exact solution procedure (ICGP-TDP) based on branch and bound and a cut

generation strategy was introduced in this chapter. This method can be applied to both

MILP and IQP models.

The models were strengthen by the introduction of valid inequalities that eliminate

unconnected subsets of size 1. We have observed empirically that most of the unconnected

subsets found in the relaxed models (relaxing the connectivity constraints) have cardinality

equal to 1, so this motivates the introduction of these valid inequalities. We empirically

proved that the cut did in fact helped find connected territories faster.

When the solution method was applied to solve instances under linear and quadratic

models, the proposed IQP models showed a balanced behavior between quality and effort.

For the larger instances, execution times under the quadratic models were significantly

lower than those observed under the linear models. The solution quality of those obtained

by the quadratic model over all instances was in the range of 0.0 to 14.8%, and in most

cases, less than 5%.

It was observed that the pMP objective is more LP-friendly than the pCP objective.

During the branch and bound process the linear relaxation for pMP objective showed

better behavior than the linear relaxation for the pCP objective. Furthermore, it was also

observed that solutions obtained from the relaxation of the median-based models had a

very high degree of connectivity. This had a very good impact on computational efficiency

since very few iterations were needed to find connected solutions as opposed to the center-

based models. So, in the absence of a standard dispersion measure, the pMP objective is

a good choice to be used in other territory design problems that have compactness as

performance measure.

In the experimental work, instances with up to 150 BUs and 8 territories were effi-

ciently solved by using MILP models. To the best of my knowledge, in general territory
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design the largest instance with connectivity constraints solved optimally had no more

than 50 BUs [31]. As far as this particular commercial TDP is concerned, the proposed

method is the first exact optimization scheme developed for the problem.

For IQPs models, locally optimal solutions for instances with up to 500 BUs and

20 territories were obtained. This instance size was intractable under MILP formulations.

One of the advantages of the proposed approach is that it can be implemented relatively

easy with off-the-shelf MILP and MINLP solvers.

An additional heuristic procedure called IQPHTDP was proposed and described in

Section 3.6. This procedure allows to obtain locally optimal solutions for large instances

(1000 and 2000 BUs) of the problem addressed in this chapter. These instances were in-

tractable by using the exact method. However, the performance of this procedure depends

on the choice of the control parameter ρ. Bad values of ρ may yield highly infeasible

solutions with respect to the balancing requirements.

It is clear that the IQPHTDP procedure is not an attractive choice for embedding into

an exact method such as the ε-constraint method, for the bi-objective model. This stems

from the fact that in the ε-constraint method,a single-objective model has to be solved

many times, which would yield very high execution times.



CHAPTER 4

THE MULTIOBJECTIVE COMMERCIAL

TERRITORY DESIGN PROBLEM

In the literature of territory design very few works address multiobjective territory design

problems and all of these are basically heuristic techniques for obtaining approximate

Pareto fronts. In particular, a bi-objective model for a commercial territory design problem

is introduced in this dissertation. This can be seen as the bi-objective extension to the

model developed in [67]. In addition, the completeness proof for this problem is developed

in this work.

This chapter is organized as follows. Section 4.1 presents a problem description,

mathematical formulation is included in Section 4.2, and Section 4.3 contains the com-

plexity proof for the problem addressed in this research.

4.1 PROBLEM STATEMENT

Given a set V of city blocks or basic units (BUs), the firm wishes to partition this set

into a fixed number (p) of disjoint territories that are suitable according to some planning

criteria. The territories need to be balanced with respect to each of two different activity

measures (number of customers and sales volume). Additionally, each territory has to be

connected, so the set of BUs belonging to the same territory should induce a connected

subgraph. Territory compactness is required to guarantee that customers within a territory

are relatively close to each other. Compactness and balance with respect to the number

of customers are the most important criteria identified by the firm. In the optimization

models included in this research, these criteria are considered as objective functions and

45
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the remaining criteria are treated as constraints.

There are two ways to address balancing. In this version of the problem, the balance

with respect to the number of customers is treated as optimization criterion, and the bal-

ance with respect to product demand is treated as constraint. This is motivated by the fact

that this criterion is directly related with the number of stops that a vehicle makes during

the product distribution. According to the company, the best territory design will be that

in which compactness and balancing with respect to the number of customers are reached.

To obtain an optimization model that includes all considerations given by the firm,

a bi-objective programming model is proposed. In this model two objective functions are

minimized. The first objective (f1) is related to a dispersion measure, because minimizing

dispersion is equivalent to maximizing compactness. The second objective (f2) is asso-

ciated to the maximum deviation with respect to the target value (µ(1)) in the number of

customers. Minimizing the maximum deviation allows to be closer to the average size of

the number of customers. In this work, the objective of the pMP is used as a dispersion

measure (f1).

In a few words, the problem consists of finding a p-partition of V according to the

specified planning criteria of balance with respect to the sales volume and connectivity,

in such way that both performance measures, dispersion (f1) and the maximum deviation

with respect to the target number of customers on each territory (f2) are minimized. We

assume all parameters are known with certainty.

4.2 MATHEMATICAL FORMULATIONS

Decision variables

xji =

 1 if basic unit j is assigned to territory with center in i; i, j ∈ V ,

0 otherwise.

In that sense xii = 1 implies i is a territory center.
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Suppose Qi =
∑

j∈V w
(1)
j xji − µ(1)xii represents the unbalance with respect to the

number of customers in territory with center in i, i ∈ V . So, the relative deviation in

territory with center in i ∈ V is given by ∣∣∣∣ Qi

µ(1)

∣∣∣∣ (4.1)

This expression given as an absolute value can be decomposed into a positive ∆W+
i

and a negative ∆W−
i part as follows:

∣∣∣ Qi

µ(1)

∣∣∣ = ∆W+
i +∆W−

i , where Qi

µ(1)
= ∆W+

i −∆W−
i ,

and ∆W+
i ∆W−

i = 0, i ∈ V . Based on this, the following bi-objective MILP model is

obtained.

4.2.1 BI-OBJECTIVE PROGRAMMING MODEL

(BOTDP) Min f1=
∑
j∈V

∑
i∈V

djixji (4.2)

Min f2=max
i∈V
{∆W+

i + ∆W−
i } (4.3)

Subject to:

∆W+
i ∆W−

i =0 i ∈ V (4.4)

∆W+
i −∆W−

i =

∑
j∈V

w
(1)
j xji − µ(1)xii

µ(1)
i ∈ V (4.5)∑

i∈V

xii=p (4.6)∑
i∈V

xji=1 j ∈ V (4.7)∑
j∈V

w
(2)
j xji≥(1− τ (2))µ(2)xii i ∈ V (4.8)∑

j∈V

w
(2)
j xji≤(1 + τ (2))µ(2)xii i ∈ V (4.9)∑

j∈∪v∈S(Nv\S)

xji−∑
j∈S

xji≥1− | S | i ∈ V,

S ⊂ [V \ (N i ∪ {i})] (4.10)

xji={0, 1} i, j ∈ V (4.11)
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∆W+
i ,∆W

−
i ≥0 i ∈ V (4.12)

Objective (4.2) represents the dispersion measure. In this sense, minimizing disper-

sion is equivalent to maximizing compactness. The second objective (4.3) represents the

maximum deviation with respect to the target value of number of customers. So, balanced

territories should have small deviation with respect to the average number of customers.

Constraints (4.4) and (4.5) establish the relationship with the absolute value of Qi

µ(1)
. Con-

straint (4.6) guarantees the creation of exactly p territories. Constraints (4.7) guarantee

that each node j is assigned to only one territory. Constraints (4.8)-(4.9) represent the

territory balance with respect to the sales volume as it establishes that the size of each

territory must lie within a range (measured by tolerance parameter τ (2)) around the aver-

age size. Constraints (4.10) guarantee the connectivity of the territories. Observe that, as

usual, there is an exponential number of such constraints.

Note that objective (4.3) is a piece-wise linear function. So, BOTDP can be lin-

earized by replacing (4.3) by

Min f2 = γ (4.13)

and introducing constraints given by

γ ≥ ∆W+
i + ∆W−

i ,∀i ∈ V. (4.14)

In addition, it can be shown (see Lemma 4.1) that nonlinear constraints (4.4) are not

needed.

The resulting bi-objective MILP is called LBOTDP. Model LBOTDP does not in-

clude the set of nonlinear constraints ∆W+
i ∆W−

i = 0, i ∈ V . It is because, when a

feasible solution of LBOTDP is obtained, those L = {l : l ∈ V } in which both ∆W+
l and

∆W−
l take value different to zero can be identify easily. When this happens, it is always

possible to get a feasible solution in which at least one of these ∆W+
l or ∆W−

l takes a

value equal to zero (see Lemma 4.1) and the new γ value which will be equal or better

than the actual γ value is recomputed.
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Lemma 4.1. For any feasible solution (X,∆W ) of LBOTDP such that ∆W+
l > 0 and

∆W−
l > 0 there exists a feasible solution (X̄,∆W̄ ) for LBOTDP such that X = X̄ and

∆W̄+
l + ∆W̄−

l = 0, l ∈ V , where, f1(X) = f1(X̄) and f2(∆W ) ≥ f2(∆W̄ ).

Proof. Let (X,∆W ) be a feasible solution of LBOTDP with corresponding objective

function values given by (f1, f2). We will focus especially in constraints (4.5) and (4.14).

For each l ∈ L where L = {l ∈ V : ∆W+
l > 0 and ∆W−

l > 0}, there are two cases.

• Suppose ∆W+
l ≥ ∆W−

l . Let ∆W̄+
l = ∆W+

l − ∆W−
l and ∆W̄−

l = 0. Clearly,

∆W̄+
l − ∆W̄−

l = ∆W+
l − ∆W−

l . Then, the new values ∆W̄+
l and ∆W̄−

l satisfy

the constraints (4.14) as well. And ∆W̄−
l ∆W̄+

l = 0

• Similarly if ∆W+
l < ∆W−

l . Let ∆W̄−
l = ∆W−

l −∆W+
l and ∆W̄+

l = 0. Again,

(∆W̄+
l ,∆W̄

−
l ) is feasible.

Since, ∆W̄+
i +∆W̄−

i ≤ ∆Wi
+ +∆W−

i , ∀i, it follows that X̄ is equal toX and ∆W

is less than ∆W̄ . It implies that, f2(∆W ) ≤ f2(∆W̄ ) and the proof is completed.

From a practical point of view, it has been clearly established that both f1 and f2

are in conflict. It has been observed empirically that when attempting to reach the best

possible dispersion measure the maximum deviation with respect to the target number of

customers increases and viceversa. This justifies the bi-objective model.

4.3 NP-COMPLETENESS PROOF

The characterization of a given optimization problem is an important issue to be investi-

gated before to decide the application of any solution technique. For a given optimization

problem, it is possible to define a closely related decision problem which is a question

whose answer is “yes” or “no”. The classification of the decision problem is used to de-

termine the optimization problem complexity. An optimization problem is NP-hard if the

corresponding decision problem is NP-complete. There are different classes of decision

problems, for more information see [57] and [30].

Complexity classes for decision problems can be defined in terms of any mathe-

matical formalism for algorithms, such as the Turing machine. P is the class of decision
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problems for which there are deterministic polynomial time algorithms for telling whether

the answer is yes or no. Another complexity class of decision problem is the NP class.

NP is the class of decision problems that can be solved by a deterministic algorithm in an

exponential time. So, for a problem to be in NP it does not require that every instance can

be answered in polynomial time for some deterministic algorithm. It simply required that,

if x is an instance of the problem, then there exists a concise certificate for x, which can be

validated in polynomial time [57]. The following definitions are taken from Papadimitriou

and Steiglitz [57].

Definition 4.1. P is the class of decision problems that can be solved by a deterministic

algorithm in polynomial time.

Definition 4.2. NP is the class of decision problems that can be solved in polynomial time

by a nondeterministic algorithm.

The class of the NP-complete problems has the following very interesting properties

(see Papadimitriou and Steiglitz [57] for more details).

• Up to now, no deterministic polynomial time algorithm for an NP-complete problem

is known.

• If there is a polynomial algorithm for any NP-complete problem, then there are

polynomial algorithms for all NP-complete problems.

According to Garey and Johnson [30], the process of devising an NP-completeness

proof for a decision problem Π will consist of the following four steps:

1. showing that Π is in NP and Π has a concise certificate that can be validated in a

polynomial time,

2. selecting a known NP-complete problem Π′,

3. constructing a transformation Ω from Π′ to Π, and

4. proving that Ω is a (polynomial) transformation.
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There are alternative techniques used for proving NP-completeness results. Proba-

bly, the proof by restriction is the most simple, and perhaps the most frequently applied.

Basically, an NP-completeness proof by restriction for a given problem Π ∈ NP consists

simply of showing that Π contains a known NP-complete problem Π′ as a special case.

The core of such a proof lies in the specification of the additional restrictions to be placed

on the instances of Π so that the resulting restricted problem will be identical to Π′. We

do not require that the restricted problem and the known NP-complete problem be exact

duplicates of one another, but rather that there be an “obvious” one-to-one correspondence

between their instances that preserves “yes” or “not” answers. This one-to-one correspon-

dence, which provides the required transformation of Π′ to Π, is often so apparent that it

needs not even be given explicitly [30].

In the following the NP-hardness proof of the bi-objective territory design problem

(given by LBOTDP model) is developed. This proof is carried out by using the characteri-

zation of some optimization subproblems that are identified into the bi-objective problem.

NP-COMPLETENESS PROOFS

SLBOTP1 Subproblem. The first NP-hardness proof is carried out over a single-objective

problem identified in the LBOTDP model. Let SLBOTDP1 be the problem that minimizes

the dispersion measure given by (4.2) subject to the following constraints: i) creation of

a fixed number of territories (4.6), ii) exclusive assignment (4.7), iii) balancing territories

with respect to the sales volume ((4.8)-(4.9)), and iv) connectivity in all territories (4.10).

For determining the complexity of the SLBOTDP1 problem, the NP-complete de-

cision problem well-known as Min-sum Multicenter Problem is used. In this decision

problem, connectivity constraints are not validated, however, since a given solution, a

polynomial time is required to verify if the connectivity constraints are satisfied or not.

The Breadth First Search (BFS) algorithm can be used to make this test and it requires at

most O(n+m) time.

Definition 4.3. Min-Sum Multicenter. [30]

Instance: Graph G = (V,E), weight w(v) ∈ Z+
0 for each v ∈ V , lenght l(e) ∈ Z+

0 for



CHAPTER 4. THE MULTIOBJECTIVE COMMERCIAL TERRITORY DESIGN PROBLEM 52

each e ∈ E, positive integer K ≤ |V |, positive rational B.

Question: Is there a set P of K “points on G” such that if d(v) is the length of the shortest

path from v to the closest point in P , then
∑

v∈V d(v) ∗ w(v) ≤ B?

Theorem 4.1. The optimization problem defined by SLBOTDP1 model is NP-hard.

Proof. Suppose that we have an algorithm that generates a solution X (p-partition of V ).

Therefore, it is possible to validate if X is a feasible solution of SLBOTDP1 in a poly-

nomial time. This validation is really simple for constraints ((4.8)-(4.9)). Even though

there is an exponential number of connectivity constraints (4.10), the validation of these

constraints is done in a polynomial time by answering the question: Is there a p-partition

of V such that each partition induces a connected subgraph?. Thus, even that the BFS

algorithm must be applied p times (once for each partition), the total connectivity analysis

requires a polynomial time.

Now, suppose that we have a particular instance of the commercial TDP, where

τ(2) = ∞ and G is a complete graph. For this particular case, constraints ((4.8)-(4.9)),

and (4.10) are redundant. Therefore, the resulting problem is the NP-hard problem well-

know in the literature as the p-median problem [44] which has associated the NP-complete

decision problem known as Min-Sum Multicenter Problem (see [30]).

Then, the optimization problem defined by SLBOTDP1 is a NP-hard problem. It was

showed that SLBOTDP1 can be seem as an special case of a decision problem classified

as NP-complete.

SLBOTP2 Subproblem. The second NP-hardness proof is carried out over a single-

objective problem identified in the LBOTDP model. Let SLBOTDP2 be the problem that

minimizes the maximum deviation with respect to the number of customers (given by (4.4)

and (4.5)) subject to these constraints: i) creation of a fixed number of territories (4.6),

ii) exclusive assignment (4.7), iii) balancing territories with respect to the sales volume

((4.8)-(4.9)), and iv) connectivity in all territories (4.10).

For determining the complexity of this problem (SLBOTDP2), a variant of the NP-

complete problem well-known as Cut Into Connected Components of Bounded Size is
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used. This variant is called Cut Into Connected Components of Bounded Weight and it can

be defined as follows,

Definition 4.4. Cut Into Connected Components of Bounded Weight [30]

Instance: Graph G = (V,E), integer bound D, weight w(v) for each v ∈ V .

Question: Is there a partition of V into disjoints sets V1 and V2 such that
∑

v∈V1 w(v) ≤ D

and
∑

v∈V1 w(v) ≤ D, and both induces connected subgraphs of G?

Theorem 4.2. The optimization problem defined by SLBOTDP2 model is NP-hard.

Proof. Suppose that we have an algorithm that generates a solution X (p-partition of V ).

Given a solution X , it is possible to validate if X is a feasible solution of SLBOTDP2 in

a polynomial time. Constraints (4.6) and (4.7) are redundant and constraints ((4.8)-(4.9))

are validated easily. The connectivity constraints (4.10) can be verified in a polynomial

time, like in the previous proof.

Now, suppose that we have a particular instance of the commercial TDP, where

p = 2, w(1)
j = 1, j ∈ V , and τ(2) = ∞. Then, the resulting problem consist of finding

a 2-partition of V that minimizes the maximum deviation with respect to the number

of customers assigned to each partition, subject to both V1 and V2 induces a connected

subgraph G′ = (Vk, E(Vk)), k = 1, 2. Observe that solving this problem is equivalent to

find a “yes” answer to the NP-complete decision problem known as Cut Into Connected

Components of Bounded Size Problem. Where each node has assigned a weight equal to

1 and D is greater or equal than the largest partition size of V . This decision problem

belongs to the NP-complete class (see [42]). Then, SLBOTDP2 is a NP-hard problem and

the proof is completed.

LBOTDP Complexity According to the previous complexity proofs, the optimiza-

tion problem for the bi-objective commercial TDP is NP-hard. It becomes from the fact

that its single-objective versions are NP-hard.

Theorem 4.3. The optimization problem defined by LBOTDP model is NP-hard.



CHAPTER 5

A MULTIOBJECTIVE EXACT METHOD

Heuristic procedures have been developed as solution methodologies in all previous work

on commercial territory design problems and these have been addressed for solving single-

objective versions of this problem. The bi-objective version of the problem described in

Chapter 4 is new in the literature of TDPs and then, there is not a solution technique for

solving this problem.

Multiple techniques for solving multiobjective problems have appeared in the lit-

erature [22, 15]. One of the most important techniques used in multiobjective program-

ming is the ε-constraint method [25]. There are certainly other techniques such as the

weighted sum scalarization method, for instance. However, the ε-constraint method seem

best suited for nonconvex problems such as the problem addressed here. In addition, the

single-objective approach (ICGP-TDP) described in Chapter 3 can be efficiently exploited

within an ε-constraint framework. So, for solving the bi-objective version of this prob-

lem (described in Chapter 4) an integration of the ICGP-TDP and the ε-constraint method

is developed. The resulting procedure is called ε-ICG. Two alternatives of this method

are implemented: the traditional ε-constraint method (εCM) which guarantees obtaining

weakly efficient solutions and a modified version of the ε-constraint method (IεCM) in

which slack variables are included to guarantee efficient solutions. The last technique was

recently proposed by Ehrgott and Ruzika [25] in their improved ε-constraint method.

This chapter is organized as follows. Section 5.1 presents two optimization models

called LBOTDPε and LBOTDP+
ε which are based on the εCM and the IεCM, respectively.

Section 5.2 describes the solution procedure (called ε-ICGP) and experimental work is

discussed in Section 5.3. Finally, some conclusions are given in Section 5.4.

54
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5.1 THE ε-CONSTRAINT MODELS

The ε-constraint method is based on a scalarization where one of the objective functions

is minimized while all the other objective functions are bounded from above by means of

additional constraints [25]. In this implementation of the ε-constraint method, the objec-

tive function (4.13) was chosen as the function to be bounded by an ε value. It was done

because the firm has defined precisely the range of variation (associated to the maximum

deviation γ with respect to the average number of customers) in which a solution is attrac-

tive to them. In general, those solutions with relative deviation (γ) less than or equal to

5% are attractive to firm. So, different values around this value can be swept in an easy

way. The model

(LBOTDPε) Min f1

Subject to:

(4.5)-(4.12) , (4.14)

γ≤ε (5.1)

corresponds to the traditional ε-constraint (εCM) formulation for the LBOTDP model.

The objective function f1 is given explicitly by (4.2) and (4.13) is a lower bound of γ. For

more details about (4.5)-(4.12), and (4.14) see Section 4.2.1.

It is well known that the εCM method guarantees the obtaining of weakly efficient

solutions that can be efficient solutions. However, when you have an optimal solution

to the LBOTDPε problem is not easy to verify if this solution is an efficient solution or

not. To eliminate this weakness, Ehrgott and Ruzika [25] introduced a modification in

the traditional formulation. They incorporate nonnegative slack variables and with this

modification the new ε-constraint method (IεCM) guarantees the obtaining of efficient

solutions. Let

(LBOTDP+
ε ) Min f1 − λs (5.2)

Subject to:

(4.5)-(4.12) , (4.14)

γ + s≤ε (5.3)
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s≥0, (5.4)

be the modified ε-constraint formulation (IεCM) in the studied problem, where λ is a

nonnegative weight.

The slack variables introduced in LBOTDP+
ε provide information about the effi-

ciency of a solution [25]. The main difference between LBOTDPε and LBOTDP+
ε is that

the ε-constraint in LBOTDP+
ε is always active at optimality.

5.2 SOLUTION ALGORITHM (ε-ICGP)
The LBOTDPε and LBOTDP+

ε formulations allow us to obtain weakly-efficient and effi-

cient fronts, respectively, by using different ε values. For each fixed value of ε a single-

objective problem LBOTDPε or LBOTDP+
ε is solved. Note that, each of these single-

objective problems (LBOTDPε and LBOTDP+
ε ) is NP-hard. In addition, constraints (4.10)

can not be written out explicitly as there are an exponential number of them.

The ICGP-TDP procedure was modified in a such way that both LBOTDPε and LBOTDP+
ε

formulations can be used to solve the bi-objective commercial territory design problem.

Specifically, the GenerateRelaxedModel (in ICGP-TDP, Section 3.4) was adapted accord-

ing to the ε-constraint formulations and the resulting procedure is called ε-ICGP.

There are a few multiobjective districting applications with connectivity constraints

and these have been addressed through heuristic procedures [62, 2]. To the best my knowl-

edge, there are no references in the literature on multiobjective districting that provide effi-

cient solutions. In this case, it is possible to obtain weakly-efficient and efficient solutions

through ε-ICGP using LBOTDPε and LBOTDP+
ε formulations. That is, for each ε value

the ICGP-TDP procedure is called and it obtains an optimal solution to the problem when

it is feasible. The output of the ε-ICGP procedure is a set of efficient solutions that belong

to the Pareto front.

The ε-ICGP procedure is described in Algorithm 4. Note that when λ = 0 is passed

as argument to ε-ICGP, the associated solution method is the traditional εCM (see model

LBOTDPε). However, when λ > 0 then the associated solution method is the IεCM
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(see model LBOTDP+
ε ). Observe that, when λ = 0 both formulations LBOTDPε and

LBOTDP+
ε yield the same optimal solution for each ε value. Algorithm ε-ICGP was coded

in C++ and compiled with the Sun C++ 8.0 compiler under Solaris 9 Operating System.

The ICGP-TDP procedure (as described in Section 3.4) calls ILOG CPLEX 11.2 on its

iterative optimization process.

Algorithm 4 ε-ICGP(λ, ε0,δ).
Input:
λ := Weight parameter.
ε0 := Initial ε value for bounding the objective given by f2

δ := step size for computing the next ε value
Output: Deff Efficient solution set
Deff ← ∅, ε← ε0

while (ε > 0) do
S ← ICGP-TDP(λ, ε)
if (S is optimal) then
Deff ← Deff ∪ S
ε← ε− δ

else
return Deff

end if
end while
return Deff

While it is true that LBOTDP+
ε is more attractive than LBOTDPε as it guarantees

efficient solutions, an interesting issue to investigate is the computational effort employed

by each model to properly assess the trade-off between solution quality and time.

5.3 EXPERIMENTAL WORK

In the experimental work, randomly generated instances based on real-world data provided

by the industrial partner were used. Each instance topology was randomly generated as

a planar graph. A tolerance τ (2) = 0.05 with respect to sales volume was considered.

Three different instance sets defined by (n, p) ∈ {(60, 4), (80, 5), (100, 6)} were used.

For each of these sets, 10 different instances were generated. Additionally, another set

with five instances for (150, 6) was generated. The time limit for ε-ICGP was set to 4

hours and the step size was δ = 0.001. As it was mention before, solutions with maximum



CHAPTER 5. A MULTIOBJECTIVE EXACT METHOD 58

6,300 6,400 6,500 6,600

0.6

0.8

1

·10−2

PMedian(f1)

M
ax

D
ev

ia
tio

n(
f 2

) LBOTDPε

LBOTDP+
ε

Figure 5.1: Comparison of LBOTDPε and LBOTDP+
ε on an instance with 80 BUs and 5

territories.

deviation less than or equal to 5% from the average number of customers are attractive to

the firm. Therefore, this value was used as the initial value of ε to bound the objective f2.

The procedure described in Algorithm 4 was used to optimize both the traditional and the

improved formulations (LBOTDPε and LBOTDP+
ε , respectively).

The time required for both LBOTDPε and LBOTDP+
ε formulations is first addressed.

All instance sets were tested using both formulations. It was observed that there was not a

significative difference between these formulations with respect to the time and in most of

the cases the set of solutions found through LBOTDPε and LBOTDP+
ε optimization was

the same. In other words, the stronger structure given by LBOTDP+
ε model takes about

the same amount of computational effort. Observe that, the optimization process over all

instances tested stopped by time limit (4 hours). It is possible to find more efficient points

if the time limit increases. So, when the time is unbounded, the optimization process

continues until ε reaches the smallest value such that the problem has no feasible solutions.

Figures 5.1, 5.2, and 5.3 show instances where the fronts obtained by the traditional

εCM (LBOTDPε) and the IεCM (LBOTDP+
ε ) are the same.

Ehrgott and Ruzika [25] show in their work that the traditional ε-constraint method

(εCM) (in this case LBOTDPε) does not guarantee efficient solutions while the improved
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Figure 5.2: Comparison of LBOTDPε and LBOTDP+
ε on an instance with 100 BUs and 6

territories.
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Figure 5.4: A) Comparison of LBOTDPε and LBOTDP+
ε on an instance with 60 BUs and

4 territories.

ε-constraint (IεCM) always guarantees this property. This weakness of the traditional

ε-constraint is illustrated in two instances belonging to set (60, 4), see Figures 5.4 and

5.5. Figure 5.4 shows us that the fronts reported by LBOTDPε and LBOTDP+
ε present

a difference when ε is closer to zero. In Figure 5.5 most of the solutions obtained by

LBOTDPε optimization are weakly efficient. These weakly efficient solutions (obtained

by LBOTDPε) are really far from the efficient solutions reported by LBOTDP+
ε optimiza-

tion.

The second part of this experimental work was carried out to analyze two situations

that frequently take place in the firm. The first situation occurs when the number of ve-

hicles in the fleet changes. Sometimes, economical resources decrease in a dramatic way

such that the firm needs to reduce the number of vehicles (and employees) used for the

distribution of the product. As a consequence the firm needs to modify the current territory

design. On the other hand, when the firm experiments an expansion, it should make new

employee contracts and introduce more vehicles in its fleet. This in turn means that the

workload distribution will be affected and a new alignment of territories will be required.

These situations were analyzed using the set of instances with 80 BUs and varying the

number of territories. Figure 5.6 shows the set of efficient solutions obtained for an in-
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Figure 5.5: B) Comparison of LBOTDPε and LBOTDP+
ε on an instance with 60 BUs and

4 territories.

stance with 80 BUs and the number of territories p ∈ {5, 6, 7}. Obviously, the dispersion

measure (f2) decreases when the number of territories increases. However, it was observed

that when p increases, the unbalance with respect to the number of customers is higher than

when p decreases. It is because few combinations of BUs allow to hold the connectivity

constraints satisfied on each territory. So, the distribution of workload has more unbalance

for large values of p. The decision maker needs to analyze these alternatives. She or he

needs to determine what kind of territory design is better for the economical interests to

the company. All instances tested with 80 BUs and p ∈ {5, 6, 7} have the same behavior

shown in Figure 5.6. The results were obtained using the LBOTDP+
ε model, that is, all are

efficient solutions.

The second part of this last experiment was carried out to analyze the change in

the Pareto front, when the tolerance (τ (2)) changes. We tested the (60, 4) instances for

(τ (2) ∈ {0.05, 0.03, 0.015, 0.01}) using LBOTDP+
ε model. For instance, Figure 5.7 shows

different Pareto frontiers obtained by optimizing the same instance using different τ (2)

values and the stopping rule was set to time limit of 4 hours. We observed the Pareto front

for τ (2) ∈ {0.05, 0.03} is the same. In contrast, the frontier changes when τ (2) = 0.015,

observe that some points from the front of τ (2) = 0.05 remain in the frontier for τ (2) =
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Figure 5.6: Changes in the efficient solutions when p changes.

0.015 and additional efficient solutions are found within the time limit (4 hours).

Pareto front for τ (2) = 0.01 (Figure 5.7) shows the largest change with respect to

the other Pareto fronts. Observe for instance, the solution with smallest f1 (dispersion

measure) in this front is really far from the frontiers given by τ (2) ∈ {0.05, 0.015}. This

illustrates how the front deteriorates as τ (2) gets smaller.

5.4 CONCLUSIONS

This chapter describes a procedure for solving a bi-objective territory design problem with

connectivity and balancing constraints. The solution technique is based on the ε-constraint

method and a cut generation procedure.

In the implementation of the exact solution procedure, two variants of the ε-constraint

method are developed, i) the traditional method which guarantees the obtaining of weakly

efficient solutions, and ii) the first modification proposed by Ehrgott and Ruzika [25] (in

the improved ε-constraint method) which guarantees the obtaining of efficient solutions.

In the computational work, it was observed there is not significative difference between

the time required by both LBOTDPε and LBOTDP+
ε models.

The performance of the proposed procedure is evaluated over a set of instances. It
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Figure 5.7: Comparison among Pareto fronts for different values of τ (2).

was observed that instances with up to 150 BUs and 6 territories are solved in a reasonable

time. This is a significant result because in the general territory design literature exact

solutions have been reported for instances of no more than 50 BUs. Note that this result

is for the single objective case. As far as multiobjective territory design with connectivity

constraints is concerned, there are no exact methods to the best of my knowledge.



CHAPTER 6

MULTIOBJECTIVE HEURISTIC

PROCEDURES

The bi-objective commercial territory design problem belongs to the class of NP-hard

problems (see proof in Chapter 4). Experimental work in Chapter 4 shows that large

instances of the problem addressed in this work are practically intractable even for the

single-objective version (Chapter 3), and it is not possible to obtain efficient solutions

in polynomial time. Therefore, the use of heuristic methods is the best alternative for

obtaining approximate efficient solutions for relatively large instances.

In general, heuristic methods can be seen as simple procedures that provide satis-

factory, but not necessarily optimal, solutions to complex problems in an easy way and

in short time. In this work, the well-known framework of Scatter Search (SS) is used to

develop a heuristic that allows to obtain approximate efficient solutions to the bi-objective

commercial territory design problem.

The proposed procedure (SSMTDP) is a population based metaheuristic that com-

bines aspects of evolutionary algorithms, such as the employment of a combination method

in which pairs of solutions are mixed to form several offspring, and strategies to improve

these solutions using other heuristic methods. In general, there are five main components

in the SS scheme: i) a diversification generation method, ii) an improvement method, iii) a

reference set update method, iv) a subset generation method, and v) a solution combination

method.

The SSMTDP contains a diversification generation method based on a GRASP

framework. Section 6.1 describes different alternatives of GRASP procedures that can be

64



CHAPTER 6. MULTIOBJECTIVE HEURISTIC PROCEDURES 65

Figure 6.1: General scheme for the proposed GRASP procedures.

used to generate diverse solutions. Finally, Section 6.2 describes the SSMTDP procedure.

6.1 GRASP PROCEDURES

Greedy Randomize Adaptive Search Procedure (GRASP) is a well-known metaheuris-

tic that captures good features of both pure greedy algorithms and random construction

procedures [27]. It has been widely used for successfully solving many combinatorial

optimization problems. GRASP is an iterative process in which each major iteration con-

sists typically of two phases: construction and post-processing. The construction phase

attempts to build a feasible solution and the post-processing phase attempts to improve it.

The motivation for GRASP in this application is due to the fact that during the construction

phase it is always possible to keep the hard connectivity constraints (4.10), the multiple

objectives can be easily evaluated in a merit function, and it is relatively simple to sweep

the efficient frontier by using different weights to the multiple objectives for generating
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diverse solutions.

In this dissertation, two different GRASP schemes called BGRASP and TGRASP

are introduced. Each one of them has two variants. For instance, BGRASP-I is a GRASP

procedure that uses a merit function based on two components: dispersion and maximum

deviation with respect to the target value in the number of customers. This method main-

tains connectivity as a hard constraint during the construction and post-processing phases.

The BGRASP-I post-processing phase consists of optimizing three objective functions: (i)

dispersion measure

z1(S) =
∑

j∈Vt,t∈T

djc(t), (6.1)

(ii) maximum deviation with respect to the number of customers

z2(S) =
1

µ(1)
max
t∈T

{
max{w(1)(Vt)− µ(1), µ(1) − w(1)(Vt)}

}
, (6.2)

and (iii) total infeasibility

z3(S) =
1

µ(2)

∑
t∈T

max
{
w(2)(Vt)− (1 + τ (2))µ(2), (1− τ (2))µ(2) − w(2)(Vt), 0

}
(6.3)

related to the balancing of sales volume (constraints (4.8) and (4.9)).

In contrast, BGRASP-II does not consider connectivity during the construction phase, its

merit function is the same used in BGRASP-I, but during post-processing phase, BGRASP-II adds

connectivity as an objective function. So, the goal in its post-processing phase is to minimize four

objective functions: dispersion (6.1), maximum deviation 6.2, total infeasibility (6.3), and total

number of unconnected BUs. BGRASP-II is proposed because it yields a larger searching space

than when the connectivity is kept as a hard constraint (BGRASP-I).

TGRASP-I and TGRASP-II are described in a very similar way as BGRASP-I and

BGRASP-II, respectively. The difference is that the merit function in TGRASP-I and TGRASP-II

has three components: dispersion, maximum deviation with respect to the number of customers

and maximum infeasibility with respect to constraints (4.9). The GRASP strategies are described

in a single scheme, see Algorithm 5 and Figure 6.1. In Figure 6.1, observe that, when connectivity

is considered as a hard constraint, the post-processing phase is type = I and during all GRASP pro-

cess the assignment of nodes to territories keeps the connectivity requirement. In contrast, when



CHAPTER 6. MULTIOBJECTIVE HEURISTIC PROCEDURES 67

the connectivity is relaxed during the construction phase (BGRASP-II and TGRASP-II), the post-

processing phase tries to minimize four objective functions (that is, type = II in Figure 6.1). The

output in any GRASP strategy is an efficient solution set as long as at least one feasible solution is

obtained during the GRASP process.

Algorithm 5 shows the general scheme for the proposed GRASP procedures. An instance of

the commercial territory design problem, the maximum number of iterations (itermax), the quality

parameter (α), the minimum node degree (f ) so that a node i ∈ V can be selected as initial

seed, the maximum number of allowed movements (maxmoves), the number of objectives (Obj)

to be optimized in the post-processing phase, and the GRASP strategy are the input. In order

to explore the objective space in a better way, for each GRASP iteration a set of weights Λ is

selected in such a way that λ ∈ [0, 1] for λ ∈ Λ. The two phases are applied for each λ ∈ Λ.

So, for each iteration and each weight λ ∈ Λ a construction phase and a local search phase is

applied. The construction and the local search applied depend on the strategy chosen. Note that

the merit function in BGRASP-I and BGRASP-II uses a weighted combination of the two original

objectives. In contrast, in TGRASP-I and TGRASP-II the balancing constraints (4.8)-(4.9) are

relaxed and added to the merit function.

Under strategies BGRASP-I and TGRASP-I, after the construction phase stops, the obtained

solution may be infeasible with respect to the sales volume. Then, to obtain feasible solutions, in-

feasibility is treated as an objective to be minimized during the post-processing phase. In these

strategies, this phase consists of systematically applying the local search sequentially to each of

the three objectives individually. That is, first local search is applied using z1 as the merit function

in a single-objective manner. After a local optimum is found, the local search is continued with z2

as merit function, and then z3. Finally, the initial objective z1 is used after the local optimum is

obtained for the last objective. During the search, the set of non-dominated solutions is updated at

every solution. It is also clear that the order of this single-objective local search strategy implies

different search trajectories, that is, optimizing in the order (z1, z2, z3) generates a trajectory differ-

ent from (z2, z3, z1), for instance. In BGRASP-II and TGRASP-II strategies, after the construction

phase stops, the obtained solution may be infeasible not only with respect to sales volume balance,

but with respect to the connectivity constraints as well. At the end of the GRASP strategies, an

approximation of the Pareto front is reported.
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Algorithm 5 General scheme for BGRASP and TGRASP strategies
Input:
α:= GRASP RCL quality parameter
itermax:= GRASP iterations limit
f := Minimum node degree in the initial seeds
maxmoves:= Maximum number of movements in the post-processing phase
Obj:= Number of objectives to be optimized during the post-processing phase
strategy:= BGRASP-I, BGRASP-II, TGRASP-I or TGRASP-II

Output: Deff: set of efficient solutions
Deff ← ∅
Dpot(S)← ∅: set of potential efficients solutions
if (strategy ∈ {BGRASP-I,BGRASP-II}) then

for (λ1, λ2, . . . , λr) do
for (l = 1, 2, . . . , itermax) do
S ← ConstructSolutionBGRASP(α, f, λ,strategy)

end for
end for

else
for (λ1, λ2, . . . , λr) do

for (l = 1, 2, . . . , itermax) do
S ← ConstructSolutionTGRASP(α, f, λ, strategy)

end for
end for

end if
for (g = 1, . . . , Obj) do
Dpot(S)←PostProcessing(S, maxmoves, strategy, g, Obj)
UpdateEfficientSolutions(Deff, Dpot(S))

end for
return Deff
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6.1.1 BGRASP DESCRIPTION

This strategy follows the generic scheme of GRASP (Algorithm 5). A greedy function (6.4) dur-

ing construction phase is a convex combination of two components weighted by λ which are re-

lated to the original objectives: dispersion measure (4.2) and maximum deviation (4.3). The post-

processing phase consists of the successive application of single-objective local search procedures

(taking one objective at a time). These main BGRASP components illustrated in Algorithm 5 are

detailed as follows.

BGRASP CONSTRUCTION PHASE

In general, the construction phase consists of the assignment of BUs to territories keeping

balanced territories with respect to the product demand while seeking good objective function

values. Before the assignment process takes place p initial points are selected to open p territories,

these points are the basis for the assignment process. Previous work showed that this method is

very sensitive to the initial seed selection. For instance, when some seeds are relatively close to

each other the growth of some territories stops way before reaching balancing. This implies some

territories end up being relatively small. So a better spread of the seeds is needed. In order to

obtain best initial seeds, p disperse initial points with high connectivity degree are selected. Then,

the construction phase starts by creating a subgraph G′ = (V ′, E(V ′)) where i ∈ V ′ if and only if

the degree of i, d(i) ≥ f , where f is a user-given parameter. The seed selection is made by solving

a p-dispersion problem [26] on G′. The p nodes are used as seeds for opening p territories. Let

{i1, i2, ...ip} be this set of disperse nodes. Then from this set, a partial solution S = (V1, V2, ..., Vp)

is starting by setting Vt = {it}, t ∈ {1, 2., ...p}.

Then, at a given BGRASP construction iteration (see Algorithm 6) p partial territories are

considered and the process attempts to allocate an unassigned node keeping balanced territories

with respect to the demand. To do that, this method attempts to make assignments to the smallest

territory (considering the demand). If BGRASP-I is the strategy selected by the user, the set of

possible assignments is given only for those nodes that permit to preserve the connectivity. On the

other hand, if the user selected BGRASP-II, the possible assignments are all those nodes that have

not been assigned yet. Let Vt∗ be the territory with smallest demand, c(t∗) the center of Vt∗ and

N(Vt∗) the set of currently unassigned nodes that can be assigned to Vt∗ . If N(Vt∗) is empty the

procedure takes the next smallest territory and proceeds iteratively. The cost of assigning a node j
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Algorithm 6 ConstructSolutionBGRASP(α, f , λ, strategy)
Input:
α:= GRASP RCL quality parameter
f := Minimum node degree which is required to consider a node as an initial seed to
open a new territory
λ:= weight used in the greedy function
strategy:= BGRASP-I or BGRASP-II

Output: S = (V1, ..., Vp): Solution, p-partition of V
T = {1, ...p}, t ∈ T := Territory index
c(t):= Center of Vt
Flag(t):= 1 if a territory t is open, 0 otherwise
B ← V ; Vt ← ∅
H ← {i ∈ V : |N i| ≥ f {Subgraph of G used to select the initial seeds}
for all t ∈ T do Flag(t)← 1
Compute p disperse points {i1, ..., ip}, it ∈ H
for all t ∈ T do
c(t)← it; Vt ← Vt ∪ {it}; B ← B \ {it}
while (B 6= ∅) do

l← arg min
t∈T :Flag(t)=1

w(2)(Vt)

µ(2)

if (strategy = BGRASP-I) then
N(l)←

⋃
i∈Vl

{j ∈ N i and j ∈ B} {only connected nodes}

else
N(l)← B

end if
if (N(l) 6= ∅) then

ComputeGreedyFunction φ(j, c(l)) for all j ∈ N(l)
φmin ← min

j∈N(l)
φ(j, c(l))

φmax ← max
j∈N(l)

φ(j, c(l))

RCL← {j ∈ N(l) : φ(j, c(l)) ∈ [φmin, α(φmax − φmin)]}
Random selection of k ∈ RCL
Vl ← Vl ∪ {k}; B ← B \ {k}
c(l)← arg min

j∈Vl

∑
i∈Vl

dji {Update center}

else
flag(t)← 0 {Close territory}

end if
end while
return S = (V1, ..., Vp)
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to territory Vt∗ is given by

φ(j, t∗) = λfdisp(j, t∗) + (1− λ)fdev(j, t∗), (6.4)

where

fdisp(j, t∗) =
1

dmax

 ∑
i∈Vt∗∪{j}

dic(t∗)

 ,

fdev(j, t∗) =
1

µ(1)
max

{
w(1) (Vt∗ ∪ {j})− µ(1), µ(1) − w(1) (Vt∗ ∪ {j})

}
,

and the normalization parameter is

dmax =
(|V | − p)

p
max
i,j∈V

dij . (6.5)

Observe that this greedy function is a weighted sum of the changes produced in the objective

values.

Following the GRASP mechanism a Restricted Candidate List (RCL) is built with the most

attractive assignments which are determined by a quality parameter α ∈ [0, 1] (specified by the

user). The RCL is computed as follows:

φmin = min
j∈N(t∗)

φ(j, c(t∗)), (6.6)

φmax = max
j∈N(t∗)

φ(j, c(t∗)), (6.7)

RCL = {j ∈ N(t∗) : φ(j, c(t∗)) ∈ [φmin, φmin + α(φmax − φmin)]}. (6.8)

Then, a node i is randomly chosen from the RCL. We update the territory Vt∗ = Vt∗∪{i} and

the center c(t∗) is recomputed. This is the adaptive part of GRASP. We proceed iteratively until

all nodes are assigned. At the end of the process a p-partition S = (V1, V2, ..., Vp) is obtained.

This partition may be infeasible with respect to the balance of sales volume. In a few words, the

proposed construction procedure tries to build territories similar in size with respect to the demand

attribute. The next component of BGRASP is the post-processing or improvement phase.
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BGRASP POST-PROCESSING PHASE

The main idea of this local search is to successively apply a single-objective local search scheme

(one objective function at a time) to avoid the cycling behavior observed in multiobjective search.

This idea is moticated by its successful application in other MOCO methods [54]. This process

starts with the final solution obtained in the construction phase. Then, it starts with a solution

S = {V1, ..., Vp}. Additionally, for each Vt ∈ S a center c(t) ∈ Vt is associated and a territory

index q(i) = t is known for i ∈ Vt. S may be infeasible with respect to the balancing constraints

(4.8) and (4.9), so in this phase BGRASP attempts to obtain feasible solutions by simultaneously

searching for solutions that represent the best compromise between the objective functions. In or-

der to obtain feasible solutions during this phase, balancing constraints (4.8) and (4.9) are dropped

and are considered as an additional objective function instead. As mentioned before, in the case of

BGRASP-I, there are three objectives that are minimized: (i) dispersion measure (6.1), (ii) maxi-

mum deviation with respect to the number of customers (6.2), and (iii) infeasibility related to the

balancing of sales volume (6.3). In contrast, the post-processing phase in BGRASP-II adds another

minimizing objective to those three objectives used in BGRASP-I. It is given by

z4(S) =
⋃
t∈T
|η(Vt)|, (6.9)

where

η(Vt) =
⋃

r∈{1,...,q−1}

Bt
r.

The function z4 computes the total number of unconnected nodes. For territory Bt =

(Vt, E(Vt)) let Bt
r = (Xr, E(Xr)) be the r-th connected component of Bt, for r = 1, . . . , q.

For simplicity, let c(t) ∈ Xq. Evidently, if q = 1 Bt is connected. Otherwise we have q− 1 sets of

nodes that do not connect with the center c(t) of territory Vt.

The Post-processing phase attempts to find potential efficient solutions in the neighborhood

of S. For doing that, a neighborhoodN(S) is defined. This neighborhood is formed by the solution

set obtained by all possible moves such that a basic unit i ∈ Vq(i) is reassigned to any adjacent

territory Vq(j), q(j) 6= q(i), into the p-partition defined by S. Note that, Algorithm 8 works for

any GRASP strategy proposed in this work. Observe that, when the current solution is connected,

a movement is allowed only if the resulting solution keeps the connectivity requirement. It means

that, when BGRASP-I is used, only connected moves are allowed and when BGRASP-II is used,
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this condition is activated once a connected solution has been found. Each possible movement

move(i, j) deletes i from territory q(i) and inserts it into territory q(j), (i, j) ∈ E, q(i) 6= q(j).

For example, suppose we have a partition S with the structure S = (..., Vq(i)..., Vq(j), ...), if the

move(i, j) is selected, the neighbor solution S̄ is given by S̄ = (..., Vq(i) \ {i}, . . . , Vq(j) ∪{i}, ...).

The move(i, j) is accepted only if this improves the value of the objective function that is being

optimized in that moment (see Algorithm 8).

Algorithm 7 PostProcessing(S0, g, Obj)
Input:
S = S0:= Initial solution
h = g:= objective index for starting the linked local search, g ∈ {1, 2, ..., Obj}
Obj:= Number of objective functions to be optimized

Output: D: Nondominated solutions set
Do
D ← ∅, count← 0
N(S): {Set of neighbors. In this case set of possible moves}
A move (i, j) is represented by an arc (i, j) ∈ E such that t(i) 6= t(j) ie.,
N(S) = {(i, j) ∈ E such that t(i) 6= t(j) under the partition S}
while (N(S) 6= ∅) and (count < itermax) do

(i, j)← select move(N(S))
N(S)← N(S) \ {(i, j)}
acceptable← EvaluateMove(S, (i, j), h)
if (acceptable) then
St(i) ← St(i) \ {i}
St(i) ← St(j) ∪ {i}
count← count+1
Update(N(S))
if (IsFeasible(S) = YES) then

UpdateNDS(D,S)
end if

end if
end while
if (h < Obj) then
h = h+ 1

else
h = h− 1

end if
While(h 6= g)
return D

The neighborhood exploration consists of linking single-objective local search evaluations.

This is very similar to the local search proposed in MOAMP [9] and used by Molina, Martı́, and
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Algorithm 8 EvaluateMove(S, (i, j), g)
Input:
S:= Current solution
(i, j):= Intended move
g:= Objective function index that should be optimized

Output: YES if (i, j) is acceptable NO otherwise
S̄ ← S : St(i) \ {i}, St(j) ∪ {i} {new solution from S after move (i, j) is done}
4zg = zg(S)− zg(S̄) {change in the objective value after move (i, j) from S}
if (z4(S) = 0) then

if (zg 6= z4) then
if (4zg > 0) and (z4(S̄) = 0) then

return YES
else

return NO
end if

else
if (4z1||4z2||4z3) and (z4(S̄) = 0) then

return YES
else

return NO
end if

end if
else

if (4zg > 0) then
return YES

else
return NO

end if
end if
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Caballero [54]. The linking of single-objective local search schemes is made by considering differ-

ent ordering of the objective functions being pursued. Assuming the optimization order is chosen

as (z1(S), z2(S), z3(S)), the local search path is as follows. The first local search starts with S, a

solution found in the construction phase, and attempts to find a better solution with respect to the

single objective z1(S) (6.1). Let S1 be the best solution visited at the end of this search. Then a lo-

cal search is applied again to find the best possible solution to the problem with the single objective

z2(S) (6.2) using S1 as initial solution. After that, a local search is applied to find the best solution

to the problem considering the single objective z3(S) (6.3) and S2 as the initial solution. Finally,

a local search using z1(S) as objective and S3 as initial solution is done. This phase yields at least

three solutions that approximate the best solutions to the single objective problems that result from

ignoring all but one objective function. During this phase only feasible solutions are kept and a

potential set of nondominated solutions is kept as well (see Algorithm 9). Additionally, efficient

solutions may be found because all potential nondominated solutions are checked for inclusion in

the efficient set E (see Algorithm 10). This efficient set E is updated according to Pareto effi-

ciency. This check is made over the original objectives: dispersion (6.1) and maximum deviation

with respect to the number of customers (6.3) (see Algorithms 9 and 10).

Algorithm 9 UpdateNDS(D, S)
Input:
D Current set of nondominated solutions
S Candidate solution

Output: D Set of nondominated solutions
eff← 1 := 1 if the solution S is efficient, 0 in otherwise
for S ′ ∈ D do

if ((z1(S) ≥ z1(S ′)) and (z2(S) ≥ z2(S ′))) then
eff← 0

end if
end for
if eff then

for S ′ ∈ D do
if ((z1(S) ≤ z1(S ′)) and (z2(S) ≤ z2(S ′))) then
D ← D \ {S ′}

end if
end for
D ← D ∪ {S}

end if
return D
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Algorithm 10 UpdateEfficientSolutions(Deff, Dpot)
Input:
Deff:= Set of current efficient solutions
Dpot:= Set of potential nondominated solutions

Output: Deff: Efficient set
for S ∈ Dpot do

UpdateNDS(Deff, S)
end for
return Deff

Definition 6.1. Pareto efficiency. A solution x∗ ∈ X is efficient if there is no other solution x ∈ X

such that f(x) is preferred to f(x∗) according to Pareto order. That is, x∗ ∈ X is efficient if there

is no solution x ∈ X such that fi(x) ≤ fi(x∗)∀i = 1, ..., g and at least one j ∈ {1, ..., g} such that

fj(x) < fj(x
∗).

In this case g = 2. The linked local search process can be repeated by using a different

ordering of the objectives. In this work, different trajectories depending on the number of objectives

to be optimized are explored. For instance, in BGRASP the following trajectories were used, these

start in the same initial solution: (z1, z2, z3, z1), (z2, z3, z1, z2) and (z3, z1, z2, z3). Each local

search stops when the limit of iterations is reached or when the set of possible moves is empty. At

the end the output is an approximated Pareto front.

6.1.2 TGRASP DESCRIPTION

TGRASP-I and TGRASP-II are very similar to the BGRASP-I and BGRASP-II, respec-

tively. The main difference is in the construction phase (see Algorithm 11). During this phase the

greedy function (6.10) is a convex combination (6.12) of three components: dispersion measure

(6.5), maximum deviation (6.5) and maximum infeasibility with respect to the upper bound of sales

volume balancing (6.11). The procedure starts with p disperse points (obtained as in BGRASP con-

struction phase) and the cost of assigning a node i to territory t with center c(t) is measured by the

greedy function

γ(j, t) = λ1fdisp(j, t) + λ2fdev(j, t) + λ3finfeas(j, t), (6.10)

where

finfeas(j, t) =
1

µ(2)
max

{
(1 + τ (2))µ(2) − w(2) (Vt ∪ {j}) , 0

}
, (6.11)
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Algorithm 11 ConstructSolutionTGRASP(α, f , λ, strategy)
Input:
α:= GRASP RCL quality parameter
f := Minimum node degree which is required to consider a node as an initial seed to
open a new territory
λ:= weight used in the greedy function
strategy:= TGRASP-I or TGRASP-II

Output: S = (V1, ..., Vp): Solution, p-partition of V
T = {1, ...p}, t ∈ T := Territory index
c(t):= Center of Vt
Flag(t):= 1 if a territory t is open, 0 otherwise
B ← V ; Vt ← ∅
H ← {i ∈ V : |N i| ≥ f {Subgraph of G used to select the initial seeds}
Compute p disperse points {i1, ..., ip}, it ∈ H
for all t ∈ T do c(t)← it; Vt ← Vt ∪ {it}; B ← B \ {it}
while ((B 6= ∅) do

l← arg min
t∈T

w(2)(Vt)

µ(2)

if (strategy = TGRASP-I) then
N(l)←

⋃
i∈Vl

{j ∈ N i and j ∈ B} {only connected nodes}

else
N(l)← ∪{j ∈ B}

end if
if (N(l) 6= ∅) then

ComputeGreedyFunction γ(j, c(l)) for all j ∈ N(l)
γmin ← min

j∈N(l)
γ(j, c(l))

γmax ← max
j∈N(l)

γ(j, c(l))

RCL← {j ∈ N(l) : γ(j, c(l)) ∈ [γmin, α(γmax − γmin)]}
Random selection of k ∈ RCL
Vl ← Vl ∪ {k}
B ← B \ {k}
c(l)← arg min

j∈Vl

∑
i∈Vl

dji {Update center}

else
flag(t)← 0{Close territory}

end if
end while
return S = (V1, ..., Vp)
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λ1 + λ2 + λ3 = 1. (6.12)

Note that (6.11) penalizes for violations of the balancing constraint (3.5) only. The post-

processing phase of TGRASP procedures is the same as in BGRASP strategies (see Algorithm

7). Note that, in the TGRASP-I and TGRASP-II, during the local search, four objectives are

minimized: (i) dispersion measure (6.1), (ii) maximum deviation with respect to the number of

customers (6.2), (iii) infeasibility related with balancing of sales volume (6.3), and (iv) total number

of unconnected nodes (6.9). The updating of efficient solutions is made considering only feasible

solutions.

6.2 THE SSMTDP PROCEDURE

The evolutionary approach called Scatter Search (SS) was first introduced in [32] as a meta-

heuristic for integer programming. It is based on diversifying the search through the solution

space. It operates on a set of solutions, named the reference set (PR), formed by good and diverse

solutions of the main population (P). These solutions are combined with the aim of generating

new solutions with better fitness, while maintaining diversity. Furthermore, an improvement phase

using local search is applied. As detailed in [51], the basic structure of SS is formed by five main

methods. A general frame of SS is illustrated in Figure 6.2. SS is a very flexible technique, since

some modules of its structure can be defined according to the specific problem. For instance, the

diversification and the combination methods are commonly tailored to the specific problem.

The components of the proposed SSMTDP procedure are described as follows:

• A diversification generation method that generates a set of initial solutions. It is based on

the proposed GRASP procedures described is Section 6.1.

• An improvement method that transforms a trial solution into one or more trial solutions. This

method is an implementation of the relinked local search (GRASP post-processing) and it is

applied to each solution obtained by either the diversification generation or the combination

method.

• A reference set update method that maintains a portion of the best solutions of the reference

set. In this case, the reference set is formed by efficient solutions according to the Pareto

sense. When an efficient solution is found, this enters the reference set and those solutions
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Figure 6.2: General scheme for Scatter Search metaheuristic.

that are dominated by the added solution are deleted from the reference set.

• A subset generation method that operates in the reference set in such a way so as to select

some solutions to be combined. All possible pairs of solutions from the reference set are

selected. During each SSMTDP iteration, a temporal memory is used to avoid those combi-

nations that were done in the previous iteration. In other words, for a specific iteration, the

combination process is applied just to those pairs of solutions that were not combined in the

previous iteration.

• A solution combination method that transforms the solutions built by the subset generation

method into one or more combined solution. In this work, three solutions are generated (see

Algorithm 12) since each pair of solutions. There are many ways of combining a pair of

solutions. In the proposed SSMTDP procedure, this component is developed by attempting

to keep good features present in the current solutions. Then, given a pair of solutions S1 and

S2, these are combined by identifying the best matching between territories. An exhaustive

evaluation of the possible matchings requires a high computational effort. Therefore, the

method attempts to the best territory matching based on their corresponding territory centers
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Figure 6.3: Combination of territories between a pair of solutions.

only. This is done by solving an associated assignment problem. The assignment problem

used in this method minimizes the sum of distances between the territory centers identified

on these solutions. For instance, suppose that solutions S1 and S2, with corresponding

center sets C1 and C2, are to be combined. The assignment problem is solved between the

center sets C1 and C2, and after that, the resulting assignment is used to determine which

territories are matched (see Algorithm 13). Each matching pair (i, j) of this assignment

yields a territory in the combined solution by assigning to this territory all those nodes that

are common to both, territory with center in i in S1 and territory with center in j in S2 (see

Algorithm 14). Let Sp be the partial territory design obtained this way. Finally, this partial

solution Sp is used as a starting solution for generating three different trajectories, each of

them guided by a different objective function, namely: i) dispersion, ii) maximum deviation

with respect to the number of customers, and iii) total infeasibility with respect to the sales

volume (see Algorithm 15). This, of course, generates three solutions called Sz1 , Sz2 , and

Sz3 , respectively.

The SSMTDP stops by iteration limit or by convergence, that is when the reference set does

not change (see Algorithm 12). Observe that, the updating of the reference set takes place after a

potential set of nondominated solutions is obtained by applying the improvement method over all

trial solutions (S(z1), S(z2), and S(z3)) generated by the combination method. This strategy was

adopted given that the computational effort increases considerably when the typical strategy (i.e.,

updating after each new feasible solution is generated) is performed.

Figure 6.3 illustrates the process of generating a partial solution by combining a pair of trial

solutions S1 and S2. In this figure, the pink nodes represent the territory centers. Suppose that after

solving the assignment problem, the resulting assignment is represented by territories enclosed by
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Algorithm 12 General scheme of the SSMTDP procedure
Output: REFSet Set of efficient solutions (reference set)

flag← 1 := 1 if the solution REFSet changes, 0 in otherwise
iter = 0, NS = ∅, E = ∅, REFSet= ∅
REFSet← DiverseSolutions {use any of the proposed GRASP procedures}
while ((flag) and (iter < maxiter)) do

COM← SubsetGeneration(REFSet) {pairs of solutions to be combined}
NS← ∅
for (S1, S2) ∈ COM do

(Sz1 , Sz2 , Sz3)← CombinationMethod(S1, S2)
NS← NS∪{Sz1 , Sz2 , Sz3}

end for
E ← Improvement(NS) {calls to post-processing phase of the GRASP procedures by
minimizing of (z1, z2, z3, z4) }
flag← UpdateRefSet(E,REFSet)
iter+1

end while
return REFSet

Algorithm 13 CombinationMethod(S1, S2)
Input:

(S1, S2):= Pair of solutions to be combined
Output: (Sz1 , Sz2 , Sz3) Three new solutions obtained by combining S1 and S2

C1 ←
⋃
t∈{1,...,p} c(t) ∈ Vt, vt ∈ S1

C2 ←
⋃
t∈{1,...,p} c(t) ∈ Vt, vt ∈ S2

M ← ∅ := Matching {(i1, j1), (i2, j2), ..., (ip, jp)} between elements from C1 and C2,
where it ∈ C1 and jt ∈ C2, t ∈ {1, ..., p}
M ← SolveAssignmentProblem(C1,C2)
Sp ← BuildPartialSolution(S1, S2,M )
Compute I ′ ⊂ V such that I ′ contains those nodes that have not been assigned in the
partial solution Sp

(Sz1 , Sz2 , Sz3)← GenerateNewSolutions(Sp, I ′)
return (Sz1 , Sz2 , Sz3)
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Algorithm 14 BuildPartialSolution((S1, S2),M )
Input:

(S1, S2):= Pair of solutions to be combined
M := Matching {(i1, j1), (i2, j2), ..., (ip, jp)} between territory centers from S1 and S2

Output: (Sp = (V1, V2, ..., Vp)) Partial assignment of nodes to territories
for (t = 1, ..., p) do
Vt ← ∅
Vt ← ∪Vit ∩ Vjt , where Vit ∈ S1 and Vjt ∈ S2

if (Vt == ∅) then
Vt ← jt

end if
end for
return (Sp = (V1, V2, ..., Vp))

Algorithm 15 GenerateNewSolutions(Sp, I ′)
Input:
Sp := Partial solution
I ′ := Unassigned nodes

Output: (Sz1 , Sz2 , Sz3) Three new solutions obtained since Sp

Sz1 ← AssignmentGRASP(Sp, I ′, z1) {Merit function for minimizing z1(S)}
Sz2 ← AssignmentGRASP(Sp, I ′, z2) {Merit function for minimizing z2(S)}
Sz3 ← AssignmentGRASP(Sp, I ′, z3) {Merit function for minimizing z3(S)}
return (Sz1 , Sz2 , Sz3)
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dotted lines of the same color in S1 and S2. The partial solution is the basis for generating three

new solutions Sz1 , Sz2 , and Sz3 . These new solutions are obtained by adding the unassigned nodes

to the partial territories, carrying out three independent GRASP processes. That is, for generating

Sz1 , the unassigned nodes are assigned to the partial territories through a GRASP process whose

merit function is given by the dispersion measure. Then, for generating Sz2 the merit function is

given by the maximum deviation with respect to the number of customers. Finally, for generating

Sz3 a merit function that computes the total infeasibility with respect to the balancing of sales

volume is used.

When all trial solutions are generated (i.e., when all pairs of solutions are combined), this

set of solutions is improved by using the post-processing phase (relinked local search) described in

the previous section. At the end, the improvement process reports a potential set of nondominated

solutions that can be included in the current reference set. So, each solution from the potential set

enters to the reference set if it is an efficient solution with respect to the current set of solutions

belonging to reference set. Those solutions that are dominated by the new solution are removed

from the current reference set. The SSMTDP stops when there are no new solutions included in

the reference set.



CHAPTER 7

EMPIRICAL EVALUATION OF

HEURISTICS

In this chapter, the performance of the proposed heuristic procedures is assessed. To this end, two

different instances sets of randomly generated instances based on real-world data provided by the

industrial partner are tested. The first set is formed by 10 instances with 500 BUs and 20 territories.

The second set is formed by 10 instances with 1000 BUs and 50 territories. Additionally, a case

study with a real instance with 1999 BUs and 50 territories is included.

This Chapter is organized as follows. Section 7.1 contains experimental work for the pro-

posed GRASP procedures. Section 7.2 shows computational results obtained by applying the pro-

posed SS method (called SSMTDP). A comparison of the proposed GRASP procedures with a

generic genetic algorithm (called NSGA-II) is included in Section 7.3, and Section 7.4 shows a

comparison of the SSMTDP procedure with a generic state-of-the-art MOCO algorithm known as

SSPMO. Section 7.5 shows the results when TGRASP-I is applied to a real-world case. Finally,

Section 7.6 summarizes the conclusions of this chapter.

7.1 EVALUATION OF GRASP HEURISTICS

An evaluation of the diverse GRASP strategies described in Chapter 6 is carried out. In all in-

stances, a tolerance parameter τ (2) = 0.05 was used. The input parameters for the GRASP pro-

cedures were f = 2, α = 0.04,Λ = {0, 0.01, 0.02, ...1.0}, the total number of GRASP iterations

was set to 2020 and the move limit was set to 2000. Experimental work showed that the largest

computational effort is during the post-processing phase. The multiple trajectories and the linked

local search on each trajectory increase the computational time dramatically. In order to find a good

balance between construction and post-processing time, a filtering of solutions was done in order

84
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to apply the post-processing phase only over a set of promising solutions which were evaluated

according to the merit function given by

ρ(S) =
2fdisp(S)

(|V | − p)dMax
+
f

(1)
Tdev
p

, (7.1)

where

fdisp(S) =
∑
t∈T

∑
j∈Vt

djc(t), (7.2)

f
(1)
Tdev =

∑
t∈T

{
1

µ(1)
max

{
µ(1) + w(1) (Vt) , µ

(1) − w(1) (Vt) , 0
}}

, (7.3)

and

dMax = max
i,j∈V

dij . (7.4)

The merit function (7.1) is an integration of two components, (7.2) and (7.3). These compo-

nents are related to the dispersion measure and the maximum deviation with respect to the average

number of customers, respectively. Each component of (7.1) is normalized to avoid any bias to-

ward any objective function. The filtering of solutions was carried out by selecting 100 (out of

2020) solutions in such a way that these solutions have the smallest values in the merit function

(7.1). Then, the post-processing phase (described in Algorithm 7) was applied over the set of these

filtered solutions.

Experimental work was carried out based on a factorial design with two factors (called strat-

egy and type, respectively). For each factor, two levels were considered, namely,

strategy ∈ {BGRASP, TGRASP} and type ∈ {I, II},

and for each combination of factors, 10 replicates were tested. Figures 7.1 and 7.2 show the ef-

ficient frontiers obtained by all GRASP procedures tested over one instance on each size tested

((500,20) and (1000,50), respectively). Observe that, TGRASP-II gives the best and the worst

frontier in Figure 7.1 and Figure 7.2, respectively. Thus, for each set, an important issue to inves-

tigate is to determine the combination of factors that provides best non-dominated fronts over all

instances tested and for different performance measures (the Number of points, k-distance, Size

of space covered (SSC), and Coverage of two sets (C(A,B))). These are described in Appendix A.

The main goal in the first part of the experimental work was to analyze the effects produced by
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Figure 7.1: Efficient frontiers for an instance with 500 BUs and 20 territories.

each factor over a set of standard performance measures used in multiobjective optimization (see

Chapter 2).

Tables 7.1 and 7.2 contain a summary of different performance measures for instances from

(500,20) and (1000,50), respectively. An ANOVA for each performance measure was carried out

and it was based on a general linear model with interaction of factors. In the results where the

ANOVA showed variability from individual factors or from the interaction of these, a residual

analysis was carried out to verify the model adequacy. Table 7.3 contains a summary of P -values

related to estimated effects over different performance measures. Suppose that a significance level

α = 0.05 is used during the significance testing. The P -values for instance set (1000,50) show

the SSC measure is very sensitive to any change in the individual factors and in any interaction

between these. In contrast, when the performance measures are the k-distance(mean) or number

of points, it was observed there is not any significant effect produced by individual factors or by

interaction of them. Thus, any strategy BGRASP-I, BGRASP-II, TGRASP-I and TGRASP-II is a

good alternative according to this performance measure. In the case of k-distance(max) measure,

only the factor type is statistically significant. That is, the way of handling connectivity affects

this performance measure. Recall that, type = I means that the connectivity is treated as a hard

constraint during construction and post-processing phases, and type = II means that during the

construction phase the connectivity is not taken into account and it is added as an objective function
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Figure 7.2: Efficient frontiers for an instance with 1000 BUs and 50 territories.

in the post-processing phase. In a similar way, for instances of (500,20), the SSC measure is

affected only by the factor type. The rest of the performance measures did not present variations

by any change in the individual factors and by its interaction. Therefore, in the ANOVA analyses

SSC is the only performance measure that presents significant variation generated from the factor

levels.

Table 7.1: Summary of metrics used during ANOVA, instances (500,20).
GRASP k-distance(mean) k-distance(max)

procedures Min Ave Max Min Ave Max
BGRASP-I 0.169 0.367 0.729 0.528 0.760 0.995
BGRASP-II 0.145 0.314 0.851 0.307 0.635 0.996
TGRASP-I 0.179 0.308 0.594 0.301 0.586 1.019
TGRASP-II 0.178 0.307 0.485 0.322 0.581 0.900

GRASP SSC N. of points
procedures Min Ave Max Min Ave Max
BGRASP-I 0.642 0.745 0.883 6.000 11.200 17.000
BGRASP-II 0.786 0.845 0.899 5.000 11.500 16.000
TGRASP-I 0.703 0.757 0.853 6.000 11.300 16.000
TGRASP-II 0.638 0.851 0.944 6.000 9.800 16.000

Checking the model adequacy for the performance measure that presented significant vari-

ability (SSC), a graphical analysis of residuals was carried out. Figures 7.3 and 7.4 show the resid-

ual plots for SSC in the instances set (500,20) and (1000,50), respectively. Note that the residuals
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Table 7.2: Summary of metrics used during ANOVA, instances (1000,50).
GRASP k-distance(mean) k-distance(max)

procedures Min Ave Max Min Ave Max
BGRASP-I 0.173 0.352 0.926 0.457 0.689 1.093
BGRASP-II 0.172 0.290 0.437 0.385 0.552 0.727
TGRASP-I 0.156 0.281 0.410 0.376 0.643 0.873
TGRASP-II 0.086 0.262 0.409 0.398 0.526 0.708

GRASP SSC N. of points
procedures Min Ave Max Min Ave Max
BGRASP-I 0.542 0.762 0.867 5.000 12.100 18.000
BGRASP-II 0.622 0.801 0.954 5.000 10.700 18.000
TGRASP-I 0.612 0.737 0.867 4.000 11.300 17.000
TGRASP-II 0.127 0.302 0.548 7.000 11.700 25.000

Table 7.3: Summary of P -values associated to estimated effects from factors to perfor-
mance measures.

Instances set (1000, 50)

Term k-distance(mean) k-distance(max) N. of points SCC
strategy 0.287 0.493 0.941 0.000

type 0.379 0.018 0.710 0.000
strategy·type 0.640 0.843 0.504 0.000

Instances set (500,20)
Term k-distance(mean) k-distance(max) N. of points SCC

strategy 0.516 0.069 0.466 0.662
type 0.605 0.292 0.584 0.000

strategy·type 0.606 0.331 0.412 0.891

plots show that errors are normally and independently distributed with mean zero, and constant but

unknown variance σ2. The histogram and probability plots show the residuals have the normally

property. The plot of residuals versus the order of data shows that the residuals are independent.

Note that there is no correlation between the residuals. Finally, the assumption of constant and

unknown variance is shown in the plot of residuals versus fitted values. Thus, the general linear

model is adequate to these analyses.

Figures 7.5 and 7.6 show the mean values of factor interaction for the SSC measure. Re-

call that high values of SSC are better than small values. Then, for instances from set (500,20)

TGRASP-I and TGRASP-II are slightly better than BGRASP-I and BGRASP-II, respectively (see

Figure 7.5). In contrast, for instances from (1000,50) (see Figure 7.6) TGRASP-II obtained the
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Figure 7.3: Residual plots for the SSC measure in set (500, 20).

Figure 7.4: Residual plots for the SSC measure in set (1000, 50).



CHAPTER 7. EMPIRICAL EVALUATION OF HEURISTICS 90

I II
0.74

0.76

0.78

0.8

0.82

0.84

0.86

type

M
ea

n(
SS

C
)

strategy = BGRASP
strategy = TGRASP

Figure 7.5: Interaction plot for the SSC measure in set (500,20).

worst SSC mean value and it is so far from the SSC mean values given by both BGRASP proce-

dures.

A summary for the coverage of two sets measure is shown in Tables 7.4 and 7.5. Each col-

umn on these tables contains the mean proportion of points that are dominated by the procedure

indicated by the row label. In Table 7.4, for instance, the values of the third row (BGRASP-II)

means that the non-dominated points generated by BGRASP-II dominate 74.1% of those non-

dominated points obtained by BGRASP-I and 77.1% of those non-dominated points generated by

TGRASP-I. In addition, Table 7.5 shows that for instances from (1000,50) the non-dominated so-

lutions obtained by BGRASP-II tends to dominate 99.1% of those non-dominated points generated

by TGRASP-II. In all instances tested, BGRASP-II procedure obtained the best mean values for

this performance measure.

Table 7.4: Mean value of coverage of two sets measure for instances from (500,20).
Dominance BGRASP-I BGRASP-II TGRASP-I TGRASP-II
BGRASP-I 0.000 0.130 0.415 0.366
BGRASP-II 0.741 0.000 0.771 0.486
TGRASP-I 0.486 0.155 0.000 0.303
TGRASP-II 0.651 0.442 0.707 0.000

The last important issue to be evaluated is the optimization time required for each GRASP
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Figure 7.6: Interaction plot for the SSC measure in set (1000,50).

Table 7.5: Mean value of coverage of two sets measure for instances from (1000,50).
Dominance BGRASP-I BGRASP-II TGRASP-I TGRASP-II
BGRASP-I 0.000 0.328 0.569 0.991
BGRASP-II 0.545 0.000 0.610 0.991
TGRASP-I 0.337 0.304 0.000 0.991
TGRASP-II 0.000 0.000 0.000 0.000

procedure. For instances from (500,20) (see Figure 7.6), the best time is for those procedures that

keep the connectivity requirement as a hard constraint during all GRASP process (BGRASP-I and

TGRASP-I). In the case of instances from (1000,50) the best time value is obtained by BGRASP

strategies, that is, the assignment to the smaller territory during the construction phase is better

than the assignment based on a greedy function with three components (6.10).

Table 7.6: Time (seconds) for instances from (500,20).
Procedure BGRASP-I BGRAP-II TGRASP-I TGRASP-II

Min 6447.20 16419.59 8197.28 14325.75
Average 6587.03 16758.26 8469.09 14435.63

Max 6764.33 17044.63 8763.36 14540.19

Note that BGRASP-I obtains acceptable solutions in a short time (see Tables 7.6 and 7.7).

It motivates the incorporation of BGRASP-I as a diversification method into the SSMTDP proce-
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Table 7.7: Time (seconds) for instances from (1000,50).
Procedure BGRASP-I BGRAP-II TGRASP-I TGRASP-II

Min 5345.23 11908.13 16013.41 13098.64
Average 5516.08 12283.92 18610.36 16833.98

Max 5875.26 12736.50 21209.83 18402.87

dure previously described in Chapter 6. The improvement method consists of a linked local search

(used in the proposed GRASP strategies), such that four objectives are minimized: i) dispersion,

ii) maximum deviation with respect to the number of customers, iii) total infeasibility, and iv) total

unconnected nodes. The rest of the components of SSMTDP were described in the previous chap-

ter. The following section contains a summary of the results obtained by applying the SSMTDP

procedure over the instance sets.

7.2 SSMTDP RESULTS

The goal of this part of the experimental work was to analyze the SSMTDP performance. The

SSMTDP was applied over two instance sets with (n, p) ∈ {(500, 20),(1000, 50)}. These instances

were tested by applying the proposed GRASP procedures in the previous section as well. The

SSMTDP has two stopping criteria, iteration limit and convergence. In this experiment, the maxi-

mum number of iterations was set to 10.

During the experimental work, it was observed that in all instances tested, the SSMTDP

converged without reaching the iteration limit. It means that in all cases the SSMTDP stopped

when there were not new solutions to be added to the reference set. Figure 7.7 shows the behavior

exhibited by an instance with 500 BUs and 20 territories. The first front (called BGRASP-I) is the

initial solution set generated by the diversification method (BGRASP-I). The following fronts show

the solutions that belong to the reference set on each SSMTDP iteration. Recall that the SSMTDP

starts with an efficient solution set that is obtained by the diversification method. These solutions

are assigned to the initial reference set. After that, each pair of solutions in the reference set is

combined to generate three different solutions. The new generated solutions are improved through

the linked local search and then, the updating of the reference set is done for obtaining a new

reference set. When the reference set does not change, the SSMTDP stops. In the case illustrated

in Figure 7.7, the SSMTDP converged in iteration 9. That is, in this iteration, the combination of
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Figure 7.7: SSMTDP performance for an instance with 500 BUs and 20 territories.

solutions from the reference set did not yield potential nondominated solutions to be added to the

reference set. Thus, the SSMTDP reports as efficient solutions set those solutions belonging to the

reference set in the last iteration.

To illustrate the behavior of SSMTDP by using instances from (1000, 50), Figure 7.8 shows

the SSMTDP iterations over an instance with 1000 BUs and 50 territories. In this case the SSMTDP

stopped in iteration 8. That is, the combination and improvement procedures did not obtain po-

tential efficient solutions to be added to the reference set. In summary, the efficient fronts ob-

tained by SSMTDP represent a significant improvement with respect to the initial fronts provided

by BGRASP-I. It was observed that in all instances tested (20 instances), the SSMTDP method

stopped by convergence. These results are used in Section 7.4 for comparing SSMTDP with an-

other SS heuristic called SSPMO.

7.3 COMPARING GRASP AND NSGA-II
The Non-dominated Sorting Genetic Algorithm (NSGA-II) is a successful evolutionary algorithm

that has been applied to many multiobjective problems in the literature [17]. It has been empirically

shown this method finds significantly better spread of solutions and better convergence near the true
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Figure 7.8: SSMTDP performance for an instance with 1000 BUs and 50 territories.

Pareto-optimal front compared to Pareto-archived evolutionary strategy (PAES) [45] and Strength

Pareto EA (SPEA). The general description of the NSGA-II procedure is given by Deb et al. [18].

In this dissertation the NSGA-II was adapted to the problem. Four objective functions are

minimized: i) dispersion (6.1), ii) maximum deviation with respect to the average number of cus-

tomers (6.2), iii) total infeasibility with respect to the balancing constraints of sales volume (6.3),

and iv) total number of unconnected nodes (6.9). The main features present in this adaptation of the

NSGA-II procedure are the following. The generation of solutions consists of randomly selecting

p seeds from the set of nodes (V ) and assigning the remaining n − p nodes to the closest center.

NSGA-II uses different nondomination levels (ranks). In a few words, for each solution h two

entities are calculated: 1) domination count dh which corresponds to the number of solutions that

dominate the solution h, and 2) a set of solutions Dh that the solution h dominates. All solutions

in the first nondominated front will have their domination count as zero. Then, for each solution

h with dh = 0, each member (g) from Sp is visited, and its domination count is reduced by one.

In doing so, if for any member g the domination count becomes zero, it is put in a separate list

Q̄. These members belong to the second front. Now, the above procedure is continued with each

member of Q̄ and the third front is identified. The process continues until all fronts are identified.

In the first iteration, the population is sorted based on the nondomination. Then, the fitness
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function is defined according to the nondomination level. At first, the binary tournament selection

is used to create an offspring population Q̄0 of size N . Since elitism is introduced by comparing

the current population with previously found best-nondominated solutions, the procedure is differ-

ent after the initial generation. In the following iterations, the selection is based on the crowded

operator which combines the rank (nondomination level) and crowded distance. For more details

see [18].

For each pair of solutions two new solutions are obtained. Each new solution copies each

center from the father or from the mother with the same probability and the assignment process

is equal than the initial generation. For each generated solution, an integer random number is

generated in the range [0,4]. If the random number is equal to 0, then the mutation process is not

applied. On the other hand, the mutation process takes place by using the kind of move determined

by the generated number. The different neighborhoods are defined by the following moves:

1. Select a center and change it for another node randomly selected. Re-assignment of nodes

using the new configuration of centers.

2. Select a node in the border of a territory and assign this node to the adjacent territory (keep-

ing connectivity).

3. Select a territory r and a node from an adjacent territory is randomly selected and assigned

to r.

4. Interchange two nodes between a pair of territories by holding connectivity.

When the convergence criterion is reached, the best nondominated solutions are filtered to

obtain those feasible solutions that are efficient with respect to the dispersion measure and the

maximum deviation with respect to the average number of customers.

The NSGA-II was applied over the two instance sets used in the previous section. The num-

ber of generations and the population size was set to 500, respectively. On each generation 250

solutions were combined. NSGA-II reported efficient solutions only for a single instance with 500

BUs and 20 territories. For the other 19 instances tested NSGA-II did not obtain feasible solutions

and the GRASP strategies reported efficient solutions over all instances tested. It was observed how

the method fails on appropriately handling the connectivity constraints. Most of the solutions gen-

erated by NSGA-II are highly infeasible with respect to the connectivity constraints, even though

the NSGA-II considers this requirement as objective to be minimized. The selection mechanism
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Figure 7.9: Comparison of Pareto fronts for an instance with 500 BUs and 20 territories,
GRASP strategies vs. NSGA-II.

and the combining processes are not enough to efficiently handling these very difficult constraints.

In contrast, the proposed GRASP procedures are specifically designed to take the connectivity into

account when constructing each solution. The other constraints are not as difficult and can be

satisfied in the post-processing phase. That is, for this problem exploiting problem structure def-

initely pays off. Figure 7.9 shows the comparison among the proposed GRASP strategies and the

NSGA-II method. Observe that, few efficient solutions from the GRASP strategies are dominated

by the efficient set reported by NSGA-II. In addition, all GRASP strategies have efficient points in

a region that is not covered by the Pareto front obtained by NSGA-II.

Table 7.8: Summary of metrics for an instance from (500,20).
Procedure No. Points k-distance(mean) k-distance(max) SSC

BGRASP-I 7 0.412384 0.870831 0.687756
BGRASP-II 15 0.181105 0.713948 0.779688
TGRASP-I 11 0.219406 0.507138 0.642409
TGRASP-II 13 0.210309 0.321244 0.750969

NSGA-II 5 0.203844 0.242975 0.511952

Table 7.8 shows a comparison of the heuristics with respect to different metrics. As can

be seen, the results confirm the superiority of any of the GRASP strategies over NSGA-II. In

the k-distance(mean), BGRASP-II reports the best value and NSGA-II reached the best value for
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Table 7.9: Coverage of two sets C(A,B) for an instance from (500,20).
C(A,B) BGRASP-I BGRASP-II TGRASP-I TGRASP-II

NSGA-II 0.285714 0.2 0.0909091 0.538462

k-distance(max). The coverage of two sets measure C(A,B) is shown in Table 7.9. The points

reported by all GRASP strategies did not dominated any point reported by NSGA-II. In constrast,

the points obtained by NSGA-II dominated some points obtained by the GRASP strategies. For

example, Table 7.9 shows that NSGA-II dominates 28% of the points obtained by BGRASP-I and

53% of the points reported by TGRASP-II. However, the NSGA-II reported feasible solutions just

for a single instance out of 20 instances tested, while GRASP strategies reported feasible solutions

for all instances tested. In summary, GRASP strategies outperform the NSGA-II evolutionary

algorithm.

In the following section, a comparison between the proposed SSMTDP and SSPMP, a state-

of-the-art SS heuristic is done.

7.4 THE SSPMO PROCEDURE

SSPMO is a metaheuristic search procedure introduced by Molina et al. [54] initially developed

for solving non-linear multiobjective optimization problems; however, it has been adapted for mul-

tiobjective clustering problems as well. It consists of a scatter/tabu search hybrid procedure that

includes two different phases: i) generation of an initial set of efficient points through various

tabu searches (MOAMP), and ii) combination of solutions, and updating of efficient set via scatter

search.

The generation of the initial set is based on the MOAMP method proposed by Caballero et al.

[9]. To build the initial set of efficient points, MOAMP carries out a series of linked tabu searches

(linked means that the last point of one search becomes the initial point of the next search) where

each point visited could be included in the final efficient set. The second phase of the MOAMP

consists of an intensification search around the initial set of efficient points. For more details see

[9] and [54].

The SSPMO procedure creates a reference set (E) using the efficient solutions reported

by MOAMP. A list of solutions that have been selected as reference point is kept to prevent the

selection of those solutions in future iterations. Then, each solution that is added to the set E, is
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added to a TE (tabu set). A linear-combination method is used to combine reference solutions. All

pair of solutions in E are combined and each combination yields four new trial solutions. Each

new solution is subject to an improvement method based on MOAMP. Solutions generated after

the improvement procedure are tested for possible inclusion in E.

Once all pairs of solutions in E are combined and the new trial solutions are improved, the

SSPMO procedure updates the reference set E to follow the next iteration. The first step in the

updating process is to choose the best solutions according to each of the objective functions taken

separately. In this selection, those solutions belonging to TE are not considered. The remaining

solutions are chosen by using a metric L∞, that is a generalization of the Euclidean distance. For

each x ∈ E\TE the minimum distance (Lmin
∞ (x)) from x to TE is computed, and a uniform random

number is generated. If it is less than (Lmin
∞ (x)), then x is declared eligible. Let y be the maximum

number of solutions to be combined. Then, y − g solutions with largest minimum distance to TE

are selected sequentially. Note that, TE is updated after each selection in order to avoid choosing

points that are too close to each other. The updating process continues until the mean value of

(Lmin
∞ (x)) for the set of eligible solutions falls below a pre-specified threshold mean-distance. For

a complete description of SSPMO method, see [54].

The SSPMO method was adapted to the multiobjective commercial territory design prob-

lem, the general structure of SSMO is kept. Four objective functions are minimized: i) dispersion

(6.1), ii)maximum deviation with respect to the average number of customers (6.2), iii) total in-

feasibility with respect to the balancing constraints of sales volume (6.3), and iv) total number of

unconnected nodes (6.9). The initial solutions set to feed the MOAMP is generated by choosing

p seeds (configuration of centers) and each of the remaining BUs is assigned to its closest center.

The maximum number of updates of the reference set was set to 10 (equal to the number of itera-

tions used in SSMTDP), the maximum number of tabu solutions was set to 55, the threshold value

was set to 0.05, and the maximum number of efficient solutions included in the reference set was

set to 100. The neighborhoods are the same that those defined in the NSGA-II method (previous

section). For each pair of solutions, 4 new trial solutions are generated.

At the end, the efficient solutions reported by SSPMO are filtered using only those feasible

solutions that are efficient with respect to the dispersion measure and the maximum deviation with

respect to the average number of customers.
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7.4.1 COMPARING SSPMO AND SSMTDP

In this part of the computational work, the SSMTDP procedure is compared with the SSPMO

procedure. Both SS-based procedures stop by convergence or by iteration limit (10 updates of

the reference set). Figures 7.10 and 7.11 show a comparison between Pareto fronts obtained by

the SSPMO and the SSMTDP procedure, respectively. These results correspond to 10 instances

with 500 BUs and 20 territories. Observe that two approximated fronts obtained by the SSMTDP

procedure are included, these fronts were obtained by making a variation of the number of moves

allowed during the improvement phase. In some cases, the change in the number of moves yields

better fronts and in other cases there are not significant changes in the fronts. Clearly, SSMTDP

outperforms SSPMO procedure over all instances tested.

In addition, 10 instances with 1000 BUs and 50 territories were tested by applying both

SSPMO and SSMTDP procedures. However, using the same stopping criteria as in the previous

cases, the SSPMO spent more than 30 days without getting convergence for the first instance

tested. Then, the stopping criteria was changed and the iteration limit was set to 2. The SSMTDP

converged and reported efficient solutions for all instances tested. The maximum number of moves

for this cases was set to 2000. Due that the tremendous computational effort required by the

SSPMO procedure, it was not applied over all instances with 1000 Bus and 50 territories. Figure

7.12 shows the performance of the SSPMO and SSMTDP procedures. The approximated front

reported by SSPMO corresponds to those solutions that belong to the reference set after iteration

2.

7.5 CASE STUDY

A real-world instance with 1999 Bus and 50 territories was solved by applying the TGRASP-I

procedure. The maximum number of moves in the post-processing phase was set to 3000, and the

quality parameter in the RCL was α = 0.05, the rest of the input parameters are the same as in

Section 7.1. Figure 7.13 shows the approximated front reported by TGRASP-I. It is important to

mention that the firm solves the territory design problem around twice a year, that is, the company

faces the territory design problem every six months. Moreover, the planning department has tried

to generate a territory design plan by minimizing a single-objective function, specifically the dis-

persion measure. For the instance tested in this dissertation, they did not obtain feasible solutions

even for the single-objective problem. In contrast, the TGRASP-I procedure reported approximate
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Figure 7.10: Comparison of Pareto fronts, SSPMO vs. SSMTDP. Instances from (500,20),
part 1.
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Figure 7.11: Comparison of Pareto fronts, SSPMO vs. SSMTDP. Instances from (500,20),
part 2.
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Figure 7.12: Comparison of Pareto fronts, SSPMO vs. SSMTDP. Instance with 1000 BUs
and 50 territories.

efficient solutions in less than 3 hours, note that all of them are feasible solutions. Therefore, the

proposed heuristic procedures are a very attractive alternative for the firm since these procedures

are able to generate more than one attractive solution for the decision maker.

7.6 CONCLUSIONS

In this Chapter, a computational evaluation of the proposed heuristic procedures was carried out.

This evaluation was based on well-known performance measures used in multiobjective opti-

mization, such as number of points, size of the space covered (SSC), k-distance, and coverage

of two sets measure. The procedures were applied to two different instance sets of (n, p) ∈

{(500,20),(1000,50)}. For each of these sets, 10 instances were randomly generated based on

real-world data provided by the industrial partner.

During the evaluation of the GRASP strategies, an ANOVA was carried out for each perfor-

mance measure: number of points, k-distance (mean), k-distance (max), and SSC. It was observed

that only the SSC measure presents significant variation. The worst behavior was for TGRASP-II.

In contrast, the number of points and k-distance did not have significant changes independently of

the used GRASP procedure.

According to the coverage of two sets measure, the best GRASP strategy is BGRASP-II, this
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Figure 7.13: Pareto front for a real-world case with 1999 BUs and 50 territories, TGRASP-I

procedure dominates the highest proportion of efficient points given by BGRASP-I, TGRASP-I and

TGRASP-II. In contrast, when the time is the most important performance measure, BGRASP-I

showed the best behavior.

All GRASP strategies were compared with an evolutionary algorithm (NSGA-II) widely

used in multiobjective programming. The proposed GRASP strategies outperform the NSGA-II

procedure over all instances tested. This reveals the fact that heuristics specifically developed to

exploiting the problem structure have better results than those generic procedures, particularly in

problems with very difficult constraints such as connectivity constraints in territory design.

BGRASP-I was integrated as a diversification method into a SS scheme developed in this

dissertation (SSMTDP). The SSMTDP procedure showed excellent performance when it was com-

pared with the SSPMO algorithm.

In addition, approximated efficient solutions were obtained by applying TGRASP-I to a real-

world case with 1999 BUs and 50 territories. This case was previously solved by the firm; however,

they reported an infeasible solution with respect to the balancing requirement of the sales volume

as the best solution. Therefore, the proposed procedures are a good alternative for the industrial

partner given that these are capable to generate feasible solutions in a short time. In summary,

empirical work reveals that these procedures are capable to find not only one but a set of good

solutions that provide alternatives of territory designs to the decision maker. The obtained results

for the real case are better than the single result generated by the firm.
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CONCLUSIONS

In this dissertation a commercial territory design problem is addressed. During the literature review

some opportunity areas were detected. For instance, it was observed that there was not an exact

solution procedure for solving the single-objective version of this problem. To the best of my

knowledge, there was not a quadratic formulation for any other application of territory design. An

exact solution procedure that allows to obtain global optimal solutions for MILP formulations and

local optimal solutions for the proposed IQP formulation of this problem was successfully applied.

The multiobjective territory design problem was modeled as a bi-objective optimization

model where dispersion and maximum deviation with respect to the average of the number of cus-

tomers are considered as objective functions. These objectives are subject to multiple constraints

such as exclusive assignment, creation of a fixed number of territories, balancing of sales volume,

and connectivity. In this dissertation, the proof of NP-Completeness for the problem addressed

was developed. Exact and heuristic procedures were proposed for solving the bi-objective com-

mercial territory design problem. The exact solution procedure is an integration of a cut generation

procedure and the ε-constraint method. Two variants of the ε-constraint were implemented in this

dissertation.

Empirical evaluation of the proposed exact and heuristic procedures was carried out. The

proposed heuristic procedures outperformed two of the well-known and most respected multiobjec-

tive algorithms (NSGA-II and SSPMO). In addition,a real-world case from a beverage distribution

company was solved, obtaining significantly better results than those obtained by the firm. A sum-

mary of the research contributions is in the following section. This dissertation work finishes with

some lines for future research.

104
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8.1 SUMMARY OF RESEARCH CONTRIBUTIONS

Although several territory design approaches have appeared in the literature, the specific features

present in this concrete problem make it very unique, and not addressed before to the best of my

knowledge. In general, the main contributions of this work are the following:

• Design and development of metaheuristic algorithms for successfully addressing large-scale

instances of this problem. This includes efficient exploitation of problem structure and

development of algorithmic components and intelligent search strategies.

– The introduction of four GRASP strategies (called BGRASP-I, BGRASP-II, TGRASP-

I, and TGRASP-II) for solving the bi-objective version of the problem.

– A novel heuristic procedure called SSMTDP which is based on Scatter Search meta-

heuristic, whose components have been intelligently designed.

– A combination method that consists of a hybrid approach. It provides quality and

diversification of solutions. This procedure can be used in other applications such as

clustering.

• Introduction of the first bi-objective commercial territory design model.

• Derivation of valid inequalities for strengthening the problem formulations.

• Proof of NP-Completeness for two variants of the commercial territory design problem.

• Design and development of an efficient exact method for obtaining efficient Pareto fronts

for medium-size instances of the problem. The procedure is based on an integration of

the well-known ε-constraint method and a cut generation strategy, that initially drops the

(exponential number of) connectivity constraints.

• As a by-product, this dissertation also makes a contribution to the single-objective version

of the problem such as the development of a new quadratic model that uses far fewer binary

variables and it is a lot faster to solve by mixed integer non-linear solvers. A second contri-

bution to the single-objective version is the development of an exact optimization scheme.

Prior to this, no exact optimization method had been developed for single-objective versions

of the problem.
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• An additional alternative for solving the single-objective version through a hybrid algorithm

that uses the quadratic formulation of this problem. The quadratic model has proved in the

experimental work that instances of size around 400 or 500 basic units and 20 territories can

be solved relatively quickly. So, a heuristic strategy that partitions the original problem into

smaller problems and then integrates the individual solutions to these problems is attractive.

• In the literature of territory design, it is one of the few works dealing with a bi-objective

problem subject to connectivity constraints.

• Most of the works in multiobjective optimization use a weighted sum function that aggre-

gates the multiple-criteria in a single function. Then, the multiobjective problem is treated

as a single-objective problem. In this work, the multiobjective problem is genuinely studied

as such.

• The proposed heuristic procedures were evaluated by using a real-world instance provided

by the industrial partner. It was observed that the procedures are capable to find efficient

solutions in a short time. These solutions were better than the one obtained by the firm.

Thus, the proposed solution procedures are a good alternative for providing more than one

alternative solution to the decision maker.

8.2 DIRECTIONS FOR FUTURE RESEARCH

The proposed heuristic procedures have been proved in the bi-objective version of the commercial

territory design problem. However, the problem can be addressed by optimizing one more objective

such as the balancing with respect to the sales volume. In the other hand, due that the territory

design problem takes place in a previous stage of the routing of product, the routing cost is another

requirement that can be incorporated to the current models. This requirement could be treated as

objective or as a constraint. The current procedures can be used as a basis to develop new solution

techniques for solving the new problems.

The problem addressed in this dissertation was studied from a deterministic point of view.

However, there are some parameters such as the sales volume that have stochastic nature. There-

fore, another extension of this problem can be done by considering stochastic demand. So, the

new problem should be addressed by using another solution methods that belong to the stochastic

optimization field.
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The efficiency of the solution procedures have been proved, however these can be improved

by modifying some of their components:

• In the exact optimization method, the development of a branch-and-cut procedure that ex-

ploit the problem structure is open. The solution technique proposed in this work solves the

problem, but it is not efficient since many complete branch-and-bound iterations are needed.

Within a branch-and-cut framework, a single iteration of the branch-and-bound method is

executed. The effort is then in generating valid facet-defining inequalities from the polyhe-

dral theory perspective.

• During the development of GRASP strategies, an adaptive memory strategy was imple-

mented. During the construction phase, specifically for selecting the seed nodes, a counter

(r) for computing the number of iterations in which a node is chosen as a seed for opening

a territory was implemented. Then, in the following iterations the probability for selecting a

node as initial seed is computed by taking into account the value of r. Thus, large values of r

has less probability of being selected. During the experimental work, the same results were

reported by GRASP with or without this particular adaptive memory strategy. However, the

exploration of other adaptive memory strategies may yield better results.

• Another feature that can be incorporated to the current GRASP strategies is that of reactivity

which has reported good results in single-objective models.

• The development of other neighborhoods that would allow a different explorations of the

search space may also proven worthwhile. For instance, interchanging of nodes between

two adjacent territories and/or developing an iterated local search such that a subset of the

territories in a current solution is re-aligned. These new neighborhoods will allow to pro-

vide more diversity during the searching process. In the current process only one type of

neighborhood was developed.

• In the current combination method it is possible to change the objective function of the

assignment subproblem which is solved for matching the territory centers. An alternative

can be the bottleneck matching problem objective.

• There may be other ideas for combining solutions. For instance, path relinking could be a

good strategy for this task.
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Finally, the proposed heuristic procedures can be applied to other kind of territory design

applications such as political districting. Evidently, some components need to be adapted to the

specific application.
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APPENDIX A

MULTIOBJECTIVE OPTIMIZATION

Multiobjective optimization allows a degree of freedom not present in single-objective optimiza-

tion. In multiobjective optimization the usual meaning of optimum makes no sense because a

solution optimizing all objectives simultaneously does not exist in general. Instead, a search for a

feasible solution yielding the best compromise among objectives on a set of solutions is performed.

These solutions are called efficient solutions, and the set of images of these solutions is called the

tradeoff surface or Pareto optimal. The multiple objectives add to the difficulty of combinatorial

optimization problems makes these problems are very hard to solve exactly [23], even if they are

derived from easy single-objective optimization problems.

A.1 BASIC CONCEPTS AND NOTATION

A general multiobjective optimization problem is defined as follows

(MOP) min (f1(x), ..., fp(x))

subject to: x ∈ X,

where X ⊂ Rn is a feasible set and f : Rn → Rp is a vector valued objective function. By

Y = f(X) ⊂ Rp we denote the image of the feasible set in the objective space. Efficiency

refers to solutions x in the decision space. In terms of the objective space, with objective vectors

f(x) ∈ Rp we use the notion of non-dominance: If x is efficient then f(x) = (f1(x), ..., fp(x))

is called non-dominated (or also efficient). The following notation (see [25]) is used to define

ordering relations on Rp. For f(x), f(x′) ∈ Rp,

• f(x) < f(x′) denotes fk(x) < fk(x
′) for all k = 1, ..., p,

• f(x) 5 f(x′) denotes fk(x) ≤ fk(x′) for all k = 1, ..., p,
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• f(x) ≤ f(x′) denotes fk(x) 5 fk(x
′) but f(x) 6= f(x′).

The concept of Pareto optimality or efficiency is based on these ordering relations. Thus, a

point x ∈ X is called:

1. a weakly efficient solution if there is no x′ ∈ X such that f(x′) < f(x),

2. an efficient solution if there is no x′ ∈ X such that f(x′) ≤ f(x),

3. a strictly efficient solution if there is no x′ ∈ X , x 6= x′, such that f(x′) 5 f(x).

We denote the sets of weakly efficient solutions, efficient solutions, and strictly efficient

solutions by XwE, XE, and XsE, respectively. The images for XwE and XE are called weakly non-

dominated points (Yw) and non-dominated points (YE), respectively. Note that, strictly efficient

solutions correspond to unique efficient solutions, i.e.,

x ∈ XsE ⇔ x ∈ XE

and ∣∣{x′ : f(x′) = f(x)}
∣∣ = 1.

From the definitions we obtain the following relations YN ⊂ YwN and XsE ⊂ XE ⊂ XwE

(see [22]). In particular, when the multiobjective problem has integer variables and linear set

of constraints and objective functions, we can define a multiobjective combinatorial optimization

(MOCO) problem as follows:

(MOCO) min (Cx)

subject to: Ax ≥ b, x ∈ Zn,

where C is a p × n objective function matrix, and ck denotes the k-th row of C. A is an m × n

matrix of constraint coefficients and b ∈ Rm. Usually, the entries of C, A and b are integers. The

feasible set X = {Ax ≥ b, x ∈ Zn} may describe a combinatorial structure such as paths and

matchings. We shall assume that X is a finite set. By Y = CX we denote the image of X under

C in Rp.



APPENDIX A. MULTIOBJECTIVE OPTIMIZATION 119

A.2 EXACT METHODS

The traditional approach for solving MOPs is by scalarization, which involves formulating a mul-

tiobjective problem as a single-objective problem by means of a real-valued scalarizing function

typically being a function of the objective functions of the MOP, auxiliary scalar or vector vari-

ables, and/or scalar or vector parameters. Sometimes the feasible set of the MOP is additionally

restricted by new constraint functions related to the objective functions of the MOP and/or the new

variables introduced. For more details on scalarizing (and non-scalarizing) techniques, see [22]

and [15].

A.2.1 THE WEIGHTED SUM METHOD

The biggest additional challenge in solving MOCOs as compared to multiobjective linear programs

(MOLPs)

min{Cx : Ax ≥ b, x = 0}

results from the existence of efficient solutions which are not optimal for any scalarization tech-

nique using weighted sums (A.1).

min
x∈X

p∑
k=1

λkfk(x) (A.1)

These solutions are called unsupported efficient solutions XNE. Those that are optimal for

some weighted sum problem are called supported efficient solutions XSE.

Note that, in the context of heuristics, an exact algorithm which finds all supported solutions,

i.e., solves (A.1) for all λ ∈ Λ = {λ ∈ Rp> :
∑p

k=1 λj = 1}, becomes a heuristic for determination

ofXE. So, unsupported efficient solutions are the main reason why the computation ofXE becomes

too hard.

The weighted sum method is the simplest method for solving multiobjective optimization

problems. However, for nonconvex problems it may work poorly given that it is not able to obtain

the unsupported efficient solutions.
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A.2.2 THE ε-CONSTRAINT METHOD

Another scalarization technique which can be applied when X and Y are not convex is the well-

known ε-constraint method. In this method there is no aggregation criteria, instead only one of the

original objectives is minimized, while the others are transformed to constraints. That is,

(ε-C) min
x∈X

fk(x)

subject to: fj(x) ≤ εj j 6= k,

where ε = (ε1, ..., εk−1, εk+1, ..., εp)
T ∈ Rp−1 and k ∈ {1, ..., p}. A feasible solution of (ε-C)

problem is denoted by Xε
k = {x ∈ X : fi(x) ≤ εi, i 6= k}.

Optimal solutions of (ε-C) are weakly efficient. These can be characterized as efficient or

strictly efficient; however, the characterization process is not an easy process.

Optimal solutions of (ε-C) are weakly efficient solutions of the MOP, and it has the weakness

that there is not an easy way to check the conditions for the characterization of these solutions as

efficient solutions. Recently, Erhgott and Ruzika [25] present a modification of (ε-C) by including

nonnegative slack variables in the traditional formulation (ε-C). The resulting model is given by

(ε+-C) model,

(ε+-C) min
x∈X

fk(x)−
∑

i 6=k λisi

subject to: fj(x) + sj ≤ εj

sj ≥ 0, j 6= k,

where ε = (ε1, ..., εk−1, εk+1, ..., εp)
T ∈ Rp−1, k ∈ {1, ..., p} and λj ≥ 0, j 6= k are nonnegative

weights.

Erhgott and Ruzika [25] present the proof of the following theorem

Theorem A.1. Let (x′, s′) be an optimal solution of (ε+-C) with λ > 0. Then, x′ is an efficient

solution of the MOP.

This result gave us the motivation to implement the modified ε-C method for obtaining

efficient solutions to the bi-objective commercial territory design problem addressed in this work.
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A.3 METAHEURISTICS

Approximation methods are an attractive alternative for solving complex MOPs where the exact

methods have poor performance. In multiobjective optimization an approximation method finds

either sets of locally potentially efficient solutions, that are merged to form a set of potentially

efficient solutions - the approximation- or globally efficient solutions according to the current ap-

proximation [24].

A metaheuristic can be defined as a powerful technique that can be adapted to solve a large

number of problems. Thus, a metaheuristic refers to an iterative master strategy that combines

different components for exploring the search space. There is a large family of metaheuristics,

for instance, Greedy Randomized Adaptive Search Procedure (GRASP), Scatter Search (SS), Tabu

Search (TS), Genetic Algorithm (GA), and Neural Networks (NN). Erghgott and Gandibleux [24]

present an extensive survey of approximation methods for MOCO problems.

A.4 PERFORMANCE MEASURES

There are different performance measures used to evaluate the quality of those approximated effi-

cient solutions obtained by approximation procedures in multiobjective optimization. In the litera-

ture of multiobjective optimization, the most used performance measures are the following:

1. Number of points: It is an important measure because efficient frontiers that provide more

alternatives to the decision maker are preferred than those frontiers with few efficient points.

2. k-distance: This density-estimation technique used by Zitzler, Laumanns, and Thiele [78]

in connection with the computational testing of SPEA2 is based on the kth-nearest neighbor

method of Silverman [70]. This metric is simply the distance to the kth-nearest efficient

point. So, the smaller the k-distance the better in terms of the frontier density.

3. Size of space covered (SSC): This metric was suggested by Zitzler and Thiele [79]. This

measure computes the volume of the dominated points. Hence, the larger the value of SSC

the better.

4. C(A,B): It is known as the coverage of two sets measure [79]. This measure represents the

proportion of points in the estimated efficient B that are dominated by the efficient points in

the estimated frontier A.


