Propagación de *Glomus intraradices* en medio de células vegetales en suspensión.

TESIS

Que en opción al título de:

Maestro en Ciencias con acentuación en Microbiología

Presenta

Q.B.P. Luis Enrique Flores Jiménez

San Nicolás de los Garza, Nuevo León, Julio 2012
APROBACIÓN DE TESIS DE MAESTRÍA POR COMITÉ DE TESIS

Propagación del *Glomus intraradices* en medio de células vegetales en suspensión.

Dr. Hugo Alberto Luna Olvera
DIRECTOR

Dr. Benito Pereyra Alférez
SECRETARIO

Dr. Carlos Francisco Sandoval Coronado
VOCA 1

Dra. Myriam Elías de los Santos
VOCA 2

Dra. Lilia H. Morales Ramos
VOCA 3

Dra. Carmen Ojeda Zacarías
ASESOR EXTERNO
APROBACIÓN DE TESIS DE MAESTRÍA POR COMITÉ ACADÉMICO

Propagación del *Glomus intraradices* en medio de células vegetales en suspensión.

COMITÉ DE MAESTRÍA

SUBDIRECTOR DE ESTUDIOS DE POSGRADO
AGRADECIMIENTOS

Al Dr. Hugo Alberto Luna Olvera por la asesoría y revisión de esta investigación y por la oportunidad de realizar mi posgrado de maestría.

A la Dra. Carmen Ojeda por la asesoría y el apoyo profesional y técnico que me brindó en la realización de esta investigación.

Al Dr. Alberto Flores Olivas por su apoyo profesional, y practico que me permitió realizar este trabajo.
DEDICATORIA

Este trabajo está dedicado a mi padre a mi madre a mi hermano, quienes me dieron su apoyo y experiencias que me han servido en el desarrollo de mi persona.

A Dios que me permitió vivir para concretar este logro personal.

A mis familiares quienes me ayudaron en mi estancia en esta universidad, así como su compañía y apoyo.

A mis compañeros quienes hicieron ameno y que me ayudaron durante todo el proceso para concluir esta investigación.
<table>
<thead>
<tr>
<th>Tabla</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabla 1</td>
<td>Componentes base del medio Murashige y Skoog</td>
<td>27</td>
</tr>
<tr>
<td>Tabla 2</td>
<td>Fitoreguladores del medio Murashige y Skoog</td>
<td>28</td>
</tr>
<tr>
<td>Tabla 3</td>
<td>Componentes base del medio Murashige y Skoog</td>
<td>28</td>
</tr>
<tr>
<td>Tabla 4</td>
<td>Fitoreguladores del medio Murashige y Skoog</td>
<td>29</td>
</tr>
<tr>
<td>Tabla 5</td>
<td>Comparación de la viabilidad para formar callo y de la germinación de esporas de micorrizas de las especies vegetales</td>
<td>43</td>
</tr>
<tr>
<td>Esquemas</td>
<td>Núm. Pagina</td>
<td>Detalles</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>Esquema 1</td>
<td>19</td>
<td>Ciclo vida Glomus</td>
</tr>
<tr>
<td>Esquema 2</td>
<td>25</td>
<td>Proceso cultivo células en suspensión</td>
</tr>
</tbody>
</table>
INDICE DE FOTOGRAFIAS

<table>
<thead>
<tr>
<th>Fotografía</th>
<th>Descripción</th>
<th>Núm. Pagina</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fotografía 1</td>
<td>Fósil espora Glomus</td>
<td>18</td>
</tr>
<tr>
<td>Fotografía 2</td>
<td>Semillas de frijol en medio MS para su germinación.</td>
<td>26</td>
</tr>
<tr>
<td>Fotografía 3</td>
<td>Semillas de frijol en medio MS para su germinación.</td>
<td>26</td>
</tr>
<tr>
<td>Fotografía 4</td>
<td>Semillas de sorgo en medio MS para su germinación</td>
<td>26</td>
</tr>
<tr>
<td>Fotografía 5</td>
<td>Proceso de corte y siembra de cuellos de raíz de sorgo para la inducción de callo</td>
<td>27</td>
</tr>
<tr>
<td>Fotografía 6</td>
<td>Proceso de corte y siembra de cuellos de raíz de sorgo para la inducción de callo</td>
<td>27</td>
</tr>
<tr>
<td>Fotografía 7</td>
<td>Proceso de corte y siembra de cuellos de raíz de sorgo para la inducción de callo</td>
<td>27</td>
</tr>
<tr>
<td>Fotografía 8</td>
<td>Proceso de corte y siembra de cuellos de raíz de sorgo para la inducción de callo</td>
<td>27</td>
</tr>
<tr>
<td>Fotografía 9</td>
<td>Proceso de corte y siembra de cuellos de raíz de sorgo para la inducción de callo</td>
<td>27</td>
</tr>
<tr>
<td>Fotografía 10</td>
<td>Callo de Astrophytum capricorne</td>
<td>28</td>
</tr>
<tr>
<td>Fotografía 11</td>
<td>Callo de A. capricorne inoculado en medio MS, 2mg de 2-4D</td>
<td>29</td>
</tr>
<tr>
<td>Fotografía 12</td>
<td>Callo de A. capricorne inoculado en medio MS, 2mg de 2-4D</td>
<td>29</td>
</tr>
<tr>
<td>Fotografía 13</td>
<td>Cultivos en suspensión de; Tabaco, violeta, cactus y Kalanchoe</td>
<td>30</td>
</tr>
<tr>
<td>Fotografía 14</td>
<td>Proceso de inoculación de A. capricorne con micorriza. Prueba Preliminar</td>
<td>30</td>
</tr>
<tr>
<td>Fotografía 15</td>
<td>Inoculación de los cultivos en suspensión con esporas purificadas</td>
<td>31</td>
</tr>
<tr>
<td>Fotografía 16</td>
<td>Plántula de sorgo germinada. ; Semillas de frijol en medio MS para sin germinar</td>
<td>32</td>
</tr>
<tr>
<td>Fotografía 17</td>
<td>Cuellos de sorgo en medio MS.</td>
<td>33</td>
</tr>
<tr>
<td>Fotografía 18</td>
<td>Plántulas de frijol en medio MS germinadas</td>
<td>33</td>
</tr>
<tr>
<td>Fotografía</td>
<td>Descripción</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Fotografía 22</td>
<td>Semillas de sorgo en medio MS para su germinación</td>
</tr>
<tr>
<td>23</td>
<td>Fotografía 23</td>
<td>Semillas de sorgo en medio MS para su germinación</td>
</tr>
<tr>
<td>24</td>
<td>Fotografía 24</td>
<td>Semillas de cuellos de raíz de sorgo en MS con 2mg de 2-4D para la inducción de callo</td>
</tr>
<tr>
<td>25</td>
<td>Fotografía 25</td>
<td>Callo de sorgo en medio MS, 2mg de 2-4D</td>
</tr>
<tr>
<td>26</td>
<td>Fotografía 26</td>
<td>Callo de sorgo en medio MS, 2mg de 2-4D</td>
</tr>
<tr>
<td>27</td>
<td>Fotografía 27</td>
<td>Callo de sorgo después de dos semanas de crecimiento</td>
</tr>
<tr>
<td>28</td>
<td>Fotografía 28</td>
<td>Cultivo en suspensión de A. capricorne después de dos semanas de du inoculación con micorriza, prueba preliminar</td>
</tr>
<tr>
<td>29</td>
<td>Fotografía 29</td>
<td>Cultivo en suspensión de A. capricorne después de dos semanas de du inoculación con micorriza, prueba preliminar</td>
</tr>
<tr>
<td>30</td>
<td>Fotografía 30</td>
<td>Esporas cultivado Astrophytum inoculado con micorriza sin purificar</td>
</tr>
<tr>
<td>31</td>
<td>Fotografía 31</td>
<td>Esporas cultivado Astrophytum inoculado con micorriza sin purificar</td>
</tr>
<tr>
<td>32</td>
<td>Fotografía 32</td>
<td>Esporas cultivado Astrophytum inoculado con micorriza sin purificar</td>
</tr>
<tr>
<td>33</td>
<td>Fotografía 33</td>
<td>Fotos de esporas G. inraradices</td>
</tr>
<tr>
<td>38</td>
<td>Fotografía 38</td>
<td>Callos de; Tabaco, violeta, cactus y Kalanchoe</td>
</tr>
<tr>
<td>39</td>
<td>Fotografía 39</td>
<td>Esporas extraídas y purificadas del producto comercial</td>
</tr>
<tr>
<td>40</td>
<td>Fotografía 40</td>
<td>Esporas extraídas y purificadas del producto comercial</td>
</tr>
<tr>
<td>41</td>
<td>Fotografía 41</td>
<td>Esporas extraídas y purificadas del producto comercial</td>
</tr>
<tr>
<td>42</td>
<td>Fotografía 42</td>
<td>Esporas extraídas y purificadas del producto comercial</td>
</tr>
</tbody>
</table>
Fotografía 43 Esporas extraídas y purificadas del producto comercial

Fotografía 44 Esporas extraídas y purificadas del producto comercial

A: Cultivo en suspensión inoculado de violeta.

B: Kalanchoe C: Astrophytum. D: Tabaco

Fotografía 46 Cultivo en suspensión inoculado de kalanchoe

A, C: Esporas germinadas en cultivo de

Astrophytum. B: micelio observado D: Espora

Fotografía 47 A, C: Esporas germinadas en cultivo de

Astrophytum. B: micelio observado D: Espora

Fotografía 48 A, C: Esporas germinadas en cultivo de

Astrophytum. B: micelio observado D: Espora

Fotografía 49 A, C: Esporas germinadas en cultivo de

Astrophytum. B: micelio observado D: Espora

Fotografía 50 Esporas en cultivo de Kalanchoe

Fotografía 51 Esporas en cultivo de Kalanchoe

Fotografía 52 Esporas en cultivo de Kalanchoe

Fotografía 53 Esporas Glomus intraradices

Esporas Glomus intraradices en cultivo en suspensión de Kalanchoe. Teñidas con rosa de bengala, en microscopio 40X.

Fotografía 54 Esporas Glomus intraradices en cultivo en suspensión de Kalanchoe. Teñidas con rosa de bengala, en microscopio 40X.

Fotografía 55 Esporas Glomus intraradices en cultivo en suspensión de Astrophytum. Teñidas con rosa de bengala, en microscopio 40X.

Fotografía 56 Esporas Glomus intraradices en cultivo en suspensión de papa. Teñidas con rosa de bengala, en microscopio 40X

Micelio formado de la inoculación de esporas de Glomus en medio MS sin células vegetales en suspensión

Fotografía 57
I.- RESUMEN.

En este trabajo se establecieron las bases para el desarrollo de un sistema de producción masiva del hongo micorrizico *Glomus intraradices* a través de cultivos de células en suspensión de diversas especies de plantas que incluyeron; Cactus (*Astrophytum capricorne*), kalanchoe (*Kalanchoe laciniata*), violeta (*Viola spp*) y tabaco (*Nicotiana tabacum*). Para el desarrollo de dichos cultivos de cada una de las variedades vegetales se cortaron que se colocaron en frascos con medio sólido Murashige-Skoog (MS) enriquecido con fitoreguladores. El material se colocó en condiciones de fotoperiodo de 6 horas de luz y 12 de oscuridad, para la formación de biomasa (callo) consistente en células indiferenciadas. Al término de dos semanas de crecimiento se tomaron fragmentos de los callos obtenidos y se resembraron en recipientes con MS, con la finalidad de obtener células más puras, utilizándose las mismas condiciones y tiempo de desarrollo. Finalmente para obtener los cultivos en suspensión, se utilizaron los callos de la segunda resiembra y se trasladaron a matraces con el mismo medio MS, pero sin gelificante, se colocaron bajo las mismas horas de luz y oscuridad, además los matraces fueron puestos en agitación con un periodo de crecimiento de dos semanas (Esperanza, 2004). Las esporas de *Glomus intraradices* utilizadas en este trabajo se purificaron de productos comerciales mediante la técnica de flotación por gradiente de azúcar (Botero *et al.* [www.CORPOICA.ORG.CO]), estas se inocularon en los cultivos en suspensión previamente desarrollados. Dando como resultado que los cultivos celulares de *Astrophytum capricorne* y *Kalanchoe laciniata* permitieron la germinación de las esporas de *Glomus* y propiciaron la formación de nuevas esporas, mientras que las suspensiones de violeta y tabaco no mostraron ninguna señal de germinación.
II.- INTRODUCCIÓN:

La actual demanda en la producción de alimentos en la cantidad y calidad que sustente la creciente población mundial, ha traído como consecuencia la deforestación de bosques y selvas para dar espacio a la agricultura, aunque en un grado tal que aún resulta insuficiente. Aunado a esto, la utilización indiscriminada de productos agroquímicos, usados para fertilizar, controlar o erradicar enfermedades en cultivos básicos, ha propiciado la elevación de costos en la producción y generado consecuencias negativas, tanto para la salud humana como al medio ambiente, por lo cual, en los últimos años la industria agrícola ha observado una notable tendencia en la utilización de esquemas biológicos para mantener o incluso mejorar la productividad de cultivos, a través del uso de microorganismos entre los que destacan los hongos micorrízicos, capaces de favorecer de manera significativa el desarrollo de las plantas inoculadas.

Uno de los hongos micorrízicos mejor conocidos por su capacidad de asociarse con una diversidad de especies vegetales y los bioprocesos comerciales desarrollados con este para su aplicación en campo, es *Glomus intraradices*, un organismo simbionte que requiere obligadamente de un hospedero para completar su ciclo de vida. Por lo cual, su propagación masiva hasta ahora, se realiza mediante la producción *in vivo*, a nivel de las células de las raíces, mismas que son extraídas y maceradas para constituirse como el principio de activo de los inoculantes comerciales, ya sea sólidos o líquidos. No obstante, los alentadores resultados obtenidos a la fecha con este organismo, el proceso de producción aun presenta muchas desventajas como aquellas relacionadas al tiempo y labor requerida para la obtención de propágulos, además de los problemas técnicos como el taponamiento de los instrumentos de aplicación en campo.

Una opción muy poco explorada para la producción masiva de hongos micorrízicos involucra la tecnología de cultivos vegetales en suspensión. Esto obedece en parte a la escasa información sobre el cultivo de tejidos vegetales relacionados a simbiontes fúngicos Carr *et al.* 1985, y a los numerosos e infructuosos intentos para establecer etas
interacciones Hepper & Mosse, 1980 mencionado por Carr et al. 1985, así como a la aparentemente imperiosa necesidad de estos microorganismos por un ambiente tan controlado como lo es el citoplasma celular del macrosimbionte. La posibilidad de hacer crecer este tipo de organismos en cultivos ajenos al entorno intracelular potenciaría un avance significativo en la producción masiva de inoculantes micorrizicos con el consecuente progreso en términos de la eficiencia, costo y productividad ya mencionada. En el presente trabajo se estudio la propagación de esporas de *Glomus intraradices* en sistemas de producción de células vegetales en suspensión de diversas especies de plantas que incluyeron Cactus (*Astrophytum Capricorne*), kalanchoe (*Kalanchoe laciniata*), violeta (*Viola spp*) y tabaco (*Nicotiana tabacum*).
III.- DEFINICION DEL PROBLEMA y JUSTIFICACIÓN

La utilización indiscriminada de agroquímicos, para controlar o erradicar enfermedades, así como para el mejoramiento de la calidad de diversos cultivos básicos, ha traído como consecuencia en las últimas décadas un enorme impacto en el medio ambiente, a la salud humana y a los costos en la producción de alimentos (Martínez et al. 2007). La utilización de estrategias biológicas ha resultado una alternativa muy valiosa que permite reducir costos, y producir más alimento de forma amigable con el medio ambiente. De entre estas últimas estrategias que utilizan bacterias u hongos, el uso de agentes micorrízicos, es una de las más utilizadas para este propósito. Lo que involucra la asociación de una especie fúngica intracelular, a nivel de sus raíces y una planta que recibe los beneficios de esta interacción. Debido a la naturaleza simbiótica obligada del hongo en esta asociación la propagación masiva se realiza mediante la inoculación in vivo en raíces, lo cual resulta en un producto de lenta y laboriosa elaboración, aspecto que se añade a los problemas de aplicación en campo por conceptos de taponamiento de tuberías de maquinaria de aspersión como resultado de su consistencia sólida (com.pers. Dr. Alberto flores Olivas 2011). Motivo por el cual se hace evidente la imperiosa necesidad por el desarrollo de sistemas que permitan la producción masiva de hongos micorrízicos en una forma distinta a como se realiza in vivo actualmente. Motivo por lo cual se decidió estudiar la posibilidad de hacer crecer el hongo Glomus intraradices en sistemas de células en suspensión de diversas especies de plantas que incluyeron: Cactus (Astrophytum capricorne), kalanchoe (Kalanchoe laciniata), violeta (Viola spp) y tabaco (Nicotiana tabacum).
IV.- OBJETIVO GENERAL

- El objetivo de este trabajo fue el establecer las bases para el desarrollo de un sistema de producción masiva del hongo micorrízico *G. intrarradices* a través de cultivos de células en suspensión de diversas especies de plantas.

V.-OBJETIVOS PARTICULARES:

1. Diseño y establecimiento de un cultivo de células vegetales de raíz en medio líquido.

2. Producción de esporas de *G.intraradices* en los cultivos en suspensión de células vegetales previamente establecido.
VI.- HIPÓTESIS

- La propagación de *G.intraradices* es posible mediante el uso de cultivos de células vegetales en suspensión.
VII.- ANTECEDENTES:

VIIa.- Glomus sp.

Glomus es un hongo que se puede encontrar en la mayoría de los hábitats terrestres, se encuentra en el género de los hongos arbusculares micorrízicos. Este hongo forma una asociación simbiótica entre la planta y el suelo.

Actualmente se clasifica en:

Reino.- Eumicotas: Poseen paredes formadas de quitina y no poseen flagelos.

Fyllum.- Glomeromycota: Forman interacciones simbióticas con las plantas.

Clase.- Glomeromycetes: Forman arbusculos en las raíces de las plantas.

Orden.- Glomerales: Son biótrofos y producen esporas grandes.

Familia.- Glomeraceae: Presentan desarrollo de vesículas para formar esporas internas.

Genero.- Glomus: Proviene del latín *Glomus* = pelota, ya que las esporas tienen una forma esférica (http://www.associatedcontent.com/article/2430476/all_about_fungus_glomus_sp.html?singlepage=true&cat=4).

Los Glomeromycetes son un grupo muy antiguo, se estima que tienen un origen de al menos 600 a 620 millones de años. Se han descubierto hifas y esporas fosilizadas de Glomeromycetes que datan de 460 millones de años, siendo uno de los fósiles fúngicos más antiguos que se conocen en la actualidad. (Redecker, Dirk. 2008)

![Fotografía 1: Fósil espora *Glomus*](Redecker, Dirk. 2008)
Glomus es un hongo simbiótico por lo que el hospedador juega un papel importante en su ciclo de vida, ya que sin este no puede reproducirse. Se han encontrado órganos de reproducción sexual en este hongo, sin embargo estos resultados derivan de solo estudios *in vitro* por lo que no se puede dar una conclusión. Por lo que para su propagación este hongo utiliza esporas.

En su fase juvenil este hongo tiene un color blanco-crema, el cual cambia posteriormente a café-amarillo. El ciclo de vida comienza con la formación de una hifa alargada de pared delgada o en otros casos una hifa pequeña, según el estado fisiológico, a esto se le llama tubo germinación. La hifa continua creciendo, se ramifica para abarcar mayor superficie para encontrar la raíz de alguna planta. Al momento de entrar en contacto las hifas con la raíz se forma un órgano llamado appressorium, el cual permite penetrar en la raíz por acción de enzimas y procesos mecánicos. Una vez adentro de la raíz las hifas se ramifican alrededor de las células corticales de las raíces, las cuales son llamadas arbusculos (son muy importantes ya que permiten el intercambio de nutrientes entre los dos organismos) y formación del micelio extra radical donde se forman las esporas. Esto puede seguir dos patrones diferentes el tipo *Arum* y el tipo *Paris* (http://www.associatedcontent.com/article/2430476/all_about_fungus_glomus_sp.html?singlepage=true&cat=4).

![Esquema 1: Ciclo vida *Glomus* (Dalpe, Monreal 2004)](image_url)
En el tipo *Paris* las hifas (pueden ser muchas por célula) crecen directamente de célula a célula por lo que la fase intracelular es escasa o nula, siendo este el proceso de penetración fúngica más frecuente (LinGao, 2004). Por su parte el tipo *Arum* es aquel en el cual la hifa del hongo crece entre los espacios de las células corticales de la raíz y de ahí se ramifican forman un arbusculo terminal, generalmente en este caso hay penetración de una sola hifa por cada célula que contiene un arbusculo. Después de la formación de los arbusculos, el hongo forma unos órganos llamados vasos los cuales permiten al hongo acumular nutrientes que pueden ser utilizados por la planta (http://www.associatedcontent.com/article/2430476/all_about_fungus_glo mus_sp.html?singlepage=true&cat=4).

Durante el proceso de colonización o penetración de un hongo, la respuesta de defensa o la expresión de los genes de defensa se activa, por la invasión de los tejidos (Bonamori et al 2001) sin embargo en el caso de este hongo se observa muy disminuida, o retrasada, lo que sugiere que esta supresión en la respuesta de defensa contribuye a la colonización de *Glomus* (LinGao, 2004). Las interacciones hongo-planta generalmente son de una baja especificidad pero de acuerdo con investigaciones recientes, algunas plantas y hongos tienen un restringido número de compañeros potenciales (http://www.associatedcontent.com/article/2430476/all_about_fungus_glo mus_sp.html?singlepage=true&cat=4). Esta relación de simbiosis es muy importante ya que *Glomus* adquiere de la planta lo que necesita para sobrevivir y le permite formar esporas, para continuar su ciclo, y le permite a la planta obtener nutrientes esenciales de una manera más fácil, mejorando la capacidad de absorción de las plantas de 10 a 1000 veces, a su vez *Glomus* produce enzimas que interactúan con los compuestos en el suelo haciéndolos más solubles por lo que pueden ser absorbidos por la planta de una manera más sencilla, por lo que su desarrollo también se ve beneficiado. Además se ha estudiado que *Glomus* le permite a las plantas colonizar tierra, algo que sin su ayuda no ocurriría (Mathur y vas 2000).

Otro de los beneficios que aporta *Glomus* es la protección a diversas situaciones dañinas para las plantas, como el ataque de patógenos, y parásitos; ya que protege por medio de competición, impidiendo la llegada de algún patógeno a las raíces, o puede producir sustancias anti-bióticas (quitinasas y fitoalexianas) que detienen o matan algunos
organismos nosivos presentes en el suelo como por ejemplo; *Fusarium, Phytophtora, Pythium, Rhizoctonia, Thielaviopsis basicola, Macrophomins y Verticillium* (http://www.associatedcontent.com/article/2430476/all_about_fungus_glomus_sp.html?singlepage=true&cat=4).

Estas propiedades son las que hacen a *Glomus* una alternativa en el uso de cultivos, además puede disminuir el uso de pesticidas, por lo que también es una opción para reducir la contaminación del suelo y para la reforestación de bosques como demostró el estudio de Hernández y Salas 2009 quienes evaluaron el efecto de la aplicación de *Glomus fasciculatum* en 4 especies forestales, tanto en vivero como en campo. En el primer caso se evaluó diámetro basal, altura total, peso seco, absorción de nutrimentos tanto en follaje como en el sistema radicular. En campo se cuantificó altura total, diámetro, y absorción de nutrimentos y en el follaje. Donde obtuvieron como resultado que en vivero 3 de las 4 especies presentaron los mayores incrementos promedio (*Astronium graveolens, Tectona grandis, Terminalia amazonia*). Mientras que (*Gmelina arborea*) no mostró un incremento significativo. En el campo, de las 4 especies inoculadas, solamente *Gmelina arborea* reflejó diferencias significativas en diámetro y altura total. Así mismo Zambrano y cols. 2008 realizaron inoculaciones de semillas de *G.arborea* en tres grados de madurez con *Azospirillum brasilense* y de los hongos *Glomus manihotis* y *Glomus occultum* Estas se sembraron en suelo y en turba, a los cuarenta y un días después de la siembra, se determinó el efecto de los sistemas de siembra y de los microorganismos sobre la germinación. Obteniendo un efecto positivo en las semillas micorrizadas. Aunado a esto midieron el efecto sobre la altura de las plantas a los Cuarenta y siete días después del trasplante, dando como resultado una mayor altura en las plantas con micorrizas.

La utilización de *Glomus* para el mejoramiento de cultivos es una línea en la que se ha realizado mucho trabajo por ejemplo: Bago et al 2006 Observaron el crecimiento de *G.intraradices*, en dos líneas de tomate, una tomate normal y la otra una línea mutante que presenta poco asociación con micorrizas. Los resultados que obtuvieron fueron que la línea normal de tomate presentó un crecimiento de *G. intraradices* lento, pero con mucho micelio y producción de esporas, mientras que en la línea mutante como se esperaba no hubo un crecimiento extra radical del micelio y la producción de esporas fue muy pobre. Otro caso es el de Kristek y cols, 2005, quienes compararon dos especies de micorriza, *G.mossae* y *G.intraradices*, utilizaron chícharo. Midieron
diversos parámetros como; masa de follaje, peso seco, concentración de nitrógeno, fosforo potasio, número de plantas por metro cuadrado obteniendo como resultado que G. mossae obtuvo un mayor porcentaje en estos parámetros a excepción de masa de follaje y peso seco donde G. intraradices fue superior.

Así mismo Aguilar y cols, 2004, realizaron un ensayo en el cual utilizaron G.intraradices en lechuga tipo iceberg de la variedad Fortunas. Se establecieron dos tratamientos; Inoculación con micorrizas en el semillero, más inoculación en el campo para comparar sus producciones medias. Y obtuvieron como resultado que las parcelas micorrizadas se han visto aumentadas entre 3.000 y 4.400 kg/ha de lechuga comercializable respecto al testigo.

También se han utilizado los hongos micorrizicos en los cultivos para mejorar ciertas características de los mismos como la capacidad de almacenamiento de sustancias como Gou-hui y cols. 2005 que estudiaron el efecto de la inoculación de G.mosseae, G.intraradices y Glomus versiforme sobre el almacenamiento de nutrientes y resistencia al frio durante el crecimiento de Diospyroslotus L.Los resultados que obtuvieron fueron un incremento en el azúcar soluble en el floema de un 1%, mientras que en el xilema el azúcar, nitrógeno se incrementaron un 5% con respecto al control, observándose también un incremento en cuanto a la resistencia al frio. Otros trabajos como el de Hrselová et al 2003 el efecto de la inoculación de esporas de Glomus sp.en plantas de fresa (Fragaria ananassa) dando como resultado un incremento en la biomasa, así como estolones con mayor longitud y en cada planta inoculada se detectaron niveles incrementados de fosforo, mientras que los niveles de nitrógeno no se vieron afectados.

Otro aspecto en el que se han abocado la utilización de micorrizas es para el control de enfermedades, Petit y Gubler 2006, estudiaron el efecto de G.intraradices en plantas de vid y lo probaron contra la enfermedad “blackfoot” causada por Cylindrocarpon macrododymum, obteniendo como resultado que las plantas inoculadas presentaron una menor incidencias de los síntomas de la enfermedad, a comparación de las plantas no inoculadas con Glomus. También se ha aplicado en la eliminación de parásitos como lo demuestra el trabajo de Ayuso, F. 2000.Evaluó el efecto Glomus sp. Sobre el ataque del nematodo Radopholus similis en plantas de banano. Observo que Glomus sp. Redujo la
cantidad de raíz muerta, pero no redujo la población de *Radopholus similis*, ni tampoco influyó en la altura de la planta o estimulación de crecimiento en los bananos.

Chávez y Cerrato 2000, Estudiaron el efecto de la adición de roca fosfórica y de la inoculación con *Glomus sp*. En plantas de naranjo (naranjo agrio, naranjo agrio australiano, naranjo agrio Brazilian).

VIIb.-Cultivos celulares vegetales

El término “cultivo de tejidos o células vegetales” involucra la utilización de diferentes técnicas de cultivo de material vegetal variado, incluyendo a los protoplastos (células desprovistas de su pared celular), células, tejidos, órganos y plantas completas. Mediante éstas y otras técnicas de cultivo, es posible obtener plantas libres de microbios en un medio nutritivo aséptico en condiciones ambientales controladas. También se lo conoce como “cultivo in vitro de plantas”. Las primeras experiencias relacionadas con el cultivo de tejidos vegetales se remontan a Gottlieb Haberlandt que en 1898 aisló células y tejidos de plantas superiores y las colocó en soluciones nutritivas para su crecimiento y estudio y publicó sus estudios en 1902 (Calva y Vargas 2005), pero recién en 1922 se logró el primer experimento exitoso: la germinación *in vitro* de semillas de orquídeas.

Las plantas son una fuente importante de metabolitos los cuales han sido usados como medicamentos, pesticidas, saborizantes y fragancias. Con la finalidad de producir estos compuestos sin necesidad de cultivar la plantacompleta, se ha desarrollado la tecnología de cultivo de sus células in vitro (callos, suspensiones y órganos) (Arias et al 2009). Esta es una buena alternativa, en especial cuando las plantas son silvestres, y requieren largos periodos de cultivo, tienen rendimientos de metabolitos secundarios bajos o no se cuenta con procesos de síntesis química. Sin embargo en este sistema, la producción es independiente de factores externos como disponibilidad de tierra, clima y condiciones geopolíticas; además es posible controlar las condiciones de cultivo, alcanzando mayor rendimiento y calidad. Pero para lograr la aplicación industrial de esta estrategia es necesario resolver ciertos inconvenientes; como baja productividad, crecimiento lento e inestabilidad genética (Arias *et al*. 2009). Una parte crítica en los cultivos celulares ha sido la selección de un medio de cultivo adecuado para las células. Los primeros medios utilizados fueron semisintéticos. Comúnmente estaban compuestos de extractos o
complejos orgánicos como agua de coco, hidrolizado de caseína y extracto de levadura. Actualmente, la mayoría de los medios están constituidos básicamente por cinco grupos de ingredientes: nutrientes inorgánicos, fuente de carbono, fuente de nitrógeno, vitaminas y reguladores del crecimiento que in vivo son sintetizados por una parte u órgano de la planta para luego ser transportados a otros órganos donde se metabolizan y/o acumulan. Las fuentes de nitrógeno más comunes son el nitrato y amonio, pero también se han utilizado urea, hidrolizado de caseína, extracto de levadura y aminoácidos, entre otros. La fuente de carbono más empleada es la sacarosa o glucosa y en menor grado la maltosa, galactosa, almidón y melaza. Los micronutrientes, generalmente adicionados al medio de cultivo en forma de sales, son utilizados por las células como cofactores enzimáticos, como el molibdeno para la nitrato reductasa y el magnesio para algunas cinasas (Calva y Vargas 2005). Los fitorreguladores también conocidos como reguladores de crecimiento vegetal (RCV), juegan un rol importante en el cultivo de células vegetales, ya que la modificación en su concentración y tipo en el medio de cultivo, a permitido una gran incremento significativo, tanto en la producción de biomasa como en la acumulación de metabolitos secundarios. De estas sustancias, las más utilizadas son las auxinas y las citocininas (Esperanza, 2004). Existen fundamentalmente tres formas de realizar cultivos in vitro: células en suspensión, células inmovilizadas o como tejidos u órganos, el de más interés es el de células en suspensión y de este tipo hay 2 variantes:

Cultivo en suspensión: En las suspensiones, las células individuales se distribuyen en forma homogénea a través del medio de cultivo y por estar rodeadas del mismo, se facilita la transferencia de nutrientes y oxígeno hacia el citoplasma. Este tipo de cultivo presenta la ventaja de permitir el control relativamente sencillo de variables como temperatura, pH y oxígeno disuelto; sin embargo, pueden verse modificadas algunas características de las células presentes en las plantas como su diferenciación y la comunicación intercelular (Arias et al. 2009).

Cultivos en suspensión intermitente: En esta técnica, las células se multiplican en un medio líquido, que es agitado continuamente para romper algunos agregados celulares. Excepto para la circulación de aire, el sistema es “cerrado” en cuanto a la adición o sustracción de líquido de cultivo. (Biblioteca digital de la universidad de Chile).
Barros-Dubreui 1994, obtuvieron seis nuevos cultivos de células vegetales in vitro a partir de la especie *Thevetianerii folia Juss*. Bajo diversas condiciones de cultivo. Y comprobaron que estos cultivos fueron capaces de sintetizar compuestos cardiotónicos aún después de dos años de subcultivo.

En cuanto a la utilización de *glomus* en medios en suspensión se encuentra el trabajo de Carr et al. 1985 utilizaron el cultivo de células en suspensión de trigo (*Triticum aestivum*), papa (*Solanum tuberosum*) y alfalfa (*Medicago sativa*), con una variación en la concentración de azúcar, 0.5% menos del usado habitualmente en los cultivos celulares vegetales en suspensión, esto con la finalidad de estudiar la interacción de las plantas con *Glomus caledonium* y además estimular el crecimiento hifal de este mismo. Otro trabajo en que se estudia esta interacción fue el de Siqueira et al. 1991 quienes observaron que las compuestos flavonides (formononetina y biochanina A), secretados por las raíces de los tréboles (*Trifolium repens*) estimulan y favorecen el proceso de colonización de las micorrizas arbusculares, por su parte Fernandes et al 2007, evaluaron la viabilidad de las esporas de los hongos micorrízicos arbusculares (HMA) *Glomus clarum* y *Glomus fasciculatum*, en un medio líquido de conservación (bajo solicitud de patente) y emplearon como tratamiento control, aguadaestilada estéril. Y tuvieron como resultado que en el medio líquido seleccionado se logró un tiempo de viabilidad estabilidad superiora 8 meses.
VIII.-MATERIAL Y MÉTODO:

VIIIa.-Desinfección de material vegetal (frijol y sorgo)

Para la inducción del callo y el mantenimiento del mismo, que posteriormente se utilizaron en la producción de células en líquido, en primer lugar se procedió con la desinfección del material vegetal (semillas frijol y sorgo): Fuera de campana de flujo laminar: Se lavó el material en 2 ocasiones con agua corriente y jabón, agitando durante 10 minutos cada ocasión, después se sumergieron las muestras en un recipiente con agua corriente durante 10 minutos. Dentro de la campana de flujo laminar: Se sumergió el material durante 2 minutos en una solución estéril de alcohol al 70%, posteriormente se colocó durante 15 minutos en una solución estéril de hipoclorito de sodio al 10% + 2 gotas de Tween 20 (2 gotas por cada 100ml). Y finalmente se limpió el material de la solución anterior con 3 lavados de agua destilada estéril (Esperanza, 2004).

VIIIb.- El procedimiento de extracción de esporas fue:

El material comercial de micorriza se depositó en tubos de centrifugación de 50 mL. Se agregó a cada tubo 25 mL de sucrosa al 80% (solución de azúcar) y se centrifugó por 3 min a 3.800 rpm. Las esporas localizadas en la interface se retiraron de cada tubo usando una jeringa. Se comprobó la extracción de estas por observación al microscopio. (Botero et al., www.CORPOICA.ORG.CO).

VIIIc.-Formulación del medio de cultivo y fitorreguladores para la inducción y mantenimiento del callo (frijol, sorgo cactus, kalanchoe, violeta y tabaco) (Esperanza, 2004).

El material se sembró en medio de cultivo sólido MS, colocado en frascos de vidrio estériles. Para su germinación. Con un fotoperiodo de 6 horas de luz y 12 de obscuridad, en un cuarto climatizado con una temperatura de unos 25°C.
Fotografía 2,3: A y B: Semillas de frijol en medio MS para su germinación. Fotografía 4: C: Semillas de sorgo en medio MS para su germinación.

El medio utilizado fue Murashige-skoog enriquecido con 30 g de sacarosa a un pH de 5,6, con 2 g de agar, así como sales y fitoreguladores. Composición del medio MS, cantidad en mg por litro:

Sales:

<table>
<thead>
<tr>
<th>Nutrientes</th>
<th>Cantidad(mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH4NO3</td>
<td>1650</td>
</tr>
<tr>
<td>KNO3</td>
<td>1900</td>
</tr>
<tr>
<td>MgSO47H2O</td>
<td>370</td>
</tr>
<tr>
<td>KH2PO4</td>
<td>170</td>
</tr>
<tr>
<td>CaCl22H2O</td>
<td>440</td>
</tr>
<tr>
<td>KI</td>
<td>0,83</td>
</tr>
<tr>
<td>H3BO4</td>
<td>6,2</td>
</tr>
<tr>
<td>ZnSO47H2O</td>
<td>8,6</td>
</tr>
<tr>
<td>Na2MoO42H2O</td>
<td>0,25</td>
</tr>
<tr>
<td>CuSO45H2O</td>
<td>0,025</td>
</tr>
<tr>
<td>CoCl25H2O</td>
<td>0,025</td>
</tr>
<tr>
<td>FeSO47H2O</td>
<td>27,8</td>
</tr>
<tr>
<td>Na2 EDTA</td>
<td>37,3</td>
</tr>
<tr>
<td>MnSO44H2O</td>
<td>22</td>
</tr>
</tbody>
</table>

Tabla 1: Componentes base del medio Murashige y Skoog
Fito reguladores:

<table>
<thead>
<tr>
<th>Fito regulador</th>
<th>mg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inositol</td>
<td>100</td>
</tr>
<tr>
<td>Glicina</td>
<td>2</td>
</tr>
<tr>
<td>Ácido Nicotínico</td>
<td>0.5</td>
</tr>
<tr>
<td>Piridoxina</td>
<td>0.1</td>
</tr>
<tr>
<td>Tiamina</td>
<td>0.1</td>
</tr>
<tr>
<td>2-4D (Ácido 2,4-diclorofenoxiacético)</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Tabla 2: Fitoreguladores del medio Murashige y Skoog

Debido al no desarrollo de callos, por parte del sorgo se elevó la concentración de 2-4D a 2mg por litro y esta concentración se mantuvo para los demás cultivos vegetales.

VIIIId.- Condiciones del cultivo de inducción de cultivo en suspensión (cactus, kalanchoe, violeta y tabaco).

El medio utilizado fue Murashige-skoog enriquecido con 30 g de sacarosa a un pH de 5.6, así como sales y fitoreguladores. Composición del medio MS, cantidad en mg por litro:

Sales:

<table>
<thead>
<tr>
<th>Nutrientes</th>
<th>Cantidad(mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH4NO3</td>
<td>1650</td>
</tr>
<tr>
<td>KNO3</td>
<td>1900</td>
</tr>
<tr>
<td>MgSO47H2O</td>
<td>370</td>
</tr>
<tr>
<td>KH2PO4</td>
<td>170</td>
</tr>
<tr>
<td>CaCl22H2O</td>
<td>440</td>
</tr>
<tr>
<td>KI</td>
<td>0,83</td>
</tr>
<tr>
<td>H3BO4</td>
<td>6,2</td>
</tr>
<tr>
<td>ZnSO47H2O</td>
<td>8,6</td>
</tr>
<tr>
<td>Na2MoO42H2O</td>
<td>0,25</td>
</tr>
<tr>
<td>CuSO45H2O</td>
<td>0,025</td>
</tr>
<tr>
<td>CoCl25H2O</td>
<td>0,025</td>
</tr>
<tr>
<td>FeSO47H2O</td>
<td>27,8</td>
</tr>
<tr>
<td>Na2 EDTA</td>
<td>37,3</td>
</tr>
<tr>
<td>MnSO44H2O</td>
<td>22</td>
</tr>
</tbody>
</table>

Tabla 3: Componentes base del medio Murashige y Skoog
Fito reguladores:

<table>
<thead>
<tr>
<th>Fito regulador</th>
<th>mg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inositol</td>
<td>100</td>
</tr>
<tr>
<td>Glicina</td>
<td>2</td>
</tr>
<tr>
<td>Ácido Nicotínico</td>
<td>0.5</td>
</tr>
<tr>
<td>Piridoxina</td>
<td>0.1</td>
</tr>
<tr>
<td>Tiamina</td>
<td>0.1</td>
</tr>
<tr>
<td>2-4D (Ácido 2,4-diclorofenoxiacético)</td>
<td>2</td>
</tr>
</tbody>
</table>

Tabla 4: Fitorreguladores del medio Murashige y Skoog

VIIIe.- Inducción y mantenimiento de callo; sorgo, frijol, cactus, kalanchoe, violeta y tabaco (Esperanza, 2004).

Después de la germinación se, procedió a cortar los “cuellos” parte entre la raíz y el tallo de las plántulas y se sembró en medio MS para la inducción de callo.

Se utilizó material proporcionado por la Dra. Carmen Ojeda Del laboratorio de la facultad de agronomía de la Universidad Autónoma de Nuevo León. Utilizando el mismo proceso mencionado para sorgo y frijol. Se resembro callo de estas plantas en medio MS enriquecido con vitaminas, para producir más cantidad.

Fotografías 5, 6, 7, 8, 9: Proceso de corte y siembra de cuellos de raíz de sorgo para la inducción de callo
Las condiciones ambientales que se utilizaron en el cultivo de células fueron; temperatura de 25°C; pH de 5.7 y agitación de 100 rpm.

Posteriormente de haber obtenido una buena cantidad de biomasa de células vegetales, se procedió con la inoculación de esporas de *G.intraradices*, previamente extraídas de una muestra comercial.
Fotografías 14,15: Proceso de inoculación de *A. capricorne* con micorriza. Prueba Preliminar.

Fotografía 16: Inoculación de los cultivos en suspensión con esporas purificadas
IX.-RESULTADOS

IXa.-Formulación del medio de cultivo y fitorreguladores para la inducción y mantenimiento del callo (frijol y sorgo) (Esperanza, 2004).

Se sembraron semillas estériles de sorgo y frijol en medio de cultivo sólido MS. Para su germinación después de dos semanas de crecimiento se obtuvieron plántulas solamente de sorgo.

![Fotografía 17: A; Plántula de sorgo germinada. Fotografía 18: B; Semillas de frijol en medio MS para sin germinar.](image)

Lo más probable en este caso es que las semillas de frijol utilizadas eran demasiado viejas, estas se compraron en un supermercado, por lo que se decidió comprar semilla en un mercado tradicional. Después de la germinación se, procedió a cortar los “cuellos” parte entre la raíz y el tallo de las plántulas y se sembró en medio MS con vitaminas para la inducción de callo.

Al igual que en las plántulas se manejó un fotoperiodo de 6 horas de luz y 12 obscuridad. Al mismo tiempo se repitió la resiembra de semillas de frijol, y se colocó nuevamente en crecimiento por dos semanas. Hubo crecimiento de plántulas de frijol sin embargo nulo desarrollo de callos de sorgo.
Fotografías 19, 20: A y B; Cuellos de sorgo en medio MS. Fotografía 21: C; Plántulas de frijol en medio MS germinadas.

Se repitió el proceso de la extracción de los cuellos de las plántulas de sorgo y frijol se colocó en medio ms con vitaminas y se esperó 2 semanas para ver su crecimiento, así como el de sorgo. Sin embargo no presentaron crecimiento, por lo que se decidió modificar la concentración del fitoorregulador 2,4-D, principal responsable de la formación de callos. En vez de utilizar 1.5mg como se estipulaba en el protocolo se elevó la concentración a 2 mg.

Fotografías 22, 23: Semillas de sorgo en medio MS para su germinación

Después del tratamiento de esterilización de semillas en el caso del frijol fue muy agresivo, muchas de las semillas no eran, utilizables, por lo que se acortaron los tiempos en cada uno de los pasos, dando como resultado la germinación de plántulas, sin
embargo al cabo de un día las plántulas se contaminaban con bacterias a pesar de las medidas preventivas, por lo que en este punto se decidió eliminar la utilización de frijol, y se repitió el proceso para la inducción de callo con las plántulas obtenidas.

![Imagen](image.png)

Fotografía 24: siembra de cuellos de raíz de sorgo en MS con 2mg de 2-4D para la inducción de callo.

Al cabo de un periodo de dos semanas para, el desarrollo de callo de sorgo, fue muy escaso. Por lo que se decidió dar otras dos semanas de crecimiento.

![Imagen](image.png)

Fotografías 25,26: Callo de sorgo en medio MS, 2mg de 2-4D.

El desarrollo de una buena cantidad de biomasa de callo varía según la especie de material vegetal utilizado (Com. Personal Ojeda 2011). Así mismo tiempo se decidió realizar un cultivo en suspensión de cactus (*Astrophytum capricorne*) con callo proporcionado por la Dra. Carmen Ojeda de la facultad de agronomía de la Universidad Autónoma de Nuevo León. Se tomaron porciones del callo y se transfiéreron a un matraz con medio líquido MS-vitaminas y con 2 mg de 2,4-D. Y se dejó en agitación a 100rpm. El tiempo de crecimiento para el cultivo en suspensión se basó en el proceso que tradicionalmente se utiliza en el laboratorio de la Dra. Carmen Ojeda. Después de dos semanas de crecimiento del cultivo en suspensión y cuatro del callo sorgo, se procedió a observar los progresos, notándose que el callo de sorgo no avanzaba en su crecimiento.
Se decidió tan solo como una prueba preliminar inocular el cultivo en suspensión de *Astrophytum* con el producto en bruto de micorriza comercial. Se inoculo con 2 gramos de producto. Se dejó en agitación durante dos semanas para ver si presentaba crecimiento.

Se obtuvo crecimiento, pero se procedió a buscar esporas de *Glomus* para comprobar si realmente había crecimiento del mismo. Las observaciones se realizaron por microscopio en 40x. Se realizó en el laboratorio del Dr. Alberto Flores Olivas en la Universidad Autónoma Agraria Antonio Narro (UAAAN).
Se observó la presencia de esporas y consultando literatura (http://www.bgiv.com.ar/strains/glomus-intraradices/ ga2) se confirmó que pertenecían a *Glomus*.

Fotografía 33: Fotos de esporas *G. intraradices* (http://www.bgiv.com.ar/strains/glomus-intraradices/ ga2)

Sin embargo esta solo fue una prueba preliminar ya que debido a que no eran esporas puras hubo crecimiento de otro tipo de organismos. Debido a que el crecimiento de callo del sorgo no avanzaba y por lo que se decidió utilizar otros materiales vegetales, el cactus (*Astrophytum Capricorne*), Kalanchoe (*Kalanchoe blossfeldiana*), Violeta (*Viola spp*), Tabaco (*Nicotiana tabacum*).

IXb.- Inducción y mantenimiento de callo, cactus, kalanchoe, violeta y tabaco (Esperanza, 2004).

Se resembro callo de estas plantas en medio MS enriquecido con vitaminas con una concentración de 2mg de 2,4-D, para producir más cantidad.

Después de dos semanas de crecimiento hubo desarrollo de callo por parte de todas las plantas, lo que comprueba que el medio MS si estaba bien formulado.
Se dejó crecer otra semana más para tener mayor cantidad de callo. Y se siguió monitoreando el crecimiento de callo de sorgo.

IXc.- Condiciones del cultivo de inducción de cultivo en suspensión. (cactus, kalanchoe, violeta y tabaco).

Después de cuatro semanas en total de crecimiento de callo se procedió a preparar los cultivos en suspensión de cada una de las diferentes plantas. Se cortaron trozos de callo y se inocularon en matraces con medio MS con vitaminas y 2mg de 2,4-D.
Después de inoculados se colocaron en agitación y se dejaron crecer dos semanas para la obtención de una buena cantidad de biomasa. En el entretiempo se procedió a purificar las esporas de *Glomus*.

El procedimiento de extracción de esporas se realizó en el laboratorio del Dr. Alberto Flores Olivas de la UAAN. Después del procedimiento de extracción se comprobó por observación al microscopio a 40x de la presencia únicamente de esporas de *Glomus*.

Fotografías 39, 40, 41, 42, 43, 44: Esporas extraídas y purificadas del producto comercial.

IXd.-Inoculación y crecimiento de esporas *Glomus*.

Después de dos semanas de crecimiento de los cultivos en suspensión, se procedió con la inoculación de esporas de *Glomus*, estos se colocaron en agitación, durante 2 semanas y se obtuvo desarrollo de micelio en los matraces correspondientes a kalanchoe y *Astrophytum*, en los de violeta y tabaco hubo un incremento en la turbidez, pero no hubo presencia de micelio. Esto coincide con lo reportado en el trabajo de Carr *et al.* 1985 quienes comprobaron que la germinación de esporas de *G. caledonium* y *G. mosseae* se potenciaba con cultivos en suspensión, en su caso de trigo.

Sin embargo el desarrollo de micelio fue en forma de pequeñas esferas (agregados) lo que pudiera indicar que no hay una infección de las células por parte de las micorriza, pero la interacción entre estas provoca una secreción de componentes por parte de la células vegetales que permite la germinación de las esporas, que coincide con lo mencionado por Carr et al. 1985.
Se procedió a observar por microscopio a 40X las esporas de *Glomus* de los diferentes tipos de cultivos en suspensión. Teñidas con azul de algodón.

Se observaron mayor cantidad de esporas en este cultivo que en el de *Astrophytum*. En cuanto a los cultivos de violeta tabaco no se observaron esporas, por lo que la turbidez del medio se debió tal vez al acumulo de algún metabolito de las células vegetales o tal vez algún contaminante. También otra teoría de por qué no se observaron esporas en estos cultivos es que probablemente produzcan algún metabolito que no permite la germinación de las esporas. Debido a que en los cultivos en suspensión anteriores se utilizó callo sólido para su producción y este se dejó en los matraces al momento de la inoculación con esporas, se decidió repetir el proceso con los cultivos de *Astrophytum* y *kalanchoe* con la diferencia que al momento de inocular con esporas se removió esa parte sólida para que se obtuvieran únicamente células en líquido.
Después de repetir el proceso de crecimiento se extrajeron nuevamente esporas y se inocularon los cultivos en suspensión de *Astrophytum, Kalanchoe* y se agregó papa. Removiendo el callo que se utilizó para generar dichos cultivos y se esperó un periodo de dos semanas.

Fotografía 54,55: A: Esporas *Glomus intraradices* en cultivo en suspensión de Kalanchoe. B: Esporas *Glomus intraradices* en cultivo en suspensión de *Astrophytum*. Teñidas con rosa de bengala, en microscopio 40X.

Fotografía 56: Esporas *Glomus intraradices* en cultivo en suspensión de papa. Teñidas con rosa de bengala, en microscopio 40X.

Fotografía 57: Micelio formado de la inoculación de esporas de *Glomus* en medio MS sin células vegetales en suspensión
Como se observa en las fotografías anteriores, hubo desarrollo de esporas de *Glomus*. Esto puede indicar la interacción entre las células en suspensión y las esporas de micorriza. Probablemente en esta interacción hay secreción de diversas sustancias como flavonoides reportados por Siqueira *et al.* 1991, que investigo utilizando plantas de trevol, y probablemente podrían desencadenar la germinación de las esporas de *Glomus*.

<table>
<thead>
<tr>
<th>Material Vegetal</th>
<th>Formación de callo (4 semanas)</th>
<th>Germinación Esporas</th>
<th>Formación Micelio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sorghum vulgare</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicotiana tabacum</td>
<td>***</td>
<td></td>
<td>***</td>
</tr>
<tr>
<td>Kalanchoe laciniata</td>
<td>***</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>Astrphytum Capricorne</td>
<td>****</td>
<td>****</td>
<td>****</td>
</tr>
<tr>
<td>Viola spp.</td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solanum tuberosum</td>
<td>***</td>
<td>***</td>
<td>***</td>
</tr>
</tbody>
</table>

Tabla 5: Comparación de la viabilidad para formar callo y de la germinación de esporas de micorrizas de las especies vegetales utilizadas en este trabajo.
X.- DISCUSION

De los resultados observados se pone de manifiesto que el establecimiento de cultivos in vitro de hongos micorrízicos en medio líquido es posible utilizando un medio de células en suspensión en este trabajo se demostró con las células en suspensión de Astrphytum quienes son más rápidas y mejores para la germinación y producción de esporas pero presenta el inconveniente del desarrollo prematuro de las esporas, efecto observado por Carr et al. 1985 pero en su caso en células de alfalfa, lo que pudiera dificultar su uso en la industria, por contraparte el cultivo en suspensión de Kalanchoe es conveniente para dichos fines, fenómeno que también fue reportado por Carr et al. 1985 quienes observaron que las células de trigo en suspensión también permitían la producción de esporas pero sin su prematuro desarrollo, con el único problema de que el establecimiento de suspensiones de este vegetal es más complicado, y podría no ser muy práctico. Esto sugiere que la estimulación de la germinación y esporulación no es específica de algunas especies de plantas, y además tampoco lo es en el tipo de células vegetales.

Se demuestra en esta investigación que realmente son los cultivos en suspensión los que fomentan el desarrollo de las esporas ya que en la segunda repetición de experimentos en los matraces únicamente contenían células puras y sí ocurrió la formación de micelio y posteriormente esporas nuevas, mientras que en el matraz con medio MS sin células vegetales (control) solo hubo un solo agregado micelial (pellet) que aumento únicamente en volumen pero no formó esporas, este comportamiento probablemente se deba a diversas sustancias secretadas por las células vegetales como demostró Koske (1982) mencionado por Carr et al. 1985 quien utilizo células de Trifolium pratense que secretaban una serie de compuestos que jugaban un rol muy importante en la formación de la micorriza Gigaspora gigantea. Otro punto a favor de los cultivos vegetales en suspensión es en relación con el medio de cultivo, en este trabajo se utilizó MS con cantidad de sales y azúcar iguales a la mencionada en literatura (com. Pers. Dr. Carmen Ojeda) con la excepción en la concentración de 2-4D (Ácido 2,4-diclorofenoxiacético) y hubo una buena cantidad de agregados de micelio obtenidos en los medios en suspensión de Astrphytum y Kalanchoe, mientras que en el control solo un pellet, en contraparte el trabajo de Carr et al. 1985 también obtuvo una mayor cantidad de micelio en cultivos en suspensión pero con la diferencia que solo con la disminución en la concentración de azúcar (0.5% menos) encontró mejores resultados.
Este trabajo aporta información sobre nuevas especies vegetales que permiten la producción de hongos micorrízicos en medio líquido, y deja abierta la posibilidad de otros trabajos de investigación al respecto, como por ejemplo, se podrían hacer nuevas pruebas modificando el medio de cultivo para compararlo con los experimentos de Carr et al. 1985 y ver si las plantas utilizadas aquí son aún más eficientes. También se pueden estudiar que compuestos son secretados por Astrphytum y Kalanchoe y utilizarlos para observar su efecto sobre la germenación y formación de esporas de micorrizas, poniéndolos a prueba su vez con otros compuestos reportados en literatura como los mencionados por Siqueira et al. 1991, con la finalidad que sean un avance en el proceso para poder cultivar este tipo de hongos en un medio artificial, con lo cual se podría utilizar no solo en el área de investigación sino también en la industria agrícola, ya que se podría obtener este tipo de producto en menos tiempo y minimizando otros factores que limitan su producción actualmente.
XI.-CONCLUSIÓN

El cultivo del hongo micorrizico *Glomus intraradices* es posible en un cultivo líquido Murashige-skoog adicionado con células vegetales en suspensión de Cactus (*Astrophytum Capricorne*), kalanchoe (*Kalanchoe laciniata*).
XI.- LITERATURA CITADA

Bago Alberto, Cano Custodia, Toussaint Jean-Patrick, Smith Sally, Dickson Sandy. 2006. Interactions between the arbuscularmycorrhizal (AM) fungus Glomusintraradices and nontransformed tomato roots of either wild-type or AM-defective phenotypes in monoxeniccultures. Mycorrhiza 16: 429–436.

Hršelová H., Vančura Gryndler M. 2003. Influence of inoculation with VA mycorrhizal fungus Glomus sp. on growth of strawberries and runner formation. Institute of Microbiology, Czechoslovak Academy of Sciences, Víden’ská 1083, Prague Czechoslovakia

Biblioteca digital de la universidad de Chile. Disponible en: http://mazinger.sisib.uchile.cl/repositorio/ap/ciencias_quimicas_y_farmaceuticas/apbot-farm2c/evanswc01/08.html

