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ABSTRACT 

AISI 5160 steel is used for the production of coil and leaf springs. Springs 

are usually oil-quenched and tempered. In this work, a brine solution is 

used as a quenchant. The brine promotes a more severe and uniform 

quenching. The severity of the quenching was analysed, and the heat 

transfer characteristics determined. A brine interrupted quenching was 

developed to produce a martensite case with a bainite core. The effect of 

various conditions after the interruption of the cooling is addressed. 

Tempering temperatures of 150, 250, 350 , 450 and 550 °C were 

employed. In addition, a partial decarburisation was promoted in the 

samples prior to the quenching and tempering, this in order to modify the 

local martensite start temperature and promote the martensite 

transformation to take place at a higher temperature, while reducing the 

amount of retained austenite. To determine the fatigue properties of heat 

treatments, a rotating bending fatigue tester with constant deflection was 

developed. Fatigue results showed that the interrupted brine quenching 

with partial decarburisation has a higher fatigue limit that the case with no 

decarburisation and also that the case of conventional oil quenching and 

tempering. Fractography and load data from experiments allowed to 

model the cracking stages. The model was useful to establish the 

presence of cracks and their length. It was found that when a martensite 

case and a pearlite core was produced, nucleation was retarded up to 5 

times, however after a crack nucleates it propagates much rapid than in 

bainite.  

 

  



1 
 

 

 

CHAPTER 1 
 
 

INTRODUCTION 

 
 

Along history mechanical failures have been the cause of human and money 

losses. Mechanical failures are promoted by a complex sum of variables such as 

load, service time, load type and environment. The cost of failures represents 

about 4% of the Gross National Product in the US [1] [2]. There are critical 

components from which a failure would be catastrophic, such as structural 

components of transportation vehicles and structures in general. For these 

applications, components might need to be overdesigned in order to withstand an 

infinite life. Although this practice prevents failures, it is an expensive solution 

because the thicknesses of components have to be increased and high alloy steels 

are used, thus increasing the cost of the steel. In order to increase the fatigue 

resistance of materials, researchers are in continuous development of processes 

that improve the strength and resistance of materials, and at the same time reduce 

the final product cost. 

 

5160 steel is commonly known as spring steel, and is used in the 

automotive industry for the manufacturing of coil and leaf springs. Springs are 

components subjected to variable cyclic loads, thus have to be designed to endure 

fatigue. For this reason, spring producers have to achieve certain mechanical 
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properties as well as high fatigue strength. Therefore, springs must undergo heat 

and surface treatments that increase the infinite fatigue life zone of the steel. The 

most common heat treatment employed in the manufacturing process of springs is 

austenitizing, followed by oil quenching and further tempering. Moreover, a shoot 

peening surface treatment is sometimes applied after heat treatment to produce 

compressive residual stresses at the surface. 

 

Steel parts might suffer distortion during heat treatment. The geometric 

distortion of steels during quenching is caused mainly by a non uniform cooling of 

the part, which depends on many factors such as the geometry itself, phase 

transformation and cooling rate. In parts with complex geometry, distortion occurs 

firstly because of the presence of high thermal gradients within the part, which 

produce a non uniform thermal contraction of steel, prior to the phase 

transformation. This is, the thinner section cools faster and therefore it contracts 

before than the thicker sections of the part. Then, thermal stresses are induced 

and thinners sections can undergo plastic deformation. 

A second mechanism that produces distortion is attributed to 

transformational stresses, which are generated because the non-uniform 

expansion of the material takes place due to a heterogeneous transformation of 

martensite through the part. Since martensite exhibit higher specific volume than 

austenite, sections that are cooled first, expand due to phase transformation while 

other austenite zones are still contracting. Thus, there are simultaneous time 

intervals when the part has martensite and austenite zones. The expansion of 

martensite causes stresses in the still plastic austenite zones, producing lattice 

distortion [3] [4]. 

 

The use of oil base quenchants is very common because they provide a 

moderate heat extraction compared with water, which has a higher heat extraction 

capacity. The magnitude of internal stresses relates directly on the heat extraction 
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rate (cooling rate). A very fast cooling produces a high thermal gradient within the 

part, generating high stresses due to the expansion of martensite and thermal 

contraction of austenite, therefore producing distortion and cracking. On the other 

hand, with slow cooling such as oil quenching, low thermal gradients are 

maintained through the cross section, about 30 ⁰C between the centre and the 

surface [5], which means a practically simultaneous phase transformation, 

minimising thermal and transformational stresses. 

 

Recent studies have proved that it is possible to substitute the conventional 

oil quenching with a process called Intensive Quenching (IQ), which uses water 

base solutions as quenchants and high agitation, bestowing considerable improved 

properties [6]. Although it is known that increasing the cooling rate increases the 

propensity of cracking, Kobasko [7] states that there is a critical cooling rate where 

the probability of cracking reaches a maximum and then drops with further 

increase on the cooling rate (Figure 1.1). The improvement in properties that is 

reached by IQ is of such magnitude that the content of alloying elements in steel 

can be reduced. 

 

 

Figure 1.1 Crack formation probability as function of cooling rate [7] 
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The intensive quenching technique induces the formation of maximum 

residual compressive stresses at the surface, which might produce a beneficial 

effect in fatigue resistance. However, there is no evidence reported in the literature 

regarding the influence of the microstructure produced of intensively quenched 

steels on fatigue resistance. Moreover, the IQ has been already developed for 

large cross section (>5 cm) and there is no methodology for getting the IQ benefits 

in smaller cross-sections (if it is possible), since high thermal gradients between 

surface and core are more difficult to achieve and maintain in small sections. 

 

Even though compressive residual stresses are known to increase fatigue 

life, their distribution plays a key role whether the fatigue life is improved or not. 

Then it is important to understand the residual stress distribution that affects the 

crack nucleation and propagation mechanism of an intensively quenched 5160 

steel, as well as to analyse the effect of the microstructure obtained, during the 

different fatigue stages in order to improve and determine the proper heat 

treatment.  

 

Hypothesis 

 

By increasing the martensite start temperature of the surface through a 

partial decarburisation, and by producing high thermal gradients during quenching, 

it might be possible to obtain a shell-core type microstructure in small cross 

sections of AISI 5160 steel that increases its fatigue strength. 
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Aim  

 

To produce a shell-core type microstructure in small cross section samples 

of AISI 5160 spring steel and to evaluate the effect of heat treatment conditions on 

its fatigue resistance using a laboratory scale system which allows monitoring the 

different stages of fatigue, including crack nucleation and growth. 

To develop a fatigue tester capable of provide information about the 

cracking stages, while testing.  
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[2]  

CHAPTER 2 
 

BACKGROUND 

 
 

2.1 Quenching 

 

 Thermal stresses are present during quenching due to the inherent thermal 

gradients typical of heat transfer processes. This temperature variation in addition 

to the thermal expansion coefficient of the material, determine the magnitude of the 

thermal stresses. The specific volume of phases formed during quenching also 

induce extra stresses in the lattice. These transformational and thermal stresses 

may cause plastic deformation if the yielding point is overreached, and cracking if 

the tensile strength is exceeded [8]. 

 

Quenching has been traditionally designed to produce through hardening, 

this is, a fully martensitic microstructures. To minimise cracking, thermal gradients 

must be diminished by using slow cooling as it is oil quenching. Greater 

hardenability can be obtained by using higher alloying steels. Whereas in the 

Intensive Quenching (IQ) process the desired microstructure consist of a tempered 

martensite shell and a mixed core of bainite, pearlite and ferrite. High strength is 

obtained in the material due to the creation of a high dislocation density during IQ. 
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The dislocations are trapped instead of clustering at grain boundary, which 

improves the plastic properties of material. A high dislocation density in addition to 

compressive residual stresses at superficial layers increase the life of steel part [9]. 

 

2.1.1 Cooling Stages  

 

When a vapourisable fluid is put in contact with a hot metal surface (850°C for 

common austenitizing temperature), different heat transfer mechanism take place 

as the surface cools (1st film boiling, 2nd nucleate boiling and 3rd convection). A 

typical cooling and cooling rate curves are shown in figure 2.1. More detailed 

information regarding the stages of quenching is available on [10] [11] [12]. 

 

Figure 2.1 Typical cooling and cooling rate curves displaying the cooling stages 

when quenching in a vaporisable fluid [10]. 

 

The first stage of cooling consists in the formation of a vapour film which surrounds 

the entire part, known as full film boiling or vapour blanket stage. During this low 

heat transfer stage, the vapour formed around the surface isolates the part from 
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being wetted by the quenchant. The duration of the full film boiling depends on the 

thermophysical properties of the quenchant like its saturation temperature, thermal 

conductivity and temperature [13]; and on physical properties of the quenched part 

such as its thermal conductivity, roughness and shape [14] [15]. This particular 

stage is very sensitive to the temperature of the quenchant and concentration of 

salts in the solution [16] [17].  

 

In the case of pure water, an increase on its temperature promotes longer duration 

and stability of vapour film, due to the reduction in the energy required to evaporate 

it [10] (see Fig.2.2).  

 

 

Figure 2.2 Effect of water temperature on full film boiling duration. 

 

 The addition of different salts and alkali even in slow concentrations produce 

a considerable reduction of the film boiling stage and even eliminate it at optimal 

concentrations. In general, the cooling rate increases with an increase in 
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concentration up to a critical point where further increments in concentration may 

reduce the cooling capacity of the quenchant. 

 

The second stage of the cooling consists in the massive formation of 

bubbles that causes a high increase of heat flux due to the rupture of the vapour 

blanket and the direct contact of the liquid with the surface. This stage exhibits high 

heat transfer due to the formation of great amounts of bubbles at the surface. 

During the nucleate boiling stage, surface temperature drops drastically to 

approximately the boiling temperature of the quenchant. While the temperature of 

the part decreases, heat flux diminishes to a point where the heat transfer mode 

switches to convection.  

 

Finally, convective heat transfer takes place when the surface temperature 

of the part decreases slightly below the boiling temperature of the quenchant. 

(More detailed explanation of the heat transfer modes can be consulted in 

references [18] [19]) 

 

 These three stages of cooling are usually observed in cooling curves. 

According to Kobasko [18], there is also a fourth mode at the very beginning of 

quenching, called the shock-film boiling. This stage is characterised by great heat 

flux density. In figure 2.3, it can be observed the four cooling modes as function of 

heat transfer coefficient (2.3a) and heat flux density (2.3b).  
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Figure 2.3 Modes of cooling during quenching (a) and critical  

heat flux densities (b) [20] 

 

2.1.2 Intensive Quenching  

 

There are different methods to achieve the intensive quenching in the 

martensitic range (IQ-1, IQ-2, IQ-3), which differ from one another in the heat 

transfer modes [21]. 
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It is worth to point out that the term "intensive quenching" is not necessarily related 

to great agitation of the quenchant. Instead, the term is used to describe a 

procedure where high enough thermal gradients are produced between the surface 

and the core, which produce maximum compressive residual stresses due to 

transformational and thermal stresses when the cooling is stopped. 

 

IQ-1is a two steps cooling, beginning with a slow cooling from the austenitizing 

temperature to the martensite start temperature (Ms), followed by intensive 

quenching.  

 

IQ-2 is a three steps cooling that consists in an initial cooling that prevents the 

vapour blanket formation at the surface until 50 % martensite is reached at 

superficial layers. At this point the cooling is interrupted, and the steel part is 

cooled in air, getting an homogenisation of the temperature through the cross 

section and producing a self-tempering of the martensite superficial layers just 

formed. Finally, intensive quenching is continued until martensitic transformation is 

completed. The usage of salt based solutions is necessary in this method in order 

to avoid the vapour blanket formation.  

 

IQ-3 consists in a very intensive cooling where the vapour blanket and the nucleate 

boiling are avoided, taking place only convective heat transfer. In this method, the 

great flux of quenchants cools the surface almost instantly, generating a maximum 

temperature gradient possible between the surface and the core. The intensive 

cooling is maintained until maximum surface compressive stresses are reached, 

then the part is cooled in air. The time and water flux depends on the geometry of 

the part and steel composition. IQ-3 is the most intensive of the three methods and 

is possible to increase the service life of steel parts 1.5 to 2 times compared to the 

conventional oil quenching according to reference [21].  
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2.1.3 Distortion minimisation 

 

Reduction of distortion and cracking during the intensive quenching can be 

explained if a conventional quenching is analysed, in which the cooling and 

martensite transformation takes place firstly in the thinner sections of the real part 

(Figure 2.4a), while thicker section have not transformed yet. A volume expansion 

of about 4.3% in the cold zones is promoted because martensite has higher 

specific volume than austenite. At the same time, austenitic zones undergo thermal 

contraction generating high stresses, which may cause deformation and cracking 

[3] [6] [7] [8]. 

 

The key difference in the IQ is remarked by the great heat extraction ability of 

the quenchant (generally produced by great agitation), producing a more uniform 

cooling at the surface of the part, independently of the geometry of the part (Figure 

2.4b). This uniform cooling minimises distortion and cracking, also generating 

compressive residual stresses at surface if properly interrupted. 

 

 

Figure 2.4 Phase transformation during conventional quenching a), and intensive 

quenching b). 
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2.1.4 Generation of residual stresses  

 

During quenching there are two main types of stresses, thermal stresses 

and transformational stresses. The first ones arises from the different cooling rates 

that experiment the surface and the core, while the transformation stresses appear 

due to volume changes when the phases transform. 

 

Generation of compressive superficial residual stresses in steel through the 

usage of IQ can be described by means of the model of Figure 2.5. Only radial 

heat transfer will occur if the cooling of a cylinder sufficient long to avoid the end 

cooling effects is considered [22]. Thus, a one-dimensional model can be used, 

where temperature gradients arise as concentric circles [23]. It is considered that 

the concentric circles are formed by “balls” which are joined together each other 

with springs to illustrate the stresses (Figure 2.6). When the piece is heated above 

the AC3 temperature of steel, the springs are in an equilibrium state of relaxation 

and there are not stresses between the balls (σ=0, Figure 2.5.a). 

 

During cooling, the surface cools very quickly causing thermal contraction of 

the outer balls. Because the core is still hot and therefore is still expanded and 

large, the surface layer experiecing shrinkage is constrained to maintain the size of 

the core. Then, tensile stresses are generated in the axial and circumferential 

directions of the cooling shell. This shrinkage breaks the equilibrium state and the 

springs of the outer circle of balls expand as a reaction to this contraction, 

simulating the creation of tensile stresses (Figure 2.5b). 

 

After further cooling, martensite (blue balls in Figure 2.5.) will start to form 

from the outermost layers to the core. Since the martensitic transformation is   
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       a) σ=0  Austenite  b) +σ (surface)       c) -σ (T surface < Ms)    

       

    d)          e)            f) Core shrinkage 

       

g) -σmax  (surface)  IQ stop      h) Through hardening          i) Core expansion  

       

Figure 2.5 Thermal and transformational stresses during quenching of steel. 

 

diffusionless (that depends only on temperature and not on time), 

transformation starts to take place instantly when the surface temperature reaches 

the Ms temperature of the steel (Figure 2.5c). These balls, as can be seen in the 

figure, expand due to the higher specific volume of martensite. This expansion is 

constrained once again by the size of the core, which compared to the martensite 
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is now small, and therefore, it pulls the outer layer to the core generating 

compressive stresses. These superficial compressive stresses (σ<0) are 

represented in figure 2.6 as a contraction of the springs. 

 

 

Figure 2.6 Stresses due to martensitic transformation during IQ. 

 

During IQ the surface reaches the Ms temperature extremely fast, while the  

core is still hot, almost at the austenitizing temperature. At the time when the  

martensite transformation takes place at surface, the still austenitic core continues 

to cool and to contract (Figure 2.5f). Contraction of the core is constrained by the 

now cold and hard martensite layer, which conserves the initial part size with low 

distortion. The thermal contraction of the core drags the layer towards the centre, 

thus increasing the compressive stresses of the surface (the springs contract even 

more, see Figures 2.5f and g) and tensile stresses are present in the core. 

 

 At a certain point of the cooling, the surface compressive stresses reach a 

maximum value. This occurs an instant before the transformation to martensite at 

the core takes place (Figure 2.5g); to obtain the maximum surface compressive 

stresses, the intensive cooling must be interrupted in that moment. The cooling 

rate will slowdown, and martensite formation is interrupted as well. With enough 

time to diffuse, the austenite of the core will transform into more stable structures 

such as bainite, pearlite and ferrite. Since these phases have lower specific volume 
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than martensite, the quenching results in a higher value of compressive residual 

stresses compared to the case of through hardening showed in figure 2.5i. 

 

Although at this point the stress distribution is like the one exhibited in 

carburized steels (See figure 2.7b), that distribution is attained by different 

mechanisms. In both IQ and carburisation, surface compressive residual stresses 

are generated by means of constraining the free expansion of martensite at 

surface layers. In the IQ the expansion is constrained by the austenitic core which 

is smaller compared as it would be if it were of martensite. 

 

Figure 2.7 Distribution of residual stresses across the thickness of hardened and a) 

case-hardened plate of 26MnCr4 steel b). [24] 

 

In carburisation processes, carbon content plays an important role by 

changing the Ms temperature (See figure 2.8). Thus, although during cooling the 

surface temperature is lower than that of the core, martensite transformation 

indeed occurs firstly at the core because of the lower carbon content. The 
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expanded martensite core deforms plastically the still austenite surface layer to the 

new core size. Afterwards, when surface reaches the Ms temperature, 

transformation takes place, however, the expansion is constrained by the core 

which do not allow the free swelling of surface layer. The stress distribution is 

observed in the figure 2.7b showing compressive residual stresses at the surface 

and tensile stresses at the core, similar to IQ.  

 

Figure 2.8 Temperature distribution and progress of martensitic transformation 

during quenching of a carburised steel bar [24] 
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2.1.5 Aqueous Salt Solutions 

 

 At room temperature, water has high cooling capacity. However, its low 

boiling temperature makes water unsuitable to be used for quenching of many 

steel grades and complex shapes. Moreover, high cooling rates are associated 

with high thermal gradients within the quenched part, and therefore related with 

cracking and distortion [25]. In addition, water quenching promotes a non-uniform 

cooling, since at the beginning of the cooling a vapour blanket forms and covers 

the steel part, isolating it from the quenchant [26] [27] [14] [28]. To promote a 

uniform cooling, the vapour blanket or full film boiling stage might be reduced or 

eliminated either by the usage of salt additives or destabilised by agitation. 

 

 Aqueous solutions containing salts or alkalis are called Brines (usually 

NaCl), although the term has been used for some authors to refer aqueous 

solutions with other salts [29] [30] [31] [32] [33]. Commonly employed salts include 

chlorides, nitrides, sulphates and hydroxides [10] [34] [35]. Such additives, which 

form negative ions when dissolved in water, are attracted by the positive charge of 

the metal surface and destabilise the vapour film (if formed), producing its collapse 

[36] [37] [29]. In addition to reduce or eliminate the film boiling stage, higher cooling 

rates are obtained with these aqueous solutions than pure water. Since high 

cooling rates might increase the propensity of cracking and distortion, the use of 

these solutions is frequently limited to quenching low-hardenability steels [10]. 
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2.1.5.1 Cooling Power of Brines 

 

 Compared to other quenchants, brine has the highest heat extraction 

capacity. Many authors have compared the cooling power of various media using 

different methods and probes. Although there is no straightforward comparison 

from one author to other due to experimental methodology, there is a common 

agreement among researchers regarding the ranking positions of cooling 

capacities of various quenchants [38] [36] [27]. 

 

 Figure 2.9 shows the cooling curve for different quenching media using the 

Japanese silver probe [38]. It can be seen that film boiling stage is apparently 

suppressed in the cooling curve of brine, and that the HTC calculations showed 

almost 4 times greater for brine than for water quenching (45 and 11 KW/m2 K 

respectively) and 8-10 times greater than oil. 

 

Figure 2.9 Cooling curves of different quenchants using a silver probe of 10 mm in 

diameter. [38] 
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 The maximum cooling rate and heat transfer coefficient (HTC) values are 

usually employed to determine and to compare the severity of quenchants. 

However, it is worth to note that no single number of heat transfer coefficient nor 

cooling rate characterises a quenchant. These values are strongly dependent on 

material properties and shape (thickness) of the quenched sample, thus different 

HTC are obtained by changing the composition of the quenched part. There are 

various methods available in literature to evaluate the cooling capacity of 

quenchant for specific conditions [39,40,11,41,42], which are useful as a direct 

comparison between quenchants if experimental conditions are maintained. 

Nevertheless, for real geometries cooling rates and HTC might be lower. The 

thicker the section, the lower the HTC that a given quenchant produce [11]; thus to 

maintain similar heat transfer conditions on the same steel, cooling severity has to 

be increased for thicker parts and lowered for thinner sections. 

 

 Cooling capacity of salt aqueous solutions is usually increased 

proportionally with a concentration increase up to a maximum, which is commonly 

considered as an optimal concentration. The optimal concentration of a specific 

brine is related to the highest cooling rate achievable as function of composition. 

Usually further additions above the optimal concentration tend to decrease the 

cooling power of the solution. Saturated solutions might cool slower than pure 

water. In table 2.1 the cooling rate of different salts and concentrations are shown.  
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Water Solution Concentration (%) Cooling Rate (°C/s) 

Water NaCl 0 102-120 
  5 170 

  10 195 

CaCl2 5 170 
  10 193 

  20 170 

Na2CO3 10 170 

NaOH 2.5 195 
  5 202 
  11.5 202 

  16.5 207 

HCl 5 153 

  20 100 

H2SO4 5-20 143-150 

 
Table 2.1 Cooling Rate in aqueous solutions in the range of 880 to 730 °C of a 

Ø12.7 mm 0.95 C wt% steel probe. *Thermocouple at centre [27]. 

 

2.1.5.2 Electrical Processes  

 

 When a metal is heated at high temperature, electrical charge flow is 

induced from surface (electrons or ions). Due to the thermionic emission [43] [44] 

when the metal and the quenchant (electrolyte) come in contact, the negative ions 

of the solution are attracted by the positive charge of the metal, forming a double 

layer of electrical charges [45] [37] [46], see figure 2.10a. Since the liquid is 

dragged to the metal surface, stabilisation of vapour blanket becomes more 

difficult. For the case where cooling is related to electrical charges, the electrical 

conductivity plays a fundamental role. The range of concentrations where greater 

cooling rates take place in electrolytes correspond to the range of greater electrical 

conductivity [13]. Figure 2.10b shows the electrical conductivity of various solutions 

as function of concentration.  
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Figure 2.10 Schematic diagram of double electrical layer during quenching of steel 

in water salt solutions a) and the effect of salt concentration on electrical 

conductivity for various salts b) [37]. 

 

 In figure 2.10a a diagram representation of the double electrical layer is 

shown. The negative ions surround the hot metal surface, also the surface tension 

of the solution is modified  due to the accumulation of these negative ions [37]. The 

reduction of surface tension by the addition of surfactants improves the wettability 

and the heat transfer [47]. Qiao and Chandra [48], in their research on surfactants 

concluded that surfactants increase the contact area and promote the nucleate 

boiling stage, and that there is no evidence to correlate the reduction on the 

surface tension with the increase on the heat transfer. Further reading on the 

double electrical layer effect can be found in Ref. [37] [45]. 

 

2.1.5.3 Effect of salts concentration 

 

Sodium chloride (NaCl) is the most common salt used as brine, since is easy to 

get it and at low cost. However NaCl could damage the pumping and agitation 
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systems due to its high potential to corrode steel [49]. Workpieces might also 

require further washing after quenching. Cooling curves of a nickel sample 

quenched in water and 10 % NaCl can are shown in figure 2.11 [50].  

 

 

Figure 2.11 Cooling curves of a nickel probe quenched in water at 100°C (1) and in 

10% NaCl aqueous solution at 101°C (2). *Ø16 mm [50]. 

 

 Film boiling duration is considerably shorter with NaCl at 100°C; and at room 

temperature it may be eliminated. In figure 2.12, cooling rates of different 

concentrations of NaCl aqueous solution are shown. There is an optimal 

concentration of about 10-15 % which produce the most severe cooling, and with 

higher concentration up to 20 %, the cooling rate decrease considerably. Although 

the maximum cooling rate with 20 % and 1 % are in the range of 1200- 1300 °C/s 

for the experiment shown, there is a reduction in the film boiling duration with 20% 

compared with the curve of 1% in the range of 800-500°C. 
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 It is worth to point out that such high cooling rates (higher than 750°C/s) 

when quenching in aqueous solutions, are usually obtained at the surface. The fact 

that these high values were obtained from a thermocouple at the centre of a 20 

mm silver sphere, is possible due to its high conductivity. Thermal gradients within 

the probe are small, then core temperature may be assumed to be equal to the 

surface temperature during cooling. 

 

Figure 2.12 Effect of salt concentration on cooling capacity of NaCl a) and NaOH 

b) aqueous solutions. *Cooling rate as function of temperature at the centre of  

Ø20mm silver sphere [10]. 

 

 One important aspect of brine quenching is the reduction of film boiling, 

which promotes a more uniform cooling. Although an increase in salts 

concentrations usually corresponds to a reduction in the film boiling duration (see 

figure 2.13), cooling rates usually reach a maximum followed by a decrease for 

concentrations higher than the optimal (Figure 2.12). The maximum cooling rate or 

optimal concentration depends on the salt or alkali used. Regarding the cooling 

capacity, from figure 2.12 can be concluded that 15% NaCl and 15% NaOH 

solution have similar cooling power. However, these results differ slightly from ref 
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[36] where it is reported that the highest HTC is reached with 10% for both brines, 

see figure 2.14. The HTC is strongly dependent on the part thickness [11] [34], 

thus many reported values differ even by one o two orders of magnitude for the 

same quenchant. In addition to the thickness of the sample, such scatter is also 

affected by the method of which the temperature was measured and by the 

calculation methodology itself. Some methods for HTC determination are 

addressed in references [51] [8] [41] [52] [53] [54] [11] [55] [56] [57] [58]. 

Standardisation of a methodology to determine the HTC is a current subject of the 

International Federation of Heat Treatment and Surface Engineering (IFHTSE). 

 

Figure 2.13 Film boiling duration as function of aqueous solution concentration. 

*Ø16 mm nickel probe. [50] 
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Figure 2.14 Effect of salt concentration on heat transfer coefficients of NaOH and 

NaCl aqueous solutions [36]. 

 

Calcium chloride (CaCl2) is also used to reduce the vapour film boiling duration 

and increase the cooling severity [59] [29] [60]. Maximum cooling rates are 

obtained with concentrations within the range of 8-12%, and film boiling is 

eliminated [10].  

 

 Arai and Furuya [29] studied the effect of NaCl on the vapour film collapse 

by immersing half of a steel ball and maintaining the other half air cooled. By doing 

this, the vapour film stabilises as it would in larger parts, and the effect of salt 

concentration is clearly observed. Is important to note that with a full immersion, 

the duration of vapour film boiling may be considerable shorter. In figure 2.15 the 

cooling curves for different concentrations are shown, and is observed that an 

increase in concentration corresponds to a decrease of vapour film duration. Also 

the vapour collapse temperature is raised with salt addition, this means that the 

quenching temperature when liquid media actually wets the hot part is higher. With 

40 wt% NaCl2 vapour film is almost eliminated for this specific system (half ball 
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immersed). In addition, it was reported that with salt addition the vapour film 

thickness is reduced and the direct-contact frequency between the part and the 

quenchant increases as well as the collapsing temperature of vapour film. 

 

 It is worth to note that complete elimination of film boiling depends also on 

thickness of the quenched part and the volume of quenchant (due to agitation and 

local temperature increment). Therefore, all results presented are useful for 

comparison, and field tests are required in order to confirm whether or not film 

boiling could be suppressed for a specific application.  

 

 If a saturated solution is prepared (about 65% CaCl2), the cooling capacity 

falls between water and oil, being able to quench medium-carbon steels  while 

reducing cracking and distortion [59]. 

 

Figure 2.15 Effect of CaCl2 concentration on cooling [29]. 
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Magnesium chloride (MgCl2) or bischofite has been used for specific application 

to increase the hardness depth. According to reference [31], cooling capacity of 

CaCl2 solution is identical to the one of MgCl2, although no concentrations were 

provided, it is assumed that the statement refers to the same concentrations. The 

main disadvantage of using MgCl2 as brine is that it increases corrosion of metals 

by forming hydrochloric acid vapour through the reaction: 

 

MgCl2 + H2O ↔ MgOHCl + HCl 

 

Magnesium sulfate (MgSO4) and sodium sulfate(Na2SO4) were reported in ref 

[30] to enhance the nucleate boiling heat transfer and the heat flux in spray 

quenching. These solutions exhibited superior cooling power than NaCl solution, 

with same concentration (0.06 mol/l), see figure 2.16. Authors noticed more foam 

formation for these sulfate solutions than for NaCl. In figure 2.17a the heat flux 

against MgSO4 solute concentration is shown, and it can be observed that the 

optimal concentration is 0.2 mol/l and further additions as 0.4 mol/l reduces the 

heat transfer.  

 

Figure 2.16 Effect of various salt solutions on the surface heat flux. *Concentration 

0.06 mol/l [30]. 
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Figure 2.17 Effect of MgSO4 concentration on surface heat flux a) and on the 

cooling curve b) [30].  

 

 From cooling curves of figure 2.17b it can be observed that with water spray 

and small concentrations of MgSO4, the initial cooling is slow, authors attribute this 

to the vapour film formation and the rebounding of droplets after impact. With 0.06 

mol/l the transition from film boiling to nucleate boiling was reduced and with 0.4 

mol/l it was eliminated. After experiments, surface roughness was increased due to 

salt deposition on surface. Thus, this mechanism of adhesion could enhance the 

heat transfer due to an increase of superficial area. 

 

 Precaution must be taken in the selection of brine solutions for quenching, 

since the high severity of the quench may increase the cracking and distortion 

potential. Moreover, high concentration of salts promote corrosion in both the 

quenching system and the workpiece. There are organic salts which increase the 

cooling rate and at proper concentration act as corrosion inhibitors such as sodium 

nitrite (NaNO2). The optimal concentration of the NaNO2 to act as inhibitor differs 

among authors from 0.04 to 4 % [61] [62] [63] [64] [65]. 
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 The heat transfer coefficient during quenching in aqueous solution can be as 

high as 300,000 W/m2 K, according to experiments performed using a 5% water 

NaOH solution to quench a Ø38.1 mm sphere [66]. 

 

2.1.6 Heat Transfer  

 

 Analysis of the heat transfer during quenching is of great relevance since a 

proper examination could lead to predict the optimal conditions of cooling rate and 

quenching times that would produce certain microstructure. The first step of the 

process is the acquisition of temperature data, which is commonly made by the use 

of embedded thermocouples within the part to be quenched. 

 

 During unsteady processes like quenching, it is difficult to get the surface 

temperature experimentally. Then, heat transfer analysis has to be done in order to 

obtain information of surface instantaneous temperature and therefore of 

convective heat transfer coefficients. 

 

If a hot cylinder, long enough to be consider as semi-infinite (Length > 4 times 

Diameter), is suddenly quenched, the heat transfer will occur in one dimension, as 

shown in figure 2.18. The energy balance for convection is: [67] 

−𝒌𝑨  𝝏𝑻

𝝏𝒙
 
𝒔𝒖𝒓𝒇𝒂𝒄𝒆

= 𝒉𝑨 𝑻𝒔𝒖𝒓𝒇𝒂𝒄𝒆 − 𝑻∞  

The finite-difference approximation is therefore: 

−𝒌
∆𝒚

∆𝒙
 𝑻𝒎+𝟏 − 𝑻𝒎 = 𝒉∆𝒚 𝑻𝒎+𝟏 − 𝑻∞  

or 

 

Eq. 2.1 

 

Eq. 2.2 
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𝑻𝒎+𝟏 =
𝑻𝒎 +  𝒉∆𝒙/𝒌 𝑻∞

𝟏 + 𝒉∆𝒙/𝒌
 

  

    m-1         m        m+1

Surface

Environment 

heat flux

 

Figure 2.18 Nomenclature for numerical solution of unsteady-state conduction 

problem with convection boundary condition [67]. 

 

If the surface and inner temperatures are known the heat transfer coefficient is 

then calculated as: 

𝒉 = −
𝒌

∆𝒙

 𝑻𝒎+𝟏 − 𝑻𝒎 

 𝑻𝒎+𝟏 − 𝑻∞ 
 

 

where 𝑻𝒎+𝟏 is the surface temperature, Tm is a near surface temperature, x is the 

distance between the two positions and 𝑻∞  is the quenchant's temperature [67].  

 

2.1.6.1 Calculation of surface temperature  

 

The temperature of the surface is typically estimated from data acquired with 

thermocouples positioned inside the part. Usually, the surface temperature is 

calculated from a near surface temperature and the heat transfer coefficient. When 

heat transfers coefficients are not available for a specific quenching system 

∆𝑥          ∆𝑥 

 

Eq. 2.3 

 

Eq. 2.4 
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(geometry and quenchant), there is a need to evaluate the surface temperature 

using alternative methods, such as inverse problem methods. The inverse problem 

methods (IPM) are widely employed to estimate the heat transfer condition and 

their calculation is based on at least one temperature from an interior position of 

the sample and the thermo-physical properties of the material.  

Although the use of the inverse problem analysis has been employed by many 

authors [42] [68] [69] [70] [71] [72] [73], there is a considerable scatter of results 

among researchers. There are various valid solutions when solving and inverse 

problem (backwards), and the selection of thermophysical properties as function of 

temperature selected play an important role on this scattered results.  

In addition to the intrinsic scatter of the Inverse Problem, the position, time 

response, insulation and wiring of thermocouple could strongly affect the final 

results. 

The use of the called effective heat transfer coefficient described in reference [39], 

is useful to compare the cooling severity of different quenchants or flow velocities. 

Since its calculation derives from the thermal history at the centre of a probe, the 

extrapolation of the surface temperature using the effective  and the actual heat 

transfer coefficient may vary considerably. The effective HTC can be as 5 times as 

lower than the actual HTC. Thus, its practical application for surface temperature 

determination is limited only for quenchant comparison.  

 

If it is considered that during unsteady state conduction the temperature 

distribution follows a parabolic trend in simple geometries, the surface temperature 

and the profile of temperature distribution can be estimated from thermocouple 

data at certain positions inside the part. A demonstration of the parabolic trend is 

addressed in section 3.3.4. 
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2.1.6.2 Determination of parabolic temperature distribution 

 

During cooling of symmetric geometries, namely cylinders or prisms, the 

temperature distribution follows a parabolic shape from the geometric centre to any 

point on the surface if one dimensional heat transfer conditions are set (e.g at the 

middle length of infinite cylinders, bars) [74]. Thus, the temperature at the centre of 

the sample will be the maximum point of the parabola which is the vertex (The 

parabola opens downward during cooling). 

 

If two points are known (x1, y1) and (x2,y2), then the parabola is symmetric with 

one axis, and being one of the points in the axis of symmetry, the equation of the 

parabola can be determined as shown in figure 2.19. Although the equation of a 

parabola (y=ax2+bx+c) has three unknown constants, it can be solved with 2 

equations because one point lies on the "y" - axis (temperature). Then the equation 

at this point x=0 is reduced to y=c. Furthermore, since the parabola is vertical and 

it is known that the vertex is on the axis, the slope of the derivative of the equations 

for the parabola must be zero at the vertical axis. Therefore, the value of the 

variable b is zero and the term can be neglected. The equation system is reduced 

to one unknown constant (a) and one equation, and can be solved by substituting 

the value of c for the equation of the (x2,y2) point. See Figure 2.19. 

 

The equation at point  𝐱𝟏, 𝐲𝟏  or  𝐱𝟏, 𝐓𝟏 , is: 

𝐓𝟏 = 𝐚𝐱𝟏
𝟐 + 𝐛𝐱𝟏 + 𝐜 

where 𝐱𝟏 = 𝟎 then: 

𝐓𝟏 = 𝐜 

 

 

Eq. 2.5 

 

Eq. 2.6 
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Figure 2.19 Schematic illustration of temperature distribution behaviour during 

quenching of a symmetric geometry. Y axis represents the temperature and X axis 

the radial position. 

 

and since the slope at x=0 is zero, the derivative of eq. (1) is equal to zero: 

𝛅𝐓

𝛅𝐱
= 𝐚𝐱 + 𝐛 = 𝟎 

since x=0 

𝛅𝐓

𝛅𝐱
= 𝐛 = 𝟎 

substituting b and c on the equation of point (𝐱𝟐, 𝐲𝟐) or (𝐱𝟐, 𝐓𝟐): 

𝐓𝟐 = 𝐚𝐱𝟐
𝟐 + 𝐓𝟏 

Then a is obtained: 

𝐚 =
𝐓𝟐 − 𝐓𝟏

𝐱𝟐
𝟐

 

where x is the radial position of the off-centre known temperature (T2). 

 

Eq. 2.7 

 

Eq. 2.8 

 

Eq. 2.9 

 

Eq. 2.10 
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The temperature at any r position  𝐱𝐫, 𝐲𝐫  can be determined by:  

𝐓𝐫 = 𝐲𝐫 = 𝐚𝐱𝐫
𝟐 + 𝐜 

where r is the radial distance, then substituting a: 

𝐓𝐫 =  𝐓𝟐 − 𝐓𝟏  
𝐱𝐫

𝐱𝟐
 
𝟐

+ 𝐓𝟏 

If three temperatures are known, the third thermocouple data can be used to 

validate the experiment, as demonstrated in the Section 3.3.4. 

 

The method selected to obtain the temperature distribution is a simple procedure 

which uses only experimental data. Since there are not thermophysical properties 

involved in the calculation of the temperature distribution (unlike the inverse 

method analysis), the variation due to the proper selection of these temperature-

dependent values, which are not available for many steel compositions, is avoided. 

 

2.2 Martensitic transformation 

 

 The martensitic transformation is a displacive and diffusionless 

transformation in which the parent phase (austenite) undergoes a shear 

mechanism during cooling. Thus, the fcc austenite structure deforms due to shear 

on opposite sides of the plane and forms a body-centred tetragonal (bct) unit cell. 

This transformation (γ → α′) involves a volume expansion of 4% in a 1 wt% carbon 

steel. [75]. Figure 2.20 shows the effect of temperature and carbon content on the 

specific phase volume. According to this figure, a 5160 steel (0.58%C and Ms of 

250°C) will experience an expansion of 3% due to the transformation (γ → α′). 

 

Eq. 2.11 

 

Eq. 2.12 
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2.20 Variation of the specific phase volume of various steel transformation phases 

as a function of temperature [76] 

 

 This transformation occurs athermally, thus it does not depend on time but 

only on temperature. Therefore the fraction of martensite transformed depends 

only on the undercooling below the Ms. In the Koistenen and Marburguer  equation 

the fraction of martensite is obtained from the Ms of the alloy and the temperature 

of the undercooling [77]. 

 

1 − 𝑉∝´ = exp β Ms − Tq   

 

where β ≅ -0.011, 𝑉𝛼´ is the fraction of martensite and 𝑇𝑞  is the temperature at 

which the steel is cooled below 𝑀𝑠. 

Feα 

 

Eq. 2.13 
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The Ms temperature depends mainly on carbon content, being inversely 

proportional to the Ms temperature (see Fig. 2.21). All alloying elements (except 

cobalt) lower the Ms temperature as well as carbon addition. There are a number of 

equations regarding the influence of alloying elements on the Ms temperature [78], 

being Andrews' equation the most common to predict the Ms temperature. 

𝑀𝑠 °𝐶 = 539 − 423 %𝐶 − 30.4 %𝑀𝑛  

−17.7 %𝑁𝑖 − 12.1 %𝐶𝑟 − 7.5(%𝑀𝑜) 

As can be seen in figure 2.21, for carbon steels containing more than 0.7 wt % C or 

for various alloyed steels, the martensite finish temperature does not appear on the 

diagram. This means that the transformation does not take place completely at 

room temperature. For these steels, certain amount of retained austenite is 

expected during quenching at room temperature, unless subzero cooling is 

employed [79]. Retained austenite is commonly undesired due to its low 

mechanical properties and low fatigue resistance [80]. 

 

Figure 2.21 Effect of carbon content on Ms and Mf temperatures [77]. 

 

Eq. 2.14 
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2.2.1 Martensite hardness  

 

The hardness of the as-quenched martensite is much higher than that of ferrite or 

pearlite. Thus the maximum hardness obtainable in a carbon steel is achieved 

when the steel is in a fully martensitic structure. Martensite hardness is directly 

proportional to the carbon content (see figure 2.22). The high hardness is related to 

high mechanical properties, wear and fatigue resistance; therefore the quenching 

processes play an important role in order to obtain the desired amount of 

martensite. 

 

 

Figure 2.22 Martensite hardness as a function of carbon content [81] 

Although a hard martensite is related to the steel strength, the as-quenched 

martensite is brittle and due to its low ductility always requires further tempering. 
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2.2.2 Hardenability  

 

 Hardenability is the ability of a steel to form martensite during quenching. 

Depending on geometry, thicker and thinner zones of the part will cool at different 

rates during quenching. These different cooling rates could usually produce mixed 

microstructures consisting of martensite, bainite and pearlite if the cross section is 

too large. The TTT and CCT diagrams are used in conjunction with the cooling 

curves of a process to predict the possible final microstructure and hardness. In 

conventional quenching, the target is to cool the part fast enough to avoid the 

bainite nose of the diagram and to obtain a fully martensitic structure if possible. 

 

Alloying elements shift the TTT and CCT diagrams to the right and down, this is, 

alloying elements (except cobalt) make the steel more hardenable, then there is 

more time (or lower cooling rates) available to achieve a martensitic structure 

deeper in the steel part. Figures 2.23 and 2.24 show the TTT/CCT diagram and the 

Jominy curve of AISI 5160 steel (0.58 C, 0.26 Si, 0.885 Mn, 0.78 Cr, 0.01 Ni), 

respectively. The maximum as-quenched hardness attainable for this steel 

composition is 63 HRC (840 HV). Hardness can be reduced to a desired value by 

tempering after quenching.  
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Figure 2.23 TTT and CCT diagrams of a 5160 steel (0.58 C, 0.26 Si, 0.885 Mn, 

0.78 Cr, 0.01 Ni) generated using the Program MAP STEEL MUCG73 [82] [83] 

 

Figure 2.24 Jominy end-quench curve of a 5160 steel (0.58 C, 0.26 Si, 0.885 Mn, 

0.78 Cr, 0.01 Ni) [84]. 
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2.3 Tempering of steel 

 

The heat treatment of martensite is called tempering, and results in a 

microstructure called tempered martensite, which is formed by fine carbides 

dispersed in martensite [85]. The objective of tempering is to reduce hardness and 

to increase the ductility while internal stresses are relieved.  

Furthermore, during the tempering process, isothermal transformation of retained 

austenite to bainite usually takes place. In the case of the AISI 5160 steel the Mf is 

below room temperature, thus retained austenite cannot be avoided when 

quenching at room temperature. Interrupted quenching might result in higher levels 

of retained austenite since the lowest surface temperature is governed by the 

saturation temperature of the quenchant and the self-regulated thermal process, 

instead of the temperature of the quenchant.  

Although the as-quenched martensite is very hard, is at the same time brittle for 

many applications. With a tempering process, toughness is increased at the 

expense of strength and hardness. When heated, the original body-centred 

tetragonal lattice of martensite becomes body centred cubic since cementite 

particles are expelled from the lattice [86]. These particles grow by coalescence 

and the higher the temperature the greater coalescence [87]. 

It has been reported in references [85,87,88,89] that there is a range of tempering 

temperatures that produce a tempered martensite embrittlement (TME) from 250°C 

to 370°C. This phenomenon is related to the transformation of retained austenite to 

cementite among martensite laths [85] [88]. Embrittlement due to tempering is not 

limited to the TME temperature range, at higher temperatures from 450-600°C a 

different mechanism of embrittlement takes place. At this temperatures, the 

impurities segregate at grain boundaries. However, this type of embrittlement is 

only observed in heavy parts since impurity segregation requires long times. 

Furthermore, high temperature embrittlement can be reversed by heating the part 

above 600°C and quenching it in water. 
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2.3.1 Effect of tempering on fatigue resistance 

 

The fatigue resistance of steel is strongly affected by the tempering temperature. 

Htun [90] reported the effect of tempering temperature on the fatigue resistance 

and mechanical properties of AISI-5155 spring steel (0.52C-0.61Cr-0.7Mn-0.21Si). 

Results showed that the maximum yield strength is reached when tempering at 

450°C for 1 hr and the maximum endurance limit of 900 MPa (fatigue limit) was 

obtained at a tempering temperature of 400°C for 1hr. Unfortunately the results in 

ref. [90] do not show the S-N fatigue curves, nor specify whether the endurance 

limit versus tempering temperature plot is displayed using the stress range or the 

stress amplitude. Since the experiments were carried out using rotating bending 

fatigue tester with similar probe dimensions that the present work it is assumed 

that the endurance limit might refers to the stress range. 

 

Haftirman [91] reported the effect of tempering temperature of a 0.3C-0.2Si-0.5Mn-

0.2Cr-1.6Ni steel ranging from 100 to 600°C on the rotating bending fatigue 

resistance. Results showed that the highest fatigue strength for this alloy was 

achieved by tempering at 300°C. 

 

The effect of tempering temperature and time on the mechanical properties, 

toughness and fatigue resistance strongly depends on the alloying elements 

concentration. Thus, is important to study this effect for the specific alloy of 

interest, instead of using the available data from different alloys. 
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2.4 Decarburisation 

 

Another important concern when heat treating is the amount of decarburisation 

allowed for the alloy treated. Although the use of inert atmospheres in furnaces is a 

common method to minimize decarburisation, slight partial decarburisation is 

present in most industrial processes since large parts are overheated above 

austenitizing temperature of the alloys in order to compensate the heat loses when 

transporting from furnaces to further processes, and they may be exposed to 

oxygen. 

The term decarburisation is related to failure and low strength of steel. It has been 

reported the detrimental effect of decarburisation on the fatigue resistance of steel 

[92] [93]. 

The reduction of strength is related to the switch of the CCT and TTT diagrams for 

the decarburised layer. This is, a steel part is oil-quenched to avoid high thermal 

gradients and to promote the martensite transformation to occur at similar times at 

surface and core, thus reducing the amount of tensile residual stresses. When the 

surface layer is completely decarburised the transformation does not take place at 

the surface, and when the expansion due to the core's transformation takes place, 

the ferrite superficial layer cracks. 

In the case of a partially decarburised steel, the Ms temperature is increased as 

the carbon content is reduced, as presented in figure 2.21. Therefore, the surface 

layer would transform to martensite first although the thermal gradients from 

surface to core are maintained low (oil quench). The surface transforms and 

expands while the core is still shrinking, when the Ms is reached at the core, the 

expansion is restrained by the hard and brittle martensite shell already formed at 

the surface. The surface layer is exposed to high tensile stresses which can remain 

as tensile residual stresses or crack the material.  
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2.4.1 Effect of decarburisation on TTT and CCT diagrams 

 

Since the carbon content plays a key role on the hardenability of steels, its 

diffusion out of the steel switch the TTT and CCT diagrams. Figure 2.25 shows 

how the 5160 steel TTT diagram would be modified if carbon is released from 

nominal 0.58%C to 0.4 and 0.3 %C. The Ms is increased from 250°C to 336°C and 

376°C respectively and the bainite nose is shifted to the left. From figure 2.26 it can 

be noticed that the time to reach the bainite nose is reduced from 100 seconds for 

0.58%C to only 10 seconds for 0.3%C. 

 

Figure 2.25 TTT diagram of a 5160 steel, 0.58%C, 0.88%Mn, 0.78%Cr, 0.26 %Si 

(solid line), and the effect of partial decarburisation (0.3%C and 0.4%C) [82]. 

 

Is worth to mention that this modification of the CCT diagram would be valid for the 

partially decarburised layer, as the diagram for the core remains as the original. 
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Thus, a profile of carbon content would lead to a complex set of CCT diagrams 

instead of a single CCT. 

 

Figure 2.26 CCT diagram of a 5160 steel, 0.58%C, 0.88%Mn, 0.78%Cr, 0.26 %Si 

(solid line), and the effect of partial decarburisation (0.3%C and 0.4%C) [83]. 

 

Since the practical application of the intensive quenching is limited to parts greater 

than 50 mm in thickness due to the high thermal gradients required, a partial 

decarburisation might be beneficial for small sections. Since highly enough thermal 

gradients are difficult to produce in these tiny sections, a modification of the 

surface Ms temperature would simulate an increase on the thermal gradient. The 

transformation at surface will take place before than it would on a non-

decarburised part, letting the quenching to be interrupted when the core is still 

austenitic and fulfil the IQ theory. In addition, the Mf temperature is also raised and, 

therefore, the amount of retained austenite is reduced when the quenching is 

interrupted.  
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2.5 Fatigue 

 

The fatigue resistance of materials dependens on factors such as the type and 

magnitude of loading. The most accepted type of experiments are based on 

constant load or constant deformation. By using a constant load the real stress 

increases exponentially as the crack grows, while the constant deformation test 

could provide more information since the force required to deform the material 

certain displacement is reduced as the crack grows and the remnant cross-section 

decreases. Information of the type of fatigue experiments and influence of loading 

modes can be found in references [94] [95] 

Typical S-N (stress- number of cycles) or Wöhler curves are displayed as nominal 

stress. This is, whether the stress range or amplitude are plotted, they refer to the 

initial nominal stress without considering the presence of a crack. The stress range 

(ΔS) is the difference between the maximum and the minimum stresses, and the 

stress amplitude (Sa)is half the stress range, see following equation. 

𝑺𝒂 =
∆𝑺

𝟐
=

𝑺𝒎𝒂𝒙 − 𝑺𝒎𝒊𝒏

𝟐
 

The mean stress influences the fatigue limit, a mean stress equal to zero is a fully 

reversed condition where the maximum and minimum stresses are of the same 

magnitude but different sign, this is the case of rotating bending fatigue. In addition 

to the stress relationships, the "R" parameter is commonly used among 

researchers to compare the severity of experiments. The "R" parameter is the ratio 

of minimum to maximum stress. A "R" value of 1 means that there is no fatigue and 

instead a static loading, and a value of -1 means a fully reversed condition. 

 

𝑺𝒎 =
𝑺𝒎𝒊𝒏+𝑺𝒎𝒂𝒙

𝟐
 

 

𝑹 =
𝑺𝒎𝒊𝒏

𝑺𝒎𝒂𝒙
 

 

Eq. 2.15 

 

Eq. 2.16 

 

Eq. 2.17 
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2.5.1 Stress Concentrators 

 

In addition to loading conditions, notches cause a detrimental effect on the fatigue 

limit. Notches, or better known as stress concentrators, increase the local strain 

and stress. The effect of the notch on local stress depends on the geometry and 

the root radius, and is represented by the stress concentrator factor Kt. The 

mathematical solution for the nominal stress of a bending shaft is: 

 

𝜍𝑛𝑜𝑚 =
𝑀(𝑦)

𝐼
=

32 𝑀

𝜋𝑑3
 

where M(y) is the bending moment at the surface, I is the inertia moment, d is the 

smaller diameter of the shaft. The stress concentrator factor Kt of a shaft with fillet 

under bending is obtained from figure 2.27 [94]. 

 

Figure 2.27 Stress concentration factors for a stepped-shaft bending [94]. 

 

Eq. 2.18 
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Since the fatigue limit is reduced with the presence of a notch, a ratio of the 

smooth to the notched fatigue strengths called the fatigue notch factor Kf is used to 

correlate the real effect of the notch on fatigue strength [96]. 

 

𝐾𝑓 =
Smooth Fatigue strength

Notched fatigue strength
 

 

The fatigue notch factor is a function of material properties and notch geometry. 

Neuber [96] proposed the following equation for the notch factor for R=-1 loading: 

 

𝐾𝑓 = 1 +
𝐾𝑡 − 1

1 +  𝜌 𝑟 
 

where r is the radius at the notch root and 𝜌 is a characteristic length that depends 

on material properties. The values of 𝜌 for steel as function of the tensile strength 

are shown in figure 2.28. More information regarding the notch factors can be 

found in references [94] [96]. 

 

Figure 2.28 Neuber's material characteristic length √ρ versus tensile strength for 

steel alloys [96].  

 

Eq. 2.20 

 

Eq. 2.19 
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Another approach to determine the Kf is the Peterson's criteria [96] which is 

defined as: 

𝐾𝑓 = 1 +
𝐾𝑡 − 1

1 + 𝑎 𝑟 
 

where a (mm) is a material characteristic length defined as function of Su (MPa) as: 

𝑎 = 0.0254  
2070

𝑆𝑢
 

1.8

 

A comparison between both criteria is shown in Table 2.2 for an ultimate 

tensile strength range from 1200 to 1600 MPA and a Kt= 2.2 

 

Su 
(MPa) 

  
Neuber 

Kf 
  

Peterson 
Kf 

1200 
 

2.0086 
 

2.02 

1400 
 

2.0505 
 

2.06 

1600   2.1457   2.09 

 
Table 2.2 Comparison between Neuber's and Peterson's fatigue notch factors for a 

Kt of 2.2. 

 

The notch influences how the cracking mechanisms take place. Depending 

on its severity, the fatigue fractures might look as the schematic of figure 2.29 

shows [95]. From this figure and the notch factors of Table 2.2, the type of fracture 

that could be expected for rotating bending are the ones corresponding to the 

sharp notch drawings shown in the red square. 

 

 

 

 

Eq. 2.21 

 

Eq. 2.22 
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Figure 2.29 Schematic fatigue fractures [95]. 
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[3]  

CHAPTER 3 
 

EXPERIMENTAL PROCEDURE 

 
 

3.1 Introduction  

 

The experimental procedure was carried out mainly in three stages, which are 

listed below: 

1. Fatigue equipment design and development 

2. Heat treatment development 

3. Fatigue experiments 

 

3.2 Fatigue testing equipment 

 

A rotating bending fatigue testing equipment was designed and built for the present 

work in order to specially address the crack nucleation and propagation 

phenomena, as well as to be able to perform experiments at frequencies in the 

range 10-40 Hz, although in this work a constant frequency of 20 Hz was employed 

in all the tests. 
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Common fatigue experiments are based on either constant load or constant 

deformation [95]. Usually, for constant load experiments the information obtained is 

limited to the cycles of final fracture. While for constant deformation more 

information can be acquired like crack growth characteristics, although 

instrumentation is expensive. 

 

The first stage of the experimental procedure consisted in the design of a rotating 

bending fatigue with high sensitivity to crack nucleation and propagation. For this 

purpose a cantilever bending fatigue with constant deflection was selected as an 

adequate configuration, since in this probe type the surface undergoes the 

maximum stress and the superficial effects of decarburisation and hardened layer 

can be evaluated. 

The fatigue tester incorporates a motor and a drive, a inductive sensor, a digital 

counter, two house ball bearings, shaft, sample holder (collet) and an endless 

screw loading frame system with a digital force gauge mounted, as can be seen in 

figures 3.1 and 3.2. This loading system allows to maintain a constant deflection 

through the experiment and at the same time to record the load decrement, which 

is related to the cracking of the specimen. The applied load is displayed and 

logged to a computer. Data is acquired at a rate of 10 samples/second. 

 

Figure 3.1 Rotating bending fatigue tester. 
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Figure 3.2 Schematic diagram of the fatigue tester. 

 

Fatigue specimens were fabricated with a sharp notch with a radius of 0.4 mm. 

Figure 3.3 shows the geometry of the fatigue specimens. 

 

Figure 3.3 Geometry of the fatigue specimens. 

 

3.2.1 Stress concentrator analysis 

 

 According to figure 2.27 of stress concentraion of notches, and using the 

multiplying factor due to moment caused by the load, the initial nominal stress was 

calculated. The relationship applied-load against stress is shown in figure 3.4. 

Loading Frame 
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Figure 3.4 Stress at notch as function of applied load and stress concentrator 

factor Kt for fatigue specimens. 

 

3.3 Heat Treatment 

 

Once the geometry of the samples was specified for the fatigue experiments, the 

heat treatment required tailored development. Usually the intensive quenching 

theory involves samples thicker than 50 mm because of the thermal gradients 

possibly attainable. Since the geometry of the samples (Ø8 mm) is not suitable for 

obtaining sufficient thermal gradients between the core and surface, even with a 

severe quenching, the hypothesis stated was that with a partial decarburisation the 

Ms at the surface would be higher and therefore could increase the time difference 

from transformation at the surface and that at the core, emulating the thermal 

conditions of a thicker part. 
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3.3.1 Decarburisation 

 

Decarburisation of 5160 steel was studied at different temperatures (850, 900, 950, 

1000°C) and different times (15, 30, 45 and 60 min). Cylinders of 12 mm in 

diameter and 15 mm high were heated in an electrical resistance furnace (20 x 20 

x 20 cm) in air. In order to ensure the same atmosphere condition for all conditions 

and to avoid oxygen from entering into the furnace, experiments were carried out 

one at a time for each temperature and time. After heating and holding time, 

samples were quenched in water. Samples were cut and a micro-hardness profile 

of the cross section was measured. 

 

Figure 3.5 Martensite hardness as function of carbon content commonly found in 

steels [81] and experimentally obtained in this work for AISI 5160. 

Using the data reported by Krauss [81] and Bhadeshia [77] (figure 2.13 ), a 

correlation between martensite hardness and carbon content was obtained. Using 

the hardness value from completely decarburised zones, and the hardness of 

martensite without decarburisation (0.58%C), it was found a 30 HV offset between 

the reported data for alloyed steels and the values of the 5160 alloy (see figure 3.5) 

in the whole range of carbon concentrations.  
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3.3.2 Quenchant Severity 

 

 In order to increase the cooling power of water and also to decrease the full 

film boiling stage characteristic of pure water, NaNO2 was used as additive Ref 

[97]. However, there is not literature available regarding the effect of NaNO2 

concentration on the heat transfer modes and cooling severity, thus a proper study 

was necessary. Using various concentrations and geometries, cooling curves were 

experimentally obtained to determine the optimal concentration and heat transfer 

condition for the desired heat treatment. 

 

3.3.3 Cooling Curves acquisition 

 

A standard INCONEL 600 probe according the ASTM D-6200 [40] was used 

to obtain the cooling curves of the aqueous solutions (see Figure 3.6). This type of 

cylindrical probe (Ø12.5 mm x 60 mm) uses a single thermocouple located at the 

geometric centre and is useful for determination of the cooling characteristics of 

quenchants for comparison. However for an accurate heat transfer determination, 

the temperature near the surface must be known. 

 

 

Figure 3.6 Geometry of the standard INCONEL 600 probe [40] 
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It is commonly assumed that a diameter/length ratio of at least (1:4) will 

adequately minimise the end cooling effects and then the heat transfer calculation 

can be treated as a one-dimensional (1D) problem which simplifies the 

computations. Therefore, cylindrical probes of three diameters (8, 12 and 20 mm) 

of an AISI 304 austenitic stainless steel were fabricated. The length of the probes 

were 5 times greater than their diameters (40, 60 and 100 mm respectively). Three 

Ø1mm blind holes were drilled by electro discharge machining up to the mid length 

in each of the probes. The holes were drilled at the centre, mid-radius and at 1 mm 

from the surface in each probe size. A schematic illustration of the Ø12 mm probe 

is shown in Figure 3.7. The dimensional relationship shown in this figure was 

maintained for the Ø8 and Ø20 mm probes.  

 

Figure 3.7 Geometry of the Ø12 mm and 60mm length AISI 304 austenitic 

stainless steel probe, showing thermocouple positions. 

 

Three ungrounded Ø1 mm Type-K thermocouples were inserted into the 

holes. The holes were machined in order to tightly adjust the thermocouples, see 

figure 3.8. A small amount of  graphite powder was deposited into the holes before 

thermocouple insertion to ensure good contact between the thermocouple and the 

probe and to fix the thermocouple. After thermocouple placement, a ceramic 

coating was used to seal the holes to prevent the quenchant from entering the 

holes. 
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Figure 3.8 AISI 304 stainless steel bar of 8 mm in diameter and 40 mm in length 

 

The thermocouples were differentially connected (negative terminals were 

connected to different channels not to ground) using a 75 KΩ resistor between the 

negative terminal and ground to have a good reference. Data was acquired at a 

sampling frequency of 100 Hz and was smoothed for the cooling rate and heat 

transfer calculations. 

 

For cooling curves generation, probes were heated to 900°C and then 

quenched. A glass reservoir, 200 mm diameter and 500 mm high, with 12 litres of 

quenchant was used. All experiments were performed at quenchant temperature of 

25-27 °C. The temperature of the quenchant was measured. A localised quenchant 

temperature increase (from 25 to 45°C ) was recorded near surface in the upper 

zones of the liquid. After each experiment the quenchant was mixed and no 

considerable temperature increase was measured (≈1 to 2 °C).  

 

3.3.3.1 Cooling Curve Smoothing 

 
In order to manage the data for cooling rate and heat transfer calculations, 

cooling curves were smoothed. An accurate method to get the global 

approximation over the time range is the employment of a cubic spline algorithm 
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[98] [20] [99]. In figure 3.9. the plot of the original data acquired at 100 Hz against 

the smoothed data is shown. 

 

Figure 3.9 Original thermocouple data 100 Hz and smoothed data with a cubic 

spline function T(t).  

 

3.3.4 Validation of the method for determining the temperature 

distribution 

 

Demonstration of the parabolic temperature distribution explained in section 2.1.5.2 

was validated with a set of experiments using samples with different diameters and 

cooling media. In Table 3.1 the set of experiments is shown. 

Table 3.1 Experiments to validate the parabolic temperature distribution. 

Experiment ID Probe type 
Diameter or 
thickness Quenchant 

I cylinder 8 mm Water 

II cylinder 8 mm 9% Brine 

III cylinder 8 mm Oil 

IV cylinder 12 mm 1% Brine 

V square bar 20 mm Water 
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Cooling curves were acquired at three positions within the samples during 

quenching. As indicated in figures 2.19 and 3.7, T1 is the temperature at the centre 

and T3 is the near-surface thermocouple position. These two experimental data 

points were used in equation 2.12 to determine the temperatures at surface and at 

position T2'. The calculated temperature T2' was compared to the experimentally 

obtained temperature T2. The error percentage and temperature difference 

between the experimental and the calculated points were analyzed.  

 

Figures 3.10 to 3.14 show the cooling curves and the plot of the error and 

temperature difference for experiments I to V respectively. From figure 3.10 of the 

experiment I (8mm bar water quench), it is noted that although the T2' (calculated) 

do not overlap the T2 (measured) curve, the maximum temperature difference was 

at the beginning of the cooling where its influence on the error is less due to the 

high temperatures. The average error percentage during the 3 first seconds where 

the curve is more deviated was 4.14% and the average ΔT was 17°C. After 3 

seconds the curves almost overlapped and the average temperature difference 

was only 4°C. Note that the calculated surface temperature curve drops to 101°C 

(boiling point of water) and except for the small reheating obtained due to the 

internal heat source, is maintained close to the boiling temperature. This 

phenomena is commonly observed and is known as the self- regulated thermal 

processes, where the surface temperature does not cool below this point until 

sufficient heat has been extracted from the entire mass [100]. This phenomena is 

also explained since no agitation was present during quenching, therefore,  

localised heating of the quenchant up to its boiling point occurs. Thus the surface 

becomes surrounded by quenchant at the same temperature until the natural 

convection of the fluid mixes the hot with the cooler bulk fluid.  
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Figure 3.10 Water quench of an AISI 304 stainless steel bar of 8 mm in diameter, 

showing 3 thermocouples data and temperatures at surface and 2 mm below 

surface calculated from T1 and T3 (upper figure) and error between measured and 

calculated temperature as function of time. 

 

In the 2nd experiment (II), the same bar was quenched in water with the addition of 

salts to promote a more aggressive cooling. The boiling point of water is increased 

by salt addition and thus the surface temperature is expected to decrease and 

maintain above 100°C. From figure 3.11, it can be observed that during the first 

three seconds, the error reaches a maximum of only 4% and maximum ΔT of 

16°C. The error and ΔT averages for the first three seconds were 2.15% and 8°C 
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respectively. From immersion time of 3 to 5 seconds, the averages were 0.7% 

error and 0.7°C of difference. The calculated surface temperature decreased to 

133°C due to the higher boiling temperature of the aqueous solution. 

 

         

Figure 3.11 Brine quench (9% NaNO2) of an AISI 304 stainless steel bar of 8 mm 

in diameter, showing 3 thermocouples data; and temperatures at surface and 2 

mm below surface calculated from T1 and T3 a) and error between measured and 

calculated temperature as function of time. 
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The cooling curves of experiment III,  corresponding to the 8 mm bar quenched in 

canola oil, are shown in figure 3.12. The heat extraction of the oil is considerably 

lower than water and the salt solution (brine), thus low thermal gradients between 

surface and centre were present. Since the temperature difference between the 

thermocouples was low, the error when calculating the temperature distribution 

was low. The average of error percentage was 1.8% and the ΔT average was 

0.8°C. For most of the time range, the error between the experimental and the 

calculated temperatures was less than 5°C.  

 

         
Figure 3.12 Vegetable oil quench of an AISI 304 stainless steel bar of 8 mm in 

diameter, showing 3 thermocouples data and temperatures at surface and 2 mm 

below surface calculated from T1 and T3 a) and error between measured and 

calculated temperature as a function of time . 
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Increasing the size of the sample did not produce any change of the parabolic 

distribution of temperature as can be seen in figure 3.13 of experiment IV, where a 

12 mm bar was quenched in 1% brine. The calculated temperature from the 

parabolic approach overlapped the experimental curve. The temperature difference 

remained below 14°C. On average, the error was 6.6% and the ΔT 9°C. 

 

   

Figure 3.13 Brine quench (1% NaNO2) of an AISI 304 stainless steel bar of 12 mm 

in diameter, showing 3 thermocouples data; and temperatures at surface and 3 

mm below surface calculated from T1 and T3 a) and error between measured and 

calculated temperature as a  function of time. 



65 
 

In addition to semi-infinite cylinders where one dimensional heat transfer conditions 

are assumed, a square bar was also instrumented. The long square bar exhibits 

one dimensional heat transfer at the mid-thickness as it would be on a slab. 

 

 

     

Figure 3.14 Water quench of an AISI 304 stainless steel square bar of  20 x 20 mm 

in cross section, showing 3 thermocouples data; and temperatures at surface and 

5 mm below surface calculated from T1 and T3 a) and error between measured 

and calculated temperature as a function of time . 
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For experiment V, the square bar was heated to 550°C and water quenched, see 

figure 3.14. At the beginning of the cooling, a stable vapour blanket formed around 

the probe. The calculated T2' temperature does not match the experimental data 

initially. This may be due to the presence of this low heat transfer stage. After the 

first 3 seconds, where the error reaches 10% and the ΔT reaches a relatively high 

value of 50°C, the calculated data overlapped the experimental curve with a 

divergence of 4.5°C. Geometry of the square bar is shown in figure 3.15. 

 

 

Figure 3.15 Geometry of the 20x20x100 mm AISI 304 austenitic stainless steel 

square bar, showing thermocouple positions. 

 

In addition to these experiments to validate the temperature distribution calculated 

by a parabolic approach, experimental data from reference [68] were used to 

estimate the surface temperature and the heat transfer coefficient for the cooling 

curve of figure 3.16. Three cooling curves and a heat transfer coefficient obtained 

through the gradient method were presented in Ref. [68]. Using the parabolic 

approach, the surface temperature and subsurface temperature were estimated, 

then heat flux and heat transfer coefficient were determined. From Figure 3.16 b it 

can be noticed that the HTC calculated from the parabolic approach is similar to 

the originally calculated through the gradient method. Both have a maximum of 

3200-3300 W/m2 K. The shift to the left might be due to the fact that the HTC is 

plotted using the calculated surface temperature. 
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Figure 3.16 Cooling curves of a Ø50mm bar quenched in slow oil taken from 

reference [68] and the surface temperature calculated by the method proposed in 

this work a). HTC reported by ref. [68] (solid line) and HTC calculated by the 

proposed method (dashed line) b). 

 

3.3.5 Tempering 

 

 Once the quenchant concentration and quenching times to produce the 

desired microstructure were determined, the steel samples required further 

tempering. 
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 Immediately after the interruption of quenching the samples were rapidly 

transferred into a furnace to temper the hardened surface and to prevent the core 

temperature to decrease below the Ms temperature and to get hardened. 

 

 The tempering temperature is a key element on the final microstructure and 

properties.  In order to analyse the effect of the tempering temperature on 

hardness, three cylindrical samples of 8 mm in diameter and 30 mm length were 

heated to 950 °C and quenched in water to produce a fully martensitic 

microstructure (same as for the decarburisation analysis). Afterwards, samples 

were tempered at different temperatures (150, 200, 250, 350, 450 and 550°C) for 

60 minutes. Subsequently, a microhardness profile of the cross section was 

obtained from the surface to the core. By analysing the partially decarburised zone, 

it was then possible to establish the effect of tempering temperature on hardness. 

Samples were characterised by scanning electron microscopy. 

 

3.3.6 Quenching of 5160 steel samples 

 

 Fatigue specimens were preheated at 400°C for 10 minutes prior to be 

placed in the austenitizing furnace to reduce distortion due to high heating rates. 

Then they were austenitized, quenched and tempered. Selection of austenitizing 

temperature, quenchant, quenching time and austenitizing temperature are 

discussed in detail in Chapter 4.  
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Figure 3.17 Heat treatment diagram, showing the effect of quenching interruption 

on cooling curves at surface and core. 

 

Once the optimal quenching time and quenchant was determined samples were 

treated and tempered at different temperatures. After interruption of the quench 

samples were tempered at a temperature of 250°C, (Ms temperature ) for 30 

minutes, then a second  tempered at 250, 350, 450 and 550°C was carried out. 

After tempering, the samples were water quenched. 

  

The austenitizing temperature was 950°C. One set of samples were austenitized at 

850°C, quenched and tempered at 350°C for comparison. In addition to the 

interrupted quenching, conventional oil quench and temper was performed to built 

a S-N reference diagram. In general, 10-15 samples for each treatment were 

required to  construct the Wöhler curves. The conditions and identifications of heat 

treatments are shown in Table 3.2. 
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Table 3.2 Conditions and identification of heat treatments. 

HT ID Austenitizing 
Temperature °C 

Quench 
1st Temper 2nd Temper No. 

Samples Temp. °C Time (min) Temp. °C Time (min) 

BIQ1 850 BRINE (1s) 250 30 250 60 10 
BIQ2 850 BRINE (1s) 250 30 350 60 10 
BIQ3 950 BRINE (1s) 150 30 150 60 3 
BIQ4 950 BRINE (1s) 250 30 250 60 15 
BIQ5 950 BRINE (1s) 250 30 350 60 10 
BIQ6 950 BRINE (1s) 250 30 450 60 10 
BIQ7 950 BRINE (1s) 250 30 550 60 12 
BIQ8 950 BRINE (1s) 550 60 --- --- 6 
OQ1 850 OIL 250 60 --- --- 6 

OQ2 850 OIL 400 60 --- --- 10 

        BIQ= Brine Interrupted Quenching 
     OQ= Oil Quenching 
      

Note: The number of samples was determined when the fatigue experiments were carried 
out. Heat treatments with less samples presented low fatigue resistance and no further 
samples were treated. 

 

3.4. Fatigue Experiments 

 

 After heat treated, samples were tested under fatigue. All experiments were 

performed at a 20 Hz load frequency. Since heat treatment conditions produce a 

considerable change on fatigue resistance, applied stresses near the fatigue limit 

were experimentally determined.  

 

The maximum applied stress for all heat treatment conditions was 900 MPa, 

followed by a middle stress of 600 MPa and a lower stress of 400 MPa. 

Experiments were repeated 3 times at each stress level for each heat treatment 

condition, except at 900 MPa where only 2 experiments were performed since the 

dispersion is low at 104 cycles. Infinite fatigue life was considered for samples that 

endured 5 x 106 cycles. During testing, load data was acquired at a 10Hz frequency 

in order to correlate the load decrease with crack nucleation and growth.   
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[4]  

CHAPTER 4 
 

RESULTS AND DISCUSSION 

 
 

4.1 Chemical Analysis  

 

The chemical analysis and nominal chemical composition of the AISI 5160 

steel are shown in Table 4.1. The composition of the analysis was used to 

construct the TTT and CCT diagrams.  

 

Table 4.1 Chemical composition of AISI 5160 steel. 

 
Chemical Composition %wt 

 
Nominal Chemical analysis 

Fe Balance Balance 

C  0.55-0.65 0.58 

Si 1.80-2.20 0.26 

Mn 0.7-1.00 0.885 

P 0.035 0.017 

S 0.035 0.016 

Cr 0.7-1.00 0.78 

Ni --- 0.01 

Sr --- 0.013 

Ti --- 0.003 
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4.2 Quenching 

 Since the cross section of the samples was small, the common requirement 

of Intensive Quenching of great agitation to destabilise the formation of the vapour 

blanket was substituted by the usage of brine. The selected salt was sodium nitrite 

due to its inhibiting characteristics. The concentration that produces the greater 

cooling rate was experimentally determined.  

 

4.2.1 Optimal NaNO2 concentration 

 

 Experiments carried out following the ASTM D6200-01 standard [40], for 

determination of quenchant severity, showed that the maximum cooling rate 

obtained with aqueous NaNO2 solutions is obtained at a 4% concentration, see 

figure 4.1. From the cooling time-temperature curve it can be seen that increasing 

the NaNO2 concentration produces a proportional reduction of the film-boiling 

duration up to 4%. It was noticed that the 4% and 9% cooling curves overlapped. 

Figure 4.1b shows that the cooling rate was 2.1 times greater with 4% NaNO2 than 

the one obtained under the same conditions for water. 

 

 
a)      b) 

Figure 4.1 Cooling curves of a Ø12.5 mm INCONEL 600 probe (a) and cooling rate 

curves (b). 
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 Cooling curves were also obtained using the stainless steel probe of 8 mm 

in diameter with three thermocouples for the 4 and 9 % brine solutions. For both 

concentrations cooling curves almost overlapped the entire time range, the main 

difference was that with 4% the surface temperature dropped near 112°C while 

with 9% the temperature dropped only to 140°C. This is related to the saturation 

temperature of the solution, which is increased with salts addition. Maximum 

cooling rates were similar, being approximately 1340 and 1300 °C/s respectively. 

The 4% NaNO2 solution was selected, the thermal gradient from surface to core 

reach a maximum of almost 750°C in the 8 mm bar. Is worth to note that surface 

temperature reached the saturation temperature of the quenchant before two 

seconds and the core at 6 seconds.  

 

 

  

Figure 4.2 Cooling curves and cooling rates curves of a Ø8mm AISI 304 stainless 

steel bar quenched in 4% a),b) and 9% c),d) NaNO2 aqueous solution. 

a) b) 

c) d) 

4% 

4% 

9% 9% 
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Oil quench was performed to compare the cooling rates and thermal gradients. It 

has been reported that the cooling rate commonly required for oil quenching vary 

from 150 to 200 °C/s. It was established in reference [101] that cooling rate when 

quenching in canola oil is similar to quenching-oils frequently used. Therefore and 

since the purpose of this experiments was to compare and not to develop a full 

research on quenching-oil, canola oil was used to obtain the cooling curves. Figure 

4.3 shows the cooling curves and cooling rates obtained. It can be noticed that the 

higher thermal gradient from the surface to the core did not exceeded 100°C, and 

that cooling rates were similar through the cross section. Surface cooling rate 

reached a maximum of 185°C/s which agrees with the usual cooling rates for oil 

quenching.  

 

Figure 4.3 Cooling curves and cooling rates curves of a Ø8mm AISI 304 stainless 

steel bar quenched in oil at 50°C 

 

Figures 4.4 and 4.5 show the experimentally obtained cooling curves and cooling 

rate curves of the Ø12 mm stainless steel probe and their calculated surface 

temperature for tap water and for the 4 % NaNO2 solution. During water quenching, 

the duration of the film-boiling stage was 3.6 seconds (627°C) while the duration of 

the film boiling stage for the NaNO2 solution was considerably reduced or even 

eliminated.  
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a)      b) 

Figure 4.4 Cooling curves of a Ø12 mm AISI 304 stainless steel probe quenched in 

water (a) and cooling rate curves(b). 

 
a)      b) 

Figure 4.5 Cooling and cooling curves of a Ø12 mm AISI 304 stainless steel probe 

quenched in 4% NaNO2 solution (a) cooling rate curves(b). 

 

It can be noticed that with the 4% sodium nitrite addition of the time that surface 

required to reach the saturation temperature decreased 3 times and the maximum 

surface cooling rate increased roughly from 600 to 1200 °C/s. Similarly, for the 8 

mm bar, the high cooling rates obtained for the 12 mm bar are suitable to perform 

a more uniform cooling without cracking. 
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TIME (seconds) 

 

Figure 4.6 Images of a fatigue-type sample (with 8mm and 12 mm sections) quenched from 900°C in 4% NaNO2, showing 

the cooling stages as function of time (up) and black and white images (b). 
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Although it is difficult to determine the presence and duration of vapour blanket 

from the cooling curves in figure 4.5, images taken from the cooling of a sample 

with the fatigue-type geometry (8 and 12 mm in diameters) as can be seen in 

figure 4.6, showed that a unstable vapour blanket formed at the very beginning 

of the cooling. This unstable film started to collapse at 0.15 seconds and at 0.18 

seconds collapsed entirely and  the nucleate boiling stage took place. Figure 4.7 

shows a close up of the cooling curve from figure 4.5 and can be noticed that 

the unstable vapour blanket observed in figure 4.6 was also detected by the 

thermocouples as a change in the slope at the beginning of cooling. 

Furthermore, from figure 4.5, 4.6 and 4.7 can also be noticed that the nucleate 

boiling stage ended approximately 1 second after the quencching started and 

the rest of the heat transfer was extracted by convection. From time 1.02 to 2.31 

in the black and white image of figure 4.6 the shape of the sample is clearly 

observed, which means that nucleate boiling had finished. 

 

Figure 4.7 Zoom of cooling curve of figure 4.5 to illustrate the vapour blanket 

formation. 

Figure 4.8 shows the heat flux density as function of time for the 12 mm sample 

quenched in water and 4% NaNO2. The heat flux density was determined using 

the calculated temperatures at the surface and at 0.1 mm below it. The curve 
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from quenching in water shows the film boiling stage during the first three 

seconds of the quench, then nucleate boiling and convection are observed. In 

the brine heat flux curve, only nucleate boiling and convection are noticeable. 

The increase in the heat flux density during the nucleate boiling for the aqueous  

NaNO2 solution (6 MW/m2) was almost 3 times greater than that obtained with 

water.  

 

Figure 4.8 Heat Flux density as function of time for water and 4%  NaNO2 

aqueous solution 

 

The HTC for tap water was 10 KW/m2 K, which is in good agreement with the 

value found for water according to Narazaki [102], whose experiments were 

conducted using a Ø10 mm silver probe. A straightforward comparison cannot 

be made because the diameter and material differences. The HTC for the 4 % 

solution reached a maximum of 45 KW/m2 K. This value is similar to the 42-47 

KW/m2 K reported by Narazaki for 10% brine (NaCl). Once again, for a direct 

comparison, the size and material of the probe must be considered.  Kobasko 

[36] reported values of the average effective HTC of 16 KW/m2 K for 10 % brine, 

however this lower value may be derived by the method of HTC determination. If 

the thermal history at the centre of the probe of experiment of Figure 4.5 is used 
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to calculate the average effective HTC via the method described in references 

[56] [39], a value of 9 KW/m2 K was estimated. 

 

4.2.2 Influence of diameter on cooling 

 

In addition to the cooling of 8 and 12 mm samples, a 20 mm in diameter probe 

was quenched in the brine solution in order to analyse the effect of probe size 

on the HTC and on the heat flux density. Cooling and cooling rates curves are 

shown in figure 4.9. As expected, an increase in the diameter corresponds to a 

reduction of the HTC and heat flux (Figure 4.10 and 4.11 respectively). 

According to the figure of the heat flux as function of time, a linear correlation 

was found between the HTC and the diameter (Figure 4.12). However, it is 

important to point out that this linear relationship could be non-linear for greater 

diameters as Liscic reported in reference [20] and concluded that no simple 

correlation can be determined as a function of the diameter. The effect of size 

on the heat flux density is shown in figure 4.11. The heat flux decreased from 7 

to 3 MW/m2 with an increase in diameter from 8 to 20 mm. These findings are 

important when designing an interrupted quenching, because in order to 

maintain similar heat transfer conditions, the cooling severity has to be 

increased or reduced when the part size is increased or reduced respectively. 

a)      b) 

 

Figure 4.9 Cooling curves of a Ø20 mm AISI 304 stainless steel probe quenched 

in 4% NaNO2 aqueous solution (a) and cooling rate curves(b). 



80 
 

 

 

Figure 4.10 HTC as function of surface temperature of AISI 304 stainless steel 

probes with different diameters when quenched in NaNO2 4% aqueous solution 

 

 

Figure 4.11 Heat flux density as function of time of AISI 304 stainless steel 

probes with different diameters when quenched in NaNO2 4% aqueous solution 
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Figure 4.12 HTC as function of bar diameter 

 

4.2.3 Interrupted quenching 

  

 Using the cooling curves of figure 4.2 and the transformation diagrams of 

AISI 5160 steel, the time when the quench has to be interrupted in order to 

avoid through hardening was determined. Since the Ms temperature is 255 °C, 

the maximum cooling time was selected to be the time the temperature 1 mm 

below surface requires to reach the Ms. At this point the surface temperature 

has already stopped its cooling and further cooling would produce a reduction in 

the compressive stresses.  

 

Figure 4.13 shows the cooling curve of the 8 mm sample quenched in 4 % brine 

solution for approximately 1.3 seconds. The surface temperature drops to 112°C 

and then is reheated by the core thermal energy, then the temperature through 

the cross section stabilises at 244°C. The temperature 1 mm below surface 

decreases to 223°C, which is only 32°C below Ms temperature.  
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Figure 4.13 Cooling curve of interrupted quenching of 8 mm sample in 4% 

NaNO2 solution. 

 

Figure 4.14 Fraction of martensite transformed for nominal AISI 5106 

composition (8 mm). 
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The distribution of the fraction of martensite transformed was calculated from 

equation 2.13 and the cooling curves data. For the nominal composition the Ms 

temperature of the AISI 5160 steel is 250°C. Figure 4.14 shows the martensite 

fraction at different depths for the interrupted quenching. At the surface, the 

martensite fraction would be expected to be less than 0.8, which means a 

fraction of 0.2 of retained austenite.  

 

In section 2.2 the effect of carbon on Ms temperature was established. Thus, an 

increase in the Ms temperature by partial decarburisation would reduce the 

amount of retained austenite.  

 

4.3 Decarburisation 

 

Results of hardness profiles from the decarburisation experiments are shown in 

figure 4.15. The hardness values were used in accordance to ref [81] to 

estimate the martensite carbon content. It was found that for completely 

decarburised zones the hardness of ferrite was nearly 140 HV and zones 

without decarburisation showed a maximum hardness of 850 HV. The values 

shown in figure 3.5 are 30 HV offset of the average values reported for steels. 

Therefore it was considered that the entire curve has an offset of 30 HV lower 

for the 5160 steel. For each hardness point, 4 measurements were taken an 

averaged. 

Carbon content was estimated by plotting the equation that describes the curve 

of figure 3.5 and using the hardness values obtained. In figure 4.16 the 

decarburisation profile is displayed. 
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Figure 4.15 Hardness profile as function of austenitizing temperature and time. 

 

As can be noticed from figures 4.15 and 4.16, there is a clear trend of carbon to 

diffuse outward as the temperature and time are increased. Although this was 

the trend for almost all conditions, for 1000°C at 60 minutes the decarburisation 

was similar to the one obtained for 30 minutes at the same temperature and less  

than the sample heated at 950°C for 60 minutes. This can be explained since at 

1000°C chromium segregation below surface was observed, which might reduce 

the carbon diffusion coefficient. Energy Dispersive X-Ray Spectroscopy (EDS) 

maps of elemental distribution for the sample heated 1000°C for 60 minutes are 

displayed in figure 4.17. From microstructure's morphology it can be observed 

that below the oxide scale, martensite is present and no ferrite nor complete 

decarburised grains are observed.  



85 
 

 

Figure 4.16 Effect of austenitizing temperature and time on decarburisation. 

The microstructure of the sample heated at 950°C from 60 minutes displayed in 

figure 4.18, shows that martensite transformation did not take place completely 

at the very surface. According to hardness tests, decarburised grains still 

contain a little amount of carbon, however the hardenability is locally reduced 

and austenite grains with incomplete transformation are noticed at surface. On 

the other hand, the 1000°C condition, EDS maps did not showed Cr segregation 

below the oxide scale. In order to completely understand the diffusion 

mechanisms and rates, further analysis is suggested. 

 

In section 2 was established that the possible carbon content at surface suitable 

to enhance the interrupted quenching was 0.3 %. Seeing figure 4.16, the 
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austenitizing conditions that might promote a partial decarburisation from 0.58 to 

0.3 % are an austenitizing temperature of 900°C for approximately 45 min., 

950°C for 30 minutes and 1000°C for 15 minutes. The recommended rule  

 

 

 

Figure 4.17 EDS maps showing elements distribution at surface of sample 

heated at 1000°C for 60 min.  

C Cr 

Fe O 
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Figure 4.18 EDS maps showing elements distribution at surface of sample 

heated at 950°C for 60 min. 

for austenitizing time is one hour per inch of thickness. Since the fatigue 

samples have a 12 mm section, the preferred time is 30 minutes in order to 

C Cr 

Fe O 
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promote full and uniform austenitization. Austenitizing at 1000°C for 15 minutes 

was discarded, moreover, this high temperature promote the formation of a thick 

oxide scale. Therefore, austenitizing at 950°C for 30 minutes was selected. 

Figure 4.19 shows the difference between the morphology of martensite partially 

decarburised (surface) and martensite without decarburisation (core). 

a  

b  

Figure 4.19 Morphology of as-quenched martensite with 0.3 wt% C (a) and 0.58 

% C (b). 
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After the austenitizing condition was selected and the carbon profile estimated, 

the effect of partial decarburisation on the local Ms temperature had to be 

evaluated. Although the effect of decarburisation on TTT and CCT diagrams 

was shown in figure 2.26, including the increase of Ms temperature to 384°C for 

0.3 % C, the local Ms temperature will have a decreasing distribution from 

surface to core as function of the carbon content. This is, using the carbon 

profile and the Andrews' equation (Eq. 2.14) the Ms temperature at different 

depths was obtained as showed in Figure 4.20. 

 

 
 

Depth Ms (°C) 

Surface 388.4 
0.025 mm 375.8 
0.05 mm 352.0 
0.10 mm 306.5 
0.15 mm 285.6 
0.20 mm 271.3 
0.30 mm 255.8 

0.50 mm 255.2 

 

Figure 4.20 Martensite start temperature distribution. 

With the shift in surface Ms, transformation at surface would occur 0.3 seconds 

in advance as it would without decarburisation, while transformation 1 mm below 

surface takes place at the same cooling time. In addition, as can be seen in 

figure 4.21, the martensite fraction increased from the original value of 0.78 to 

0.97. Therefore, the reduction in retained austenite might be more favourable 

from a fatigue point of view, compared with the detrimental effect that the loss of 

carbon may cause. This, since the more carbon a steel contains, the more brittle 

its martensite becomes [103] and the more susceptible to cracking. In addition, 

if the amount of retained austenite is reduced and the fatigue resistance might 

be increased, because of the well known detrimental effects of retained 

austenite on fatigue due to its intrinsic low ability to retard crack growth [80].  
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Figure 4.21 Fraction of martensite transformed for a partially decarburised AISI 

5106 subjected to the same interrupted quenching of figure 4.13. 

 

From the point of view of the intensive quenching theory, the greater the thermal 

gradient the greater compressive stresses. This since the first surface layer of 

martensite transform maintaining the bulk thermally-expanded size. Thus when 

the subsurface and core contract, they pull the surface layer. 

 

For the case of partial decarburisation the surface transformation takes place at 

388°C, which is 0.3 seconds prior to the non-decarburised case, which means 

that subsurface and core size are hotter and therefore larger when the 

martensite transformation at surface starts. The shift of only 0.3 seconds in the 

surface transformation means that the core temperature at the beginning of 

transformation at the surface is close to 800°C instead of 600°C. From figure 

4.22, it could be analysed that when the surface transformation take place for 

the partially decarburised steel (0.3 % C) at Ms of 388°C the specific volume 

due to the transformation 𝜸 → 𝜶′  increased from 0.126 to 0.129 cm3/g and the 

core specific volume (0.6 % C at 800°C) was 0.1303 cm3/g. On the other hand, 
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for the non-decarburised steel the transformation (at 255 °C) induced a change 

from 0.125 to 0.1295 cm3/g, while the core size was 0.1285 cm3/g. For both 

cases the surface specific volume increased 2.38 and 3.4 %, respectively. 

Although less expansion occurred with the partially decarburised steel, the 

martensite layer takes the size of the core, and compressive residual stresses 

arise from core contraction. In other words, after the surface transforms the core 

of the decarburised steel can contract 24% more than the core of the non 

decarburised steel. As the core contracts, it also pulls the hard martensite shell 

to the centre. 

 

At the end of the cooling, a certain amount of retained austenite is present. From 

4.21 it can be noticed that the untransformed martensite fraction is the fraction 

of retained austenite. This retained austenite transforms to bainite or pearlite 

during tempering. 

 

Figure 4.22 Specific phase volume as function of temperature and carbon 

contents.  
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4.4 Tempering 

 

Results of tempering experiments carried out in partially decarburised samples 

with an initial hardness of 860 HV (core) are shown in figure 4.23 and 4.24. 

Temperatures used were 150, 200, 250, 350, 450 and 550 °C for 60 minutes. As 

expected the increase in tempering temperature produce a decrease in 

hardness. This also represents a strength reduction and a toughness increase 

[104] 

 

Figure 4.23 Hardness profile of partially decarburised AISI 5160 steel as a 

function of tempering temperature. 

 

The morphology of tempered martensite  is shown in figure 4.25, where can be 

noticed that cementite particles are expelled from solid solution as the 

temperature is increased. The morphology of the tempered martensite at 550°C 

is similar to the morphology usually found in bainite structures. It can be noticed 

that tempering at 150 °C apparently did not cause any change on the 

morphology, and from figure 4.24 there can be observed that tempering at 

250°C produced a sharp decrease on hardness which is related to the 

precipitation of carbides and cementite particles. These particles growth as the 

diffusion of carbon is promoted, until they become microscopically visible [86].  
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Figure 4.24 Effect of tempering temperature on martensite hardness as a 

function of depth. 

 

Figure 4.25 Morphology of as-quenched and tempered martensite. Original 

magnification 5000 X.  

AQ - 860HV  150°C - 817HV 250°C - 663HV 

350°C - 567HV 450°C - 476HV 550°C - 376HV 

Core 

Surface 
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4.5 Heat treatments of 5160 steel fatigue samples 

 

Once the austenitizing time and temperature were established for the desired 

partial decarburisation as well as the quenching and tempering conditions, the 

heat treatment was performed on the fatigue specimens. 

 

Is important to note that the at the beginning of the experimentation, the fatigue 

specimens were placed in the furnace at the austenitizing temperature with no 

prior heating. Because of the high temperature difference between the samples 

and the furnace, high heating rates took place. For the samples heated this way, 

great distortion was observed after quenching and tempering. In some cases 

cracking of steel was observed. In order to avoid this undesired distortion and 

cracking a pre-heating process at 350°C for 10 minutes was done prior to 

austenitizing.  

 

The selected temperature to decarburise the surface to 0.3%C was 950°C for 30 

minutes, then cooled by an interrupted quenching (NaNO2 4% solution for 1 

second) and followed by tempering. Some conditions included a second 

tempering at different temperatures (see figure 3.17).  

 

As mentioned in section 4.2 and 4.3 the expected microstructure after the 

interruption of the quenching is a martensite shell and a bainite core. In figure 

4.26a the cooling curve of the heat treatment BIQ4 over the CCT diagram of the 

5160 steel is shown. From light microscopy it is difficult to resolve tempered 

martensite and bainite [78], however by overetching with Nital 4% is possible to 

distinguish a surface layer. In figure 4.26b  a light microscopy image clearly 

shows a surface layer of nearly to 400 µm in thickness.  



95 
 

 

Figure 4.26 Cooling curve over CCT of 5160 steel for HT BIQ4 a), and light 

microscopy of the cross-section, etched with Nital 4% b). 

 

Figure 4.27 shows Scanning Electron Microscopy (SEM) images of the 

microstructure morphology at the core and surface. The morphology at the core 

resembles a mixture of different types of bainite while at surface the 

microstructure looks likely tempered martensite. A closer  inspection at core is 

shown in figure 4.28, where areas of lower, columnar and nodular bainite can be 

observed. 

 

Figure 4.27 Scanning electron microscopy images of BIQ4 showing bainite at 

the core a) and tempered martensite at surface b). 

surface 

a) b) 

b) a) 
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Figure 4.28 SEM images of BIQ4 showing columnar bainite a), and a mixture of 

lower and nodular bainite b) at core. 

 

From the heat treatment BIQ3, where after the interruption of the cooling the 

samples was placed at 150°C, the martensite shell is clearly observed with light 

microscopy since the core microstructure has great amounts of retained 

austenite which do not get etched by Nital. Since the core temperature remains 

below the Ms for a longer period of time, the austenite becomes more stable at a 

lower temperature. In figure 4.29 the martensite case is uniformly formed along 

the surface, indicating that a uniform heat extraction took place.  

 

Figure 4.29 Martensite case uniformly formed at surface with BIQ3 treatment. 

b) a) 

LB 
CB 

NB 

NB 
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Figure 4.30 Light a) and scanning electron microscopy b) of the core 

microstructure of BIQ3, showing martensite laths in a retained austenite matrix. 

 

After tempering, the cooling produced a microstructure consisting of martensite 

laths in a retained austenite matrix. In figure 4.30, light microscopy shows the 

martensite laths  (dark) and retained austenite (light). This type of microstructure 

is usually prone to fail under fatigue conditions, as is demonstrated in the next 

section. 

 

On the other tempering extreme temperature (550°C), figure 4.31a shows the 

microstructure at the core for the BIQ7 treatments. More uniform microstructure 

was found when a second tempering at 550°C was performed, where only 

columnar bainite was present; while for BIQ8 (which include only one tempering 

at 550°C immediately after the interruption of the cooling), pearlite formed at the 

core instead of bainite, see figure 4.31b. Cooling curves of both conditions are 

shown in figure 4.32. The microstructure at surface for both cases was tempered 

martensite as seen in figure 4.33. 

 

b) a) 
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Figure 4.31 Core microstructure of BIQ7 (2nd Tempering at 550°C), showing 

columnar bainite a); and core microstructure of BIQ8 (1 tempering at 550°C) 

showing pearlite b). 

 

Figure 4.32 Cooling curve over CCT of 5160 steel for BIQ7 a), and BIQ8 b). 

 

In addition, hardness profiles were obtained for BIQ 4-7 in order to evaluate the 

depth of the martensite case. The main variable of these experiments was the 

second tempering temperature. Figure 4.34 shows the hardness profiles of each 

condition, and emphasizes the presence of a martensite layer. In all cases, the 

hardness at the zone very close to the surface were slightly smaller due to 

decarburisation, followed by an increase to a maximum at a depth between 200 

b) a)  

BI 

b)      BIQ8 a)       BIQ7 

BIQ8 BIQ7  

BI 
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and 500 µm. The hardness drop is related to the interruption of quenching, 

however it is difficult to establish a precise depth of the case since there is a 

gradual reduction in hardness. This gradual reduction is due to the volume 

fraction of martensite at the local position, and to the temperature of 

undercooling below the Ms temperature.  

 

Figure 4.33 Surface microstructure of BIQ7, showing tempered martensite.  

 

Figure 4.34 Hardness of martensite case as a function of tempering 

temperature.  
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The morphology of the oil quench OQ2 is shown in figure 4.35. The 

microstructure at the surface and core was tempered martensite. Since no 

decarburisation was promoted by austenitizing at 850°C, the amount of retained 

austenite is expected to approximate 20%. 

  

Figure 4.35 Surface and core's microstructure of OQ2, showing tempered 

martensite. 

 

4.6 Fatigue results 

 

 From the rotating bending fatigue experiments valuable information was 

obtained. Wöhler or S-N diagrams were constructued using the initial stress 

without considering the presence of a crack. As mentioned in section 3, since 

the type of loading is a constant deflection instead of a constant load, the load 

deacreases as the crack grows. In figure 4.36, the type of output data provided 

by the fatigue tester during each test (load vs cycles) is shown. A closer 

inspection of the load behaviour is observed in figure 4.37, where the load axis 

was rescaled to highligh the load decrease. It can be noticed that crack 

nucleation took place within the first 10,000 cycles. This information is used to 

b) a) 
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estimate the number of cycles that a crack requires to nucleate and its growth 

rate in further sections.  

 

Figure 4.36 Load data acquired during fatigue tests 

 

Figure 4.37 Closer inspection of load behaviour of figure 4.36 during fatigue 

tests. 
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 Results of fatigue experiments of heat treatments BIQ1 and BIQ2, which 

were austenitized at 850°C are displayed in figure 4.38. In this figure and as it 

would be in further S-N diagrams, the stress range is on the left vertical axis and 

the alternating stress or stress amplitude on the right axis. Usually the 

alternating stress is used to define the fatigue limit, thus the fatigue limit for 

these conditions were approximately 325 and 375 MPa for the BIQ1 and BIQ2 

respectively. 

 

 Is important to point out that these fatigue limits are approximations since 

the staircase method must be employed in order to define more precisely the 

fatigue limit. In the present work the staircase method was not employed since it 

requires the usage of at least 12 samples at stress levels close to the fatigue 

limit. For the construction of the S-N diagrams a total of 10 to 15 samples were 

employed for each heat treatment condition. 

 

Figure 4.38 S-N diagram of BIQ1 and BIQ2 (austenitizing temperature 850°C) 
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 In most rotating bending fatigue testers there is no information during the 

test, as is in constant load tests. When no information is available it is 

impossible to determine if the test condition has produced any damage to the 

sample after a certain number of cycles, namely 10 millions. This means that 

when any fatigue test is stopped because an infinite life is considered, usually (5 

x 106 or 1 x 107) the sample has to be discarded, and its experimentation at 

higher stresses is not acceptable due to the cumulative damage that it might 

have suffered [105]. An advantage that was found from using this type of tester 

(constant bending) is that the decrease on load is an in situ indicator of the 

presence of a crack, therefore the samples that endure 1 x 107 cycles at a 

certain stress level without experimenting decrease on load, can be tested a 

higher stress level assuring that there is no crack present. In order to verigy this 

fact some samples were cut, and the cross section at the notch was examined. 

Figure 4.39a shows the cross section of an experiment stopped after 1 million 

cycles with no load decrease and figure 4.39b an experiment stopped when the 

load decrease of 0.6 N was detected. The presence of a short crack at the 

radius was noticed when the cross section was analysed. 

 

 

Figure 4.39 Cross section at notch after 1 millions cycles of a sample with no 

decrease on load a) and with a 0.6 N load decrease b). 

radius radius 

a) b) 
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 Caution was taken not to retest any sample that experimented a decrease 

on load in the previous test. This allows to determine the fatigue limit for each 

fatigue sample, if small stress steps increments are used. The stress increments 

used to define the fatigue limit were of 25 MPa which represented a 6 N 

increase of the applied load. 

 

 In addition, since the applied load is displayed during the experiment, it is 

possible to predict whether the sample would fail or not. It was observed that 

conditions that do not promote a decrease of load (less than 0.3 N) during the 

first million of cycles did not fail after 10 million cycles.  

 

An infinite fatigue life was considered to be 1 x 107 for fatigue experiments of 

BIQ1, BIQ2 and BIQ4 treatments. However, since it was noticed that all samples 

that failed, did it within the first two million cycles or did not fail, the infinite 

fatigue life considered for further experiments was 5 x 106 cycles.  

 

 The results of experiments BIQ4 to BIQ7 (austenitizing at 950°C, 

quenched 1s in brine solution, tempered at 250°C for 30 min. and with a second 

tempering at different temperatures) are shown in figure 4.40. As can be clearly 

noted an increase on the second tempering temperature enhances the fatigue 

resistance. With a tempering of 250°C the fatigue limit was 300 MPa which 

represents a low fatigue resistance. As the tempering temperature was 

increased to 350 and 450°C the fatigue limit increase to 475 and 490 MPa 

respectively. Although the fatigue limit differs of only 15 MPa there is a switch to 

the right of the 450°C condition of the linear part of the diagram. Interestingly, 

the slope of the linear part of the 350, 450 and 550°C diagrams seems to be the 

same. The major enhancement in the fatigue limit was observed when 

increasing from 250 to 350°C where an increase of the fatigue limit of 58% was 
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noticed. Then an increase from 350 to 450°C produced only a 3% increase in 

the fatigue limit. Finally, increasing from 450 to 550°C produced an increase in 

the fatigue limit of 17%. The total improvement on the limit from the inferior 

condition of 250°C to the final condition of 550°C was almost doubled.  

 

 

Figure 4.40 S-N Diagrams for heat treatments BIQ4 to BIQ7 (austenitizing 

temperature. 950°C) 

The results of BIQ3, do not appear in figure 4.40 since the samples only resisted 

450 cycles at 900 MPa (amplitude) and less than 5000 cycles at 600 MPa. As 

expected, even that a well defined martensite case was formed at the surface, 

the great amount of retained austenite in addition to the martensite formed after 

cooling from the tempering temperature (150°C), reduced the ductility and the 

material became brittle. 

 

 When comparing  the BIQ2 and BIQ5 trials, which differ only on their 

austenitizing temperature, it is observed that the partially decarburised condition 

BIQ5 withstood up to 475 MPa without failing while BIQ2 only 375 MPa. This 
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represents an improvement of 26% in the fatigue limit promoted due to the 

reduction in the retained austenite by shifting the Ms temperature of surface 

layers. Retained austenite reduce the fatigue resistance since it promotes the 

growth of cracks [80]. In figure 4.41 the comparison of these conditions is 

observed. This figure also validates the hypothesis that a controlled partial 

decarburisation is beneficial when an interrupted quenching is performed. 

 

Figure 4.41 S-N diagrams of heat treatment BIQ2 and BIQ5 (2nd tempering at 

350°C). 

 

In order to determine if the fatigue resistance of the partially decarburised 

samples with a second tempering at 550°C was mainly due to the tempering of 

martensite at this temperature or to the formation of bainite at the core, the BIQ8 

trial was performed. As seen in figure 4.32 the difference is that the BIQ8 was 

put at 550°C directly after the quench, avoiding the bainite nose. As observed in 

the microstructure of figure 4.31 the core was pearlitic while BIQ7 was bainitic. 

The surface of both consisted in tempered martensite. In figure 4.42 the S-N 

diagrams show that the bainitic core has a fatigue limit 53% greater than the 
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pearlitic one. It has been reported that some fatigue cracks nucleate below the 

surface when the substrate has a considerable lower strength than the surface 

layer, although this is difficult to determine, it is a possibility since the surface 

layer was similar in both heat treatments, although the retained austenite 

transformed to bainite and pearlite respectively. Other explanation might be 

related to crack propagation, if the mechanism, once the crack surpass the 

case, the crack is prone to grow easier in the pearlite structure through the 

lamellae. 

 

Figure 4.42 S-N diagrams of heat treatments BIQ7 and BIQ8 (see figure 4.32) 

 

The oil quenched samples were tempered at 400°C since according to 

references [106] and [90] produce the greater fatigue resistance. Spring 

manufacturers usually temper in the range of 400 to 550°C. Tempering at 250°C 

was also performed although the steel exhibited very low fatigue resistance. The 

OQ2  with the tempering at 400°C presented a fatigue limit of 525 MPa, which is 

superior to the BIQ 4,5 and 6. Nevertheless, the fatigue limit of the oil quenching 

is inferior 9.5% than the brine interrupted-quenching 7. Figure 4.43 displays the 
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S-N curves of the OQ2 and the BIQ7. The fact that for the BIQ7 the partial 

decarburisation increased the volume fraction of martensite and therefore 

reduced the amount of retained austenite when cooling at room temperature is 

crucial in the delay of crack nucleation. In addition, this decarburisation do not 

improve the fatigue resistance by itself, it has to be accompanied by an 

interrupted quenching. If the quenching is not stopped the core would transform 

and expand, this expansion of the core would produce tensile stresses on the 

decarburised layer producing tensile residual stresses or cracking. This is the 

main reason why decarburisation is related to detrimental effects, since with a 

conventional quenching (through hardening) the mechanical and fatigue 

properties decrease. 

 

Figure 4.43 S-N diagrams of the OQ2 and BIQ7. 
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4.6.1 Fractography 

 

Macroscopic observation of fractures from samples of heat treatments BIQ4 to 

BIQ 7 are shown in figures 4.44 to 4.47. The upper image in each figure shows 

the fracture at a high stress (900 MPa) after approximately 1 x 103 cycles, and 

the lower image exhibits the fracture at a stress level near to the fatigue limit of 

each heat treatment, referred in figure 4.40. The diameter of the surface fracture 

is 8 mm, thus the print shows a 11.8X magnification. From the fracture at 900 

MPa it can be noted that the cracks nucleated from surface in a radial direction 

towards the centre, and therefore the overload fracture is a well defined circle. 

Comparing with figure 2.29 the fractures at a high stress are like from the 

schematic figure of a mild notch, since the final fracture due to the overload is 

off-centred, although the value of 900 MPa might not be a high nominal stress 

enough as the diagram attempts to describe. Instead, this applied stress could 

represent a mild stress and the fracture would indeed correspond to a sharp 

notch. The fractures for the stresses that endure more than 5 x 105 cycles (near 

to the fatigue limit) indeed look like the diagram from a sharp notch. 

Interestingly, the fracture of the BIQ7 (figure 4.47) did not present a well defined 

circle in the final fracture, instead a diffuse circle was noticeable. In the BIQ7 

treatment, the higher tempering temperature produced an increase on ductility 

and toughness, allowing the material to fracture by plastic deformation cycles. 

This is, according to the fractography the final rupture of material might be at a 

much lower load value than for BIQ4-6 treatments, where the rapid crack growth 

reaches a minimum area which in addition to the load, exceeded the tensile 

strength and produced a marked fracture.  

 

This assumption is verified by analysing the load-cycles curves of each 

condition, as plotted in figure 4.48. It can be noticed that the ultimate load prior 

to fracture of the BIQ7 is much lower than those for the other heat treatments, 
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this means that the material withstand more crack propagation since the 

decrease in load   
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a)  

b)  

Figure 4.44 Facture of BIQ4 (250°C) samples after 3x104 a) and 1x106 cycles b) 
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a)  

b)  

Figure 4.45 Facture of BIQ5 (350°C) samples after 3x104 a) and 1x106 cycles b) 
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a)  

b)  

Figure 4.46 Facture of BIQ6 (450°C) samples after 3x104 a) and 1x106 cycles b) 
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a)  

b)  

Figure 4.47 Facture of BIQ7 (550°C) samples after 3x104 a) and 6x105 b) cycles 
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Figure 4.48 Load versus cycles of BIQ4 to 7 at a 900MPa nominal stress, 

showing the ultimate load prior to fracture.  

 

is related with the increase of cracks in this type of fatigue test. When comparing 

BIQ7 and BIQ6 curves, it can be noticed that when both loads have decreased 

to near 125 N, the BIQ6 sample came apart while the BIQ7 sample, although 

few cycles, withstood the crack propagation until the load was almost 50 N. 

 

The relationship of the load decrease with fractographies is an example of the 

advantage of registering this information unlikely in common rotating bending 

testers. The load data obtained during experiments can be used to analyse the 

mechanisms of cracking during each test. In the next section, a model to 

determine crack nucleation and crack length is exposed.  
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4.6.2 Fatigue load analysis 

 

4.6.2.1 Introducing novel concepts 

 

In addition to the ultimate load as showed in figure 4.48, the load versus cycles 

data can be used to determine the duration of the cracking stages, which was 

one of the main scopes when the fatigue tester was designed. Before analysing 

the data some equations and variables are introduced. The fraction of the 

instant load decrease is calculated from the following equation: 

 

𝐿𝑓𝑟𝑎𝑐 =
 𝐿0 − 𝐿𝑛 

 𝐿0 
= 1 −

𝐿𝑛

𝐿0
 

 

where Lfrac. is the fraction of instant load decrease, L0 is the initial load and Ln is 

the load at n cycles. In figure 4.49 a plot log-log of Lfrac. against cycles is shown 

and figure 4.50 shows a semi-log plot. It can be noted from both figures that the 

load decrease has a sigmoidal shape. As shown in figure 4.50 it might be 

possible to define the cycle of crack nucleation. 

 

In addition, another concept would be introduced in order to be able to note the 

cracking stages. Thus, the Lfrac rate as function of cycles is calculated, and is 

named decrease in load rate DL: 

 

𝐷𝐿 =
𝛿𝐿𝑓𝑟𝑎𝑐 .

𝛿𝑛
=

 𝐿𝑛+1 − 𝐿𝑛  

  𝑛 + 1 − 𝑛 
 

 

 

Eq.  4.1 

 

Eq.  4.2 
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Figure 4.49 Lfrac. vs. cycles log-log plot 

 

Figure 4.50 Lfrac. vs. cycles semi-log plot 

The DL rate is a relationship of the change of load as function of cycles, then 

since the decrease on load is related to the length of the crack, there is a 

relationship between the DL rate and the crack growth rate. In figure 4.51 the DL 

rate against the number of cycles is plotted. The DL rate remained ranging from 

1 x 10-4 to 1x10-5 the first 32500 cycles, then the DL rate grows exponentially 

until fracture. Since the DL rate and the crack growth rate are related, it could be 
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stated that the cycles where the DL rate remained stable belong to the second 

cracking stage, at constant growth rate. Therefore the transition cycle from the 

second to the third stage of cracking can be pointed out. 

 

 

Figure 4.51 DL rate against cycles, showing the transition cycle from the second 

to the third stage of cracking. 

 

Although the stages might be identified, to determine the relationship between 

the change in load and the crack length, some assumptions have to be done. A 

model to estimate the crack length is proposed in the following section. 
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4.6.2.2 Crack length model 

 

In order to estimate the crack length as function of the load reduction, some 

assumptions have to be considered when correlating the fractographies of final 

fractures and the load data. Firstly, it will be assumed that the cracks start all 

over the surface at the same time, and grow in the radial direction forming a 

perfect concentric circle, instead of an off-centred one. The area of the overload 

fracture is assumed to be a perfect circle. Then, the diameter of the final fracture 

is subtracted from the diameter of the sample, and the value of 2a is obtained. In 

figure 4.52 a representation of these measurements is shown. Note that the line 

cross the centre of the sample and the centre of the final fracture.  

 

 

Figure 4.52 Representation of the measures taken from fractures. 

 

With the value of 2a and the ultimate load (averaged 1 second prior to rupture), 

the relationship between the load and the area reduction was estimated. The 

fraction of diameter reduced (dfrac.) is calculated from the following equation: 
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𝑑𝑓𝑟𝑎𝑐 . = 1 −
 𝑑𝑓𝑓  

𝐷
 

where D is the initial diameter of the sample, and dff is the diameter of the final 

fracture. 

 

The Ultimate Load Fraction (UDLfrac.) is the ratio of the ultimate change in load 

prior to rupture and the initial load of the each experiment and is expressed as 

follow: 

 

𝑈𝐿𝑓𝑟𝑎𝑐 . = 1 −  
𝑈𝐿

𝐿0
  

 

Then the ratio between the dfrac. and ULfrac. is calculated and is called the crack-

to-load factor and it will be represented by the letter β. See equation 4.5 

 

𝛽 =
𝑑𝑓𝑟𝑎𝑐 .

𝑈𝐿𝑓𝑟𝑎𝑐 .
 

 

𝛽(𝑛) =
𝑑𝑓𝑟𝑎𝑐 .(𝑛)

𝐿𝑓𝑟𝑎𝑐 .(𝑛)
 

 

From fatigue fractures and the load data a value of β as function of ULfrac. was 

determined, as shown in figure 4.53. The value of β can is obtained from the 

equation in the figure 4.53 and used to estimate the crack length 2a at discrete 

times of the fatigue experiments. 

 

𝛽 𝐿𝑓𝑟𝑎𝑐 . = −1.35 𝐿𝑓𝑟𝑎𝑐 . + 2.28 

 

Eq.  4.3 

 

Eq.  4.4 

 

Eq.  4.5 

 

Eq.  4.6 

 

Eq.  4.7 
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Figure 4.53 Experimental determination of the β factor as function of Lfrac. 

 

4.6.2.3 Crack nucleation and crack length estimation 

 

From 4.54 to 4.57, examples of how the cycle of crack nucleation was 

determined are shown. The criteria used to define that a nucleation has taken 

place was a crack length (2a) of 2.5 x 10-5 m or a Lfrac. value of 0.0015. This 

assumption considers that when a single crack (a) of 12.5 µm is present, there 

is a limited number of cycles before a stable crack growth takes place (II stage).  

 

The results in figures 4.54 to 4.57 show that at the higher stress level, the 

second tempering at 450°C retarded the crack nucleation up to 8873 cycles, 

while the tempering at 250°C exhibit a rapid crack nucleation. This rapid 

nucleation might be due to temper embrittlement and the high hardness of 

martensite. 
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Figure 4.54 Crack length and Lfrac. against cycles, showing crack nucleation of 

BIQ4 fatigued at 900 MPa. 

         

Figure 4.55 Crack length and Lfrac. against cycles, showing crack nucleation of 

BIQ5 fatigued at 900 MPa. 
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Figure 4.56 Crack length and Lfrac. against cycles, showing crack nucleation of 

BIQ6 fatigued at 900 MPa. 

           

Figure 4.57 Crack length and Lfrac. against cycles, showing crack nucleation of 

BIQ7 fatigued at 900 MPa. 
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Interestingly, when the crack length prior to fracture were obtained as function of 

the ultimate load, it was found that the crack of BIQ7 was longer and in OQ2 

was shorter, see figure 4.58a. This means that the nodular bainite encountered 

in the BIQ7 core allows plastic deformation unlikely the martensite of the through 

hardened OQ2, which after cracking 0.0035 m did not sustain the load. On the 

other hand the diameter of the BIQ7 was considerable reduced from the original 

0.008 to 0.001 m before rupture. At this stress level only the heat treatment 

BIQ6 showed a slightly superior fatigue resistance, although low cycle fatigue 

might not be sufficiently representative of the material resistance.  

 

Figure 4.58 Crack length prior to final fracture of fatigue experiments at a stress 

of 900 MPa. a) and cycles to failure b). 

 

At a medium stress as 600 MPa the fatigue results are more representative, 

thus a comparison of the crack lengths is illustrated in figure 4.59. Once again 

the BIQ7 exhibited the longer crack and the OQ2 the shorter one. At this applied 

stress the BIQ7 failed at 361,000 cycles followed by the BIQ6 and OQ2 at 

approximately 275,000 cycles. From figure 4.60 can be noticed that crack 

nucleation took place firstly in the oil quenched sample, before 1354 cycles, 

while in BIQ7 nucleation occurred after 10,366 cycles.  

a) b) 
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Figure 4.59 Crack length prior to final fracture of fatigue experiments at a stress 

of 600 MPa. a) and cycles to failure b). 

 

Figure 4.60 Cycles to crack nucleation 

 

The second tempering of the brine interrupted quenching treatments, produced 

an improvement in the fatigue resistance as the temperature was raised. As 

mentioned in past sections, this enhancement might be due to isothermal 

transformation at the core of the retained austenite and more cementite 

precipitation, or due to the increase in ductility of the tempered martensite. 

Whether the nucleation is retarded (related to surface) or the crack growth rate 

reduced (related to core) it might be explained by analysing figure 4.61. The 

a) b) 
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crack length is displayed in a semi-log plot against cycles. It can be noted that 

for the heat treatments presented, crack nucleation do not differs substantially 

among heat treatments when compared with the entire fatigue life. Although in 

figure 4.60 the crack nucleation was demonstrated to be 2.5 time higher for 

BIQ7, it represented a minimum percentage of the cycles to failure. It can be 

concluded that the sharp notch induced the crack nucleation at early cycles, 

thus the predominant fatigue mechanism involved is crack growth.  

 

Figure 4.61 Crack length of fatigue experiments carried out at 600 MPa. 

 

Is worth to remark that the crack length in figure 4.61 refers to 2a, and not to the 

length of a single crack. The vertical axis is displayed on logarithm scale, and it 

can be observed that the second stage of cracking for all cases started 

approximately with a crack length of 6 x 10-5 m and the transition to the thirst 

cracking stage of rapid propagation occurred when the crack length was slightly 

above 1x 10-4 m. The transition from the second to the third cracking stage is 

more noticeable in figure 4.62, where the crack growth rate is plotted against 

cycles. Is noted that the crack growth rate remains stable in a range from    

5x10-10 to 5 x 10-9 m for great part of the fatigue life. This is related to the 
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constant crack growth (II stage), and then a rapid propagation is observed. The 

change in the crack growth rate is highlighted with coloured lines (green-BIQ4, 

blue-BIQ5, red-BIQ6 and gray-BIQ7). This same colours are used in figure 4.63 

to correlate the crack growth rate with the crack length at the transition point 

from stage II to III. It was found that the crack length were shorter than 0.5 mm 

when the transition to the rapid propagation took place, this means that the 

crack might reached the transition zone from the martensite case to the bainitic 

core, when faster crack propagation took place. In addition to microstructure, the 

increase in crack growth rate is also affected by the reduction of the area, which 

correspond in a local stress increment. 

 

Is worth to mention that the II stage represents almost 60 % of the entire life and 

the III stage a 40%, while nucleation is only a 2%. Then, it can be concluded that 

the principal fatigue mechanism is the crack growth or crack propagation. (See 

figure 4.64) 

 
Figure 4.62 Crack growth rate (log) against cycles, showing the transition from 

cracking stages II to III. 
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Figure 4.63 Crack length at transition from cracking stage II to III. 

 

Figure 4.64 Crack length as function of normalized cycles. 
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Finally, when comparing BIQ7 to BIQ8 load data it was found that nucleation for 

the BIQ8 (600 MPa) took place after 53,599 cycles. Although this is five times 

the cycles for nucleation of BIQ7, the transition from the cracking stages II to III 

occurred only 21,000 cycles later, at 74,399 cycles. The microstructure of BIQ8 

contained pearlite at the core and a surface mostly of martensite with traces of 

pearlite, which formed from retained austenite. The presence of pearlite 

increased the propagation rate with detrimental effects. Interestingly, the crack 

length 2a was also 0.0001 m, likely BIQ5, BIQ6 and OQ2. The average crack 

growth rate of BIQ 7 and BIQ8 at the second stage was 1.6x10-9 and 1.3x10-8 

m/cycle respectively. 

 

These findings suggest that the delay on nucleation that BIQ8 exhibited might 

be related to the formation of larger compressive residual stresses when bainite 

is avoided and instead pearlite is promoted as core structure. However, after a 

crack is nucleated, it propagated much more rapid, being the bainite a more 

endurable microstructure. 
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Chapter 5  (C 

 

CHAPTER 5 
 
 

CLONSLUSIONS AND PROPOSED 
FURTHER RESEARCH 

 

5.1 Conclusions  

 

The presented research involved different topics as heat transfer, quenching, 

fatigue and crack modeling. The conclusions will be addressed by topic in the 

same order as they were treated along this document.  

 

1. Regarding the heat transfer obtained with the NaNO2 solution, it is concluded 

that the optimal concentration that produce the maximum cooling rate is 4 to 9%, 

however the more salt additive the solution contains, the higher the saturation 

temperature of the liquid. Thus, in order to cool the surface to a lower 

temperature the 4% solution showed better results. The high cooling rates 

obtained with this corrosion inhibitor, allowed to produce a shell-core type 

microstructure in thin sections.  
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2. The parabolic temperature distribution model presented is a useful tool to 

predict the temperature profile and facilitates the design of the quenching. The 

parabolic approach showed good correlation with the experimental thermal data 

and also with the microstructure obtained (case depth). This method is an 

alternative to the inverse problem methods which are usually more complex and 

time consuming.  

 

3. The fatigue tester developed in this research allowed for the obtention of 

important information that common rotating bending fatigue testers are not able 

to provide. Results of common testers are usually limited to the number of failure 

cycles. In addition, the new fatigue tester allows the user to estimate if a given 

test would result in a failure or not after a number of cycles. This is related to 

experiments carried out near the fatigue limit, where after 1-5 x106 cycles the 

user is aware of the presence or absence of a damage, namely cracks. 

 

4. It was demonstrated that a slight partial decarburisation is beneficial in the 

interrupted quenching. The modification of the martensite start temperature 

reduced the amount of retained austenite and the increase of the steel fatigue 

limit.  

 

5. The fatigue limit of the AISI 5160 steel was increased 10% compared to 

conventional oil quenching and tempering, with a brine interrupted quenching 

and tempering. Various cooling paths and tempering temperatures were 

experimented, being the heat treatment BIQ7 that exhibited superior fatigue 

resistance.  
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6. The BIQ8 treatment produced a pearlitic core and a martensite case with 

traces of pearlite. This microstructure retarded the crack nucleation up to 5 

times, however after nucleation, propagation was much rapid than in martensite-

bainite samples.  

 

7. It was possible to propose a model to correlate the load data with the crack 

length by using measurements from fatigue fractures and the load data from 

experiments. The three cracking stages were identified with this methodology. 

The crack length information is useful for a better understanding of the fatigue 

process. This crack length model might be useful when the effect of coatings on 

fatigue is analysed. 

 

8. Although the implementation of the BIQ7 process is complex, it presents the 

following benefits:  

a) The base solution is water which is less expensive than the oil, although 

the sodium nitrite represents also a considerable cost, only a 4% is 

needed 

b) The washing process after quenching in oil is suppressed 

c) The quenching (cooling) time is reduced. In the present work a relation of 

60:1 was found and it might increase in larger parts 

d) After the interruption of the cooling the material remains hot, therefore do 

not have to be reheated to be tempered, only isolated and maintained at 

the desired temperature, thick section even temper themselves. This 

represents a large amount of energy that is lost when great loads at room 

temperature are introduced in the furnaces. 

e) The increase in the fatigue limit of 10%, implies that a section reduction of 

10% is allowable to endure the same load. This represents savings in 

material and, in the case of vehicles, a direct weight reduction.  
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5.2 Proposed further research  

 

1. As showed in the results section, the fatigue limit was increased as the 

second tempering temperature was increased, however experiments were 

carried out at a maximum tempering temperature of 550°C ,it would be 

interesting to  increase this temperature to 600 650 and 700 °C, followed by 

fatigue experiments.  

 

2. The decarburisation profile enhanced the fatigue resistance in samples 

austenitized at 950°C. Previous research have showed that this austenitizing 

temperature might produce embrittlement. Thus, if a similar decarburisation 

profile is promoted at lower austenitizing temperatures (longer times) the fatigue 

limit might be increased. The austenitizing temperatures and times depend on 

the size and atmosphere of the furnace. 

 

3. The high cooling rates obtained with the sodium nitrite solution are achievable 

with high speed water. It would be worth to design an automated equipment of 

high speed water circulation for thin sections as the fatigue samples.  

 

4. The model used to determine the crack length may change for material to 

material, therefore more materials have to be studied. 
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APENDIX A 

Non-metallic inclusions in AISI 5160 

 

 

 

 

  

Fe 

S Mn 



159 
 

APENDIX B 

Fracture surface of the OQ2 (600 MPa.) showing no delimited final fracture. And 

closer inspection showing cracking stages (below left image) and intergranular 

fracture of the tempered martensite (below right). 
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APENDIX C 

SEM images showing the cracking stages of BIQ7 (900 MPa.) 
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