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ABSTRACT 

 

Jonathan Valentin Reyes                      July, 2014 

Universidad Autónoma de Nuevo León 

Facultad de Ciencias Químicas   

Dissertation title: INFLUENCE OF FUNCTIONAL GROUPS OF ACTIVATED CARBON IN THE 

ANCHORING OF IRON PARTICLES BY FORCED HYDROLYSIS AND ITS USE TO REMOVE 

HEXAVALENT CHROMIUM FROM AQUEOUS SOLUTIONS 

Number of pages: 137 Candidate for the Master Degree of Sciences 
with Orientation in Sustainable Processes 

Study area: Sustainable Processes. 

Purpose and method of study: Heavy metals are a serious health problem, because 
when they are ingested can cause allergies, kidney or neuronal damage, cancer and death 
in some cases; therefore, they should be removed from the effluent before discharging to 
the environment. Conventional methods for removing heavy metals, such as chemical 
precipitation, coagulation-flocculation and ultrafiltration, among others become inefficient 
for solutions with concentrations less than 100 mg/l. In this work, the adsorption of Cr (VI) 
by modified activated carbon with anchored iron particles by forced hydrolysis was studied 
at different concentrations between 10 and 500 mg/l, pH 6 and 25oC as an alternative 
instead of the traditional methods. 

 
Contribution and Conclusions: Surface chemistry of the activated carbon had an 

important effect on the anchoring of iron particles by forced hydrolysis, showing the higher 
quantity of iron over activated carbon surface the adsorbents that were modified by an 
oxidation with nitric acid, and the lower quantity of iron particles those adsorbents who 
were treated thermally. However, forced hydrolysis treatment caused an important 
improvement in the hexavalent chromium adsorption capacity of modified activated 
carbons at concentrations lower than 150 mg/l. Heat-treated activated carbons and 
modified with forced hydrolysis showed the best Cr(VI) uptake (57 mg/g) and also the 
faster adsorption kinetic of the studied adsorbents. A 98% of Cr(VI) desorption from the 
best adsorbent was achieved  with a 0.1 N NaOH-NaCl solution, suggesting an anionic 
adsorption mechanism. 
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Introduction: Water in the environment 
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1.  INTRODUCTION  
 

Water is essential for supporting life and it´s also considered as natural resource. 

Because this liquid covers around 72% of earth, its pollution is an important topic about the 

main environment conflicts in the world. 

Due to the extensive formation of hydrogen bonds, water has high melting and boiling 

points as well as large heat capacity. Additionally, water has an exceptional ability to dissolve a 

wide variety of ionic and polar covalent substances because of its high polar character [Brown 

(2004)]. However, taking into account that water is a universal solvent, this property allows its 

use in a wide number of applications, for this reason the use of water must be done in a 

sustainable way to satisfy the social and economical development as well as its preservation 

(National Council Water, 2012). 

It was reported that human body contains about 65% of water by mass and  this high 

percentage play a major role in human´s body functioning. In fact, every cell and organ 

functions depends on the water for their correct functioning. Among all usages of the water, it 

is also used as a lubricant in digestion and almost all the other body processes; for example, 

water lubricates joints and cartilage in human body. In addition, water is capable of removing 

toxins and it helps to control body temperature and it can transport valuable nutrients to the 

organism.  
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It is important to mention that human body not only depends on water to subsist, this 

resource is also essential for biosphere, flora, and fauna. In general, water is required for living 

organisms and contributes in nutrient flows to keep the ecosystems.   

Water is a renewable resource, it could be contaminated by human activities which in 

turn make water to be useless or harmful. For this reason clean water is an essential resource 

for the operation and development of a stable and prosperous society (UNESCO, 2003). 

Many researchers have reported that water quality has been affected by factors or 

agents that causes its pollution such as pathogens, inorganic and organic substances, 

biodegradable wastes that require oxygen to be oxidized, sediments or suspended material, 

radioactive substances and heat. Also wastewater may contain nutrients, that can stimulate the 

growth of aquatics plants, and it could also contain toxic compounds with high mutagenic or 

carcinogenic potential. 

 For these reasons, the immediate removal of pollutants from wastewater sources 

(through its specialized treatment, reuse, or disposal in the ambient) is necessary for the 

protection of human health and, at the same time the environment (Metcalf & Eddy, 2004). 

Prevention of water pollution plays a major role to improve water quality and to reduce the 

requirement of expensive water or wastewater treatments.  
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1.1 Water pollution with heavy metals 

 

The presence of heavy metal in aqueous effluents is of great concern due to its toxicity 

and carcinogenic effects on human health and aquatic organism (Prabhakaran et al., 2009).  

Heavy metals are released into the environment through natural sources from volcanic 

eruptions and anthropogenic sources such as wastewater discharges from industrial sources, 

these pollutants are not easily removed without an advanced or specialized treatment (Leyva 

et al., 2008). 

Heavy metals are hazardous because of its toxic nature; furthermore they are not 

biodegradables and they can also be bioaccumulated in organisms. In other words, because of 

their persistence in the nature, metals can be dispersed in water, accumulated in plants and 

animals, and finally to be added in human beings throughout the food chain or by drinking 

polluted water, causing several health problems (García & Rangel, 2010). 

 Metal ions like chromium, mercury, cadmium, nickel, arsenic, lead, etc., have an 

adverse effect on the human physiology and other important biological systems; for example, 

the presence of heavy metals in water bodies have important toxic effects in animals and at 

higher trophic levels. Because of the wide amount of processed material the removal of metal 

ions from aqueous solutions (especially in low concentrations) from industrial effluents of high 

interest (Liu et al., 2007). The source and toxicity of certain metal ions are listed in Table 1. 
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Table 1. Source and toxicity of heavy metals on human health (Farooq et al., 2010). 

Metal Source Toxic effects Reference 

Lead 
Electroplating, production of 
batteries, pigments, 
ammunitions. 

Anemia, brain damage, 
anorexia, loss of appetite. 

Gaballah & Kibertus, 
1998; Low et al., 
2000; Volesky, 1993. 

Cadmium 
Electroplating, enamel, 
pigments production, plastics, 
mining, refinery.  

Carcinogenic, kidney 
damage, boney injury, 
hypertension, loss of 
appetite. 

Sharma, 1995; Chen & 
Chao, 1998; Godt et 
al., 2006; Singh et al., 
2006. 

Mercury 

Mercury wear areas, volcanic 
eruptions, Forrest fires from 
nature causes, battery 
production, burning fossil fuels, 
mining and metallurgy. 

Renal and neurological 
damage, spoilage to the lung 
function, corrosive to eyes, 
skin and muscles, dermatitis, 
liver damage. 

Morel et al., 1998; 
Boening, 2000; 
Manohar et al., 2002. 

Chromium 
(VI) 

Electroplating, leather tanning, 
textiles, metallurgy, wood 
preservation, paints and 
pigments.  

Carcinogenic, mutagenic, 
teratogenic, epigastric pain, 
nausea, vomiting, severe 
diarrhea, lung tumors.  

Dupont & Guillon, 
2003; Kobya, 2004; 
Granados & Serrano, 
2009; Singh et al., 
2009. 

Arsenic 
Enamels, mining, energy 
production from fossil fuels, 
sediment rocks. 

Gastrointestinal symptoms, 
damage to cardiovascular 
and nervous system, 
melanosis in bones, 
hemolysis, polyneuropathy, 
encephalopathy, liver 
tumor. 

Chilvers & Peterson, 
1987; Dudka & 
Market, 1992; 
Robertson, 1989. 

Copper 
Electronics coating, galvanizing, 
paints production, printing, 
wood preservation. 

Develops acute toxicity, 
neurotoxicity, sleep, and 
diarrhea.  

Yu et al., 2000; Chuah 
et al., 2005; 
Papandreou et al., 
2007.  

Nickel 

 

Non-ferrous materials, mineral 
processing, formulation of 
paints, electroplating, coated 
porcelain, thermoelectric.  

Chronic bronchitis, reduced 
lung function, lung cancer. 

Akhtar et al., 2004; 
Ozturk, 2007. 
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 In recent years, the levels of toxic metals in surface waters have been increasing due to 

pollution caused by wastewater discharges from industrial sources (Leyva et al., 2008). 

Untreated effluents from industries such as metallurgy, electronics, leather tanning, plating and 

cooling water systems among others, can pollute water bodies with heavy metals (García et al., 

2009).  

 Table 2 shows the most common industrial processes that discharge aqueous effluents 

with high content of heavy metals to the environment or water bodies, and the wide use of 

chromium in many industries.  

Table 2. Main industrial sources that discharge heavy metals (Mohan et al., 2006). 

Industrial Source Zn As Cr Pb Ni Cu Fe Hg Cd Sn 

Automobiles X  X X X  X  X X 

Petroleum refining X X X X X X X    

Pulp and paper X  X X X X  X   

Textile   X        

Steel X X X X X  X  X X 

Organic chemicals X X X X   X X X  

Inorganic chemicals X X X X   X X X  

Leather tanning    X        

Mining X  X   X   X  

Glass  X         

 

 

 



 

 

 

 

 

 

 

 

 

 
 
 

CHAPTER 2 
Background: Chromium (VI) uptake by activated carbon 
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2.1 Chromium  

Chromium (Cr) is a naturally occurring element found in rocks, plants, soil, animals as 

well as in smoke and volcanic gases; it is the sixth most abundant transition metal in the Earth´s 

crust, where it is found like oxide (Cr2O3) and, combined with iron and oxygen in the mineral 

chromite. Chromium was discovered in 1797 by the French chemist Lois Vauquelin in lead 

chromate (PbCrO4), which is the rare mineral crocoite; its name comes from the Greek 

“chromos” meaning “color” and it is due to the different colors found in their compounds 

(Mohan et al., 2006).  

Chromium, with an atomic number of 24 and atomic weight of 51.996, is a heavy metal of the 

first series of transition metals (Group VI B). Chromium has important chemical and 

biochemical properties, among those include several oxidation states; some chromium 

compounds are paramagnetic and most of them are colorful, therefore some mineral and 

precious stones attribute their color to chromium (Zayed et al., 2003). 

Chromium oxidation states are -2, 0, +2, +3, and +6, but the only compounds of biological 

importance are derived from the oxidation states of +3 and +6; the first group belong the 

chromic oxide (Cr2O3) and chromic salts such as chromic chloride (CrCl3) or chromite anion 

(Cr(OH)4
-), and the second group, the chromium trioxide (CrO3), chromate (CrO4)2-, and 

dichromate (Cr2O7)2- (ATSDR, 2008).  

The most important mineral form of chromium is called chromite ore or ferrochromite 

(FeCr2O4) derived from chromium (III). 
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On the other hand, metallic chromium (Cr0) is not free in nature due to its high reactivity, it is 

white silver bluish tint, exhibiting the property of being heat resistant and easily coated with a 

thin layer of oxide protecting it from further chemical reaction. Metallic chromium is higher 

resistant to oxidation, even at high temperatures. This property, combined with its colors, is 

the reason of being used as coat of different metal objects in order to protect against 

corrosion, processes known as chrome plating (Mohan et al., 2006; Klassen et al., 2008). 

Compounds derived from chromium (III) are usually prevailing in the environment because they 

are the most stables derivate from this metallic element. The most important compound from 

trivalent chromium is chromic oxide (Cr2O3) that is extremely stable, resistant to acids and also 

high melting point. It is used such a pigment called “chrome green”. 

In contrast, chromium (VI) derivatives are fundamentally chromates and dichromates. Both 

species are oxidizing agents in acidic media, and they are reduced to Cr(III) by electron donors 

(Kuo et al., 2008). Potassium dichromate is frequently used in industry and chemical 

operations. Sodium dichromate is used in leather tanning since an insoluble compound is 

produced with skin proteins. Often, lead dichromate is used as pigment with the name 

“chrome yellow”. 

Chromium is mainly used in three industries: metallurgic, chemical and refractory materials. In 

the metallurgical industry is an essential compound of stainless steel and other metal alloys.  
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Frequent uses in refractory materials include brick manufacturing based on a mixture of 

magnesite-chromium for metallurgic furnace and the use of granular chromite for many other 

applications requiring heat resistant materials.  

Regarding applications in chemical industries, it is used in operations of chromium plating, 

manufacture of pigments and dyes, leather tanning and wood treatments. Minor amounts of 

these chromium compounds are used as corrosion inhibitors, water treatment, photographic 

materials, magnetic tapes, etc. (Mohan et al., 2006; Klassen et al., 2008; Leyva et al., 2008). 

2.1.1 Chromium chemistry  

 

Chemical speciation analysis of chromium, and other elements, provides information about 

individual concentration of this particular element in the different forms in which it is present 

in biosphere. This analysis not only allows distinguish among oxidation states, also between 

simple and coordinate ions, cationic, neutral and anionic forms, ionized and not ionized species 

as well as the degree of homogeneity and heterogeneity with natural constituents (Kotás & 

Stasicka, 2000). 

Among the chromium oxidation states, only two of these, trivalent and hexavalent chromium, 

are enough stable to be in the environment. However, these forms are drastically different in 

charge, physicochemical properties as well as in chemical and biochemical reactivity. 
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Moreover, chromium in its divalent form, Cr(II), is quickly oxidized to Cr(III), and it remains 

stable as Cr(II) only in the absence of any oxidizing agent (i.e. under anaerobic conditions). The 

species Cr(IV) and Cr(V) form unstable intermediates in the reactions with the oxidation states 

of trivalent and hexavalent chromium and oxidizing and reducing agents, respectively (Palmer, 

1994; Mohan et al., 2006; Kotás & Stasicka, 2000). 

Pourbaix diagram illustrated in Figure 1 shows the pH and potential conditions where each 

chromium species is thermodynamically stable in dilute aqueous solutions, in the presence of 

air and absence of any complex agent that are not H2O or OH-. 

 

Figure 1. Pourbaix diagram for chromium species (Palmer et al., 1994). 
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A general summary of chromium species (0 – VI) and the presence of some compounds of them 

in the nature are shown in the Table 3. 

Table 3. Chemical chromium species in the environment (Zayed et al., 2003). 

Chemical 

specie 

Oxidation 

state 
Compounds Observations 

Elemental 

chromium 
Cr(0)  It is not naturally present in the environment. 

Divalent 

chromium 

Cr(II) CrBr2, CrCl2, 

CrF2, CrSe, Cr2Si 

Relatively unstable and easily oxidized to trivalent 

state. 

Trivalent 

chromium 

Cr(III) CrB, CrB2, CrBr3, 

CrCl3.6H2O, 

CrCl3, CrF3, CrN 

Form stable compounds and are present in nature in 

the minerals as ferrochromite (FeCr2O4). 

Tetravalent 

chromium 

Cr(IV) CrO2, CrF4 It is not present in nature and it is an important 

intermediate which affects the rate of reduction of 

Cr(VI). Compounds of Cr(IV) are less common. The 

Cr(IV) ions and their compounds are not very stables 

due to their short half-lives, forming intermediates en 

the reactions of the species of Cr(VI) and Cr(III). 

Pentavalent 

chromium 

Cr(V) CrO4
3-, 

potassium 

percromate  

It is not present in nature and it is an important 

intermediate which affects the rate of reduction of 

Cr(VI). Species of Cr(V) are derivate from CrO4
3- anion.  

Hexavalent 

chromium 

Cr(VI) (NH4)2CrO4, 

BaCrO4 ,CaCrO4, 

K2CrO4 , K2Cr2O7 

Second most stable state of chromium oxidation. 

However, the Cr(VI) is difficult to be in nature, but it 

is produced by anthropogenic sources. Nevertheless, 

it is present in the atmosphere in the rare mineral 

crocoite (PbCrO4). 
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2.1.1.1 Trivalent Chromium: Cr(III) 

Trivalent chromium species in the environment depends on the different chemical and physical 

processes, such as hydrolysis, complex formation, redox reactions and adsorption. Oxidation 

state of Cr(III) is the most stable and requires a substantial amount of energy to be converted 

to a state of lower o higher oxidation. 

Hydrolysis of Cr(III) produce a mononuclear species CrOH2+, Cr(OH)2
+, Cr(OH)4

-, neutral species 

Cr(OH)3 and polynuclear species Cr2(OH)2
4+ , Cr3(OH)4

5+. All these trivalent chromium species 

that prevail in aqueous solutions and its dependence on pH value are shown in Figure 2. 

 

Figure 2. Species of chromium (III) in aqueous solution (García et al., 2009). 
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Hydroxo complexes (CrOH2+ y Cr(OH)3) are the major species of Cr(III) in the aquatic 

environment. However, the Cr(OH)3 exhibit amphoteric behavior and at high pH values can be 

easily transformed into a complex tetrahydroxoion (Cr(OH)4
- ) (Rai et al., 1987). 

The Cr(III) is a strong acid which has a high tendency to form six-coordinated octahedral 

complexes with a wide variety of ligands such as water, ammonia, urea, ethylamine, and other 

organic compounds containing oxygen, nitrogen or sulfur.  

Trivalent chromium complexation with ligands as OH- increases its solubility when the ligands 

are in the form of discrete molecules or ions. Because the redox potential between Cr(VI) and 

Cr((III) is sufficiently high, just a few naturally occurring oxidants are able to oxidize Cr(III) to 

Cr(VI).  Schroeder & Lee (1975) reported that oxidation of Cr(III) by dissolved oxygen in 

aqueous solutions is not possible. However, Saleh et.al. 1989 reported that through manganese 

oxides, an effective oxidation could be achieved in environmental systems. 

2.1.1.2 Hexavalent Chromium: Cr(VI) 

Hexavalent chromium in aqueous solutions forms a number of species and the relative 

proportions of these species depends on both pH and concentration of Cr(VI). The influence of 

the pH on Cr(VI) speciation is shown below in Figure 3.  Hydrolysis of Cr(VI) produces only 

neutral and anionic species, predominantly H2CrO4,CrO4
2-, HCrO4

2- and Cr2O7
2- (Mohan et al.,  

2006; Dionex,  1996). 
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Figure 3. Chromium (VI) species in aqueous solution (García et al., 2009). 

 

Chromic acid (H2CrO4), the neutral specie of Cr(VI), undergoes two deprotonating steps 

according to equations (1.1 to 1.3) forming the HCrO4
- ion (pH between 1 y 6) and the CrO4

2- ion 

(pH greater than 7). 

                 𝐻2𝐶𝑟𝑂4 ↔ 𝐻+ + 𝐻𝐶𝑟𝑂4
−              𝐾 = 10−0.75 

𝐻𝐶𝑟𝑂4
−  ↔ 𝐻+ + 𝐶𝑟𝑂4

2−              𝐾 = 10−6.45 

2𝐻𝐶𝑟𝑂4
−  ↔ 𝐶𝑟2𝑂7

2− + 𝐻2𝑂         𝐾 = 102.2 

Most of Cr(VI) species are highly soluble anions and for this reason, Cr(VI) species can be 

transported through the soils and water. Nonetheless, the oxyanions of Cr(VI) are easily 

reduced to Cr(III) by electron-donors atoms or molecules like organic materials or inorganic 

reduced species that could be present in air, water and soils (Pyrzynska, 2012). 
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The hexavalent chromium in acid solutions shows a high positive redox potential (Eo between 

1.33 – 1.38 V, Figure 4), which denotes that it is strongly oxidizing and unstable in presence of 

electron donors (Mohan et al., 2006; Kotás & Stasicka, 2000). 

 

Figure 4. Frost diagram for chromium species in acid solutions (Kotás & Stasicka, 2000). 

2.1.2 Toxic effects  

2.1.2.1 Absorption 

Chromium can enter in the human organism by inhalation, ingestion and, in lesser quantities, 

by absorption through the skin. Furthermore, it may be absorbed through the respiratory tract 

when inhaled air containing this metallic element and it takes place in the lungs through cell 

membranes of the alveoli. 
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Chromium absorption occurs via the digestive tract as a result of the ingestion of food or water 

containing any derivative from this metal, and exhibits significant effects when it is in contact 

with gastric juice. In the gastrointestinal tract of human and animals, Cr(III) is absorbed less 

than 1% while Cr(VI) around 10% (Klassen et al., 2008). 

Trivalent chromium present in food can bind to other compounds that facilitate its absorption 

in the stomach and intestines. Zhitkovich in 2005 conducted studies on Cr(VI) absorption, and 

reported that once absorbed, Cr(VI) enters the cells and it is intracellular reduced to Cr(III) as 

effect of red blood cells essentially cause by glutathione, ascorbic acid, and cysteine (ATSDR, 

2008; USA EPA). 

2.1.2.2 Distribution and warehousing  

Chromium fraction absorbed in the intestine is transported into the blood, where it is 

distributed to the different organs. Once it has been absorbed, chromium (III) does not easily 

pass into cell membranes, but binds to transferrin (plasma protein which transport iron). 

In contrast, after Cr(VI) absorption, it travel quickly to erythrocytes where it is converted to 

Cr(III). Protein complexes of trivalent chromium are deposited mainly in the bone marrow, 

lungs, lymph nodes, spleen, kidney, and liver (USA EPA). 
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2.1.2.3 Excretion 

Inhaled particles containing elemental chromium can be retained in the lungs several years. 

Chromium excretion occurs mainly through the urine. In humans, kidney excretes 

approximately 60% of absorbed Cr(VI). Sedman et.al 2006, reported that the half-life for the 

excretion of potassium dichromate is about 35-40 hours. It is estimated that 10% of the 

absorbed dose of chromium is removed by biliary excretion and lower quantities are removed 

through hair, nails, milk, and sweat. As soon as the chromium was ingested with water and 

food, most Cr is eliminated with feces. 

2.1.3 Adverse effects  

The effects of chromium on human health mainly depend on the valence state at the time of 

exposure as well as its solubility. The most important toxicological forms are chromium (VI) and 

chromium (III) (Pyrzynska, 2012).  Hexavalent chromium compounds, strong oxidizing agents, 

tend to be corrosive and irritating pollutants. In addition, Cr(VI) species are considerably more 

toxic than chromium (III) compounds, if doses and solubility are similar. It is postulated that this 

different may be related to the easy manner that the hexavalent chromium cross through cell 

membranes and subsequent intracellular reduction to reactive intermediates (ATSDR, 2000; 

Klassen et al., 2008). 

 

 

 



 
 
 

 
    FACULTAD DE CIENCIAS QUÍMICAS 

 
 19 

 

 

2.1.3.1 Chromium (III) 

Trivalent chromium is an essential nutrient for the metabolism of sugar and fats, and enhances 

insulin action as part of the glucose tolerance factor. Chromium deficiency in the human body 

is not frequent, most cases are seen in undernourished or diabetic people. Chromium 

deficiency is characterized by glucose intolerance, hypercholestoremia, reduced longevity, 

reduced sperm count, fertility disorders, weight loss, reduced growth and nervous system 

dysfunction (García & Rangel, 2010; Miretzky et al., 2010). 

However, prolonged exposure to excessive quantities of chromium (III) can cause health risks, 

among them, human body can develop a higher sensibility to chromium causing skin redness 

and injuries (USA EPA). 

2.1.3.1 Chromium (VI) 

As above-mentioned, the most important toxic effects of chromium are mainly attributed to 

the hexavalent state. Chronical exposure of eyes to hexavalent chromium species is observed 

as conjunctivitis, tearing and pain. On the other hand, chromic acid and its salts are corrosive to 

skin and mucous membranes which can cause severe damage such as chronic ulceration and 

perforation of the nasal septum. The characteristic injury caused by a random dermal exposure 

to hexavalent chromium compounds is a sharp and deep ulcer that not ooze and its recovering 

is slow (ATSDR, 2000; WHO, 1996). 
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In addition, exposure to hexavalent chromium compounds can cause allergic reactions 

characterized by severe redness and edema of skin.  On the other hand, long occupational 

exposure of the respiratory system to high levels of Cr(VI) in inhaled air (more than 2 mg/m3) 

may cause irritation of nose, bleeding, ulcers, etc. (Klassen et al., 2008). 

Inhalation for short periods of small quantities of chromium (VI) into the air, does not cause 

adverse effects in most people, however, in allergic people to this metal, exposure to high 

concentration of chromium in air can trigger asthma attacks and other diseases like rhinitis, 

laryngitis, nosebleeds, nasal pain, pulmonary fibrosis, etc. (ATSDR, 2008). 

Ingestion of small quantities of hexavalent chromium has no adverse effects on the 

gastrointestinal tract. However, the accidental or intentional ingestion of large quantities of 

Cr(VI) causes an acute gastrointestinal pain with bloody vomiting, diarrhea, blood in the feces 

and can cause cardiovascular collapse. If the intoxicate person survives, subsequent effects 

may be liver and kidney necrosis and, perhaps death (Klassen et al., 2008; Demiral et al., 2008). 

Currently, occupational exposure to hexavalent chromium compounds, especially in the 

production of chromium and pigments industries, are associated with an increased risk of lung 

cancer, given that is considered as cancergenic and genotoxic compound (Miretzky et al. 2010; 

Saha et al., 2010). 
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Once hexavalent chromium enters to cells, it is reduced by various intracellular agents to give 

reactive species as trivalent chromium. During this reduction process, different genetic 

damages can be produced like damage to DNA structures. Reduction of Cr(VI) can also generate 

oxygen radicals, inhibits protein synthesis and stop DNA replication (WHO, 1996). 

O´Brien et al. (2003) reported that all these effects could play an integral function in the 

chromium carcinogenicity. Inhaled compounds of Cr(VI) can penetrate many body tissues and, 

therefore they have the potential to cause lung or cancer at different sites. Costa and Klein in 

2006 indicated that could be a close relationship among Cr(VI) and cancer of prostate, stomach, 

kidney, urinary system, and bones cancer. Similarly, Seedman et al. 2006 reported that there is 

a relationship between stomach cancer and hexavalent chromium present in drinking water 

(Klassen et al., 2008). 

2.1.4 Permissible limits: Water  

Because of the toxic effects of chromium, it is important to regulate the discharge of this 

pollutant in receiving water bodies. There are different agencies worldwide (namely WHO, EPA, 

SEMARNAT) responsible for establishing and enforcing environmental regulations. Mexican 

regulations establish that industrial waste effluents containing chromium are considered 

hazardous and must be disposed of or treated appropriately according to the norm NOM-052-

SEMARNAT-2005. 
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The table 4 shows the maximum permissible levels for chromium in effluent discharges into 

diverse water bodies according to the actual regulations. 

Table 4. Maximum permissible levels of chromium in water established by different regulations. 

Environmental regulation  

Maximum 

permissible limit 

(mg/L) 

Description 

NOM-001-SEMARNAT-1996  0.50 -  1.00 

Sets the maximum permissible levels of pollutants 

in discharges in sewage waters and national 

properties. 

NOM-002-SEMARNAT-1996 0.50 

Sets the maximum permissible levels of pollutants 

in discharges of wastewater to urban or municipal 

sewage systems. 

NOM-127-SSA1-1994 0.05 

Establishes the maximum permissible levels for 

drinking water and treatments that must be applied 

for such purpose water purification. 

WHO 0.05 Guidelines for drinking-water quality. 

EPA 0.10 
U.S EPA 40 CFR Parts 141, 142 and 143, National 

Primary Drinking Water Regulations.  

 

2.1.5 Technologies developed for removing chromium from water  

Different treatment technologies have been developed for the removal of chromium from 

wastewater, in order to comply with the maximum permissible limits according to the 

applicable regulation and to reduce the toxicological effects of chromium after effluent 

discharge in water bodies. 
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The most common methods of treating wastewater contaminated with heavy metals include 

chemical precipitation, ionic exchange, membrane separation, electrocoagulation, chemical 

reduction and/or oxidation, reverse osmosis, evaporation recovery processes as well as the 

adsorption processes, among others (Blázquez et al., 2009; Singha et al., 2011; Ertugay et al., 

2008). Table 5 shows a comparative study of conventional methods used for the removal of 

heavy metals from wastewater. 

Table 5. Methods for removing metal ions from wastewater (Farroq et al., 2010). 

Method Advantages Disadvantages 

Chemical precipitation 
 Simple 

 Inexpensive 

 Most metals can be removed  

 Large amounts of sludge is 
generated  

 Waste disposal problems 

Chemical coagulation  Sludge sedimentation 
 Dehydration  

 High cost  
 High consumption of 

chemical reagents  
Ionic exchange   Excellent regeneration of 

materials  

 Selective 

 Fewer ions removed  

 High capital costs  

Adsorption   

By activated carbon  
 Most of metals can be adsorbed  
 High efficiency (>99%) 

 Cost of activated carbon 
 Dependence on the type 

of adsorbent  
By  zeolites  Most of cationic metals can be 

adsorbed  

 Relatively less cost of materials 
 Low efficiency 

Ultrafiltration y 
Membrane processes  

 Lower production of solid waste  
 Lower consumption of chemical 

reagents  
 High efficiency (>95% for a single 

metal) 

 High initial capital and 
operating costs 

 Low flow rates  
 Percentage of removal 

decreases with the 
presence of other metals  
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The most frequently used method for control of discharges of Cr(VI), after a reduction 

processes, is the chemical precipitation method, but have disadvantages such as poor 

selectivity, continuous consumption of chemicals and sludge production increasing the total 

cost of disposal of solid waste (Kumar et al. 2011). 

In general, these treatment processes have considerable limitations such as incomplete metal 

removal, requirements for expensive equipment and monitoring systems, high reagent and 

energy requirements, and generation of toxic sludge or other waste product requiring final 

disposal (Ertugay et al., 2008). 

Furthermore, the ion exchange is a better way for the treatment of heavy metals containing 

effluents; however, ion exchange is not economically viable due to high cost of the polymeric 

resins compared to adsorption processes, in which the price of activated carbon in less than 

polymeric resins (Jung et al., 2013; Leyva, 2007). 

2.2 Adsorption processes  
 

The adsorption phenomenon is a mass transfer operation that allows the selective removal of a 

pollutant (adsorbate) present in a fluid (aqueous o gas) on a solid surface (adsorbent) that has a 

high affinity for the adsorbate (Metcalf & Eddy, 2004). 
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A number of adsorbent materials have been tried for metal ions removal including activated 

carbon, zeolites, activated alumina, synthetic polymers and silica gel among others, but the last 

three adsorbents are less common used in adsorption processes because of their high cost 

(Metcalf & Eddy, 2004). 

 Moreover, the adsorption is defined as the concentration or accumulation of a solute on the 

surface of a solid, caused by disequilibrium of the surface forces. On the other hand, adsorption 

can be defined as a process where atoms in a solid surface, attract or retain molecules of other 

compounds by electrostatic forces as depicted in Figure 5; these attraction forces are known as 

Van der Waals forces (Crittenden et al., 2005). 

 

Figure 5. Scheme of adsorption process by electrical forces. 

Taking into account that adsorption phenomenon occurs on the surface of the adsorbent, high 

surface area would enable the better performance of the adsorbent. Nevertheless, the 

adsorption process is also strongly influenced by the functional groups present in the 

adsorbent surface.  
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Other forces involved in the adsorption process are dipole-dipole and dipole-cuadropole 

interactions, London or van der Waals dispersion forces, covalent bonding and hydrogen bond 

formation as shown in Table 6 (Coneey, 1998;  Critteden et al., 2005). 

Table 6. Active forces in the three interfaces involved in the adsorption processes. 

Force 

Approximate 

Energy of 

Interaction, 

kJ/mole 

Interface 

Adsorbate/ 

adsorbent 

Adsorbate/ 

Water 

Water/ 

adsorbent 

Coulombic repulsion >42 Yes No No 

Coulombic attraction  >42 Yes No No 

Ionic species -  neutral species 

attraction 
 Yes No No 

Covalent bonding >42 Yes No No 

Dipole – Ion species  attraction <8 Yes Yes Yes 

Dipole –dipole attraction <8 Yes Yes Yes 

Dipole – Induced dipole attraction  <8 Yes Yes Yes 

Hydrogen bonding 8 – 42 Yes Yes Yes 

Van der Waal´s attraction  8 – 42 Yes Yes Yes 

 

Adsorption is classified depending on chemical or physical interaction type between the 

adsorbate and adsorbent surface. Physical adsorption is a reversible phenomenon which 

results from intermolecular forces of weak electrostatic attraction between complexes from 

solid surface and molecules of the adsorbate. The molecules do not adsorb on a specific site on 

the surface and they can move freely in the interfase.  
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This kind of adsorption occurs at low temperatures and is characterized by an exothermic heat 

very similar to condensation heat (Leyva, 2007; Bottaniand et al., 2008). Chemical adsorption is 

due to a chemical interaction between the specific surface complexes of the adsorbent and 

adsorbate molecules, typically occurs at high temperatures (> 200oC) and a high activation 

energy (10-100 Kcal/gmole); involves formation of chemical bonds and, generally, it is 

irreversible. Additionally, the adsorption heat is very high and similar to the heat of chemical 

reaction (Leyva, 2007; Cooney, 1998). 

Adsorption in liquid phase is caused by interactions between solute in solution and functional 

groups on the surface of the solid adsorbent. The main factors affecting adsorption are the 

following (Leyva, 2007; Metcalf & Eddy, 2004; Crittenden et al., 2005; Cooney, 1998): 

a) Texture properties of the adsorbent such as specific surface area, average pore 

diameter and pore volume, physical and chemical properties of the adsorbent such as 

surface charge distribution, which depends on the type and the quantity of functional 

groups on the adsorbent surface; and the chemical composition of the adsorbent, 

among others.  

b) The chemical and physical characteristics of the adsorbate, for example: molecule size, 

polarity, solubility, chemical composition and concentration of adsorbate in solution.  

c) The characteristics of the liquid phase, such as pH, temperature, ionic strength and 

polarity.  
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Adsorption has evolved as a cost effective method for removing chromium. Among the most 

commonly used adsorbents for removing chromium from aqueous solutions are activated 

carbon and polymeric resins. 

Activated carbon and polymer resins have a high capacity for removing metal ions from 

aqueous solution, and activated carbon present a superior chemical stability than other 

adsorbents materials (zeolites, metal oxides and biosorbentes such as chitin, chitosan, 

seaweed, etc.) (Fang et al., 2007). Special characteristics of activated carbon like high surface 

area, pore structure, high adsorption capacity, functional groups and high chemical stability 

make it a versatile adsorbent. In addition, saturated activated carbon can be regenerated and 

reused once again and the recovered pollutant can be return to the process where it was 

generated. 

Otherwise, it has been reported the use of metal oxides to remove Cr(VI) from aqueous effluents 

and they have shown to be highly efficient; however, this adsorbent cannot be used in continuous 

systems because of the high pressure drop in packed bed columns and, additionally, separation of 

metal oxide adsorbents used in batch systems is not easy due to the small particle size (Arrigo et 

al., (2010). 

More recent applications of metal oxides as adsorbents include anchorage of metal oxide 

particles in porous materials by different impregnation techniques, for example: chemical 

precipitation (Vitela et al., 2013), incipient wet impregnation (Kuo & Bembenek, 2008), synthesis 

processes in-situ and ex-situ (Cannon et al., 2008) as well as  forced hydrolysis processes (Sarkar 

et al. 2012). 



 
 
 

 
    FACULTAD DE CIENCIAS QUÍMICAS 

 
 29 

 

2.2.1 Activated alumina  

 

Activated alumina is a semi-crystalline inorganic porous material constituted essentially by 

aluminum oxide. It is a compound that present a high surface area, mechanical strength and 

amphoteric character, aluminum oxides are found in several crystalline forms. The principal 

phase of the activated alumina used as adsorbent is the gamma alumina (γ − Al2O3).  

Activated alumina is prepared from aluminum salts (Table 7) through many processes. It is very 

important to properly control the process of preparation and activation since the products of 

the reaction can be multiple in term of crystalline structure and adsorption capacity (Singha et 

al., 2011). 

Table 7. Salt of aluminum for the production of activated alumina (Naiya et al., 2009). 

Mineral name Chemical composition Crystallographic Designation 

Gibbsite Aluminum trihydroxide  𝛾- Al(OH)3 

Bayerite Aluminum trihydroxide  𝛼- Al(OH)3 

Nordstrandite Aluminum trihydroxide  Al(OH)3 

Boehmite Aluminum hydro(oxide) 𝛾-AlOOH 

Diaspore Aluminum hydro(oxide) 𝛼- AlOOH 

Pseudoboehmite Aluminum hydro(oxide) Al2O3(1.3-1.5)H2O 

Corundum Aluminum oxide 𝛼 - Al2O3 
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Activated alumina can be prepared by two methods: i) thermal dehydrolixation of aluminum 

hydroxides and ii) thermolysis at elevated temperatures of hydrated aluminum salts. 

Hydroxides and oxyhydroxides of aluminum are generally precursor substances to prepare 

activated alumina with a great adsorption capacity (Leyva, 2007). The basic method of 

preparation of γ − Al2O3 consist of a dehydration of hydrated aluminum oxides at relatively 

low temperatures (300 to 700oC).  

The values of specific area and diameter of pores of the activated alumina area are from 150 to 

500 m2/g and from 3 to 12 nm, respectively, and these depend on the preparation method. An 

elemental analysis of the activated alumina reveals that is constituted basically by aluminum 

oxide (Al2O3), and it can contain impurities like Na2O, Fe2O3 and SiO2 (Leyva, 2007). 

Activated alumina have a wide variety of industrial applications such as gas desiccant, catalysts 

support and catalyst in different chemical reactions (hydrodesulfuration, cracking, reforming 

and isomerization of hydrocarbons of petroleum, among others). In addition, activated alumina 

is a very effective adsorbent to remove certain trace elements present in gases and liquids. Due 

to the pHpzc of the activated alumina around 6.2 to 8.9, it is mainly employed for the removal of 

anions (arsenate [HAsO4
-2], fluoride [F-], phosphate [PO4

-3], and selenate [SeO4
-2]) present in 

aqueous solutions. The main applications of activated alumina are the removal of arsenate and 

fluoride anions from drinking water for human consumption (Swarupa et al., 2006; Tingzhi et 

al. 2008). 
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2.2.2 Polymeric resins  

 

Many macroreticular commercial polymers are based on synthetic polymers such as styrene 

and acrylic ester, among others. These polymeric matrices are characterized by the presence of 

functional groups that contain O, N, S and P (Figure 6) which are able to form complexes with 

metal ions. This special characteristic gives the polymeric resins properties of being used as ion 

exchangers (Pilsniak et al., 2007). Ion exchange resins are used for water treatment since they 

can be easily regenerated and the adsorbed chemical pollutants can be recovered. In some 

industrial fields, the polymeric resins are used because they can be designed for specific 

separations (Annesini et al., 2007).  

Particularly, ion exchange resins contain selective functional groups which are very useful to 

ion separation of noble metals from aqueous solutions (Pilniak et al., 2007). Currently, there is 

a raising interest in polymeric porous resins as especial adsorbent for the removal of volatile 

organic compounds from contaminated gas streams (Liu et al., 2009; Long et al., 2013). Table 8 

shows a comparison of the main adsorbents used to remove Cr(VI) from aqueous solutions. 

Table 8. Analysis of the main adsorbents used in the hexavalent chromium removal.  

Adsorbent pH % Removal Q (mg/g) Reference 

Activated alumina 2 97.44 - Bishnoi et al., 2004 

Granular activated alumina 4 99.00 7.44 Mor et al., 2007 

IRN77 resins 2.75 95.00 35.38 Rengeraj et al., 2001 

Amberlite resin 6.9 - 52 Bhatti et al., 2013 

Activated rice husk carbon 2 93.28 - Bishnoi et al. (2004) 

Activated charcoal 2 99.00 12.87 Mor et al. (2007) 
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Figure 6. Polymeric matrices and functional groups of ion exchange resins [García et al. (2009)].  
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2.2.3 Activated carbon  

 

Activated carbon (AC) is a material having a lattice crystal structure similar to graphite. It has a 

highly porous surface with small amounts of heteroatoms of oxygen, hydrogen and nitrogen 

which are chemically bonded. Carbon is the principal constituent of activated carbon making up 

between 85% and 95% in weight of the adsorbent material. Also, AC exhibits a wide range of pore 

sizes, classified as shown in Table 9, from visible cracks until openings of molecular dimension 

cracks [Bottaniand & Tascón (2008)]. 

Table 9.  Classification of pores size according to the IUPAC [Schultz et al. (1999)]. 

Type of pore Pore diameter, d (nm) 

Macropores 𝑑 > 50 

Mesoporos 2 ≤ 𝑑 ≤ 50 

Micropores 𝑑 < 2 

Ultramicropores 𝑑 < 0.7 

Supermicropores 0.7 ≤ 𝑑𝑜 ≤ 2 

Note: do is the pore width, for pore type slot; d is the diameter of pore, for cylindrical pores. 

Activated carbon is known as an effective adsorbent due to its high developed porosity, high 

surface area (up to 3000 m2/g), variable characteristics of chemical surface and a high degree of 

surface reactivity [Elizondo (2009)]. Currently, activated carbon is widely used as catalyst, 

catalytic support and adsorbent. Activated carbon as adsorbent can be used for the removal of a 

wide variety of species like organic substances, metal ions, and other pollutants in liquid or 

gaseous phase as well as it is used in purification and recovery of chemical species [Elizondo 

(2009), Dias et al. (2007)]. 

 



 
 
 

 
    FACULTAD DE CIENCIAS QUÍMICAS 

 
 34 

 

 

Activated carbon presents some advantages compared with other adsorbents such as silica, 

zeolites and porous polymers. Generally, activated carbons are cheap, heat and radiation 

resistant, stable in acid and basic solutions; they show good mechanical resistance, not expand 

or contract by effects of changes in pH and AC adsorbents are economically effective from the 

point of view that can be regenerated, while the silica are degraded at high pH values whereas 

zeolites are dissolved at acidic pH values and they are usually rather efficient and expensive in 

terms of regeneration because of its small size of pore structure. In addition, porous polymers 

structures show contractions or expansion by pH variation and the cost of these adsorbents is 

higher than activated carbons [Yang et al. (2007), Yue et al. (2009)]. 

Adsorption in aqueous phase of organic and inorganic compounds has been one of the most 

important applications of the activated carbon. Rivera-Utrilla et al. (2001) reported that about 

80% of total produced activated carbon is used in liquid phase applications. When activated 

carbon is contacted with an aqueous solution, an electric charge is released. This charge is result 

of the dissociation of functional groups attached to the surface of activated carbon or by ions 

adsorption from solution, and the electric charge strongly depends on pH of solution and 

adsorbent surface characteristic [Li et al. (2002)]. 

The central topic of ions adsorption in aqueous medium is the understanding of the mechanism 

by which ionic species begin to adhere onto carbon surface. There are three different 

mechanisms by which metal ions (or other ions) are removed from aqueous solutions [Dias et al. 

(2007)]. 
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The first mechanism is based on electrostatic interactions between adsorbate and adsorbent 

being totally dependent on the existence of functional groups on carbon surface, especially 

oxygenated surface complexes (ion exchange process). The second mechanism suggests an 

improvement in the potential for adsorption, as what happened due to the narrowness of 

microposority which can be strongly sufficient to adsorb and retain ions. The third mechanism is 

based on the concept of acid and bases, strong and weak, consequence of the amphoteric 

nature of the carbon surface [Elizondo (2009), Dias et al. (2007)]. 

Natural and synthetic precursors have been used for manufacturing activated carbon. 

Carbonaceous natural precursors consist of wood, coal, lignite, peat, coconut shells, rice husks, 

bones, sawdust, etc., while synthetic precursors include polymeric materials such as nylon, 

rayon, cellulose, phenolic resins, polyacrylonitrile resins, etc. [García et al. (2009)]. 

Activated carbon manufacturing begins with pyrolityc carbonization of raw precursor materials. 

During carbonization step many of the non-carbon elements (such as oxygen, hydrogen and 

nitrogen) are eliminated as volatile products in the pyrolitic decomposition of the precursor and 

the remaining residues promote the formation of graphite. Residual atoms of carbon are staked 

in a system of flat sheets of aromatic rings that are united randomly [Leyva (2007), Elizondo 

(2009)]. 
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This arrangement of sheets is irregular and therefore leave interstitial spaces between them. 

Pores are formed from these interstitial spaces. In the carbonization step, these spaces can be 

filled with tarred materials or products of pyrolysis and they can be blocked by free carbon 

atoms. At the same time or after carbonization, an activation step is required to develop a highly 

porous structure [Leyva (2007)]. 

Activation of carbon may be physical or chemical. Physical activation, is also called thermal 

activation, involves the carbonization at 500-600 °C to eliminate most of the volatile matter 

followed by a partial gasification between 800 °C and 1000 °C in the presence of an oxidizing gas 

(steam, carbon dioxide, air or a mixture of gases) to develop porosity and to increase surface 

area [Yang et al. (2007)]. 

Chemical activation involves the incorporation of inorganic additives, metal chlorides such as 

chloride of zinc or phosphoric acid in the precursor before carbonization, this process is 

performed generally at lower temperatures (400-600 °C) than physical activation. Chemical 

agents helping to develop porosity in activated carbons, mainly from dehydration and 

degradation of carbon surface [García et al. (2009)]. The best advantages of chemical activation 

are high performance, low activation temperature (less energy costs), less activation time, 

usually, develops a higher porosity, nonetheless has some disadvantages as additional cost for 

activate agents and an additional washing  step is also necessary  for removing residual chemical 

agents  [Elizondo (2009)]. 
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Characteristic of activated carbon depend strongly on both the precursor material as well as 

activation method (activation conditions and temperature employed), among other factors. 

Figure 7 depicts a scheme of chemical surface of activated carbon. 

 

 

Figure 7. Scheme of chemical surface of activated carbon [Arrigo et al. (2010)] 

 

On the surface of carbonaceous material, particular carbon atoms of the edge of the basal planes, 

can be found predominantly combined in greater or lesser proportion with others atoms different 

from carbon (heteroatoms), giving place to different surface groups. These activated carbon 

present functional groups that can be acid or basic depending on its behavior in solution. Most of 

them are oxygenated groups, due to the tendency of the carbons to be oxidized even at room 

temperature. Delocalized electrons of   orbitals play an important role in the surface chemistry 

of activated carbons [Sevilla (2012)]. 
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The surface of activated carbon is mainly non-polar, but its surface presents the interesting and 

advantageous feature to be easily modified by heteroatoms (oxygen, nitrogen, hydrogen, 

phosphorus, sulfur, etc.) [Mohd et al. (2010)]. 

Oxygen is the most important heteroatom which forms covalent bonds with carbon; however, 

carbon-oxygen bonds are less stables than carbon-hydrogen bonds. Chemisorbed groups that 

contain oxygen in the edges of the graphene layers (see Figure 8), give acid properties to 

activated carbon and allow the property of cation exchange. 

 

 
Figure 8. Chemisorbed acid groups on the edges of the layer of graphene [Leyva (2007)].  

 

 
Surface groups which carbon-oxygen bonds are quite important and have great influence on 

surface properties such as: wettability, polarity and acidity besides physicochemical properties 

such as catalytic, electrical and chemical reactivity.  
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It has been reported that carboxylic groups increase by chemical oxidation of activated carbon 

with nitric acid or activation of AC by air at high temperature. In both cases, oxidized AC improved 

the adsorption capacity of metal cations from aqueous solutions [Jaramillo et al. (2010)]. 

Nevertheless, an increment in the content of oxygenated functional groups can modify the porous 

carbon texture because they can block some of the micropores decreasing accessibility to porous 

network, while thermal treatment at high temperature eliminate surface functional groups and 

cause a collapse of the porous texture diminishing the volume of pores [Sevilla (2012)].  

Dissociation of acidic functional groups such as carboxylic, lactone and phenolic provoke a 

negative charge on the adsorbent surface as shown in Figure 9 [Yang et al. (2007)]. These ionized 

functional groups could adsorb positive charged metal cations or dyes from aqueous solutions. 

 
Figure 9. Dissociation of acidic functional groups on activated carbon [Leyva (2007)]. 
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Basic behavior of the activated carbon surface is usually caused by certain functional groups 

containing oxygen atoms such as pyrone, superoxide ions (O2
-) and also groups containing 

nitrogen including pyridine, quaternary ammonium, nitrogen oxides, nitriles, amines, amides, 

etc. [Mohd & Hossein (2010)] 

Some other oxygen containing groups like chromene and diketone (Figure 10) have been 

reported to contribute to the basic character of the activated carbon. On the other hand, 

non-polar surface of the activated carbon has basic properties originated from 𝜋  electrons of 

carbon rings. 

 

Figure 10. Possible basic groups in activated carbon [García et al. (2009)]. 

 

Nitrogen groups that are covalently bound to the activated carbon surface (Figure 11) remain 

at the AC surface after a thermal treatment at elevated temperatures (lower than 1200K). 
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Figure 11.  Types of nitrogen groups (a) and (d) amide groups, (b) tertiary amines, (c) lactams,    
(e) type pyridine – pyrrole, (f) nitriles [Mohd et al. (2010)].  

Some basic groups (Brönsted-Lowry bases) tend to attract protons when they are found in an acid 

medium. The behavior of basic groups can be used as adsorption sites of anionic species. Surface 

charge of an adsorbent depends on the quantity of acid and basic functional groups. The pH at the 

point of zero charge (pHPZC) from an adsorbent is acid when the concentration of acid sites is 

greater than that of the basic sites and vicerversa [Leyva (2007)]. 

When activated carbon acquires negative net surface charge, the cation species adsorption will be 

preferred, but anion pollutants adsorption is enhanced on positively-charged activated carbon. 

Taking into account that effluent pH values is not always an easy task and implies an increment in 

the total cost of water treatment, it is preferred to modify the surface chemistry of activated 

carbon to increase the pollutants adsorption [García et al. (2009)]. For these reasons, sometimes 

may be necessary to optimize the porous texture and/or incorporate functional groups on 

activated carbon surface retaining particles of interest [Yang et al. (2007)].  
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2.2.1.1 Activated carbon treatments  

Activated carbon is modified by several treatments to incorporate or eliminate functional 

groups, and to modify its chemical surface. When the surface of an adsorbent is modified, new 

functional groups are created on the AC surface and they change the physical and chemical 

properties of the adsorbent. In addition, these modifications provide thermal stability, and 

reactivity of the AC. It is important to mention that AC new features depend on the nature of 

the modified or attached surface groups [Zhao et al. (2005); Mohd et al. (2010)]. 

Oxidation process is mainly used to incorporate functional groups containing oxygen on the 

activated carbon surface.  It is believed that oxidation reactions probably occur in the aliphatic 

chains of the activated carbon surface or in peripheral carbon atoms because these sites are 

highly susceptible to be oxidized. Generally, oxidation increases the acid groups and decrease 

basic groups. However, Sayed et al. (2004) have been reported, as a strange case, a slight 

increment in basic functional groups as well as acid functional groups by chemical oxidation of 

AC with nitric acid because of incorporation of nitrogen and oxygen on the adsorbent surface. 

Oxidation of the activated carbon may be categorized into two methods: dry and wet 

oxidation. In Dry oxidation, the adsorbent is in contact with oxidizing gases such as steam, 

carbon dioxide, oxygen, ozone and usually takes place at elevated temperatures (greater that 

970 K). In wet oxidation, activated carbon reacts with a solution of oxidizing agents such as 

nitric, sulfuric or a mixture of acids, under moderate concentration and temperature conditions 

[Mohd et al. (2010), Rivera et al. (2011)]. 

 



 
 
 

 
    FACULTAD DE CIENCIAS QUÍMICAS 

 
 43 

 

 

Oxidation of activated carbon with air or oxygen can increase the ketone and phenolic groups, 

or hydroxyl and carbonyl groups. Similarly, it was reported that oxidation of AC by ozone keeps 

the adsorbent texture, but oxidation creates large quantities of carboxylic groups on AC 

surface. Nonetheless, ozonation treatment decreases the surface area and pore volume of 

activated carbon [Mohd et al. (2010), Valdés et al. (2011)]. 

Nitrogenation is another common treatment applied to the activated carbon to protect the 

environment by the removal of sulfur compounds, nitrogen oxides and carbon dioxide; in 

catalysis applications as catalyst or catalytic support; and in electrochemistry for the electrodes 

manufacturing, cells and batteries [Rivera et al. (2011)]. Nitrogenation of activated carbon 

increases its basicity which is strictly required in adsorption and catalytic processes. This 

treatment significantly increases the surface polarity and therefore, specific interactions with 

polar adsorbates are possible [Saleh et al. (2011)]. 

Ammonia have been used to incorporate nitrogen atoms in activated carbon,  before or after 

oxidation with nitric acid (amination) or a mixture of gases of air – NH3 (ammoxidation). In 

addition, HCN, HNO3, urea, diocyanoamine, melanin, polyaniline have been used for 

nitrogenation of activated carbon. Depending on the used reagent, the nitrogenation 

treatment can be performed in gas (ammonia, cyanuric acid, amines) or liquid phase (nitric 

acid, urea) [Rivera et al. (2011), Saleh et al. (2011)]  
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Generally, nitrogenation process consist of one or two consecutive stages in which the 

activated carbon is oxidized first in liquid phase and later nitrogen is added to AC in liquid or 

gas phase [Rivera et al. (2011)]. It has reported ammonia treatment develops surface area and 

microporosity of AC. As a consequence of this treatment, nitrogen containing functional groups 

are covalently bound to the activated carbon surface. Moreover as a consequence of the 

nitrogenation gets forming nitrogenized functional groups on the activated carbon surface. 

Table 10 shows several treatments for binding specific functional groups on activated carbon. 

Table 10. Treatments applied to modify activated carbon chemistry surface. 

Treatment Modification Reference 

Oxidation   

HNO3 Increase of acid and basic groups. Sayed et.al. (2004) 

H2O2 Increased surface area and surface 

oxygenated groups. 

Domingo et.al. (2000) 

Air Increase in phenolic and ketone groups. Figuereido et.al. (2000) 

Ozone Increase of carboxylic groups, decreases 

surface area and pore volume. 

Jaramillo et.al. (2002) 

Heating under 

hydrogen atmosphere 

Decomposition of oxygenated groups, 

increase in basicity. 

Agulai et.al. (2003) 

Bandosz et.al. (2006) 

Ríos et.al. (2007) 

Nitrogenation   

NH3 Increase of amine, nitriles, pyridines, and 

amines, lactams, and imides groups. 

Vinke et.al. (1994) 

Biniak et.al. (1997) 

Abe et.al. (2000) 

Przepiórski et.al. (2004) 

Przepiórski et.al. (2006) 

HCN Increase of amine and nitrile groups. Stöhr et.al. (1991) 

Jansen & Bekkam (1994) 

Urea Increase of pyridine, pyrroles, N 

quaternary. 

Bashkova et.al. (2003) 

Stavropoulos et.al. (2008) 
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Table 10. Treatments applied to modify activated carbon chemistry surface (continued). 

Treatment Modification Reference 

Sulfuration   

H2S Increase of the content of sulfur, slight 

decrease in pore volume. 

Feng et.al. (2006) 

SO2 Decrease in surface area (BET), increase 

in the average diameter of pore, 

formation of bonds C=S. 

Tajar et.al. (2009) 

 

Na2S Decreases the surface area, increase the 

content of sulfur about 7.3% in weight, 

formation of bonds C=S, S=O, S-S. 

Valenzuela et.al. (1990) 

 

2.3 Forced Hydrolysis  

Metal oxides and hydroxides (e.g. iron, zirconium, titanium, manganese, aluminum, etc.) have 

been tried as adsorbents and researchers have reported high efficiencies towards anionic 

species from aqueous solutions [Beker at al. (2010), Nieto et al. (2012)].  

Due to the high adsorption capacity, availability and low cost, iron hydro (oxide) have been 

widely used. Some researchers have synthetized with success granular ferric oxides (GFO) with 

surfaces around 250 m2/g; however, there are some disadvantages for its applications 

adsorbent, for instance: the mechanical resistance of GFO must be improved; high pressure 

drops are reached when GFO are packed in columns and loss of adsorbent is possible in 

continuous operation. On the other hand, if GFO are used in batch operations, the adsorbent 

recovering is not an easy task [Music et al. (2004), Arcibar et al. (2012)].  
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An interesting option to overcome these shortcomings is the anchorage of metal hydro (oxides) 

on the activated carbon surface. Methodologies used for anchoring metal oxides particles on 

activated carbon include evaporation of iron salt in presence of the support, incipient wetness 

impregnation at room temperature using aqueous or organic solutions; iron precipitation with 

alkali solutions as well as forced hydrolysis processes of ferric salts.  

Iron particles impregnation techniques allow the formation of iron hydro(oxides) nanocrystals 

on the activated carbons and these anchored particles increased the adsorption capacity of 

anion species such as hexavalent chromium [Nieto et al. (2012), Arcibar et al. (2012)]. 

Synthesis of iron oxides nanoparticles is widely described in literature. However, most of these 

techniques require voluminous chemical products such as tensoactives, chelating agents, and 

organometallic compounds which have a low level of diffusion in the pores of the activated 

carbon. Nevertheless, among the other options, forced hydrolysis (also called thermal 

hydrolysis) is a simple route that allows the synthesis of iron hydro(oxide) nanoparticles inside 

the pores of the activated carbon without the use of additional chemical products [Shultz et al. 

(1999), Music et al. (2004), Wang et al. (2008), Muñiz et al. (2009)].  
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In forced hydrolysis a metal cation in solution is heated promoting the metal ions 

agglomeration until the formation of a solid phase on the support. Depending on the 

experimental conditions for forced hydrolysis (temperature, metal concentration, time of 

hydrolysis, pH, mass/volume ratio, etc.), crystalline phases and the particle size are formed on 

the porous support material (Figure 12). If the iron hydrolysis is carried out in the external 

surface of the activated carbon, it is expected that certain quantity of the iron hydro (oxides) 

particles will link to the activated carbon surface [Shultz et al. (1999), Wang et al. (2008)]. 

 

 

Figure 12. Pathway for the synthesis of iron hydro (oxides) nanoparticles by forced hydrolysis 
[Shultz et al. (1999)]  
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Recent studies have used the method of forced hydrolysis to bind iron oxides particles on the 

activated carbon surface; however, the influence of functional groups of the activated carbon  

to anchoring iron oxides nanoparticles by forced hydrolysis have not been studied as well as its 

potential use as adsorbent for the removal of hexavalent chromium from aqueous solutions. 

 

2.4 Motivation of this research 
 

The use of activated carbon as adsorbent of metal cation pollutants in water is the preferred 

method when these pollutants are present at trace concentrations levels. On the other hand, 

metals oxides have a high adsorption capacity of anionic species, but they are used only once 

and they are not totally recovered from the treated effluent limiting its application in real 

systems because of the increment in operation cost of the process. 

According to the above-mentioned reason, to immobilize iron nanoparticles onto activated 

carbon is of great interest because it will allow regenerating the saturated adsorbent, to reuse 

the regenerated adsorbent and to recover the adsorbate to perform the adsorption process as 

an attractive economically alternative. Additionally, it is possible to reduce the environmental 

impact of pollutants into receiving aquatic streams and, at the same time complying with the 

federal regulations about the maximum permissible levels of pollutants. 
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2.5 Hypothesis 
 

The activated carbon functional groups allow anchoring iron hydro(oxides) particles in the 

adsorbent surface by forced hydrolysis and dispersed particles increases the Cr(VI) adsorption 

capacity greater than commercial activated carbon. 

2.6 Objectives 

2.6.1 General Objective 

To evaluate the effect of activated carbon functional groups on the anchoring of iron hydro(oxides) 

particles by forced hydrolysis and to determine its potential use for the removal of hexavalent chromium 

from aqueous solutions. 

2.6.2 Specific objectives  

 

 To modify the activated carbon functional groups by chemical and thermal treatments. 

 To anchoring iron hydro(oxides) particles on raw and modified activated carbon by 

forced hydrolysis. 

 To characterize the raw, modified and impregnated activated carbons by instrumental 

(FTIR, SEM, XRD, N2 physisorption) and conventional (Boehm titrations) techniques. 

 To conduct adsorption-desorption experiments of Cr (VI) in batch systems using the 

raw, modified, and impregnated activated carbons. 

 To carry out experiments adsorption kinetics of Cr(VI) in batch system with the selected 

adsorbents.
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3.1 Techniques used to characterize the activated carbon 

3.1.1 Boehm titration method 

Traditionally called “Boehm titration” have been used as chemical method to identify 

oxygenated surface groups on carbon materials. Boehm titration acts over the principle which 

the oxygenated groups of the activated carbon surface have different acidity and they can be 

neutralized with different bases. Sodium hydroxide (NaOH) is the strongest base generally 

used, and it is used to neutralize all Brönsted acids (including phenols, lactone and carboxylic 

acid groups), whereas the use of sodium carbonate (Na2CO3) neutralize lactone and carboxylic 

groups (lactol and lactone rings), and sodium bicarbonate (NaHCO3) solution neutralizes 

carboxylic acids groups. The difference among the neutralization of the bases may be used to 

identify and quantify the types of oxygenated surface groups present in the sample of activated 

carbon.  

For applying the Boehm method, some factors have to be taken into account, for example: the 

mass of carbon and reaction base ratio, stirring time, CO2 expulsion method from solutions, 

and titration method for the determination of the equivalence point [Boehm (2002)]. 

It was reported that CO2 expulsion is conducted through boiling (or reflux), degasification with 

N2 during the reaction and titration, complete titration under a N2 atmosphere, or by 

subtracting the value obtained from the titration of a blank (without carbon) of the sample 

results [Kim et al. (2009), Kalijadis et al. (2011)]. 
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In determining the equivalence point, several methods can be used, for instance: indicators 

such as phenolphthalein, methyl red and blue methylene or pH measurements of “one point” 

(titration is performed until the value of pH 7 is reached). Most of the experimental works have 

reported the use of a blank in titrations. This issue removes dissimilarities which can be 

achieved due to differences in the functional groups of the activated carbon as well as 

properties as wettability or origin of itself [Goertzen et al. (2010)]. 

3.1.1.1 Boehm titration procedure 

 

The general titration procedure is based on the method described by Boehm. A mass of 100 mg 

of activated carbon was added to 25 mL of one of the three bases of reaction with 

concentration 0.1 N: NaHCO3, Na2CO3, and NaOH. The samples were stirred for a week at 25oC 

and after stirring the samples were filtrated to remove the activated carbon. Finally, aliquots of 

10 mL from were withdrawn the filtrated samples, and they were titrated directly with 0.1 N 

HCl [Goertzen et al. (2010)]. 

A similar procedure was performed to determine total basic groups, but an activated carbon 

mass (100 mg) was added to 25 mL of 0.1 N HCl. The samples were shaken for a week at 25oC, 

filtered to separate the activated carbon and subsequently the filtrate aliquots were titrated 

with 0.1N NaOH [Bagreev et al. (2004)]. 
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(3.2) 

 

3.1.1.2 Determining the quantity of surface functional groups 

The equations used to determine the quantity of surface functional groups depend on the 

titration method: back-titration or direct titration. For a back-titration, the quantity of acid 

functional groups is estimated: 

[HCl]VHCl = [NaOH]VNaOH + (
𝑛𝐻𝐶𝑙

𝑛𝐵
[B]VB − 𝑛CFS)

Va

VB
 

𝑛𝐶𝑆𝐹 =
𝑛𝐻𝐶𝑙

𝑛𝐵

[B]VB − ([HCl]VHCl − [NaOH]VNaOH)
VB

Va
 

Where [B] and VB are the concentration and volume of base of reaction mixed with the 

activated carbon, and  𝑛𝐻𝐶𝑙  , 𝑛𝐵 indicate the moles available of acid and base in the 

neutralization reaction, respectively. These data allow to obtain the number of moles of the 

base of reaction which were available to react with the functional groups of the activated 

carbon. The parameter  𝑛𝐶𝑆𝐹 indicates the moles of functional groups of activated carbon that 

reacted with the base during the stirred stage. Va is the volume of the aliquot which was taken 

from VB, [HCl] and VHCl are the concentration and volume of acid added to the aliquot of the 

original sample. 

This parameter (𝑛𝐶𝑆𝐹) provides the numbers of equivalents added to the aliquot, and available 

to react with the remaining base. The moles of the remaining acid are then determine by 

titration using a certain volume (VNaOH) of known concentration ([NaOH]). In this way, through 

the knowledge of the remaining moles of the acid, and according to the difference of the used 

bases of reaction, the acid groups of the activated carbon can be quantified [Hu et al. (2001), 

Wang et al. (2009)]. 

(3.1) 
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When NaOH is used in Boehm titration and directly titrated with HCl, the following equation is 

used: 

𝑛CSF = [B]VB − [HCl]VHCl

VB

Va
 

The amount of different possible surface groups (phenols, lactones, carboxylic) are quantified 

by the difference in the estimated quantity of the reacted equivalents from the different bases 

(𝑛CSF). Equivalents of NaOH reacts with all surface acid groups; therefore, the value 𝑛CSF will 

include all surface acid groups. Because the solutions of Na2CO3 reacts with carboxylic and 

lactones groups, the difference between the values 𝑛CSF from NaOH and  𝑛CSF from Na2CO3 is 

equivalent to the quantity of phenolic functional groups on the activated carbon surface.  

Similarly, NaHCO3 solution reacts only with carboxylic groups (for this reason, it provides a 

direct measurement of carboxylic groups) and the difference between Na2CO3 and NaHCO3 is 

the number of lactone functional groups on activated carbon. For blank solutions (without 

activated carbon) 𝑛CSF must be equal to zero, because there are not adsorbent particles 

present in the solution and, therefore, no functional groups which react with the base 

equivalents [Kim et al. (2009)]. 
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3.1.2 Elemental Analysis 

 

Elemental composition (carbon, hydrogen, nitrogen, and sulfur) for the synthetized adsorbent 

materials was conducted in an elemental analyzer equipment (Permin Elmer 2400) and 

Thermogravimetric analysis (TA Instrument, Model SDT2960) in oxidizing atmosphere for 

determining the ash content for a complete characterization of the activated carbon. Oxygen 

percentage was obtained by difference of initial mass sample and the sum of the all 

determinated elements plus ash content. 

3.1.3 Fourier Transform Infrared Spectrometry (FT-IR) 

 

Infrared spectrometry is a very versatile tool that is applied for qualitative determination of 

molecular species. The applications of the infrared spectrometry are divided in three 

categories: near, middle, and far infrared. The most commonly used region is by far the mid-

infrared categories which are extended from about 650 to 4,000 cm-1, being the main tool for 

the determination of organic and biochemical species [Silverstein et al. (2005)]. 

The use of the Fourier transform for the processing of the obtained data from infrared 

spectrometry has been widely used, because it offers a signal/noise ratio which exceeds that of 

the dispersive instruments in more than one order of magnitude, also it is characterized by high 

resolutions (<0.1 cm-1), and highly accuracy and reproducibility for the determination of the 

frequencies [Skoog (2001)].  
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Infrared analysis was performed in agreement after drying and pulverizing activated carbon 

samples at 100oC during 24 h. The FT-IR spectra of the samples were recorded over an interval 

of 400 a 4000 cm-1 with a total of 50 measurements (Spectrum-one Perkin Elmer). 

3.1.5 Nitrogen physisorption studies   

 

The textural properties of the activated carbon are of great relevance in order to understand if 

adsorbates can diffuse through the activated carbon pores. The use of nitrogen at low 

temperature (77.4 K) have been traditionally proposed as a probe molecule for the 

determination of major textural parameters such as specific surface area, micropores volume, 

and so on, after the application of the corresponding  mathematic models [Silvestre et al. 

2012]. 

To determine the specific surface area, pore volume and average diameter of porous it is 

required a physisorption equipment (Quantachrome Instruments, Autosorb-1). The basis of this 

equipment is the gas (N2, Argon, or CO2) adsorption method. The specific surface area analysis 

is obtained by the theory of Brunauer, Emmett y Teller (BET). The BET theory is based on the 

formation of multilayers and supposes that the adsorption heat of the monolayer is different 

from the rest of the other layers, which have the same adsorption heat.  
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(3.5) 

(3.4) 

 

 

 

To estimate the amount of the necessary adsorbed gas to the formation of a monolayer (Vm) is 

required the use of the following equation [Sing et al. (1985), Brunauer et al. (1938)]: 

 

P

V(P0 − P)
=

1

Vmc
+

c − 1

Vmc

p

p0
  

 
 

 

c = exp {
ε1 − ε2

RT
}  

Where:  

P Pressure of N2 in equilibrium with the adsorbed gas in the adsorbent, atm. 

P0 Saturation pressure of N2 at the experimental temperature, atm. 

V  Volume of adsorbed N2 referred at standard pressure and temperature, m3. 

Vm Volume of adsorbed N2 referred at standard pressure and temperature which is 

required to form a monolayer on the adsorbent surface, m3. 

ε1 Adsorption  heat of the first layer of N2, cal/mole. 

ε2 Condensation heat of N2, cal/mole. 

R  Ideal gas constant, cm3-atm/mole-K 

T  Absolute temperature, K. 
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(3.7) 

(3.6) 

 
 
 
 
The specific surface area (S) of the material (BET area) is obtained once the volume of the 

adsorbed gas on the monolayer (Vm) is known, as the following equation [Brunauer et al. 

(1938)]: 

S = (
PsVmc

RT0
) NSN2

 

Where: 

N Avogadro´s number, 6.023 x 1023 molecules/mole. 

Ps Standard pressure, 1 atm. 

S Specific area of the adsorbent, nm2. 

SN2  Projected area which occupy a molecule of N2, 16 nm2/molecule.  

T0  Standard temperature, 273.15 K. 

 

The pores size distribution is performed in accordance with the method developed by Barret, 

Joyner and Halena (BJH method), 1951. Most specifically, the method of Dubinin-Radushkevich 

(DR) allows to obtain the value of micropores volume [Nguyen & Do (2001)]: 

W = W0 exp (−
K

β2(RTln(P P0⁄ ))
2) 

Where:  

W Adsorbed volume to each relative pressure 

W0  Volume of pores  

K Constant dependent on the structure  

B Affinity coefficient 
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Experimental N2 physisorption data were obtained as follows: the sample holder of the 

equipment is closed with a filter seal, this holder is placed in the degasification port, and 

vacuum is applied until obtaining a pressure less than 100 μm Hg. Subsequently, sample holder 

was removed, weighed and activated carbon sample (approximately 120 mg) was placed at the 

sample holder. 

After that, the sample holder was weighed and placed in the degassing port. The sample was 

degassed at 105oC until reach a vacuum less than 100 μm de Hg. Next, the sample holder 

containing the activated carbon was removed from the degassing port, it was weighted and the 

weight of the sample was calculated by difference. Finally, the sample holder was placed at the 

test port of the equipment and the analysis was carried out automatically. 

 

3.2 Techniques to determine metal species 

3.2.1 Hexavalent chromium determination 

The determination of Cr(VI) was performed  as described in the Mexican Norm NMX-AA-044-

SCFI-2001, which is based primarily on a qualitative technique at one the principles of 

colorimetry, followed by UV-visible spectroscopy at 540 nm. 
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(3.8) 

 

3.2.1.1 Colorimetry 

 

The colorimetric method is useful for the determination of hexavalent chromium in natural or 

treated water in a concentration range of 100 to 1000 μg/L. The principle of this method is 

based on a oxidation-reduction reaction, where the hexavalent chromium (Cr6+) reacts with 1,5-

diphenylcarbazide in acid solutions to give Cr3+ and 1,5-diphenylcarbazone according to the 

following reaction [Clesceri et al. (1995), Dionex (1996)] 

2CrO4
2− + 3H4L + 8H+ → Cr3+(HL)2 + Cr3+ + H2L + 8H2O 

Where: 

H4L = 1,5-diphenylcarbazide 

H2L = 1,5-diphenylcarbazone 

 

This reaction seems to be the simultaneous oxidation of the dipheylcarbazide to 

diphenylcarbazone, reduction of Cr(VI) to Cr(III), and the chelation of Cr(III) by 

diphenylcarbazone. 

The actual chelate structure is unknown, but it is identified by visible absorbance using a 

photometric detector. To determine initial and final hexavalent chromium from aqueous 

solutions, aliquots were taken according the Cr(VI) content content and the calibration curve 

range  (0.1 – 1 mg/L). 
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Afterwards, aliquots were transferred to volumetric flasks, and they were filled up to 50 mL 

with added 0.1 N sulfuric acid. Next, one ml of diphenylcarbazide solution (5 mg/mL) was 

added to each flask and they were stirred vigorously for one minute. Finally, samples were 

allowed to stand for 10 min for developing the red-violet color completely and the sample 

absorbance was measured at 540 nm using a spectrophotometer. 

3.2.1.2 Ultraviolet-visible spectroscopy 

 

Absorbance measurements, at both ultraviolet and visible radiation, have a wide application 

for identifying and determining inorganic and organic species. The UV-Vis spectroscopy is the 

an adequate technique for quantifying the Cr(VI) concentration in solution. The red-violet 

complex, a product formed during the redox reaction between Cr(VI) and 1,5-

diphenylcarbazide, can be determined in an UV-Vis spectrophotometer at a wavelength of 540 

nm by using a calibration curve. 

Firstly, a calibration curve was constructed by measuring at least 5 volume of stock solution 

(5.0 μg of Cr(VI)/mL) approximately between 2.0 mL and 20.0 mL for standards in the range of 

10 μg to 100 μg of Cr(VI) or a concentration range of 0.1 to 1 mg/L of Cr(VI). 

Next, the procedure for color development of sample was followed. Aliquots of each standard 

were transferred to absorption cells of 1 cm and their absorbance was measured at 540 nm in a 

spectrophotometer (GENESYS 10s UV-Vis Spectrophotometer). 
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(3.9) 

(3.10) 

 

 

Calibration solutions were measured starting with the lowest concentration. Finally, a 

calibration curve was constructed by plotting the read absorbance vs mg/L de Cr(VI). 

Before sample analysis, sample must be as clear as possible, and the colorimetric procedure of 

diphenylcarbazide is performed. Then, the spectrophotometer was adjusted with a blank 

(water with diphenylcarbazide) to zero and the sample absorbance was measured at 540 nm. 

Finally, absorbance measurements were recorded and the mg/L of Cr(VI) present in the sample 

were determined directly from the calibration curve as follows: 

X =
Y − b

m
 

Where: 

m Slope of the calibration fitting curve 

b Y intercept of the calibration fitting curve 

Y Absorbance of sample at 540 nm 

X Sample concentration of Cr(VI), mg/L. 

 

The concentration of the analyzed samples (in mg of Cr(VI/ L) was calculated with the following 

equation: 

mg Cr L⁄ =  
mg/L Cr(obtained from the calibration curve)

A (mL of original sample)
∗ 𝐷𝐹 

Where DF represent the dilution factor used to analyze the hexavalent chromium. 
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3.2.2 Total Chromium determination  

3.2.2.1 Atomic Absorption Spectrometry  

 

Atomic absorption spectrometry (AAS) constitutes a sensible test for the quantitative 

determination of more than 60 metal or metalloid elements. The method to determine metals 

in natural,  drinking and wastewaters by AAS  is based on the generation of atoms in the basal 

state and measurement of the amount of absorbed energy by them, which it is directly 

proportional to the concentration of that element in the analyzed sample [Beaty (1993)]. 

The experimental procedure for total chromium determination was developed as indicated in 

the Mexican Norm NMX-AA-051-SCFI-2001. In brief, five standards of chromium (25 mL) were 

prepared in a concentration range of 0 to 20 mg/L by using a certified standard to perform the 

calibration curve for subsequent samples analysis by atomic absorption spectrometer (Thermo 

Jarrell Ash, Model MSCAN1). 

Samples of chromium in solution were aspirated and atomized into air/acetylene flame; a 

monochromatic electromagnetic radiation (𝜆 = 359.3 nm) passed directly into the flame and 

the atomized sample, then a detector measured the amount of light absorbed by the atomized 

chromium. The quantity of absorbed energy is proportional to the quantity of chromium in 

sample and it was determined from the calibration curve. 
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3.2.3 Trivalent chromium determination  

 

The quantity of trivalent chromium (Cr3+) was determined by the difference between the total 

chromium (obtained by atomic absorption) and the hexavalent chromium (estimated by 

ultraviolet-visible spectroscopy) as shown in Equation 3.11. Trivalent chromium, is an 

important parameter to analyze and to determine if the hexavalent chromium was reduced 

during the adsorption process, and it helps to suggest a mechanism based on adsorption/ 

reduction [López et al. (2012)]. 

μg Cr3+ =  μg Cr0(Atomic absorption)  −  μg Cr6+(Uv − vis) 
 

3.2.4 Iron determination 

3.2.4.1 Atomic absorption spectrometry (AAS) 

 

The content of iron was determined after an acid digestion of the iron-loaded activated 

carbons. A sample of activated carbon (200 mg) was powdered and placed in a 50 mL plastic 

capped tube and 25 mL of a solution of HNO3/H2SO4 or HCl/H2SO4 (5:1 v/v ratio) was added. 

Flask was capped and remained in constant stirring for 24 h. The activated carbon was 

separated from the solution by filtration. The iron concentration of the filtrated was obtained 

by atomic absorption spectrometry (Thermo Jarrell, Model MSCAN1) at a wavelength of 248.3 

nm. 
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3.3 Modifications of commercial activated carbon 

3.3.1 Oxidation Treatment 

The activated carbon was modified in acid medium as follows: 5 grams of activated carbon 

were placed in a distillation flask with 3 necks containing 150 mL of HNO3. The adsorbent 

material was oxidized with solutions of 10, 20 and 40% v/v from concentrated nitric acid (min. 

68% - max. 71%). A condenser was connected to this flask in the central neck and a 

thermometer in the other neck. The mixture was heated to the boiling point (68 - 70oC) and 

suspension was refluxed for 2 hour. After the oxidation period, the system was allowed at 

room temperature. Subsequently, the remaining acid was removed from the flask and the 

adsorbent material was recovered by filtration with glass filters. The oxidized activated carbon 

was washed several times with deionized water or 0.01 N NaOH solutions until the mixture 

adsorbent-water reached a neutral pH. Finally, modified activated carbon was dried in an oven 

at 100oC for 24 hours [Andrade et al. (2007)]. 

3.3.2 Thermal Treatment 

 

The removal of carboxylic groups on the surface of the activated carbon by a heat treatment 

has been widely reported, resulting in a decrease in the quantity of acid sites (essentially 

carboxylic and lactones groups) and an increment of basic sites cause by the formation of 

pyrone structures.  
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The procedure for carrying out this modification of the activated carbon is mentioned 

below: The thermal process was conducted under a nitrogen flow (60 cm3/min) and it was 

started by heating, a sample of 100 mg of activated carbon, from room temperature to a 

selected temperature (800, 900oC) at a heating rate of 10oC/min. Samples were maintained 

at constant temperature (800, 900oC) for 2 h.  Afterwards, the system was cooled under 

nitrogen flow (60 cm3/min) until room temperature.  

3.3.3 Nitrogen treatment  

 

The incorporation of nitrogen containing groups on the activated carbon surface was 

performed by a treatment with concentrated ammonium hydroxide. Activated carbon (5 

mg/mL ratio) was placed in a sealed vessel with concentrated ammonium hydroxide, 

continuously stirred at 150 rpm for 24 h. Next, the suspension was filtered into a fume 

hood, and the modified activated carbon was dried at 100oC for 24 h, in order to react the 

remaining ammonium hydroxide present in the sample [Wibowo et al. (2007), Mangun et 

al. (2001)]. 
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3.3.4 Forced hydrolysis 

The granular activated carbon was modified with iron hydro (oxides) particles by forced 

hydrolysis using FeCl3 ∙ 6 H2O  solutions as follows:  A sample (1000 mg) of activated carbon 

was placed in a glass vessel containing 50 ml of distilled water at a temperature of 100oC for 5 

min, to remove air bubbles from pores, to moisten the adsorbent material and to promote the 

diffusion of iron particles inside the activated carbon pores, ultimately the solution was cooled 

at room temperature. The wet activated carbon was placed in 200 mL of 1 mM FeCl3 at pH 1 

adjusted with sulfuric acid.  

This suspension was heated at 60oC and 200 rpm for 1.5 hours. After heating, samples were 

washed with distilled water to remove all iron from the outer surface of the activated carbon. 

Finally the iron loaded adsorbent was dried at 100oC for 24 h. 

3.4 Adsorption and desorption of chromium by activated carbon 
 

Adsorption isotherms of the activated carbon provide important information to determine the 

adsorption capacity of the adsorbent material as well as to obtain models and kinetic 

parameters which play a key role for designing and comparison purposes. However, desorption 

studies are essential to regenerate the activated carbon for its subsequent use and to recover 

the adsorbate for final disposal, treatment or re-use. 
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3.4.1 Equilibrium adsorption studies 

 

A mass of activated carbon (m = 50 mg) was added to a volume (V = 25 mL) of Cr(VI) solutions 

which initial concentration (Co) varied from 10 to 500 mg/L. These suspensions were adjusted 

to pH 6 with 0.1 N HCl or NaOH as required, and these experiments were continuously stirred 

at 200 rpm for 7 days at 25oC.  Once the equilibrium was achieved, the final pH was measured 

and the activated carbon was separated by filtration and aliquots were taken from the filtrate 

to determine the Cr(VI) concentration. The equilibrium concentration (Ce) was determined by 

the colorimetric method coupled with UV-Vis spectroscopy [Gupta el al. (2010), Kobya (2004); 

Terzyk (2001)]. The adsorption capacity at equilibrium (qe) of the activated carbon was then 

determined with the following equation: 

qe =
V(Co − Ce)

m
 

Equilibrium data was used to calculate the parameters of the adsorption isotherms models and 

they are shown in Table 11. 

Table 11. Adsorption isotherm models [Verma et al. (2006)]. 

Model Equation 

Langmuir 
qe =

qmkLCe

1 + kLCe
 

Freundlich qe = kFCe
1/n

 

Dubinin –

Raduskevich 
qe = qm exp(−𝐵𝑒2) 

Temkin qe = B1 ln(𝑘𝑇𝐶𝑒) 
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3.4.2 Adsorption kinetics of metals 

Adsorption kinetics of hexavalent chromium provide important data that can be used for 

modeling of continuous flow packed bed adsorbers. The adsorption tests were performed in a 

basket-typed reactor at room temperature. A know mass of activated carbon (1000 mg) was 

added to 1L of solution with 30 ppm of Cr(VI) at pH 6. The reactor stirred at 400 rpm and the 

pH value of the solution was only continuously recorded and the selected interval of time, 

aliquots were taken for determining hexavalent and total chromium by the colorimetry method 

coupled to UV-Vis spectroscopy and atomic absorption spectroscopy, respectively. 

3.4.3.1 Empirical models 

 

The adsorption kinetics of several metals have been predicted by using various proposed 

empirical models (Table 12), such  models can provide important information in agreement 

with the theoretical basis on which they were developed. 

Table 12. Empirical models of adsorption kinetics [Mittal et al. (2006)]. 

Kinetic model Equation 

First order qt = qe − exp(𝑘1𝑡) 

Pseudo-first order qt = qe[1 − exp(−k1t)] 

Second order 𝑞𝑡 =
𝑞𝑒

1 + 𝑞𝑒𝑘2𝑡
 

Pseudo- second order 𝑞𝑡 =
𝑘2𝑞𝑒

2𝑡

1 + 𝑘2𝑞𝑒𝑡
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3.4.3.2 Diffusive models 

Just a few researchers have reported studies using diffusion models predicting the adsorption 

kinetics of metals in lignocellulosic materials and activated carbon, some of these models are 

shown in Table 13. The mass transfer phenomenon is vital in the adsorption process, as a 

result, it cannot be omitted when analyzing the adsorption kinetics. 

However, the kinetic processes are mostly controlled by the diffusion in aqueous phase or by 

intraparticle diffusion, being this step the limiting rate; for this reason, the models are mainly 

designed to describe these two diffusive processes [Kannan et al. (2001)]. 

Table 13. Diffusive adsorption kinetic models [Qiu et al. (2009)]. 

Kinetic model Equation 

Diffusion in the liquid phase 
 

Cooney  
∂q̅

∂t
= kfSo(C − Ci) 

Boyd  ln (1 −
qt

qe
) = −𝑅1𝑡 

R1 =
3De

1

𝑟0∆𝑟0𝑘′
 

Intraparticule diffusion  

Cooney  ln (1 −
𝑞

𝑞0
) = −

𝐷𝑠

𝑅2 𝑡 + ln (
6

𝑝
)   

Weber & Morris qt = kintt1/2 

Dumwald & Wagner log (1 − (
qt

qe
)

2

) = −
𝐾

2.303
𝑡 
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3.4.4 Desorption studies  

 

The possibility of adsorbent regeneration (desorption) and the metal recovery are the mainly 

studied topics based on the general assumption that the adsorbent promotes an economic 

adsorption treatment. It has been reported the desorption of Cr(VI) using as eluent alkaline 

solutions such as: NaOH, Na2CO3, or NaHCO3 [Isa et al. (2008)]. 

The desorption test of hexavalent chromium from activated carbon were performed using the 

following procedure: After the adsorption test, activated carbon was separated from the 

solution of hexavalent chromium, and it was placed in a new plastic tube with 25 mL of a 

solution of 0.1N NaOH-NaCl, with the objective to have two exchangeable anions (OH-
 , Cl-) 

besides to control the solution ionic strength. 

Desorption test was allowed in stirring for a week to simulate the same conditions in that the 

adsorption test was performed. After one week of contact, an aliquot was taken for analysis by 

colorimetry coupled to ultraviolet-visible and, in this way, the concentration of desorbed Cr(VI) 

from the adsorbent material was determined. 

3.5 Residues disposal 
 

The general disposal of residues generated during this investigation project will be according 

with the integral manage of residues and normative aspects from Faculty of Chemical Sciences, 

UANL. 
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4.1 Characterization of adsorbent 
 

4.1.1 Acid and basic sites: Boehm Method 
 

The determination of acid (Phenolic, lactone and carboxylic) and basic sites were estimated 

according to the established in the methodology for the Boehm method, and the summary of 

results are shown in Table 14. 

Table 14. Acid and basic sites of the studied activated carbon (Boehm method). 

 

Activated 
carbon  

Phenol 
group 

(mEq/g) 

Lactone 
group  

(mEq/g) 

Carboxylic 
group 

(mEq/g) 

Total acid 
sites 

(mEq/g) 

Total basic 
sites  

(mEq/g) 

AC raw 1.00 0.75 1.00 2.75 0.38 

AC Ox(10%) 4.00 0.25 0.50 4.75 2.25 

AC Ox(20%) 2.25 0.50 1.00 3.75 0.38 

AC Ox(40%) 1.38 0.25 0.88 2.50 1.88 

AC raw FH 1.62 0.00 1.13 2.75 2.00 

AC Ox(10%) FH 0.50 0.00 2.00 2.50 2.00 

AC Ox(20%) FH 0.88 1.00 1.00 2.88 2.00 

AC T800 0.00 0.00 0.00 0.00 2.50 

AC T900 0.00 0.00 0.00 0.00 2.38 

AC T800 FH 1.25 0.00 0.00 1.25 2.38 

AC T900 FH 1.25 0.00 0.00 1.25 2.38 

AC NT 1.25 0.00 0.00 1.25 2.00 

AC NT FH 1.25 0.00 0.00 1.25 2.25 

 

Abbreviation Description 

AC raw Commercial activated carbon 

AC Ox (  ) Oxidized Activated carbon with % HNO3. 

AC T# Activated carbon with thermal treatment at temperature #. 

AC NT Activated carbon modified with NH4OH. 

FH Forced hydrolysis 
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Analysis of the results obtained with Boehm method revealed a greatly increased in the total 

acidity of the surface that resulted from the increase in surface acid functional groups such as 

carbonyl, lactone, and phenol groups, according to found by Huang et al. (2009),  the total acid 

sites (TAS) of raw adsorbent increased up to 72% with the nitric acid oxidation, reflecting an 

increase in phenolic groups, Nevskaia et al. (2003) reported a similar behavior for activated 

carbon oxidized with 10% HNO3, however, the TAS decreased with the oxidation degree, in 

addition was shown an increase in the amount of the total basic sites (TBS) according with the 

increase of the oxidation of the activated carbon. 

Forced hydrolysis was performed to the activated carbon with lesser oxidation degree due to 

the AC Ox(40%) presented a decrease of 48% of TAS with respect to AC Ox(10%); Forced 

hydrolysis of these adsorbent materials caused changes in the structure of the acid sites of the 

both materials raw and oxidized, decreasing to 47% TAS of the oxidized adsorbents and 

increasing 5 times the amount of TBS of the commercial activated carbon. 

In concerning the thermal treatment, the objective was reached with the modification of the 

surface of the adsorbent material, due to heat treatment causes the removal of an important 

part of the oxygen surface groups or oxygen surface complexes (phenol, lactone and carboxylic 

groups) from the activated carbon, resulting an increase of 6 times the amount of TBS 

regarding commercial activated carbon, Belhachemi et al. (2011) reported similar results with 

activated carbon with thermal treatment at 600oC. 
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Thermally treated samples have a basic character which is due to some kind of oxygen-

containing groups and mainly to the electron rich oxygen-free sites located on the carbon basal 

planes. Nonetheless, the thermal treatment developed to 900oC showed a decrease of 5% TBS 

with respect to the modified carbon at 800oC, suggesting the volatilization of some oxygenated 

groups which acted as basic sites, analogous results were found by Attia et al. (2006) with 

activated carbon heated at 400oC and 600oC for 2h. The effect of heat treatment is summarized 

as follows, the same way as the treatment temperature increased, the amount of oxygenated 

surface functional groups decreased until their complete elimination. At the start, the decrease 

of carboxylic groups primarily occurred and the ketone or quinone structure began to 

disappear when the treatment temperature further increased, a similar behavior was reported 

by Shin et al. (1997) with activated carbon modified at 600, 1100 oC and for an hour in inert 

atmosphere. 

On the other hand, the results of forced hydrolysis of the adsorbents thermally treated 

developed an increase of 1.25 mEq/g of phenolic groups compared with the heat-treated 

materials without hydrolysis, remaining constant the amount of TBS. The increased in the 

surface acidity indicates that the conditions in which the hydrolysis of the thermal-treated 

adsorbents were carried out permitted the formation of new structures containing oxygen 

above the activated carbon surface. 
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The effect of nitrogen treatment of the raw activated carbon (AC NT) suggested the rupture of 

lactone and carboxylic groups, remaining only phenolic groups in 1.25 mEq/g, also causing the 

enhancement of alkalinity, the objective of this modification was reached achieving an increase 

of 5 times the amount of TBS regarding commercial activated carbon, this increase of the total 

concentration of basic sites was attributed to the decrease of oxygen-containing acid groups 

and the formation of nitrogen-containing basic groups via acid sites reacting with the ammonia 

solution, this effect was also found by some authors ( Yang et al. (2014); Cao et al. (2014)) in 

research about the amination and the nitration of activated carbon. However, Salame et al. 

(2001) reported that the increase in alkalinity was due to the introduction of nitrogen species 

and changes in the chemistry of the activated carbon surface. Nonetheless, forced hydrolysis of 

adsorbent with nitrogen treatment (AC NT FH), did not provide any effect on the amount of 

total acid sites of nitrogenized activated carbon; hydrolysis caused only an increase of 12% in 

total basic sites of this adsorbent material. 

Boehm method was a technique that allowed to characterize the acid and basic sites of the 

different adsorbent materials in base to selective neutralizations, nevertheless, this technique 

did not allow to identify specific basic sites. The results obtained by this method shown the 

fulfilment of the planted objectives of the different treatments applied to commercial activated 

carbon; an increase in the TAS by an oxidation with HNO3; a complete removal of TAS on the 

surface of activated carbon by a thermal treatment as well as an increase of TBS through a 

modification of the commercial activated carbon with NH4OH. 



 
 
 

 
    FACULTAD DE CIENCIAS QUÍMICAS 

 
 
 77 

 

4.1.2 Elemental analysis 

 

Adsorbents were subjected to differential thermal analysis to determine the content of oxygen 

and ash, also was coupled to an elemental analysis for a better characterization of the 

adsorbent, the results obtained are shown in Table 15. 

Table 15. Overview of elemental analysis of the studied adsorbents. 

Activated 
carbon 

Elemental content (wt %) 

C H O N S Ash 

Ac raw 72.91 1.65 16.20 0.54 0.70 8.00 

AC Ox(water) 76.63 0.53 13.84 0.67 0.33 8.00 

AC Ox(10%) 65.12 1.50 18.65 1.19 0.54 13.00 

AC Ox(20%) 65.77 1.43 31.22 1.09 0.49 0.00 

AC Ox(40%) 69.06 1.24 21.92 1.30 0.48 6.00 

AC raw FH 57.91 2.50 29.14 4.60 0.85 5.00 

AC Ox(10%) FH 69.22 1.08 20.95 1.13 0.62 7.00 

AC Ox(20%) FH 67.12 1.13 21.05 1.15 0.55 9.00 

AC T800 68.52 0.41 20.10 0.72 0.25 10.00 

AC T900 78.60 0.24 15.29 0.69 0.18 5.00 

AC T800 FH 61.97 2.76 26.76 2.34 1.17 5.00 

AC T900 FH 66.01 2.44 22.41 3.09 1.05 5.00 

AC NT 64.95 4.52 24.02 4.02 0.49 2.00 

AC NT FH 67.60 3.77 22.80 4.70 1.13 0.00 

 

Abbreviation Description 

AC raw Commercial activated carbon 

AC Ox (  ) Oxidized Activated carbon with water or HNO3. 

AC T# Activated carbon with thermal treatment at temperature #. 

AC NT Activated carbon modified with NH4OH. 

FH Forced hydrolysis 
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Elemental analysis of the adsorbents showed an increase in the content of nitrogen and in 

the fixation of the acidic functional groups on the commercial activated carbon surface 

during the oxidation with nitric acid, the changes in activated carbon surface suggested a 

mechanism proposed by Wehzhong et.al. (2008) similar to the reaction involving the 

oxidation of aromatic hydrocarbons shown in Figure 13.  The first step, reaction (a), 

suggested the formation of the dicarboxylic group on the aliphatic side of the molecule 

specially if consist of more than one carbon atom. 

In the reaction (b), occurs the oxidation involving a methylene group which would result in 

the formation of a ketone. Nitrogen can be added to the carbon by a similar reaction as in 

the nitration of benzene, this mechanism would involve the formation of the highly 

reactive nitronium ion (NO2
+), which will be ultimately the nitrated product as shown in 

reaction (c). However, in the case of the oxidized carbons the nitrated product would 

appear in small quantities due to the limited amount of the nitronium ion since its 

formation is favored in the presence of concentrated sulphuric acid. 
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Figure 13. Mechanism of oxidation of aromatic hydrocarbons: (a) 9, 10 Dihydrophenanthrene,                
(b)  Diphenylmethane, (c) Benzene  [Wehzhong et al. (2008)]. 

 

On the other hand, thermal treatment can remove impurities such as hydrogen, nitrogen and 

oxygen as the temperature increases due to most of the acidic oxygen-containing functional 

groups are unstable and are subsequently removed, which also was observed by Figueiredo et 

al. (1999) and Moreno-Castilla et al. (2004). Elemental carbon content also increases with 

increasing thermal treatment temperature, Zheng et al. (2002) reported that is well known that 

thermal treatment of carbon at high temperature under an inert atmosphere brings a more or 

less graphitization, also enhances the basicity and the electronic conductivity of the carbon 

support. 

 

Wehzhong et.al. (2008)  
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Forced hydrolysis of the heat-treated activated carbons (AC T800 FH, AC T900 FH) caused an 

increased in the amount of sulfur compared with the adsorbents without hydrolysis, this result 

was obtained because of the acid solution of iron, pH of the solution was adjusted with 

sulphuric acid, that was used to modified the two thermal activated carbons, also was observed 

an lightly increased in the amount of hydrogen and oxygen which could be attributed as an 

effect of the acid media of the forced hydrolysis modification. 

The modification of the activated carbon with an ammonia solution allowed the introduction of 

nitrogen-containing functional groups cause by the increase in the amount of elemental 

nitrogen in the adsorbent compared with the commercial activated carbon, this is consistent 

with the results obtained with Boehm method, also was modified the amount of amount of 

hydrogen and oxygen as a result of the strong solution used to modified the adsorbent. 

Szymanski et al. (2004) reported that the modification with ammonia solutions enhanced the 

basic properties of carbons at the expense of their acid properties, this kind of modifications 

allowed the incorporation of nitrogen mainly, but also they reported an increase in amount of 

oxygen especially when a foreign material as iron is incorporated in the adsorbent. As a result 

of the forced hydrolysis (AC NT FH), an increase in the amount of elemental sulfur was showed 

which it was a similar behavior obtained with the others adsorbents after their modification 

with forced hydrolysis. 
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4.1.3 Fourier Transform Infrared spectrometry (FT-IR) 
 

The qualitative analysis of surface functional groups of the adsorbents was performed with 

the help of the infrared spectra, Figure 14, the spectrum of each adsorbent was analyzed 

individually, and the identified bands are shown in Table 16 and 17. 

 

Figure 14. Representative FT-IR spectra of the untreated carbon and modified samples. 
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IR assignments of the possible functional groups on carbon surfaces (raw and modified) 

were summarized in Table 16. Commercial activated carbon presented important 

absorption bands at specific wave numbers related with functional groups such as quinone, 

carboxylic acid and lactones based on the review of the main characteristic peaks of 

activated carbons in infrared spectra performed by Wenzhong et al. (2008). 

Table 16. IR Assignments of functional groups on carbon surface.  

Activated carbon Group or functionality Assignment region (cm-1) 

AC raw Quinone 1580 

 Carboxylic acid 1178,1699,2924 

 Lactone 1178,1699 

AC Ox(10%) Carboxylic acid 1120,1700,2700 

 Phenol 2700 

AC Ox(20%) Carboxylic acid 1120,1700,2650 

 Phenol 2650 

AC T800 C-O in ethers (stretching) 1050 

AC T900 None None 

AC NT Carboxylic acid 1177,1588,3338 

 N-H, C = N 1580 

 C-N 1177 

 
Abbreviation Description 

AC raw Commercial activated carbon 

AC Ox (  ) Oxidized Activated carbon with water or HNO3. 

AC T# Activated carbon with thermal treatment at temperature #. 

AC NT Activated carbon modified with NH4OH. 

FH Forced hydrolysis 
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On the other hand, the spectra obtained from the both activated carbons oxidized with 

nitric acid indicated absorption bands of C-OH (stretching) and –OH related with phenolic 

groups, also was identified the carboxylic acid, Moreno et al. (2000) reported same groups 

or functionalities for activated carbons oxidized with 14M HNO3, nonetheless, other 

authors (Khelifi et al. (2010); Allwar et al. (2012)) observed the presence of quinone or 

conjugated ketone structure and carbonyl groups which have similar absorption bands, this 

allowed that the peaks of these structures overlapped with other functional groups. 

Nevertheless Bautista et al. (1994) reported that the nitric oxidation introduced a small 

amount of nitrogen and attributed this observation to the formation of nitro and nitrate 

aromatic compounds which also have similar absorption peaks (1100-1300, 1560 cm-1) like 

the acid groups, Chimgombe et al. (2006) corroborated this information finding the same 

behavior with activated carbon oxidized with nitric acid for 9h.  

With regard to the thermal treatment, the modification performed at 800oC provoked the 

removal of most  of the functional groups from the activated carbon as a result just a peak 

appeared at 1100 cm-1 which could be a C-O bond in ether or hydroxyl group as found by 

Attia et al. (2006).  
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Nevertheless, when the temperature increased at 900oC, no characteristic peak is observed 

which is consistent with the results obtain with the Boehm method due to the elimination 

of all acid groups or volatile compounds from the activated carbon surface, this a typical 

effect found in the studies performed by Aguilar et al. (2003), Bandosz et al. (2006) and 

Ríos et al. (2007) those who reported the decomposition of oxygenated groups when the 

activated carbon is submitted to heat treatment at high temperatures specially under 

hydrogen atmosphere. 

The analysis performed to the spectrum of the activated carbon modified with ammonia 

solution (AC NT) showed characteristic bands at 1580 and 1177 cm-1, which could be 

attributed to N-H or C=N and C-N bonds, respectively. In addition, the spectrum have the 

three absorption bands (1177, 1580 and 3338 cm-1) that characterize the carboxylic acid 

group, but also at the same wave number could have overlapping bands of O-H and N-H 

stretching vibrations due to that the nitrogen treatment suggest the formation of 

nitrogenized species on the activated carbon surface, a similar analysis was performed by 

Mohammad et al. (2011) in the study of ammonia modification of activated carbon and by 

Adebukola & Min (2013) in their studies about basic treatments of activated carbon for 

enhanced CO2. 

 



 
 
 

 
    FACULTAD DE CIENCIAS QUÍMICAS 

 
 
 85 

 

 

The main absorption bands obtained from the spectra of the adsorbent materials with 

forced hydrolysis are shown in Table 17. The effect of the hydrolysis on the adsorbent did 

not cause changes in the IR  spectrum of the commercial activated carbon, this behavior 

corresponds to the obtained data from the Boehm method (AC raw FH), which showed that 

the total acid groups remained constant after the forced hydrolysis of the commercial 

activated carbon , and the oxygenated functional groups were still staying on the activated 

carbon surface, this could explain why the absorption bands of AC raw FH had not changes 

compared to the untreated carbon (AC raw). 

Table 17. IR Assignments of functional groups on carbon surfaces with forced hydrolysis.  

Activated carbon Group or functionality Assignment region (cm-1) 

AC raw FH Quinone 1580 

 Carboxylic acid 1170,1700,2910 

 Lactone 1180,1700 

AC Ox(10%) FH Carboxylic acid 1120,1700,2700 

 Phenol 2700 

AC Ox(20%) FH Lactone 1120,1740 

 Carboxylic anhydride 1120,1740 

AC T800 FH Phenol 1200,3000 

 -C-OH (stretching) 1200 

AC T900 FH Phenol 1200,3000 

 -C-OH (stretching) 1200 

AC TN FH Carboxylic acid 1200,1750,3000 

 Phenol 1200,300 

 C-N 1200 
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Same results were observed with the hydrolysis of the activated carbon oxidized with nitric 

acid (AC Ox(10%) FH) which have similar behavior like the forced hydrolysis of commercial 

activated carbon, the spectrum of this adsorbent indicated the presence of carboxylic and 

phenolic groups mainly. However, according with the potentiometric titrations, this 

activated carbon suffered a decrease in acid groups but the predominant groups still being 

phenolic group and in higher amount carboxylic, that are same groups that appeared in the 

oxidized activated carbon without forced hydrolysis, obtaining as a result the same infrared 

spectrum. In contrast, AC Ox(20%) FH showed absorption peaks at 1200 and 1740 cm-1, 

that according with Wenzhong and co-workers, are specific absorption band for carboxylic 

anhydride and lactone groups, the effect of the hydrolysis in this adsorbent provoked the 

decrease in acid surface groups, remaining in greater proportion lactone and carboxylic 

group, this resulted in a grander intensity of the absorption bands at the wave numbers 

related with these functional groups. 

Forced hydrolysis of both heat-treated activated carbons caused the formation of new acid 

structures although they looked in the spectra with lower intensity. Both adsorbents 

presented the same absorption peak at 1200 cm-1 which is related with the –C-OH 

(stretching) bond and together with the peak that appeared at 3000 cm-1 could suggest the 

presence of phenolic groups which is the functional group found with the Boehm method 

through potentiometric titrations.  
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Even though both thermal-treated activated carbons have the same absorption peaks in 

the spectra, the activated carbon treated at 900oC and modified with forced hydrolysis 

presented peaks with lower intensity, the absorption bands decreased about 15% in 

transmittance compared with the activated carbon treated at 800oC and also modified with 

forced hydrolysis, this could indicate that the functional groups in the second adsorbent 

(AC T800 FH) are stronger linked to the activated surface than the first one, resulting in 

higher vibrations in bonds and also in a greater intensity in the corresponding absorption 

peaks.  

IR spectrum of the activated carbon treated with an ammonia hydroxide solution and 

modified with forced hydrolysis presented the same peaks like the activated carbon with 

nitrogen treatment without hydrolysis, however in the wave number range from 1200 to 

1750 cm-1, the peaks had higher intensity than the adsorbent without hydrolysis. 

Nonetheless, the spectrum of the first adsorbent (AC NT FH) showed a lower percentage of 

transmittance respect to the second activated carbon (AC NT), the absorption bands 

decreased about 20% transmittance, this could be explained due to the AC NT FH had an 

increase in the total basic sites this indicate that new structures were formed and they 

could obstruct the radiation absorption resulting in a spectrum with lesser intensity or 

lower transmittance percentage.  
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4.1.4 Physical adsorption of Nitrogen  

 

The modified activated carbons during this research project were characterized by physical 

adsorption of Nitrogen (Table 18), to obtain the surface area by BET method and pore size 

distribution by BJH method. 

Table 18. Surface area and pore size distribution of the adsorbent materials. 

BET analysis Pore size distribution (BJH) 

Activated 
carbon 

Surface 
area 

(m2/g) 

Pore 
volume      
(cm3/g) 

% Pore Volume Average pore 
diameter 

(nm) Micropores Mesopores Macropores 

AC raw 735.30 3.39 7.21 84.07 8.72 1.60 

AC Ox(10%) 858.40 4.23 7.96 84.42 7.62 1.50 

AC Ox(20%) 807.70 4.08 7.30 85.00 7.70 1.56 

AC Ox(40%) 779.00 3.88 7.16 84.39 8.44 1.68 

AC raw FH 746.61 3.85 6.66 84.26 8.32 1.73 

AC Ox(10%) FH 752.30 3.81 7.06 83.58 7.70 1.58 

AC Ox(20%) FH 807.00 3.94 8.35 85.66 7.58 1.46 

AC T800 785.30 4.10 7.67 89.50 8.65 1.71 

AC T900 869.10 4.19 7.72 84.21 8.07 1.56 

AC T800 FH 730.30 3.72 7.92 84.32 7.76 1.58 

AC T900 FH 745.40 3.08 7.59 84.25 8.16 1.55 

AC NT 1365.0 11.40 4.81 86.45 8.70 2.91 

AC NT FH 1280.1 10.50 4.79 86.43 8.78 2.89 

 

Abbreviation Description 

AC raw Commercial activated carbon 

AC Ox (  ) Oxidized Activated carbon with water or HNO3. 

AC T# Activated carbon with thermal treatment at temperature #. 

AC NT Activated carbon modified with NH4OH. 

FH Forced hydrolysis 
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The results of the physical adsorption of nitrogen of the studied activated carbons, showed that 

oxidation with nitric acid of the adsorbent materials caused an increase in up to 17% of BET 

surface area and 24% of pore volume regarding commercial activated carbon. Nonetheless, it is 

suggested that as the degree of the oxidation increased (AC Ox(40%)), activated carbon walls 

began to collapse being reflected in a decrease of 10% of BET area and 25% of pore volume, 

this same effect was found by many authors (Aksoylu et al. (2001); Nevskaia et al. (2003); 

Stravropolus et al. (2008); Pietrzak et al. (2009)) whom studied the effects about the oxidation 

of activated carbons with nitric acid.  

Nonetheless, Huang et al. (2009) suggested that the decreased in BET surface areas resulted 

from a pore blockage in the micropores caused by the formation of humic substances or 

surface oxides during the oxidation process. However, Khelefi et al. (2010) reported that the 

considerable changes in the activated carbon surface was also could be due to by two possible 

effects: i) the partial destruction of the micropores walls and ii) the restrictions of the 

accessibility caused by the fixation of oxygen containing groups at the entrance of the pores.  

Due to the drastic nature of the acid treatment which partially broke the pores texture 

(observed in the decrease in BET area) of the activated carbon probably did not favor the 

formation of ketone and ether groups resulting in a decrease of acid surface groups as was 

observed in the Boehm method, which also was found by Moreno et al. (1995) in their studies 

about the modification of the activated carbon surface. 
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On the other hand, both adsorbents (commercial activated carbon such as the activated carbon 

oxidized with nitric acid) contain up to 85% of mesopores which was confirmed with the 

adsorption-desorption isotherms of nitrogen type IV, typical for mesoporous materials.  

The results of the force hydrolysis of the commercial activated carbon (AC raw HF) showed an 

increase of 1.5% on the BET surface area and 14% in pore volume respect to the raw adsorbent, 

this indicated that the hydrolysis provoked the formation of a higher amount of pores in the 

activated carbon how was expected due to the experimental conditions of the forced 

hydrolysis which acted like an acid treatment cause by the sulfuric acid media and heating at 

70oC. 

Furthermore, the effect of the forced hydrolysis in both oxidized adsorbents resulted in a lightly 

decrease (about 11%) of the BET surface area and pore volume, compared with the adsorbents 

without hydrolysis, cause by the strong conditions in which the hydrolysis was carried out (acid 

solution and heating) that could have had a similar effect like the oxidation with nitric acid, 

causing the breaking down of the walls of the pores modifying the surface area and pore 

volume, however, after the hydrolysis the oxidized activated carbons still continue being mainly 

mesoporous.  
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The analysis of the heat-treated activated carbons showed a slight increase in the BET surface 

area about 7% and important increase of 20% in pore volume compared with commercial 

activated carbon, this behavior resulted from the elimination of oxygenated groups or the 

elimination of volatile matter of the activated carbon surface causing the generation of new 

pores in the adsorbent increasing BET surface area; Chimgombe et al. (2005) reported that 

thermal treatment removed some of the humic acid lodged in micropores and eliminates some 

oxygen-containing functional groups that are not stable at high temperatures, increasing 

surface area. Other authors (Rangel et al. (2005); Yoo et al. (2005); Ruiz et al. (2007)) obtained 

a physical improve, mainly in BET area and micro and mesopore volumes, on the adsorbent 

properties as a result of the heat treatment of activated carbon at high temperatures. 

Furthermore, forced hydrolysis of the heat-treated adsorbents (AC T800 FH, AC T900 FH) 

showed a decreased in BET surface area, compared with the thermal-treated activated carbons 

without hydrolysis,  as a result of the acid solution used in the forced hydrolysis modification 

which could be collapsed the walls of the activated carbon diminishing the surface area and 

obtaining a slight increase in pore volume, also this behavior could suggest that the iron 

particles were distributed on the activated carbon surface diminishing the BET area, this effect 

have been reported by many authors (Ang et al. (2000); Park et al. (2003); Bulushev et al. 

(2004)) who modified the surface of catalyst supports with a foreign material mainly metals 

such as iron, copper, gold, silver among others.  
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The incorporation of nitrogen on the commercial activated carbon (AC NT) caused an important 

effect on the adsorbent surface increasing the BET area about 85% and 3 times the pore 

volume in comparison with the raw activated carbon; however, forced hydrolysis of this 

nitrogen-containing activated carbon (AC NT FH) showed a slight decrease in the surface area 

around 6% and 8% in pore volume compared with AC NT, that is a similar behavior obtained 

from the others activated carbons with anchored iron particles.  Both adsorbents AC NT and AC 

NT FH showed a decrease about 50% in their densities as a result of the changes in the surface 

area and pore volume caused by the strong nitrogen treatment. 

Biniak et al. (1997) modified the activated carbon surface by an ammonia treatment at high 

temperature, and they observed an increase of microporosity that was in agreement with data 

for other ammonia treated carbons; the same author in 1999, reported that the amination 

process alters the surface area (BET) only slightly, but strongly influences the surface chemical 

structure of the activated carbon. Same results were obtained by Mangun et al. (2001) who 

reported that the ammonia treatment allowed the increasing of pore size and surface area, 

also Lei et al. (2002) observed amination had little effect on micropore volume and BET surface 

area, then had no noticeable effects on pore size distribution. 
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4.2 Batch adsorption-desorption test 

4.2.1 Cr(VI) adsorption test 

 

The adsorption test of hexavalent chromium were performed up to the equilibrium was 

reached, using the different adsorbent materials generated during this researcher project, 

isotherms were classified according to the modification performed to the activated carbons 

also the parameters of the adsorption isotherm model which were used to adjust the data are 

shown.  

4.2.1.1 Adsorption isotherms: Commercial activated carbon 

 

In Figure 15, are shown the adsorption isotherms of the commercial activated carbon as well as 

its modification with forced hydrolysis; data fitting was performed to different models of 

adsorption isotherms reporting the best fit in Table 19. 

Table 19. Parameter of the fitting to Freundlich for adsorption isotherms. 

Specie 
K                    

(mg/g)*(mg/L)-1/n 
1/n 

Correlation 
factor        

R2 

qmax  

(mg/g) 

AC raw 0.8745 0.6490 0.9959 45.6 
AC FH 5.3350 0.3676 0.9856 49.5 

From the analysis performed to adsorption isotherms, a same tendency of the isotherm of the 

activated carbon with forced hydrolysis was observed in comparison with the isotherm of the 

commercial activated carbon. 
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The hydrolysis of the commercial activated carbon presented as important effect a greater 

adsorption capacity (50%) by the adsorbate to concentrations lesser than 150 mg/L and about 

25% at upper concentrations compared with the raw material. Equilibrium data of the batch 

adsorption tests of both adsorbents were fitted to different adsorption isotherms models, 

however, the fitting which better described the behavior of the experimental data was the 

Freundlich model. 

 

Figure 15. Adsorption isotherm of Cr(VI) on activated carbon (2 mg CA/mL, pH = 6 and 
temperature of 25oC); Freundlich fit (continuous line ):  AC raw,  AC raw HF. 
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4.2.1.2 Adsorption isotherms: Oxidized activated carbons with HNO3 

Adsorption equilibrium data of Cr(VI) of the adsorbents oxidized with nitric acid as well as its 

modification with forced hydrolysis  are shown in Figure 16. Analysis of the adsorption tests 

indicated that the activated carbons oxidized with HNO3 presented a lesser adsorption capacity 

in all the range of concentration of the adsorbate studied in comparison with the commercial 

adsorbent. 

 

Figure 16.  Adsorption isotherms of Cr(VI) on activated carbon (2 mg CA/mL, pH = 6 and 

temperature of 25oC); Freundlich fit (continuous line):  AC raw,   AC Ox(10%),         
  AC Ox(20%),  AC Ox(10%) FH,  AC Ox(20%) FH. 
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Nevertheless, the oxidized and modified adsorbents with forced hydrolysis showed an 

increase of 25% on adsorption capacity of the commercial activated carbon only at 

concentrations of Cr(VI) < 80 mg/L, and above this value of concentrations the equilibrium 

data showed a similar behavior to the activated carbons only oxidized with nitric acid, 

which presented a lower Cr(VI) adsorption capacity compared to the raw adsorbent. 

The equilibrium data obtained were fitted to different adsorption isotherm models, 

obtaining the best fit with the Freundlich model. The summary of the parameters of the 

model is shown in Table 20, where it was observed that the commercial activated carbon 

presented the greater adsorption capacity (45.6 mg/g) compared with the others activated 

carbons oxidized with nitric acid as well as the modification of these carbons with forced 

hydrolysis. 

Table 20. Parameter of the fitting to Freundlich for adsorption isotherms (Oxidation HNO3). 

Activated          
carbon 

K                    
(mg/g)*(mg/L)-1/n 

1/n 
Correlation 

factor               
R2 

qmax      

(mg/g) 

AC raw 0.927 0.634 0.9965 45.60 
AC Ox(10%) 1.207 0.507 0.9798 27.82 

AC Ox(20%) 1.405 0.525 0.9808 32.99 

AC Ox(10%) FH 5.603 0.2662 0.9695 30.23 

AC Ox(20%) FH 5.258 0.2284 0.9687 22.99 
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4.2.1.3 Adsorption isotherms: Activated carbons with thermal treatment 

Adsorption equilibrium data of Cr(VI) of the activated carbons with thermal treatment, Figure 

17, followed a similar behavior to the commercial activated carbon; on the other hand, forced 

hydrolysis of these adsorbents caused an increase of 26% on maximum adsorption capacity of 

raw adsorbent and a higher affinity to concentrations of Cr(VI) lesser than 200 mg/L. 

 
Figure 17. Adsorption isotherms of Cr(VI) on activated carbon (2 mg CA/mL, pH = 6,and  

temperature of 25oC); Freundlich fit (continuous line ):   AC raw,   AC T800,                
  AC T900,  AC T800 FH,  AC T900 FH. 
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Adjusting of equilibrium data obtained for the different adsorbents with thermal treatment 

was performed, resulting Freundlich model the most adequate for data and summarizing the 

information obtained in Table 21, in which it was observed that the activated carbon with 

thermal treatment at 900oC and modified with iron particles presented the greater adsorption 

capacity (59.82 mg/g) in comparison with the rest of the adsorbents. 

Table 21. Parameter of the fitting to Freundlich for adsorption isotherms (Thermal treatment). 

Activated 

carbon 

K                    

(mg/g)*(mg/L)-1/n 
1/n 

Correlation 

factor               

R2 

qmax              

(mg/g) 

AC raw 0.927 0.634 0.9965 45.60 

AC T800 1.776 0.537 0.9891 43.33 

AC T900 1.518 0.5867 0.9884 48.85 

AC T800 FH 10.970 0.274 0.9819 57.82 

AC T900 FH 18.200 0.202 0.9839 59.82 

 

The increase on the adsorption capacity of the adsorbents with thermal treatment in 

comparison with the commercial activated carbon was attributed to the removal of the 

electrostatic repulsion generated  by acid sites of the surface of the adsorbents surface, in 

addition of the increase of  basic sites available for adsorption of Cr(VI) anions; moreover, the 

incorporation of iron species onto activated carbons with thermal treatment acted as anchor 

sites of Cr(VI)  causing an increase of 50% on the adsorption capacity of the commercial 

activated carbon at concentration of Cr(VI) lesser than 200 mg/L. 
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4.2.1.4 Adsorption isotherms:  Activated carbon with nitrogen treatment 

 

The effect of the modification of the activated carbon surface with ammonium hydroxide 

resulted in an increase on the adsorption capacity of the commercial activated carbon by 7% in 

the studied concentration range (Figure 18), the changes on the adsorption capacity were 

attributed to increase of basic sites generated by the nitrogen treatment. In addition, 

hydrolysis of the adsorbent with nitrogen treatment produced a higher affinity for the 

adsorbate up to concentrations of Cr(VI) lower than 250 mg/L. 

 

Figure 18. Adsorption isotherms of Cr(VI) on activated carbon (2 mg CA/ml, pH = 6, temperature of 

25oC); Freundlich fit (continuous line ):  AC raw,  AC NT,  AC NT FH. 
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The analysis of the adsorption equilibrium data of Cr(VI) shown that the incorporation of 

iron species on the nitrogenized activated surface increased affinity for the adsorbent to 

low concentrations about 60% on the adsorption capacity of the commercial activated 

carbon.  Isotherms were fitted to Freundlich model, parameter values of the model are 

reported in Table 22, where even though nitrogenized activated carbon (AC NT) presented 

the greatest adsorption capacity, its modification with forced hydrolysis (AC NT FH) was 

chosen since it presented a higher affinity for the adsorbent at low concentrations. 

Table 22. Parameter of the fitting to Freundlich for adsorption isotherms (Nitrogen treatment). 

Activated 

carbon 

K                    

(mg/g)*(mg/L)-1/n 
1/n Correlation factor 

R2 

qmax                    

(mg/g) 

AC raw 0.927 0.634 0.9965 45.60 

AC NT 1.334 0.596 0.9939 48.51 

AC NT FH 22.500 0.125 0.9850 48.41 

 

4.2.2   Cr(VI) reduction analysis  

Reduction analysis of Cr(VI) during the adsorption process was an important factor that 

helped to elucidate how interacted the species of chromium with the functional groups 

present on commercial activated carbon as well as its diverse performed modifications. 
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4.2.2.1 Adsorption isotherms:  Commercial activated carbon 

 

In Figure 19, adsorption isotherms of total chromium and Cr(VI) are shown for the commercial 

activated carbon (AC raw) as well as for its modification with forced hydrolysis (AC raw FH); in 

the pair of isotherms for each adsorbent was observed a similar behavior of the equilibrium 

data for the Cr(VI) as for total chromium indicating that the conditions in which took place the 

adsorption process achieved a reduction about 2% from Cr(VI) to Cr(III) as a result of the 

activated carbon surface charge and the low available of protons in solution.  

 
Figure 19. Adsorption isotherms of Cr(VI) on activated carbon (2 mg CA/mL, pH = 6 and T = 25oC):        

 AC raw Cr(VI),   AC raw total Cr,   AC raw FH Cr(VI),   AC raw FH total Cr. 
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4.2.2.2 Adsorption isotherms:  Oxidized activated carbons with HNO3 

In the analysis of isotherms of Total and hexavalent chromium for the activated carbons 

treated by a oxidation with nitric acid (Figure 20), presented around 33% of reduction of Cr(VI) 

to Cr(III) at concentrations greater than 100 mg/L, obtaining a high percentage of reduction in 

comparison with 2% achieved by commercial activated carbon. On the other hand, no 

reduction was shown at low concentrations due to basic surface groups allow the hexavalent 

chromium adsorption and there was not enough protons to the electron donors to provoke a 

Cr(VI) reduction. 

 

Figure 20. Adsorption isotherms of Cr(VI) on activated carbon (2 mg CA/mL, pH = 6 and T = 25oC):        
 AC raw Cr(VI),  AC raw total Cr,  AC Ox(10%) Cr(VI),  AC Ox(10%) total Cr,           

▲ AC Ox(20%) Cr(VI),  ▲ AC Ox(20%) total Cr. 
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On the another hand, in the analysis of the isotherms of the adsorbents oxidized with nitric 

acid and modified with forced hydrolysis was obtained a 50% of reduction of Cr(VI) to Cr(III) 

at concentrations greater than 100 mg/L, this effect was attributed mainly to the density of 

acid sites that acted as electron donors  causing the Cr(VI) reduction, standing out the 

commercial activated carbon as the best adsorbent of hexavalent chromium anionic 

species. 

 
Figure 21. Adsorption isotherms of Cr(VI) on activated carbon (2 mg CA/mL, pH = 6 and T = 25oC):          

 AC raw FH Cr(VI),  AC raw FH total Cr,  AC Ox(10%) FH Cr(VI),  AC Ox(10%) FH 

total Cr, ▲ AC Ox(20%) FH Cr(VI),  ▲ AC Ox(20%) FH total Cr. 
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4.2.2.3 Adsorption isotherms: Activated carbons with thermal treatment 

 

Regarding thermal treatment, isotherms of total chromium and Cr(VI) for the obtained 

adsorbent materials, Figure 22, showed a similar tendency to the behavior obtained from the 

activated carbons oxidized with nitric acid, which involved a 35% of Cr(VI) reduction at 

concentrations above 100 mg/L , nonetheless presented a higher adsorption capacity with 

regard to these adsorbent materials as a result of the increase in the quantity of basic surface 

groups by the thermal treatment. 

 
Figure 22. Adsorption isotherms of Cr(VI) on activated carbon (2 mg CA/mL, pH = 6 and  

Temperature of 25oC):   AC raw Cr(VI),  AC raw total Cr,   AC T800 Cr(VI),                 
 AC T800 total Cr,  ▲ AC T900 Cr(VI),  ▲ AC T900 total Cr. 
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Forced hydrolysis of the adsorbents treated thermally, Figure 23, caused that iron species 

anchored on the activated carbon surface showed 20% lower reduction of Cr(VI) to Cr(III) 

compared with the materials without hydrolysis, this effect was attributed to the interaction of 

electron donors with iron species inhibiting the Cr(VI) reduction during the adsorption process, 

however, it was observed that was achieved only 1% of reduction to concentrations lesser than 

100 mg/L and a maximum of 10% at higher concentrations for these adsorbents allowing  

anionic adsorption at low concentrations. 

 

Figure 23. Adsorption isotherms of Cr(VI) on activated carbon (2 mg CA/mL, pH = 6 and 

Temperature of 25oC):   AC raw Cr(VI),  AC raw total Cr,  AC T800 FH Cr(VI),         

 AC T800 FH total Cr,   ▲ AC T900 FH Cr(VI),  ▲ AC T900 FH total Cr. 
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4.2.2.4 Adsorption isotherms:  Activated carbon with nitrogen treatment 

 

Isotherm of the nitrogen-containing activated carbon (AC NT) showed a hexavalent chromium 

reduction about 30% between 100-200 mg/L compared with the commercial activated carbon 

(Figure 24). However, at upper concentration values (> 200 mg/L) the quantity of trivalent 

chromium increased about 50%, this behavior suggested that some electron donor groups from 

the activated carbon surface reduced the anionic chromium species. In another hand, forced 

hydrolysis of activated carbon (AC NT FH), did not show reduction at concentrations below 150 

mg/L, nonetheless above this concentration a 20% of reduction of Cr(VI) was obtained, this 

behavior could explain that the hydrolysis provoked changes in the chemistry surface of the 

adsorbent and iron particles allowed the anionic adsorption of Cr(VI). 

 
Figure 24. Adsorption isotherms of Cr(VI) on activated carbon (2 mg CA/mL, pH = 6 and 

Temperature of 25oC):   AC raw Cr(VI),  AC raw total Cr,  AC NT Cr(VI),                   

 AC NT total Cr, ▲ AC NT FH Cr(VI),  ▲ AC NT FH total Cr. 
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4.2.2.5 General discussion: Hexavalent chromium adsorption 

Commercial activated carbon showed a high adsorption capacity compared with some 

adsorbents that have been studied, Table 23, most of the adsorption studies were carry out in 

acid media because of the nature of the adsorbent that allowed the adsorption of hexavalent 

chromium species but also provoked up to 98% of reduction to trivalent chromium. 

The obtained results showed that the commercial activated carbon (AC raw) had a great 

adsorption capacity (45.60 mg/L) at room temperature and pH = 6. In addition, forced 

hydrolysis of the raw adsorbent (AC raw FH) caused an improvement about 46% in the 

adsorption capacity (Figure 15) especially at low concentration of hexavalent chromium (lesser 

than 200 mg/L), also the forced hydrolysis provoked a slightly increase about 5% in the 

maximum adsorption capacity (49.50 mg/L) of the commercial adsorbent. 

Table 23. Cr(VI) adsorption capacity for different adsorbent materials. 

Raw material mg Cr6+/g pH Adsorption 
system 

Reference 

Hazelnut shell 17.70 2.0 Batch Cimino et al. (2000) 

Activated carbon, FS-100 69.30 3.0 Batch Hu et al. (2003) 

Activated carbon, fabric cloth 22.29 2.0 Batch Mohan et al. (2005) 

Terminalia arjuna nuts 28.40 1.0 Batch Mohanty et al. (2005) 

Bituminous coal 7.00 5.0 - 8.0 Batch Natalie et al. (2007) 

AC raw 45.60 6.0 Batch This study (2014) 

AC raw FH 49.50 6.0 Batch This study (2014) 
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On the another hand, reported researches about the hexavalent chromium adsorption did not 

involve the study of the adsorption mechanism, just some authors reported that during the 

adsorption of chromium species in acid media or low pH values, a higher quantity of hexavalent 

chromium was reduced to its trivalent form. However, the analysis of total chromium 

performed to the activated carbons at pH = 6 showed only a 2% of reduction by the commercial 

activated carbon because of the pH conditions in which the adsorption process was carried out 

there were not an enough quantity of protons to interact with electron donors provoking 

reduction to Cr(III); On the other hand, AC raw FH presented a reduction of up to 12% at 

concentrations greater than 150 mg/L as a result of the acid surface groups incorporated in the 

activated carbon surface during the hydrolysis step and at low concentration iron particles 

working as an adsorption site of anionic chromium species decreasing the reduction rate. 

Analysis performed to the oxidized activated carbon with nitric acid allowed to identify the pair 

of the best adsorbents that resulted from the modification (AC Ox(10%), AC Ox(10%) FH) which 

had a higher adsorption capacity than other modified adsorbents, Table 24. However, most of 

the adsorption test performed by acid-treated adsorbents were carry out in acid media causing 

an important amount of reduced hexavalent chromium (greater than 90 %). On the contrary, 

adsorption test at pH = 6 allowed to decrease the reduction rate due to AC Ox(10%) showed 

only a 33% of reduction at concentrations greater than 100 mg/L.  
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In addition, AC Ox(10%) FH increased the adsorption capacity about 25% at concentration 

lower than 100 mg/L without reduction to trivalent chromium, but above this concentration 

value about 50% of reduction was shown.  

Table 24. Cr(VI) adsorption capacity for activated carbons oxidized with minerals acids. 

Raw material Technique used pH mg Cr6+/g Reference 

Commercial Oxidation using HNO3 - 10.40 Babel et al. (2004) 

Commercial Oxidation using sulfuric and 

nitric acid 
- 13.30 Zhao et al. (2005) 

Commercial Oxidation using HNO3 2.0 13.70 Liu et al. (2007) 

Commercial Oxidation using HNO3 and 

heat treatment 
2.0 10.93 Kumar et al. (2009) 

Commercial Oxidation using sulfuric and 

nitric acid  
4.0 16.10 Huang et al. (2009) 

AC Ox (10%) Oxidation using nitric acid 6.0 27.82 This study (2014) 

AC Ox (10%) FH 
Oxidation using nitric acid 

and forced hydrolysis 
6.0 30.23 This study (2014) 

 

Thermal treatment did not cause an important effect on the adsorption capacity of the 

commercial activated carbon, both heat-treated activated carbons (AC T800, T900) showed a 

very similar adsorption isotherms behavior compared with the raw adsorbent, there are few 

studies about the adsorption of hexavalent chromium by adsorbents modified thermally, most 

of them were coupled to another treatment such a oxidation using mineral acids (Table 25). 
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Besides, forced hydrolysis of the heat-treated activated carbons (AC T800 FH, AC T900 FH) 

caused an important effect on the adsorption capacity of the adsorbents increasing 26% on 

maximum adsorption capacity of raw adsorbent and a higher affinity at concentrations of Cr(VI) 

lower than 200 mg/L. Even though AC T900 FH showed the greatest adsorption capacity, AC 

T800 FH was chosen as a better adsorbent because of the increase of 100oC on temperature 

only generated an increased about 15% on the adsorption capacity at concentration lesser that 

150 mg/L, and above this concentration both adsorbents had almost the same value in the 

adsorption isotherms reaching similar maximum adsorption capacities, therefore is not justify 

the increase in the consumption of energy with the improvement in the adsorption capacity. 

Table 25. Cr(VI) adsorption capacity for activated carbons modified by thermal treatment. 

Raw material Technique used pH mg Cr6+/g Reference 

     

Commercial Oxidation using mineral acid 

and thermal treatment 
- 13.30 Zhao et al. (2005) 

     
Commercial Oxidation using HNO3 and 

heat treatment 
2.0 10.93 Kumar et al.(2009) 

     
AC T800 Thermal treatment at 800oC 6.0 43.33 This study (2014) 

AC T800 FH 
Thermal treatment at 800oC 

and forced hydrolysis 
6.0 57.48 This study (2014) 
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On the another hand, the adsorbents with thermal treatment presented about 35% of Cr(VI) 

reduction at concentrations greater than 100 mg/L, nonetheless heat-treated activated carbons 

modified with forced hydrolysis showed 20% lower reduction of Cr(VI) to Cr(III) compared with 

the materials without hydrolysis as a result of the iron particles anchored on the activated 

surface which allowed an anionic adsorption of chromium species diminishing the quantity of 

reduction to trivalent chromium.  

The modification of commercial activated carbon with ammonium solutions (AC NT) resulted in 

an increase on the adsorption capacity about 7% compared with the raw adsorbent, however, 

hydrolysis of the activated carbon containing nitrogen produced a higher affinity (26%) for 

Cr(VI) up to concentrations lesser than 250 mg/L. The obtained adsorption capacities had an 

average value compared with that obtained with other adsorbents, Table 26, as a result of the 

method used to modify the activated carbon surface. 

Table 26. Cr(VI) adsorption capacity for activated carbons modified by ammonia treatment. 

Raw material Technique used pH mg Cr6+/g Reference 

ACF-307 Oxidation using ammonium 

persulphate 
- 19.00 Aggarwal et al. (1999) 

Coconut Pitch Amine modification 3.0 123.40 Unnithan et al. (2004) 

Activated 

carbon 
Amine-crosslinked copolymer 5.0 102.88 Sun et al. (2013) 

AC NT Oxidation using Ammonia solution 6.0 48.51 This study (2014) 

AC NT FH Oxidation using Ammonia solution  

and forced hydrolysis 

6.0 45.41 This study (2014) 
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In addition, many of the adsorption studies performed with activated carbon modified with an 

ammonia source did not analyze neither the reduction of Cr(VI) to Cr(III) nor the effect of the 

nitrogen functional groups on the adsorption capacity. The results of the total chromium 

isotherms showed that AC NT surface caused up to 50% of reduction of hexavalent chromium 

at concentration greater than 100 mg/L; On the other hand, forced hydrolysis of the activated 

carbon (AC NT FH) improved the adsorbent surface resulting in a 20% of Cr(VI) reduction at 

concentration greater than 150 mg/L. 

4.2.3   Cr(VI) desorption test 

Desorption test were carried out from different adsorbents studied using a solution of NaOH-

NaCl 0.1 N, a desorption with this eluent suggested the way in which species of Cr(VI) and 

activated carbon interacted indicating anionic adsorption, the obtained results are shown in 

Figure 25. Adsorbents that shown the best results were commercial activated carbon with 

forced hydrolysis (AC raw HF), activated carbon with thermal treatment 800oC and it forced 

hydrolysis (AC T800 FH) as well as activated carbon with thermal treatment at 900oC and also it 

forced hydrolysis (AC T900 FH), resulting the activated carbon modified with thermal treatment 

and forced hydrolysis as the best adsorbents in both adsorption and desorption. Some 

researchers have reported an excellent desorption rate using acid solutions such as HNO3, HCl 

or EDTA (Gupta et al. (2010); Kumar et al. (2011)), reaching up to 75% of the adsorbed 

chromium.  
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However, desorption with acid solutions indicated cation exchange, therefore trivalent 

chromium was the specie of chromium that took place in the adsorption process. On the 

contrary, anion exchange was reported by Selvaraj et al. (2003) who achieved 82% of Cr(VI) 

desorption using 0.014 M NaOH; and Deng et al. (2004) reported a 96% of hexavalent 

chromium desorption using 0.5 M NaOH. The studied activated carbon achieved different 

desorption capacities which is related with the adsorption process because of nitrogen and acid 

nitric oxidation treatment caused a high reduction of hexavalent chromium while commercial 

and heat-treated activated carbon showed a short reduction at low concentration; In addition, 

forced hydrolysis improved the anionic adsorption of the adsorbent material, therefore the 

best selected adsorbents (AC T800 FH, AC T900 FH) showed about 96% of Cr(VI) desorption 

using  0.1 N NaOH-NaCl indicating also anion exchange during the desorption process. 

 
Figure 25. Histogram of the adsorption-desorption analysis of the different adsorbent materials:         

 Adsorption capacity (mg/g),   Desorption capacity (mg/g); Initial concentration: 30 
mg/L Cr (VI), pH = 6. 
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4.2.4   Cr(VI) adsorption kinetics 

 

The analysis of the adsorption kinetics of the selected adsorbents (Figure 26) showed a faster 

adsorption of hexavalent chromium achieved by the heat-treated activated carbon with forced 

hydrolysis (AC T800 FH) diminishing the equilibrium time (1031 min) about 30% compared with 

the activated carbon without hydrolysis AC T800 (1300 min) and about 55% in comparison with 

the commercial activated carbon (1600 min) indicating that thermal treatment coupled the iron 

particles adsorption sites helped to the adsorbent surface to attach hexavalent chromium ions 

improving both capacity as adsorption rate of the activated carbons. 

 
Figure 26. Adsorption kinetics analysis of the different selected adsorbent materials:                          

 AC raw, ▲ AC T800,  AC T800 FH. Initial concentration: 30 mg/L Cr (VI), pH = 6. 
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Adsorption kinetic data (AC T800, AC T800 FH) were pretty adjusted to a Pseudo-second order 

model (Eq. 4.1), the main parameter were obtained and they are shown in Table 27. 

 

𝑞𝑡 =
𝑘2𝑞𝑒

2𝑡

1 + 𝑘2𝑞𝑒𝑡
 

In the contrary, adsorption kinetic data of the raw activated carbon could not be adjusted 

because its kinetic curve showed two adsorption steps, indicating the simultaneous adsorption-

reduction mechanism of hexavalent chromium. 

Table 27. Adsorption kinetic parameters. 

Adsorbent K2 qe R2 

AC T800 0.00144 12.42 0.99986 

AC T800 FH 0.00162 15.08 0.99975 

 

Ho et al. (1999) reported an extensive study about the pseudo-second order model for sorption 

processes and they concluded that in their 12 different studied systems, chemical reaction 

seems significant in the rate controlling step and the pseudo-second order model provides the 

best correlation of the experimental data. Khezami et al. (2005) reported that pseudo-second 

order model well mimics the adsorption kinetic data in the removal of chromium (VI) by 

activated carbon. In addition, AL-Othman et al. (2012) reported the kinetics of Cr(VI) followed 

both pseudo-first order and pseudo-second order rate expressions in the removal of 

hexavalent chromium by activated carbon prepared from peanut shells.   

(Eq. 4.1) 
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CONCLUSIONS  
 

The oxidation treatment with nitric acid caused the increase in quantity of surface acid 

groups, mainly fenolic and carboxylic groups according with Boehm titrations and the 

obtained infrared spectra. Also the oxidized activated carbons showed an slightly 

increment in the BET surface area about 16%; however, an increase in the oxidation degree 

caused that activated carbon walls collapsed and, therefore, a 10% surface area and 25% 

pore volume were shown. 

Thermal treatment removed all the surface acid groups from the activated carbon surface 

increasing the quantity of basic groups as a result of the decomposition of oxygenated 

groups or volatile compounds causing the generation of new pores in the adsorbent that 

slightly increase the BET surface area about 7% and 20% in pore volume compared with 

commercial activated carbon. 

Nitrogen treatment increased the quantity of nitrogen groups on activated carbon 

according with the obtained results from elemental analysis and infrared spectra; In 

addition, Boehm titrations showed that nitrogen containing activated carbons presented 

an increment in the quantity of surface basic groups. On the other hand, nitrogen 

treatment caused an important effects increasing the BET surface area about 85% and 3 

times the pore volume. 
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Forced hydrolysis of the commercial and modified activated carbon did not show 

important changes on surface chemistry of activated carbon, but decrease both BET 

surface area and pore volume about 15 % as a result of pore blocking by anchored iron 

particles. Iron analysis showed that activated carbon with higher quantity of acid functional 

groups had the greater quantity (0.15%) of anchored iron particles and the adsorbents 

without acid groups and high content of surface basic groups had the lower quantity    

(0.01 %) of iron over adsorbent surface.  

Commercial and modified activated carbon are able to sequester metal ions such as 

hexavalent chromium from aqueous solution; however, oxidized and nitrogen containing 

activated carbons caused about 40-50% of reduction of Cr(VI) to Cr(III), resulting as better 

adsorbents those which were treated thermally.  

On the other hand, the anchoring of iron particles improved the hexavalent chromium 

adsorption of the activated carbons at concentration lower than 150 mg/L. All equilibrium 

data of the different studied adsorbents were well-fitted to Freundlich model.  

Even though, oxidized activated carbon had the higher iron quantity, heat-treated 

adsorbents and modified by forced hydrolysis showed the best adsorption capacity (57 

mg/g) of hexavalent chromium from aqueous solutions. 
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Hexavalent chromium desorption test showed that commercial and oxidized activated 

carbons could desorb about  80% of hexavalent chromium, and nitrogen containing 

activated carbon just could desorb about 30%; these low desorption percentages indicated 

that the chromium removal was through a reduction coupled adsorption mechanism.  

In addition, heat-treated activated carbons presented the higher desorption (98%) of 

hexavalent chromium indicating that the main adsorption mechanism was carried out by 

anion adsorption.  

The best adsorbents resulted the heat-treated activated carbons and modified with forced 

hydrolysis (T800 FH, T900 FH) who achieved an adsorption capacity of 57 mg/g and 98% of 

Cr(VI) desorption. 
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