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Abstract

Practical Brain-Computer Interfaces (BCIs) for disabled people should allow them

to use all their remaining functionalities as control possibilities. BCIs are systems

that connect the brain with external devices to perform that person’s volition or

intent, regardless if that individual is unable to perform the task due to body im-

pairments. Sometimes these people have residual activity of their muscles; therefore,

in this work we fuse electromyographic (EMG) with electroencephalographic (EEG)

activity in a framework of the so called “Hybrid-BCI” (hBCI) approach. The EEG

signals are used for the classifications of the locomotion activities, meanwhile the

superficial EMG will be used to estimate the amplitude of the user intent.
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These neural signals are used in the activation of two switching mathematical

models of a tibio-femoral joint, which require a kinematic and dynamic study. For

the switching between models a multi-level controller is used. The lower level consists

of an individual controller for each model that is in charged of the tracking of the

desired trajectory and different velocities of a standard human gait cycle. The mid-

level uses a combination of a logical operator and a finite state machine for the

switching between models. And the highest level consists in a neural network for

the classification of the desired activity. All of this is implemented in a virtual

representation of a tibiofemoral joint.
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Chapter 1

Introduction

There are over millions of amputees who’s lives have been drastically changed due

to their limb losses. The number of individuals with this pathological condition

has been increasing as the population grows and as there is an increment in vascular

diseases. Over 75% of major amputations were lower-limb, with nearly 17% of lower-

limb amputees suffering bilateral amputations [1]. Therefore, there is a continued

need to provide this growing population of amputees with a mean to restore the

mobility they once had as much as possible.

In the cyber physical systems (CPS) research community has come a great

interest in the integration of both cyber systems and biomedical systems. One of

the typical CPS is a neural-machine interface (NMI). These interfaces sense control

signals from different locations, such as muscles [2], peripheral nerves [3], or the

human brain [4] [5]. The acquired signals then control an external device, like a

computer cursor, an internet browser, an exoskeleton or a prosthesis. However,

the CPS cover a wide range of challenges, involving an accurate deciphering of the

acquired neural signal into the user intent, a good control of the device, having a

fair number of inputs and having a real-time neural control of the system [6].

NMI systems that manage the brain signals are usually better known as brain-

computer interfaces (BCI). There exists two different methods to this brain signal

approach: they are the electroencephalography (EEG) and the electrocorticography

(ECoG). Although there exists promising results out of the ECoG procedure, this is

an invasive method, with its main disadvantage being a surgery required to allocate

1
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the electrodes in the brain cortex. EEG, on the contrary, does not involve any

invasion of the body. It mainly consists on allocating electrodes over the scalp in

order to record the electric signals that come from the brain. This is why it comes

to interest the research of non-invasive methods to acquire the neural signals that

allow the control of a certain prosthesis.

1.1 Motivation

Although progress has been made in the area of BCI even in recent years, usu-

ally these researches revolve around different activities such as cursor movement, or

activation of procedures like over-ground/treadmill walking or hand grasping. Also,

the paradigms usually used in the experiments require prolonged training and sus-

tained concentration by the subject in a specific thought or action. Furthermore,

the current signal processing of the BCI usually consists just on classification. Nev-

ertheless, there is evidence of using brain signals to decode kinematics of the lower

limbs.

Along these lines, BCI is a good way to assist disable people, however it cannot

be used for prolonged periods of time and usually requires assistance of an expert.

For this reason BCI can be enhanced by the addition of another biosignal. This

approach is usually called a hybrid-BCI (hBCI), and follows the concept of enhancing

the residual capability of the users. Having the BCI and another channel allows to

operate different procedures using the channels separately, or grants a more accurate

response to a specific process combining the channels. Currently there exist few

works using this hybrid approach combining heart rate, muscular or multiple brain

signals; but still not all are appointed to grant a complete user intent. Note, however,

that there are various types of BCI revolving around two main categories, invasive

and non-invasive. Being the non-invasive the area of interest of this research, since

it does not require surgical procedure or a state of discomfort to the user.
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1.2 Literature Survey

An electromyography (EMG) based NMI developed by Zhang et al. [7] used

the neural signals from the muscles to successfully classify user intent activities, from

both an able-bodied subject and amputee subject. Their NMI design is focused on

two aspects: the deciphering of the activities of sitting and standing, and focus on

accurate classification even in presence of sensor failures or disturbances. Although

their work shows an improvement for the prosthetic functions for specific user intent

activities, it does not include the consideration for other movement task, such as

walking, and it does not reach to the concept of user intent in a progressive activity,

neither other biosignal is involved.

There is a recent report about the integration of an EEG-based BCI system

with a robotic gait orthosis (RoGO) [8]. In the report the authors accomplished

a successful treadmill walking of an able-bodied subject and a paraplegic subject.

Their focus covers the classification of the brain signals during idling and walking

kinesthetic motor imagery (KMI). With this, it can be seen that the model is subject

to the activation of those specific activities. The results provided evidence that

ambulation using brain signals is possible. In their work, however, the usage of

another type of biosignal is limited since an EMG is used solely to discard volitional

leg movements by the able-bodied subject.

Similarly there is a study where subjects operate a BCI-VRE (virtual reality

environment) system in real time [9]. The operation system, using EEG signals of

walking and idling KMI, granted the user to control the ambulation of an avatar. The

system proved to be robust over time, and required a short training time, differently

for many other works. The study showed promising results that BCI could control

lower extremity activation of prosthesis, orthosis, or rehabilitation devices, but just

EEG signals were used, it did not involved another biosignal whatsoever.

Seeing that a proper control for normal human gait in rehabilitation devices

is needed, several studies have been proposed. In a paper by Bae et al. [10], an
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algorithm for gait rehabilitation was presented. Their iterative learning algorithm

used the cyclic pattern of gait to correct the angular position of the knee in the

following strides by using an assistive torque. The authors realized experiments using

simulations and a healthy person performing an abnormal gait. The experiments

with the individual were carried out using an actuator in an orthosis, meanwhile

the simulations were realized by implementing two models of the human knee. The

models were design accordingly for the two main phases of a walking stride, the

swing phase and the stance phase. For the swing phase the model behaves like a

pendulum and for the stance phase like a inverted pendulum. The study made by

these authors focused mainly in rehabilitation, it did not involved limb loss and not

making use of any biosignal.

Another control system based on motion intent recognition is proposed by Varol

et al. [11]. They use Guassian mixture models to recognize the user intent from

the information taken from the prosthesis sensors. The intent recognizer switches

between the two modes, standing or walking. For that, a comparison between the

prosthesis sensors and a database of walking patterns is what determine the switching

between the gait modes. Following the study of Varol et al., an extension can be

found in [12], where the control architecture of the powered prosthesis has changed

to three levels. The high-level is the intent recognizer, the mid-level consists of

the controllers for each mode, walking and standing, and the addition of two modes,

sitting and stair ascent/descent. In the lower level a close-loop controller is in charge

for the joint torque.

It comes to notice that most prosthesis or orthosis are just activated, by pre-

viously using a classifier that tells which activity to realize using one biosignal or

solely react to a motion condition. Nonetheless, there are resent works that try to

provide more volition of the user to the device. Such is the work of Ha et al. [13].

Their work uses EMG measurements, during a non-weight activity. The EMG clas-

sifier distinguishes between flexion or extention of the knee joint, and changes the

joint torque only during muscular contraction; if the muscle is relax it maintains its
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position. So it can be seen that the device progressively follows the user’s intent.

During ambulatory conditions, the forces and torques required for the gait need

to be taken into consideration because it is a weight-activity, supporting the human

body while performing a stance phase with one leg. In order to give the user control

over the torque required to move the leg, an EMG to torque relation needs to be

studied. Ullah et al. [14] showed that there are different types of models to calculate

the EMG-torque relation and stated that the relation is non-linear.

As it has been mentioned, Do et al. [8] and King et al. [9] have an EEG clas-

sifier, and to be more precise they both use a linear discriminant analysis. Studies

have shown there are different approaches for the EEG classification. For example,

linear or quadratic discriminant analysis, linear regression [15], neural networks [16],

support vector machines [17]. Each classifier has it own advantages and disadvan-

tages, like accuracy, performance or computational requirements. Some of these

methods of classification are used in existing hBCI. However, there are just a few

examples of the hybrid approach. So it seems that this area of research is still young

and with many improvements to develop.

1.3 Problem Description

The current computerized prostheses, using a microcontroller embedded in

them along with motion sensors, form a closed loop that approximates to the nat-

ural human gait. However, the function of such computerized prosthesis is still

limited. Based on mechanical sensing and prediction, they perform activities as

walking, sitting, standing, and even stair climbing; nonetheless, they do not provide

a complete user intent.

1.4 Hypothesis

The approach we take in this thesis is the creation of a system that combines

two neural activities, being them EMG-based and EEG-based, thus a hBCI. This

combination provides the necessary information to obtain the user intent in two
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different aspects:the activity to realize, and the magnitude of such activity.

So, the hypothesis of this research is that there exists a controller for these

extracted/classified signals that can provide a time progressive signal instead of a

simplified precise operation. This controlled signal does not only give a precise op-

eration, but also a progressive signal that denotes desired positioning, speed, accel-

eration, and force. The scheme of the two NMI systems combined into the proposed

hBCI system can be seen in Figure 1.1.

Figure 1.1: Proposed hBCI system.

1.5 Objectives

1.5.1 Main Objective

The main objective is to combine two existing non-invasive NMI systems,

that will serve as inputs to a controller of a mathematical model of a prosthetic

tibiofemoral joint, which will be represented in a virtual manner.

1.5.2 Particular Objectives

1. Develop a virtual model of a tibiofemoral joint. This is accomplished by making

a kinematic and dynamic study of an actual tibiofemoral joint simplified in

a two-link model, whose parameters are estimated from a human body and

emulated in a 3D representation.

2. Design a multi-level control scheme to solve the trajectory tracking according

to the different gait phases and speeds selected by an EEG classifier.
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3. Implement the EEG and EMG signal processing to classify different activities

and estimate the amplitude of the torque required by the model for a given

activity.

1.6 Methodology

1. Literature survey.

2. Mathematical modeling of tibiofemoral joints.

3. Finite-state machine design for the model switching.

4. Segmental analysis to determine nominal parameters.

5. Computerized design of the tibiofemoral joints.

6. Feedback design for the automatic control of the tibiofemoral prosthesis to

track the trajectory at different speeds.

7. Acquisition of EMG and EEG measurements during gait for different speeds.

8. Estimation of EMG signal amplitude and develop a scheme to estimate the

EMG-torque relation.

9. Pre-processing of EEG signal for feature extraction using power spectral den-

sity (PSD) and using a support vector machine (SVM) for the classification of

the different speed-walking activities.

10. Perform a set of numerical simulations to evaluate the performance of the

hybrid scheme.

1.7 Thesis Contribution

With this thesis we provide a compilation of procedures that grants a hBCI in

a computational manner. The contributions of this thesis are as follows:
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1. Mathematical models of tibiofemoral joints with nominal parameters.

2. A multi-level control scheme to solve the tracking of the knee trajectory, and

switching between mathematical models.

3. An algorithm for the estimation of the EMG-torque relation.

4. An algorithm for the user intent classification of gait during walking at different

speeds.

5. A virtual interface in charge of emulating the behavior of the hBCI of a

tibiofemoral joint with the proposed tools.

1.8 Thesis Content

The content of this study is organized in logical order as appropriate to explain

the procedures used. Chapter 2 revolves around the models used in this study: first

it is mentioned what method was used to obtain the kinematic and dynamic models

required for the study; this chapter also covers the origins of the parameters used in

the models, which derive from equations using a physiological body parameters; the

chapter explains the visualization used for feedback, which include the main bones

in a tibio-femoral joint. Chapter 3 covers the control area: it specifies the low-level

controllers used, and the control scheme used for the transitions between models.

Chapter 4 shows everything regarding the neural signals: it is explained what process

is required to obtained a useful EMG signal, and the method to classify the mental

process using the EEG. Chapter 5 shows the experimental setup followed by the

results obtained of all the compilation of procedures, and the discussion about them.

Finally, in Chapter 6 the conclusions are presented, as well as future work proposals.



Chapter 2

Models

The human knee is one of the most complex joints in the body. This is due to

the set of different ranges of motion it possess. It is possible to model an accurate

approximation of this complex joint, but aiming for a high complexity increases the

number of equations required for its understanding. Hence this chapter, shows what

comprises the knee joint, and how simple models of the knee were studied.

2.1 Anatomy of the knee

Between the hip and ankle joints exist four bones that are the femur, tibia,

fibula and patella; which can be seen in Figure 2.1 (edited from [18]). The femur is

the longest and strongest bone of the skeleton, and the segment of the body in which

is located is named “thigh”. The leg segment has the tibia and the fibula bones.

Lastly the patella or kneecap is in charge of protecting the knee. These bones form

two types of joints: the patellofemoral joint, which is between the femur and the

patella, and the tibiofemoral joint that involves the femur and the tibia. The fibula

and femur have no contact with each other so they do not form a joint. Entirely,

the knee joint has multiple tasks: it facilitates positions and movements of the body,

aids in the conservation of momentum, and provides the necessary moments for

activities involving the lower limb. Furthermore, the knee transmits loads during

different activities, like sitting/standing, stair ascent/descent, and walking [19]. The

complex activity of walking, can be described by understanding the human gait

pattern or what is known as the gait cycle.

9
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Figure 2.1: The skeletal (a) anterior and (b) transversal cut views of the knee.

2.2 Gait Cycle

The gait cycle consists of the repetition of certain events and phases. One

gait cycle begins with heel contact of either foot and finishes with heel contact of

that same foot. The cycle is divided in two phases: the stance phase and the swing

phase. When one phase ends the other phase starts, making this way the cycle.

Since phases and events repeat independently of time, the cycle is usually described

in percentage, as seen in Figure 2.2 (edited from [20]).

The stance phase is the period when the foot is making contact with the surface,

hence is the one providing support. It begins at 0% with the heel contact of either

foot and concludes around 60% with toe-off of that foot. This phase is subdivided

in four parts: heel contact, mid-stance, active propulsion, and passive propulsion.

These four parts follow the sequence in which they were listed. Using the right foot

as reference, right stance phase begins with heel contact of the right foot. At this

time, there exists what is called initial double limb support, in which both feet are

making contact with the surface.
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Figure 2.2: Gait cycle (edited from [20]).

When left toe-off occurs, this marks the end of the double support and the

beginning of right mid-stance. Right mid-stance continues until there is a heel lift of

that same foot. Right active propulsion occurs between heel lift of the right foot and

heel contact of the left foot. During mid-stance and active propulsion there is just

one limb on the ground, so single limb support takes action. After heel contact of

the left foot, right passive propulsion begins, and since both feet are on the ground,

there is the terminal double limb support. Finishing right passive propulsion with

toe-off of the right foot, will also end the right stance phase.

The role of the swing phase consists on preparing the lower limb to begin the

cycle again, taking around 40% of the remaining percentage. The swing phase is also

subdivided into parts: initial swing, mid-swing, and terminal swing. Initial swing

begins at the moment stance phase ended, at the event of toe-off of either foot.

This will continue until mid-stance of the opposite foot, marking the beginning of

mid-swing. When the tibia of the swinging limb reaches a vertical position, the

mid-swing will end and the terminal swing will begin. During terminal swing, the

swinging limb begins to make preparations for the heel contact of that foot, marking

the end of the phase and one entire gait cycle.
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During gait, the knee almost reaches its full extension at heel contact. When

approaching mid-stance, the knee begins to flex reaching the peak of this phase.

After mid-stance, during the active and passive propulsion, the knee is again almost

completely extended. During the swing phase, the knee flexes in initial and mid-

swing reaching the peak of the phase. To finish the gait cycle, the knee extends

again to prepare the following heel contact in terminal swing. With this said, it can

be noticed that the knee joint has angular displacements at these motion segments

during walking. For these motions, a basic understanding of kinematics is required.

2.3 Kinematics

Kinematics is the branch of mechanics that describes the motion of points or

objects without consideration of what causes it. In the body, kinematics describe

the motion in three different planes, defined below and seen in Figure 2.3 (taken

from [21]).

Coronal (or Frontal) Plane: plane that divides the body into front and back.

Sagittal (or Lateral) Plane: plane that divides the body into left and right sides.

Transverse (or Axial) Plane: plane splitting the body into upper and lower parts.
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Figure 2.3: Anatomical planes.

2.3.1 Movement

The tibiofemoral joint in the knee shows movements in the three different planes

mentioned previously for a combination of six-degrees of freedom: three translations

(anterior-posterior, medial-lateral, proximal-distal), and three rotations (flexion-

extension, internal-external, and varus-valgus or abduction-adduction). This can

be seen in Figure 2.4 (taken from [19]).

Although there exist six-degrees of freedom in the tibiofemoral joint, most

are limited to a few degrees of motion. The internal-external rotation reaches its

maximum around 30◦ to 40◦ of flexion, meanwhile abduction-adduction has just

a few degrees when reaching about 30◦ of flexion. With this, it can be seen that

both motions depend on the flexion-extension on the sagittal plane, which has the

greatest range of motion. During gait, the abduction-adduction and internal-external

rotations present fluctuation of around 10◦ during full flexion [22]. So in this research,

for simplicity, just the rotation in the sagittal plane is considered.
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Figure 2.4: The axes and planes of rotation of the biological knee joint.

2.3.2 Forward Kinematics

A kinematic model is comprise of consecutive series of rigid bodies, or links,

connected by joints. Forward kinematics specify the joint parameters and, using

kinematic equations, calculates the composition of the chain and locates the position

of the end-effector. Forward Kinematics finds the relations between the articular

coordinates q ∈ Rn and Cartesian coordinates [x, y, z] ∈ R3 to find the location of

end-effector [23].

As mentioned before, in this research is just covered the motion in the sagittal

plane, and the tibiofemoral joint can be seen as a 2-link chain. However during the

two main phases of gait (stance and swing phase) the tibiofemoral joint behaves

differently. During stance phase, the foot is fixed to the ground and the purpose of

the limb’s movement is for the upper body advancement. In the swing phase, the

entire lower limb moves forward with the hip as reference point. Since the behavior

is different in the two phases, each has its own model (Figure 2.5). The parameters

for each model in this research are supposed to come from the human body.
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Figure 2.5: Swing model: two links in a double pendulum (left). Stance model: fixed

to the ground (right).

Thus the forward kinematics model with respect to the fixed point and the

centers of mass of each link for the stance phase is as follows:

xSt1
ySt1

 =

−ln2 sin(φ)

ln2 cos(φ)

 , and (2.1)

xSt2
ySt2

 =

−l2 sin(φ)− ln1 sin(φ+ q2)

l2 cos(φ) + ln1 cos(φ+ q2)

 . (2.2)

For the swing phase, they are given by:xSw1
ySw1

 =

 lm1 sin(q1)

−lm1 cos(q1)

 , and (2.3)

xSw2
ySw2

 =

 l1 sin(q1) + lm2 sin(q1 − q2)

−l1 cos(q1)− lm2 cos(q1 − q2)

 . (2.4)

The parameters of the models are defined in Table 2.1:
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Link Phase Meaning Notation

Femur

Stance
Cartesian coordinates of center of mass xSt2, ySt2

Length of center of mass ln1

Swing
Cartesian coordinates of center of mass xSw1, ySw1

Length of center of mass lm1

Length of the link l1

Tibia

Stance
Cartesian coordinates of center of mass xSt1, ySt1

Length of center of mass ln2

Swing
Cartesian coordinates of center of mass xSw2, ySw2

Length of center of mass lm2

Length of the link l2

Angular displacement in the hip (degrees) q1

Angular displacement in the knee (degrees) q2

Calculated angular displacement in the ankle φ

where: φ = q1 − q2

Table 2.1: Parameters used in the models.

So far in this section the motions of the joint have been described, but it

has been done without involving any forces or masses. Since these motions present

accelerations and decelerations, there exist forces and moments acting on the body.

For these reasons kinetics needs to be applied.

2.4 Dynamic Model

Kinetics is the branch of mechanics that studies the forces and torques that

affect a body or object. Kinetics involves two studies: static analysis (during equi-

librium), and dynamic analysis (during motion). Since the study in this research

involves the walking gait, a dynamic analysis is required. A standard method to ob-

tain the dynamic model is the Euler-Lagrange method, that matches the well-known

robot dynamics form [23]:

τ = M(q)q̈ + C(q, q̇)q̇ + g(q), (2.5)

where q ∈ Rn defines the generalized coordinates vector or articular position, q̇ ∈ Rn

is the vector of articular velocities, q̈ ∈ Rn is the vector of articular accelerations,

M(q) ∈ Rn×n is a symmetric positive definite inertia matrix, C(q, q̇) ∈ Rn×n is the
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matrix of centripetal and Coriolis torques, g(q) ∈ Rn is the vector of gravitational

torques obtained as the gradient of the robot potential energy U(q), i.e., g(q) = ∂U(q)
∂q

,

and n is the number of degrees of freedom of the model.

In the following subsections, the procedure to obtain the dynamic models used

in stance phase and swing phase is shown.

2.4.1 Stance Model

To obtain the stance phase dynamic model, the process starts by using (2.1)

and (2.2) from Section 2.3.2 and use differential kinematics to obtain the lineal

velocity of the center of mass of each link:

vSt1 =
d

dt

xSt1
ySt1

 =
d

dt

−ln2 sin(φ)

ln2 cos(φ)

 =

−ln2 cos(φ)φ̇

−ln2 sin(φ)φ̇

 , and (2.6)

vSt2 =
d

dt

xSt2
ySt2

 =
d

dt

−l2 sin(φ)− ln1 sin(φ+ q2)

l2 cos(φ) + ln1 cos(φ+ q2)


=

−l2 cos(φ)φ̇− ln1 cos(φ+ q2)φ̇ −ln1 cos(φ+ q2)q̇2

−l2 sin(φ)φ̇− ln1 sin(φ+ q2)φ̇ −ln1 sin(φ+ q2)q̇2

 .
(2.7)

With these equations, the respective speeds of each link are given by:

||vSt1||2 = l2n2φ̇
2, and (2.8)

||vSt2||2 = l22φ̇
2 + 2l2ln1 cos(q2)(φ̇+ q̇2)φ̇+ l2n1(φ̇+ q̇2)

2. (2.9)

The next step consists on obtaining the kinetic and potential energies. The kinetic

energy of a whole system is basically the summation of the kinetic energy of each

link:

KSt(q, q̇) =
1

2
m2||v2St1||+

1

2
I2φ̇

2 +
1

2
m1||v2St2||+

1

2
I1(φ̇2 + q̇2)

2, (2.10)

where the notation I1 is for the inertia of the femur and I2 for the tibia. As for the

total of the potential energy of the system, it can be obtained as follows:

USt(q) = m2gln2 cos(φ) +m1gl2 cos(φ) +m1gln1 cos(φ+ q2). (2.11)
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The Lagrangian L(q, q̇) is defined by the difference between the kinetic and potential

energy:

L(q, q̇) = K(q, q̇)− U(q). (2.12)

The movement equations of Euler-Lagrange of a model are given by:

τ =
d

dt

[
∂L(q, q̇)

∂q̇

]
− ∂L(q, q̇)

∂q
. (2.13)

After proper calculations, found in Appendix A, the obtained dynamic model of the

stance phase is given by:

τSt = MSt(q)q̈ + CSt(q, q̇)q̇ + gSt(q), (2.14)

with

MSt =

m2l
2
n2 +m1l

2
2 + 2m1l2ln1cos(q2) +m1l

2
n1 + I1 + I2 m1l

2
n1 +m1l2ln1cos(q2) + I1

m1l
2
n1 +m1l2ln1cos(q2) + I1 m1l

2
n1 + I1

 ,
CSt =

−2m1l2ln1sin(q2)q̇2 −m1l2ln1sin(q2)q̇2

m1l2ln1sin(q2)φ̇ 0

 ,
gSt =

−m2gln2sin(φ)−m1gl2sin(φ)−m1gln1sin(φ+ q2)

−m1gln1sin(φ+ q2)

 ,
where q, q̇, q̈ ∈ R2.

2.4.2 Swing Model

In a similar way, to obtain the swing phase dynamic model, the process starts

by using (2.3) and (2.4) from Section 2.3.2, together with differential kinematics, to

obtain the lineal velocity of the center of mass of each link:

vSw1 =
d

d

xSw1
ySw1

 =
d

dt

 lm1 sin(q1)

−lm1 cos(q1)

 =

lm1 cos(q1)q1

lm1 sin(q1)q1

 , (2.15)

vSw2 =
d

d

xSw2
ySw2

 =
d

d

 l1 sin(q1) + lm2 sin(q1 − q2)

−l1 cos(q1)− lm2 cos(q1 − q2)


=

l1 cos(q1)q̇1 + lm2 cos(q2 − q1)q̇1 −lm2 cos(q2 − q1)q̇2
l1 sin(q1)q̇1 − lm2 sin(q2 − q1)q̇1 lm2 sin(q2 − q1)q̇2

 ,
(2.16)
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where the speeds of each link are, respectively

||vSw1||2 = l2m1q̇
2
1, and (2.17)

||vSw2||2 = l21q̇
2
1+l2m2q̇

2
1+2l1lm2 cos(q2)q̇

2
1+l2m2q̇

2
2−2l1lm2 cos(q2)q̇1q̇2−2l2m2q̇1q̇2. (2.18)

As in the previous subsection, the next step consists in obtaining the total kinetic

and potential energies. The kinetic energy of each link and the potential energy are

given by

KSw(q, q̇) =
1

2
m1||v2Sw1||+

1

2
I1q̇

2
1 +

1

2
m2||v2Sw2||+

1

2
I2(q̇1 + q̇2)

2, and (2.19)

USw(q) = m1glm1(1−cos(q1))+m2gl1(1−cos(q1))+m2glm2(1−cos(q2−q1)), (2.20)

respectively. Again, as in the stance phase, the Lagrangian in (2.12) and the Euler-

Lagrange movement in (2.13) have to be used to calculate the dynamic model of the

swing phase. After performing the calculations, which are available at Appendix A,

the obtained dynamic model is given by

τSw = MSw(q)q̈ + CSw(q, q̇)q̇ + gSw(q), (2.21)

with

MSw =

m1l
2
m1 +m2l

2
1 +m2l

2
m2 + 2m2l1lm2cos(q2) + I1 + I2 I2 −m2l1lm2cos(q2)−m2l

2
m2

I2 −m2l1lm2cos(q2)−m2l
2
m2 m2l

2
m2 + I2

 ,
CSw =

−2m2l1lm2sin(q2)q̇2 m2l1lm2sin(q2)q̇2

m2l1lm2sin(q2)q̇1 0

 ,
gSw =

m1glm1sin(q1) +m2gl1sin(q1)−m2glm2sin(q2 − q1)

m2glm2sin(q2 − q1)

 ,
where q, q̇, q̈ ∈ R2.

After calculating the dynamic model, a numerical model is necessary for sim-

ulation and practical purposes [23]. For this reason, the nominal values of the

parameters for the rigid bodies or links are required, and the method to define them

is found in the next section.
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2.5 Parameters

There exist a procedure called segmental analysis [24] which considers the

body as being composed of different rigid bodies or segments (Figure 2.6), and

then it estimates the mass and center of mass (CM) location of each segment to

calculate the corresponding CM of the whole body. It is shown in Table 2.2, how

this analysis provides the calculation of segmental masses and CM locations. The

masses are calculated after obtaining the segment weight, which comes from the use

of the entire weight of the individual (Fw) in the given formula. The CM location

is calculated based on a percentage of the length of the segment and it is allocated

from a reference point or proximal end.

Figure 2.6: The body segment organization, which is comprised by 14 segments and

includes the trunk, upper arms, forearms, hands, thighs, shanks, and feet.



Chapter 2. Models 21

Segment Weight (N) CM location (%) Proximal end of segment

Thigh 0.127Fw-14.82 39.8 Hip joint

Shank 0.044Fw-1.75 41.3 Knee joint

Foot 0.009Fw+2.48 40.0 Heel

Table 2.2: Estimating body segment weights and locations of CM. Edited from [24].

In addition to CM location and mass calculations, also segmental moments of inertia

need to be considered. The values of inertia are usually reported as mean values

(Table 2.3) as there exists low variability between the different specimens studied.

Segment Sagittal Coronal Transverse

Thigh 0.1157 0.1137 0.0224

Shank 0.0392 0.0391 0.0029

Foot 0.0030 0.0034 0.0007

Table 2.3: Segmental moments of inertia (kg ·m2), edited from [24].

For this research, a test subject of height of 1.70 meters and a mass of 70 Kg is

considered. Therefore, the nominal values of the parameters used for the numerical

simulation are shown in Table 2.4. Note that this values can be adjusted to represent

another different test subject.

Link Parameter Value

Femur

m1 7.3793 Kg

l1 0.52 m

ln1 0.3130 m

lm1 0.2070 m

I1 0.1157

Link Parameter Value

Tibia

m2 2.9016 Kg

l2 0.42 m

ln2 0.2352 m

lm2 0.1848 m

I2 0.0392

Table 2.4: Nominal parameters used in this research.
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2.6 Interface

For a visual aid regarding the movement of the tibiofemoral joint, a 3D model

(Figure 2.7) available online at the University of Brussels was used [25]. The rea-

son behind the usage of an accurate modeling of the joint instead of simple lines

on a grid is to allow a better understanding of the joint behavior, avoiding using

a hinge conceptualization. The ultimate intention is to apply the control scheme,

to be described in the next chapter, in a simulation environment using an anthro-

pomorphic mechanism of the tibiofemoral joint. To manipulate this model, ad-

justments of its parameters had to be made. Nothing was done to compromise

the structure of the model, solely the centers of rotation were changed. This was

done so that the rotations were similar to that of the human tibiofemoral joint.

Figure 2.7: 3D virtual knee available in

the VAKHUM project [25].

One of the features of this model

is the possibility of changing the posi-

tion of the different structures using sim-

ple geometry considerations as used in

forward kinematics. This is due to the

availability of using different input vari-

ables, making possible translations and

rotations in all different axes. In chap-

ter 5, this interface is integrated to the

models for the understanding of the mo-

tion of the joint.
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Multi-level Control

In order to provide a user intent alongside proper control of the gait trajectories,

here a multi-level control is proposed. It consists of three levels: low, mid and high.

The high-level is used to recognize the user intent. The mid-level uses a finite state

machine to distinguish between the two main phases of the gait. The low-level is

composed by the trajectory controllers.

3.1 Low-Level

The control problem or control objective to accomplish is the tracking of the

angular trajectories performed by a knee joint on a normal gait. To accomplish it,

objective a PD+ controller was used, which is based on the position controller of

Takegaki et al. [26]. This is the most simple and popular control scheme that can be

used. The PD+ controller basically consists in a position controller with the addition

of a dynamic compensation loop [27]. This approach has been used by Rune et al.

[28] to control a rigid body, and by Ludan et al. [29] for a biped line walking robot.

3.1.1 PD+ Controller

The PD+ control with gravity compensation is an algorithm that includes

proportional control of the position error q̃, proportional control of the velocity error

˙̃q plus the complete robot dynamics. In the structure of this control scheme it is

also involved the desired tracking trajectory, velocity and acceleration. The PD+

23



Chapter 3. Multi-level Control 24

control is given by the following equation:

τpd+ = Kpq̃ +Kv
˙̃q +M(q)q̈d + C(q, q̇)q̇d + g(q), (3.1)

where τpd+ is the torque of the control signal; q, q̇ and q̈ are the angular position

velocity and acceleration; qd, q̇d and q̈d stand for the desired respective values. The

errors are then defined as q̃ = qd− q and ˙̃q = q̇d− q̇. Kp and Kv are the proportional

and derivative gains, respectively, and M(·), C(·), and g(·) are the same as in (2.5).

The implementation of the PD+ control scheme requires of the exact knowledge

of the dynamic model of the robot, which means that the exact numeric values of its

dynamic parameters are known [23]. Hence, taking the dynamic parameters from

Section 2.4, we obtain the control equations for the stance and swing phases.

Figure 3.1 shows the diagram of the PD+ controller of the stance phase and

its control equation is given by

τPD+St = KSt,pq̃ +KSt,v
˙̃q +MSt(q)q̈d + CSt(q, q̇)q̇d + gSt(q), (3.2)

where the subscript St stands for stance phase and the proportional and derivative

gains have the following values:

KSt,p =

100 0

0 100

, and KSt,v =

50 0

0 50

.

Similarly, Figure 3.2 shows the controller for swing phase, and the control equation

is as follows:

τPD+Sw = KSw,pq̃ +KSw,v
˙̃q +MSw(q)q̈d + CSw(q, q̇)q̇d + gSw(q), (3.3)

where the subscript Sw stands for swing phase and the proportional and derivative

gains have the following values:

KSw,p =

50 0

0 50

, and KSw,v =

50 0

0 50

.
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Figure 3.1: Block diagram of PD+ controller of the stance phase.

Figure 3.2: Block diagram of PD+ controller of the swing phase.
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In Figures 3.1 and 3.2, it can be seen that the models’ input τ is an average

between the controller τPD+ and the EMG-torque relation τEMG. Signal τEMG comes

from the processing of the signal of the muscles using EMG seen in Chapter 4. This

signal is the torque that the user is providing with his/her musclar activity. The

average is taken because both the low-level controller and the EMG-torque relation

are aiming for the same amount torque.

3.1.2 Equilibrium Point

The closed loop equation that relates the dynamic model (2.5) and the PD+

control scheme (3.1), expressed directly in state variables that define the trajectory

control problem, is given by

d

dt

q̃
˙̃q

 =

 ˙̃q

−M−1(q)
[
Kpq̃ +Kv

˙̃q + C(q, q̇) ˙̃q
]
 (3.4)

=

 ˙̃q

−M−1(qd − q̃)
[
Kpq̃ +Kv

˙̃q + C(qd − q̃, q̇d − ˙̃q) ˙̃q
]
 , (3.5)

which results in a nonlinear differential equation of first order, non autonomous, and

with an equilibrium point in the origin
[
q̃, ˙̃q

]T
= 0 ∈ R2n. The analysis of existence

and uniqueness of the equilibrium point
[
q̃, ˙̃q

]T
= [0 0]T is performed as follows [23]:

• Since the identity matrix I ∈ Rn×n is a positive definite diagonal matrix, then

˙̃q = I ˙̃q = 0⇐⇒ ˙̃q = 0, for the first component of the closed loop in (3.4).

• For the second component of (3.4) the following considerations are taken:

– Referring the property of the inertial effect, the inertia matrix M(q) ∈

Rn×n is a symmetric positive definite matrix, i.e. M(q) > 0, and M(q) =

MT (q). Because of this, the inverse matrix M−1(q) ∈ Rn×n exists and it is

a symmetric positive definite matrix (M−1(q) > 0, and M−1(q) = M−T (q)
)
.

– By design, the proportional Kp and derivative Kv gains are positive defi-

nite matrices.
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– Note that C(qd − q̃, q̇d − ˙̃q) ˙̃q = 0 ∈ Rn because the first component in

(3.5) ˙̃q = 0.

– On the other hand, Kpq̃ = 0 ⇔ q̃ = 0, since the proportional gain is a

positive definite matrix.

Thus, the equilibrium point in (3.5) exists and is unique, on the condition

that the proportional and derivative gains of the PD+ control (3.1) are designed as

positive definite matrices.

3.1.3 Stability

The demonstration of the stability, in the Lyapunov sense, of the equilibrium

point in (3.5) is developed next.

Consider the following proposed candidate Lyapunov function:

V (t, q̃, ˙̃q) =
1

2
˙̃qTM(q) ˙̃q +

1

2
q̃TKpq̃. (3.6)

This is a positive definite function since the inertia and proportional gain matrices

are positive definite. The temporal derivate of (3.6) takes the following form:

V̇ (t, q̃, ˙̃q) = ˙̃qTM(q)¨̃q +
1

2
˙̃qTṀ(q) ˙̃q + q̃TKp

˙̃q. (3.7)

Replacing the acceleration from the second component of (3.4) we get that:

V̇ (t, q̃, ˙̃q) = − ˙̃qTKpq̃ − ˙̃qTKv
˙̃q − ˙̃qTC(q, q̇) ˙̃q +

1

2
˙̃qTṀ(q) ˙̃q + q̃TKp

˙̃q. (3.8)

Using the antisymmetric property, where the centripetal forces and Coriolis matrix

C(q, q̇), and the derivate in time of the inertia matrix Ṁ(q) satisfy

1

2
q̇
[
Ṁ(q)− 2C(q, q̇)

]
q̇ ≡ 0,

i.e., the resulting matrix
[
Ṁ(q)− 2C(q, q̇)

]
is a antisymmetric matrix. Taking all

the necessary considerations, the temporal derivate of the candidate function is given

by

V̇ (t, q̃, ˙̃q) = − ˙̃qTKv
˙̃q ≤ 0, (3.9)
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which satisfies the Lyapunov stability theorem, demonstrating the stability in the

equilibrium point of (3.4).

The low-level controllers, that have been proved to have an equilibrium point

and stability, are focused on the trajectories of each of the main phases, as seen in

Figure 3.3. To distinguish between the two phases, another controller is required.

Hence a mid-level controller is applied.

Figure 3.3: Knee angular trajectory, with marked transition point.

3.2 Mid-Level

As mentioned before the gate cycle consists of the repetition of phases. The

duty of the mid-level is to switch the low-level controllers accordingly to the two main

phases of gait: stance and swing phase. However, in each phase several conditions

repeat, as seen in Figure 3.4. Therefore, a finite state machine was implemented. A

finite-state machine (FSM), or simply a state machine, is a model used for sequential

logics. It is sequential because it can be just in one of a finite number of states at

each time. When certain condition is met, it switches from the current state to

another one; this is known as transition. FSM has been thoroughly used in the

literature, e.g. in Varol et al. [11] and Au et al. [30], who also apply it to walking

and other activities.
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Regarding the gait cycle, the conditions that repeat in each phase were ana-

lyzed and given to the corresponding state transitions (see Figure 3.5). The angular

trajectory of the hip, q1, in the stance phase begins around 22◦ and starts to descend

as the phase continues, reaching a peak near 50% of the cycle and finishing around

60% with a value of −7.56◦. After the stance phase concludes, the swing phase

commences. It crosses zero and reaches a peak before 90%, then descends a little

to finish with the initial value of 22◦ for the stance phase to start anew, as seen in

Figure 3.4.

Figure 3.4: Angular trajectories of the hip.

It can be noted that the finishing conditions of both phases are repeated within

each phase. For this reason, in this work two states are given to the stance phase

and other two to the swing phase, as seen in Figure 3.5. The two states of the

stance phase are named: St for “stance” and PSw for “pre-swing”. The condition

for the transition between these two states is to underpass the value of −7.56◦, as

it is the repeated finishing value of that main phase. In swing phase, the states

are denoted as: Sw for “swing” and PSt for “pre-stance”. Here, the condition is to

overpass the repeated finishing value of the main phase, which in this particular case

is 22◦. (Note that these names have nothing to do with the previously mentioned

gait phases, parts and events). A fifth state, called IDLE, was added. A default

transition is placed in this state, to define it as the first state the system starts in.
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Figure 3.5: Finite state machine with its states and transitions.

In the FSM, each state has the output parameters, “m” that serves as a trigger

for a specific block inside the models; and “u1” and “u2” that are specific logical

values that serve as inputs to a logical operator. The chosen logical operator is

the conditional construct (Figure 3.6) or if-then construct (sometimes called if-then-

else). The operator evaluates the inputs and selects the appropriate statement. One

of the statements of the logical operator is to give no movement, which would be the

idle state. The other statements consist on choosing the low-level controller of the

stance or swing phase.

Figure 3.6: State machine and logical operator.
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3.3 High-Level

The high-level control is composed primely of a support vector machine (SVM)

that classifies the brain signals from the EEG into two categories. The categories

consist of the activity of walking at different speeds. The SVM will be explained in

Chapter 4. However, the purpose of this level of control will be explained next.

As it was mentioned in Section 2.2, the gait cycle is managed in terms of a

percentage, therefore a defined trajectory of the tibiofemoral joint movement can

be used. The defined trajectories are given in samples, not involving time, based

on average angular displacements as defined in the literature. In this study, it

is considered that the 100% of the gait cycle is completed in two sets of time,

1.13 and 1.43 seconds, as to establish the different walking speeds. In the next

chapter, it is shown the classification of the activities using the SVM. After the

classification, similar to the mid-level, a logical operator evaluating these results

executes the different activities. The statements consist mainly in providing the

defined trajectories required to have the two walking speeds.



Chapter 4

EEG & EMG Signals

This chapter is mainly focused on explaining the procedure and methods to handle

the EEG and EMG signals. Each has its own acquisition method and pre-processing

of the signal. This chapter also explains the SVM, which is used for the classification

of the EEG to reproduce the intention of the user, as well as the neural network

of maximum sensibility (NNMS) used to find the EMG-torque relationship that

provides the magnitude of the user’s motion.

4.1 Electroencephalography

EEG is the sensing of electrical signals from the brain using electrodes on the

surface of the scalp. This approach is the most used when implementing BCI [31].

There exists other methods to acquire the neural activity of the brain. These other

methods instead of electrical, rely on magnetic or metabolic activity. Nonetheless,

these methods tend to be really expensive on the devices they use, work better for

slow processes, or are not suitable for ambulatory conditions [32].

The location of the electrodes and their names are specified by the interna-

tional 10-20 system for most medical, clinical or research applications, which use 19

recording electrodes. In some occasions less electrodes are used depending on the im-

plementation. Also there exist the 10-10 and 10-5 systems that consider high-density

arrays of sensors and can allow for more than 300 electrodes [33].

The electrical discharge that the electrodes record from the scalp lie withing

32
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the amplitudes of ±10 to ±100 µV . However, the brain activity is usually described

in terms of different rhythms. The brain rhythms are divided in bands of frequencies

that are called delta (δ), theta (θ), alpha (α), beta (β) and gamma (γ), listed from

lower to higher frequencies [34]. Frequently, these bands are extracted from the EEG

signal using spectral methods.

4.1.1 Feature Extraction

Feature extraction consists of extracting main characteristics from the raw

data of some process, which they become a representation of the signal itself [31].

These characteristics are stored in what is known as feature vector. In our case,

the feature vectors are the inputs to the classifiers, because they posses the most

relevant information of the data. There exists several methods on feature extraction

for EEG, like wavelet packet decomposition (WPD), approximate entropy (ApEn),

discrete wavelet transform (DWT) or power spectral density (PSD), to mention some

[31, 35].

In this research, the fast fourier transform (FFT) is used to obtain the fre-

quency components of the EEG signal. Since the main interest here is in the gait,

the FFT is used to find the frequency bands α and β, which are the frequencies that

are related to motion, either real or imaginary [9, 17, 31]. The frequency band α

has the range between 8 − 14 Hz and β between 15 − 30 Hz. After converting the

signal from the time domain to the frequency domain, the range of the spectrum

covering the α and β bands is taken to make up the feature vector. Depending on

how many channels are decided to use on the EEG acquisition, the number of fea-

tures will increase. Therefore, it is recommended to adjust the inputs of the classifier

accordingly.

4.1.2 Task Classification

A SVM classifies data by finding an appropriate ρ-dimensional hyperplane that

splits the data points into two classes. Originally, the basic idea of the SVM was to

find the optimal hyperplane for linearly separable patterns, but often the data sets
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are not linearly separable. In order for a SVM to perform a non-linear classification,

the non-linear decision hyperplane is introduced by mapping the inputs into a higher

dimensional space using what is known as kernel tricks. This section shows how to

form a linear SVM followed by a non-linear SVM [36, 37].

4.1.2.1 Linear SVM

Consider the training data {(xi, yi) | xi ∈ Rρ, yi ∈ {1,−1}}Ni=1, where xi is

the ith input pattern, yi is the respective category, which is either 1 or −1, and N

is the total number of examples in the training set. It is desired to separate those

categories with a hyperplane, which can be obtained with a set of data points that

satisfy the following equation:

w · x− b = 0, (4.1)

where x is an input vector, w is an adjustable weight vector, (·) denotes the dot

product, and b is a bias. The distance from the origin to the hyperplane is given by

b
||w|| along w. Since the training data is linearly separable, its is possible to select

two hyperplanes that separate the data with no data points in-between them.

These hyperplanes can be described by the following equations:

w · x− b = +1, and (4.2)

w · x− b = −1. (4.3)

However, an infinite number of hyperplanes can be found. Hence, the SVM has to

obtain an optimum hyperplane which maximizes the margin of separation between

the two categories, as seen in the example of Figure 4.1.



Chapter 4. EEG & EMG Signals 35

Figure 4.1: Optimum hyperplane with maximized margin of separation between two

classes.

Let x+ and x− be data points that satisfy (4.2) and (4.3), respectively. These

are called support vectors. Note that these equations imply that

w · (x+ − x−) = 2. (4.4)

Therefore, after normalization, the margin is given by

m =
w · (x+ − x−)

||w||
=

2

||w||
. (4.5)

Maximizing the margin is equivalent to minimizing ||w||. As the data points (xi, yi)

have to be prevented for falling in the margin, a constraint is required such that

w · xi − b

≥ +1 if yi = +1

≤ −1 if yi = −1

,

which can be rewritten as

yi(w · xi − b) ≥ 1, for all 1 ≤ i ≤ N. (4.6)

The optimization problem of minimizing ||w|| is difficult to solve because it depends

on the norm of w, which involves a square root. By replacing ||w|| with 1
2
||w||2

the optimization problem is simplified without changing the solution, since both
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quantities are monotonically related [31]. This is known as the primal optimization

problem that is formulated as

min
w

1

2
||w||2 subject to yi(w · xi − b) ≥ 1,∀i (4.7)

This is a quadratic programing optimization problem subject to linear constraints

with a unique minimum. It is common in optimization theory to convert from primal

to dual form and then solve the latter instead. Using the Lagrangian multipliers

αi ≥ 0, the previous constrained problem can be expressed as

Lp =
1

2
||w||2 −

N∑
i=1

αi [yi (w · xi − b)− 1]

=
1

2
||w||2 −

N∑
i=1

αiyi (w · xi − b) +
N∑
i=1

αi

=
1

2
w · w − w

N∑
i=1

αiyixi − b
N∑
i=1

αiyi +
N∑
i=1

αi.

(4.8)

The optimal solution is a saddle point, which minimizes Lp by assigning zero to ∂Lp
∂w

and ∂Lp
∂b

:

∂Lp
∂w

= 0 ⇒ w −
N∑
i=1

αiyixi = 0

⇒ w =
N∑
i=1

αiyixi ,

(4.9)

∂Lp
∂b

= 0 ⇒
N∑
i=1

αiyi = 0. (4.10)

Substituting (4.9) and (4.10) into Lp, we obtain its dual form:

Ld =
1

2
w · w − w

N∑
i=1

αiyixi +
N∑
i=1

αi

= −1

2

N∑
i=1

N∑
j=1

αiαjyiyj(xi · xj) +
N∑
i=1

αi ,

(4.11)

subject to:
∑N

i=1 αiyi = 0 and αi ≥ 0, ∀i. The objective function of the dual problem

is maximized in αi, since Ld only depends on it. And although this also corresponds

to a quadratic optimization problem, its complexity depends only on the sample size
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n. By obtaining the optimum Lagrange multipliers, it is possible to compute the

optimum weight vector through 4.9 entirely in terms of training data. To compute

the optimum bias, the optimum weight vector is used in the following equation:

yi(w·xi − b) = 1, (4.12)

with (xi, yi) ∈ SV , where SV is a set of support vectors. Using (4.9) in (4.12), it

can be found that

w · xi − b =
1

yi
= yi =⇒ b = −yi +

N∑
j=1

αjyjxjxi. (4.13)

The bias can be obtained using just one support vector. However, for numerical

stability and to be more robust, an average of all γSV support vectors is used to

compute the bias:

b =
1

γSV

γSV∑
i=1

(
−yi +

N∑
j=1

αjyjxjxi

)
. (4.14)

4.1.2.2 Non-linear SVM

To treat nonlinearly separable datasets, the SVM transforms the original input

xi using a nonlinear transformation or mapping, into a high-dimensional feature

space. Applying a linear operator in a higher dimensional feature space is equivalent

to apply a nonlinear operation into the input space. Let ϕ(xi) be a basis function

that performs a nonlinear transformation, which then defines the kernel function

K(xi, xj) = ϕ(xi) · ϕ(xj). In (4.15) it can be seen that the data points appear just

as inner products:

max
α

{
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyj(xi · xj)

}

= max
α

{
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjφ(xi) · φ(xj)

}

= max
α

{
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjK(xi, xj)

}
,

(4.15)

subject to
∑N

i=1 αiyi = 0 and αi ≥ 0,∀i. However, as long as the inner product in

the feature space is calculated, the use of the kernel function to carry out ϕ explicitly
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is not required. This is known as the kernel trick. Some common kernel functions

are shown in Table 4.1.

Type of Kernel K(xi, xj)

Polynomial (homogeneous) (xi · xj)d

Polynomial (non-homogeneous) (xi · xj + 1)d

Gaussian radial basis function (rbf) exp
(
− ||xi−xj ||

2

2σ2

)
Sigmoid

tanh(κxi · xj − c)

for some κ, c > 0

Table 4.1: Common kernel functions [31,36,37].

4.1.2.3 EEG Classification

In Section 3.3, it was mentioned that the high-level controller consists solely

of the SVM working as a classifier. The EEG signals are considered the input of

the SVM, but as mentioned in Section 4.1.1, the signal needs to passed through the

process of feature extraction. After such process, there exist different input signals,

which then will be classified by the SVM into two specific tasks defined in this study

as speed 1 and speed 2.

4.2 Electromyography

EMG is the recording of the electrical activity produced by the muscles. It

can be either invasive or non-invasive, which correspond to intramuscular EMG or

surface EMG, respectively [38]. For the intramuscular EMG, a hollow needle with

fine wires is inserted in the studied muscle. Although this method is more accurate

regarding the muscular signal, several measurements have to be done because the

needle insertion just gives a local picture of the muscle. Surface EMG on the contrary

gives a general picture of the muscle. However, one has to be careful with the

location of the sensors, and the inter-electrode spacing. If placed near the tendon

origin, innervation zone, or where the muscle diameter is small, the signal will yield
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a lower amplitude. Along these lines, a sensor located on a set of muscles and having

a large spacing between its electrodes, may detect cross-talk. 1 In this research, the

non-invasive approach is used.

The acquisition of the signal is achieved by using surface electrodes. As men-

tioned before, there needs to be a reasonable spacing between them. These electrodes

provide the signal to a differential amplifier, which removes a common signal and

amplifies the differential between them. With the exception of the amplifier band-

pass, an unprocessed and unfiltered signal is called raw EMG signal. In a surface

EMG several phenomena can be appreciated, as seen in Figure 4.2 (edited from [38]).

The magnitude of the signal usually has a range between ±1.5 mV, meanwhile the

average baseline is around 1 or 2 µV . The bandwidth of the muscular signal is be-

tween 0 and 500 Hz. However, the range with more relevant power is between 10 to

250 Hz. As it can be seen, some frequencies are not taken in consideration because

they are usually electrical noise. How to treat these noises and other considerations

are shown in the subsection of EMG processing. Next, the required filters and the

common established processing of the EMG signal are explained.

Figure 4.2: Example of a raw surface EMG signal.

1Cross-talk is misinterpreting the activity of the studied muscle by sensing another muscles in

the proximity.
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4.2.1 EMG Processing

The EMG signal, by itself, provides valuable information, but in its raw form

it is not very useful. The signal has to be processed in order to obtain relevant

information that can be used for scientific purposes. The common and simple method

of processing an EMG signal consist of a rectification followed by a smoothening of

the signal. There are other methods that have more steps, but the standard method

of two steps is well accepted. In this research three steps are taken in consideration:

the two well-known steps with an additional preliminary step of noise rejection.

4.2.1.1 Noise Rejection

The frequencies of interest range between 10 and 250 Hz. This is because

between 0 and 20 Hz usually exists motion artifacts or some other types of noise

[38, 39]. To eliminate these, noises a high-pass filter is used with a cutoff frequency

between 10 − 20 Hz. An in-between frequency is selected because cutting at 10 Hz

shows good elimination of the noise, but raising the cutoff frequency increases the

loss of relevant signal. For simplicity a high-pass Butterworth filter of order 5 is used.

The Butterworth filter is one of the more basic of all electronic filters. It is designed

to give the most possible plain response until the cut-frequency. The magnitude

response function of the Butterworth low-pass filter has the following form:

|Hc(jω)|2 =
1

1 + ( jω
jωc

)2r
, (4.16)

where ω is the frequency (rad/s), ωc is the cutoff frequency (rad/s), and r is the

order of the filter. The frequency response function of the Butterworth filter involves

complex numbers since it is a function of jω. Thus, the magnitude-squared function

is the product of the response function pairs Hc(s) and Hc(−s) (where s = jω):

Hc(s) ·Hc(−s) =
1

1 + ( s
jωc

)2r
. (4.17)

The poles of this expression occur on a circle of radius ωc at equally spaced points.

The transfer function itself will be specified just by the poles in the negative real
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half-plane of s. The k-th pole s is specified by

sk = wce
j(2k+r−1)π

2r . (4.18)

The transfer function may be written in terms of these poles as

H(s) =
G0∏r

k=1(s− sk)/ωc
. (4.19)

The denominator is a Butterworth polynomial in s, Br(s). The Butterworth poly-

nomials may be written in complex form, but they are usually written with real

coefficients by multiplying pole pairs which are complex conjugates, such as s1 and

sr. The polynomials are normalized by setting ωc = 1. Therefore, the normalized

Butterworth polynomials have the general form

Br(s) =

r
2∏

k=1

[
s2 − 2s cos

(
2k + r − 1

2r
π

)
+ 1

]
, (4.20)

for even order, and

Br(s) = (s+ 1)

r
2∏

k=1

[
s2 − 2s cos

(
2k + r − 1

2r
π

)
+ 1

]
, (4.21)

for odd order. The “low pass” behavior of these functions is driven by (ω/ωc). As

ω increases up to and over ωc, the denominator of Hc becomes larger and Hc itself

becomes smaller. It should not be too farfetched to attempt a magnitude response

function with a high pass behavior in the following form:

|Hc(jω)| = 1√
1 + (ωc

ω
)2r
. (4.22)

Therefore the design of a high-pass filter is usually achieved by designing a low-pass

filter of the desired class, and then transforming the resulting filter by substituting

the frequency-domain transfer function H(s) with the relevant frequency transfor-

mation, which in this case is the low-pass to high-pass transformation, s→ ωc
s

.

4.2.1.2 Rectification

The rectification translates the EMG signal to positive values. There exists

two types of rectification: the half-wave rectification and the full-wave rectification.
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The half-wave rectification deletes the EMG signal with negative values, thus losing

some information. The full-wave rectification takes the negative values and converts

them to positive. This last method is preferred because all the signal is conserved.

4.2.1.3 Linear Envelope

A smoothening process is done to quantify the energy of the muscle, its in-

tensity or amplitude of the signal. To do that, the smoothening process changes

the steep spikes of the signal into a “smooth” linear envelope. There exists three

methods to perform the smoothening: two of them are classified as moving average,

i.e. the mean-absolute-value (MAV) and root-mean-square (RMS) [38, 40], which

are given by

MAVt =
1

σ

t∑
i=t−σ+1

|xi| , (4.23)

RMSt =

√√√√ 1

σ

t∑
i=t−σ+1

x2i , (4.24)

respectively. Where V is the length of the smoothening window, t is the initial time,

and xi is the signal being smoothed.

These methods include a signal rectification of their own, so the use of the

rectification step is not required. In MAV, the absolute value of xi is used. Meanwhile

in RMS, the squared value is in charge of changing to positive the negative values.

An appropriate length of the smoothening window has a range between 50 to 100

ms, for the study of both fast or slow activities.

Finally, there exists a simpler method which solely involves the usage of a low-

pass filter, as explained in Section 4.2.1.1. It can be any type of the well-known

common filters: Butterworth, Chebyshev I or II, Elliptic, Thompson or Bessel. Any

of these methods can be used to smoothen the signal [41].

4.2.2 Torque Relation

Usually artificial neural networks are inspired from nature. This is because the

artificial structure tries to emulate some natural function. There are many types
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of artificial neural networks, but the one used in this research was the NNMS. The

NNMS is inspired by the biological theory of functional systems [42]. Basically this

theory explains that there are several responses from a set of neural structures after

a stimulus is applied. Some structures of the set become more excited than others,

but usually just one gives a response. In some cases, a group of stimulated structures

may contribute to the response. In both cases, this theory shows that the intensity

to which every structure responds generates a differentiation.

4.2.2.1 Neural Network of Maximum Sensibility

The architecture of this neural network basically consists on two inner layers

as seen in Figure 4.3. The first inner layer is in charge of detecting and classifying

the stimulus that was propagated by the input layer. All the neurons on the first

inner layer are fired, but just one that surpasses the sensibility margin generates a

maximum sensibility state. After there is a preferred neuron, only that one gives the

output response that would be saved in the second inner layer. If by any chance, there

is no preferred neuron, meaning, non passed the sensibility margin, the contribution

of all neurons is required to provide a response.

Figure 4.3: Architecture of Neural Network of Maximum Sensibility [42].

To implement the theory, the mathematical model of such architecture is re-

quired. The first inner layer has on all its neurons a Gaussian activation function

(G) seen in the following equation:

G(x, λ, cm) = e−((x−cm)/λ)2 , (4.25)
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where x is the input, λ is the sensibility control that is in charge of the width of

G on each neuron, and cm is the mean of the Gaussian function. Usually, a value

of cm = 0 is used on Gaussian activations functions in NNMS. The purpose of the

activation function is to define the distance between the input signal and the weights

of the neurons in the first layer, as seen in the following equation:

SNne = G

(√∑Ne

ne=1
(Wne,in −Xi)2, λ, 0

)
, (4.26)

where SN is the activation value, in = 1, 2, ..., I is the total of inputs and ne =

1, 2, ..., Ne is the total of neurons.

The matrix W represents the weights on the first inner layer and vector X

represents the i input nodes. Basically, all neurons have a certain degree of activa-

tion. However, a preferred neuron is selected by determining the most excited one.

To determine it, the sensibility margin (sm) has to be surpassed and with this, the

maximum sensibility state is also determined, i.e,

max{SN1, SN2, SN3, ..., SNNe} > sm. (4.27)

If a maximum sensibility state is provided by a single neuron, just one corresponding

neuron of the second inner layer will provide information to the output neurons, i.e.,

Oj ← ACwn,j ∗ SNwn, (4.28)

where j = 1, 2, ..., O is the total of outputs and wn is the winner neuron location.

However, if no maximum sensibility state is reached, then all activated neurons

contribute to form an output response:

Oj ←
∑Ne

ne=1(ACne,j ∗ SNne)∑Ne
ne=1 SNne

. (4.29)

Each neuron possesses a “use weight” value that represents the usage or utility of

the knowledge or information of the neuron. All neurons are set with an initial value

and it decreases by a “forgetfulness” factor as the learning mechanism proceeds.

This value, however, gets reset to the initial value if the neuron is activated. The

previously mentioned learning mechanism is also defined by the maximum sensibility
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state and has two ways to learn. In the first way, if there is a maximum sensibility

state, the winning neuron is destined to update its value to the average of the new

input (X) and desired output (DO) patterns with the previously stored weights, i.e.,

Wwn,in ← (Wwn,in +Xin)/2, (4.30)

ACwn,j ← (ACwn,j +DOj)/2, (4.31)

where in = 1, 2, ..., I is the total of inputs, j = 1, 2, ..., O is the total of outputs and

wn is winner neuron.

The other way of learning happens when the maximum sensibility state is off or

not reached. Such event happens when the new information has a high distance from

the weights of the input neurons. For this unknown information, a new category is

created to represent this input signal. To do this, a new neuron with a low “use

weight” value is selected to store the new values directly:

Wnn,in ← Xin, (4.32)

ACnn,j ← DOj, (4.33)

where in = 1, 2, ..., I is the total of inputs, j = 1, 2, ..., O is the total of outputs and

nn is new neuron.

In Section 3.1.1 it was mentioned that the mathematical model of the tibio-

femoral joint has an input that comes from an average between the torque of the

controller and a torque from the EMG-torque relation. Such relation between the

muscles and a given torque, in this particular research, is implemented by a NNMS.

The following subsection covers how the NNMS is handled to achieve it.

4.2.2.2 EMG-Torque Relation

Three main parts are required in order to relate the EMG signal to the torque

required by the model to execute the desired trajectories: the linear envelope of the

EMG signal, the torque used by the model, and a system to relate both signals (in

this case a NNMS). It was discussed in Subsection 4.2.1 how to obtain the linear
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envelope of the EMG signal. In this research, two linear envelopes are considered:

one for the flexor muscle and another for the extensor muscle. Since these are

muscular signals coming from the user, they become the inputs of the NNMS. The

aim of the NNMS is to find the relation between the muscular signals and the required

torque, therefore the torque is the output of the NNMS. The values of the inputs

and outputs of the SVM, and the neural network used in this research are better

explained in Chapter 5, where the results are shown along with their discussion.



Chapter 5

Experiment and Results

This chapter explains the experiment setup and shows the results of the procedures

and simulations done for this research, which includes: the processing of the EEG

neural signals and the classification using the SVM, the behavior of the low-level

controller on each main phases of the gait cycle, and the torques that the models

need to perform the desired trajectory. These are used in the EMG-torque relation,

where the processing of the neuro-muscular signal is also discussed. Finally the

integration of all these procedures is presented to form the complete hybrid scheme.

5.1 Experiment Setup

5.1.1 Procedure

A 25 years-old healthy participant, with no history of either neurological anoma-

lies or lower limb pathology, was asked to walk in a XTERRA trail racer 3.0 treadmill

at two different walking speeds. The first speed was settled according to what the

participant defined as a comfortable walking speed before starting the acquisition of

the data. An estimate of the speed in gait cycles is around 1.43 seconds per cycle.

The second speed was also considered comfortable to the participant, with the dif-

ference of being a higher speed that yet was not considered jogging. This speed was

around 1.13 seconds per cycle. The recording started after the subject established a

comfortable pace at the first walking speed. Then, the procedure consisted in mainly

two speed transitions. After walking one minute at the first speed, the subject was

informed verbally of the change in speed. Then, the speed was gradually increased

47
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to the second walking speed, and as the speed was reached, the subject was asked to

blink three times to mark a reference point in the EEG data. After a minute passed

during the second walking speed, again the subject was informed of the gradual

decrease in speed until reaching the previous speed, and the three time blinking for

marking were recorded as well. The acquisition ended after another minute at the

first speed had passed and after around 10 to 15 seconds of resting. This procedure

was repeated for a set of 10 repetitions, with comfortable resting intervals for the

subject.

5.1.2 EEG Recordings

The EEG neural signals were acquired using the B-Alert X10 system from

Advanced Brain Monitoring Ltd. This device provides a wireless acquisition of EEG,

electrooculographic (EOG) and electrocardiographic (ECG) signals. The system

acquires nine channels of monopolar EEG recordings with a linked mastoid reference.

The 10th channel is a programmable gain option that can be used for EOG or ECG.

The EEG sensors are located at the frontal (Fz, F3 and F4), central (Cz, C3 and

C4) and parietal-occipital (POz, P3, and P4) regions, as shown in Figure 5.1. Figure

5.2 shows the subject wearing the system. The headset collects the neural signals of

the user with a sampling frequency of 256 Hz. More information about the system

can be found in [43].

Figure 5.1: Position of the EEG electrodes [43].
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(a) Frontal. (b) Right side. (c) Back side. (d) Left side. (e) Top view.

Figure 5.2: Subject wearing the B-Alert X10 sensor headset.

During the recording of the procedure, the usage of the EOG was used as

reference of the recording. The marking blinks after reaching the different speeds in

transitions determined the beginning and the end of the recording at a given speed.

Also all nine channels were used during the recording, however just one main sensor

was chosen for analysis, i.e. C3, since it is allocated in the area for real or imaginary

movement of the right side of the body, which is of particular interest for the right

knee movement. Figure 5.3, shows a recording of an experiment.

Figure 5.3: Recordings of sensor C3 (above) and EOG (below) with marking blinks.
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5.1.3 EMG Recordings

The EMG signals were acquired using the MP36 system from BIOPAC. EL503

disposable electrodes were placed, in a flexor and extensor muscles. The chosen

muscles were the quadriceps femoris for flexion and vastus medialis oblique for ex-

tension, as they have a fair activation power and period during the gait cycle [38].

Figure 5.4 shows the subject with electrodes placed over both muscles. More details

of the hardware can be found in [44].

(a) Extensor. (b) Flexor.

Figure 5.4: Subject wearing the EL503 electrodes connected with pinch leads to the

MP36 system.

The recording of the signals was performed using a sampling frequency of 1000

Hz. A recording of both muscles can be seen in Figure 5.5.
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Figure 5.5: EMG recordings of extensor (above) and flexor (below) muscles.

5.2 Results

The hybrid scheme proposed in this study is presented in Figure 1.1, which is

now repeated below to facilitate its view.

Figure 5.6: Proposed hBCI system.

The numerical implementation of all the procedures was realized using MATLABr

and Simulinkr. Based to this approach, the results of each stage are presented in

the following manner:
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• EEG: preprocessing of the signal, feature extraction, and classification.

• Controllers: trajectories of stance and swing phase.

• EMG: preprocessing of the signal, linear envelope, and reaching EMG-torque

relation.

• Numerical implementation: collective results of each previous stage to

control a virtual tibio-femoral joint.

5.2.1 EEG

The preprocessing of the signal is performed by the B-Alert X10 system di-

rectly. It performs a bandpass filter with the high-pass cutoff frequency of 0.1 Hz

and the low-pass cutoff frequency of 100 Hz. An example of a power spectrum can

be seen in Figure 5.7.

Figure 5.7: Example of Raw EEG power spectrum.

The EEG processing is performed in two sub-stages: the estimation of the

power spectrum using the FFT, and its classification using the SVM. This exempli-

fied in Figure 5.8, and a more descriptive diagram can be seen in Appendix B.
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Figure 5.8: Diagram of EEG processing.

5.2.1.1 Feature Extraction

As mentioned in Subsection 4.1.1, a feature vector is created taking certain

characteristics of the data. To extract the feature vectors from the raw EEG data, the

signal was divided into non-overlapping windows of hundred samples each. This was

performed through a Buffer Simulink block. For each window the power spectrum

was estimated using the FFT block. The magnitude of the frequencies fitting the

bands α and β were taken out of the spectrum of each window to form the feature

vector consisting of 12 features. A code was used in a MATLAB Function block

to take the respective frequencies. The coding and Simulink blocks can be seen in

Figures B.1 and B.2. The power spectra of several windows of a signal are displayed

in Figure 5.9 for the α and β bands.

Figure 5.9: Power spectra of several windows of the signal.



Chapter 5. Experiment and Results 54

5.2.1.2 Classification

Three data sets were selected from the 10 data sets from the experimental

procedure. The selection was based on the easy appreciation of the blinking markers

on the EOG signal. According to the feature extraction, using a hundred sample

window, the three data sets generated a total of 1424 feature vectors. These vectors

were used as the training data for the SVM. The training of the SVM was performed

separately in the MATLAB command window, with the command svmtrain. This

command generates the structure, svmstruct, that contains the information about

the trained SVM classifier. Such structure was generated with the specification of

the kernel function rbf, that stands for Gaussian radial basis function.

The classification of the data is performed by the MATLAB command svmclas-

sify. The command classifies data using the information in the structure svmstruct.

The command svmclassify was applied in the code of the MATLAB Function block

in Simulink to perform the classification. The command can be seen in Figure B.2

in Appendix B. In Section 4.1.2 was mentioned that classification made by the SVM

splits the data into two classes or groups, named 1 and -1. Here, group 1 belongs

to speed 1 and group -1 belongs to speed 2. The performance of the SVM with the

three selected data sets can be seen in Figure 5.10, and the classification error is in

Table 5.1.

Figure 5.10: SVM Classification.
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Experiment Mean Square Error

1 0.0083

2 0.0356

3 0.0244

Table 5.1: Mean Square Error of Experiments 1, 2, and 3.

5.2.2 Controllers

In order to accomplish the control problem or control objective, which is the

tracking of the angular trajectories, some terms have to be settled. Here, two low-

level controllers were tested, one for the stance phase and another for the swing

phase. The models and parameters of both phases are based on a lower limb from

the proposed test subject with the specifications included in Table 2.4 from Section

2.5.

As previously mentioned in Section 2.4, the stance phase model is given by

(2.14) and the control equation of such phase is given by (3.2), as mentioned in

Section 3.1.1. Using those equations, parameters and gains, the closed-loop system

can be made, as seen in Figure 5.11.

Figure 5.11: Stance phase closed-loop system diagram.

A more specific visualization of this closed-loop can be seen in Figure B.3,

where the PD+St is composed of the proportional and derivative gains, and three

Interpreted MATLAB Function blocks that have the required matrices from the

model. Also, the stance phase model is composed of different Simulink blocks that

implement (2.14), which provides the required outputs for the feedback of the closed-

loop system. Figure 5.12 shows the result of the controller for the trajectory tracking,
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and Figure 5.13 shows the amount of torque required for the model to accomplish

the desired trajectory.

Figure 5.12: Trajectory tracking on the stance phase.

Figure 5.13: Required torque for stance phase.



Chapter 5. Experiment and Results 57

In the same way, the swing phase model is given by (2.21) and the control

equation of such phase is given by (3.3). Using those equations, parameters and

gains, the closed-loop system can be calculated, as seen in Figure 5.14.

Figure 5.14: Swing phase closed-loop system diagram.

Similar to the stance phase closed-loop system, a more detail version for the

swing system is found in Figure B.4. There, the PD+Sw and the swing phase

model use the same types of Simulink blocks, but for the swing in (2.21) and (3.3).

The result of the controller for the trajectory tracking can be seen in Figure 5.15.

Furthermore, Figure 5.16 shows the amount of torque required for the model to

accomplish the desired trajectory.

Figure 5.15: Trajectory tracking on the swing phase.
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Figure 5.16: Required torque for swing phase.

5.2.3 EMG

As mentioned at the end of Subsection 3.1.1, the input of the models is τ .

This input is composed of the average between the controller, τPD+, and the EMG-

torque relation, τEMG. Obtaining τEMG requires the torques of both stance and

swing phases, which are shown in Figures 5.13 and 5.16.

5.2.3.1 Linear Envelope

The steps described in Section 4.2.1 are applied to the acquired signal from

Section 5.1.3. First, a noise rejection filter is used to remove the noise mainly from

movement artifacts. The filter used was a high-pass type and is given by (4.22), where

the sampling frequency w=1000 Hz, the cutoff frequency ωc=15 Hz and the filter

order n=5. These parameters were applied in the Highpass Filter Simulink block to

perform the noise rejection. In Figure 5.17, it can be seen the noise rejection in the

spectrum of the signal and the comparison between the filtered and raw signals.
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Figure 5.17: Raw EMG and filtered spectra (above). Post and pre-filter comparison

(below).

The next step is to perform the simple task of converting all negative ampli-

tudes of the signal to positive. This is achieved with the rectification of the filtered

signal using the Abs Simulink block. The last step is to obtain the linear envelope

with the rectified signal. In this research we chose the simplest between the several

methods to obtain the envelope, that being the low-pass filter seen in (4.16), where

the sampling frequency ω=1000 Hz, the ωc=5 Hz and the filter order n=5. These

parameters are applied in the Lowpass Filter Simulink block to obtain the linear

envelope. This is shown in Figure 5.18, and the implementation of the mentioned

blocks can be seen in Appendix B.5. The signal rectification and the linear envelopes

for both muscles can be seen in Figure 5.19.

Figure 5.18: Diagram of EMG signal processing.
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Figure 5.19: Rectified signals (above) and envelopes (below).

5.2.3.2 EMG-Torque Relation

It is mentioned in Subsection 4.2.2.2 the process in which a NNMS is used

to find the mapping of the EMG linear envelopes to the corresponding amount of

torque needed by the model. The training of the neural network was performed in

MATLAB using the algorithm described in [42]. The pseudo-code can be found in

Appendix B. The training of the neural network provides the parameters W and AC

that are the weight and activation vectors respectively. Also it granted the values

to de-normalize the output signal into the required torque range.

Different architectures can be used in a neural network, but the one chosen

involved the least number of inputs regarding four different concepts. Thus using

a single input from: the extensor signal, the flexor signal, a previous sample of

the model’s input, and a feedback of the network itself. The output of the neural

network is the τEMG that takes part of the average to obtain the model’s input,

τ . The number of a hundred neurons was selected because it is considered a fair

amount of neurons for this process. The parameters λ and sm were selected out of

81 manual tests where there were compared the different values of λ and sm, ranging

from 0.1 to 0.9, for both parameters. The previous idea is the experimental design
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used to select the learning parameters. The selected λ and sm had the minimum

mean square error of 5.0717 × 10−4. The neural network’s specifications are shown

in Table 5.2.

Parameter Value

# of Inputs 4

# of Outputs 1

# of Neurons 100

λ 0.3

sm 0.7

Table 5.2: Neural network specifications for EMG-torque relation.

In Figure 5.20, the general structure of this neural network is shown. In Ap-

pendix B the pseudo-code for the application of the NNMS is presented. The code is

implemented through the MATLAB Function block. Figure 5.21 shows the resulting

comparison between the desired torque (obtained from Section 5.2.2) and the best

approximation done by the neural network.

Figure 5.20: Structure of the NNMS to predict torque approximation.
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Figure 5.21: EMG-torque relations for both speeds in transition.

5.2.4 hBCI to control a virtual joint

Based on our hypothesis, we created a multi-level controller for the recorded

signals that provides a time progressive signal instead of a simplified precise oper-

ation. Figure 5.22 shows the diagram of the hBCI. Such diagram corresponds to

the integration of all previous stages: it has the processing of EEG and EMG sig-

nals, the controllers of the set of models, and it ends with the visualization of the

tibio-femoral joint using the 3D model from [25].

Figure 5.22: hBCI system.

The resulting trajectory of all the hBCI integration is shown next. Figure 5.24

shows the trajectory of a gait cycle along with the tracking performed by the low-
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level controllers. This Figure can be related to the different events in Figures 5.23

and 5.25.

(a) Heel contact. (b) Mid-stance.

(c) Initial swing. (d) Mid-swing. (e) Terminal swing.

Figure 5.23: 3D model of knee sagittal view.

Figure 5.24: Trajectory tracking with five referenced events.
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(a) Heel contact. (b) Mid-stance.

(c) Initial swing. (d) Mid-swing. (e) Terminal swing.

Figure 5.25: 3D model of knee in perspective considering different angular positions.
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Figure 5.26 shows four gait cycles in both speeds and the transition between

them.

Figure 5.26: Trajectory tracking and transitions.
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Conclusions and Future Work

The main contribution of this research consists on proving that it is possible to

integrate different models into a global process that uses simultaneously two mea-

surements to perform the user intent in a virtual joint representation. Along this

lines, it can be noted that most of the procedures or techniques used in this study

were the simplest. Hence, further improvement can be achieved.

The study of the kinematic and dynamic models of the tibiofemoral joint was

thought to be interpreted as just one model. However, under further investigation

it was noted that under the different phases of walking the joint behaves differently;

thus two sets of models were studied. These were known as stance and swing model.

Each model was considered in a simplistic manner, involving just two links for the

joint. This allowed to have the tibiofemoral joint as a single actuation point, not

requiring other complex knee movements. To achieve a more realistic interpreta-

tion of the human body, a more complex model of the tibiofemoral joint could be

implemented. The complex model will grant more degrees of freedom and possible

movement in all three anatomical planes.

After the models were specified, each had to be controlled to perform the

angular trajectory of the joint during the gait cycle. For this a PD+ controller

was used, since is the most simplest control scheme for trajectory tracking. Using

more powerful control techniques, which could give robust results, can be limited in

practical use due to the high complexity and computational work. Usually dynamic

control is focused on the trajectory; however, there exist different types of controllers
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focused on the forces, torques, or impedances of the model. Moreover, it came in

consideration that a trajectory controller was not entirely required for the swing

phase. This can be substituted by a position controller, since it just consist on

moving the limb to the front rather than moving all the superior part of the body.

Knowing that there exist repetitive conditions in the gait cycle, a finite state

machine was used alongside a conditional logical operator to perform the mid-level

control, allowing then to make transitions between the controlled models. This

method allowed a very fast and easy transitioning between models. However, the

trajectory transitions could be controlled in a more advance manner. Also the finite

state machine could provide assistance in assigning specific sets of trajectories for

each sub-phase of the gait cycle.

The high-level control consists also on a conditional logical operator, but it

greatly depends on the EEG classification, done by the SVM. In a general way, the

SVM is a linear classifier, but with a low increase in the classifier’s complexity it can

perform a non-linear classification. There exists other methods for classifying EEG

signals, like random forest, linear or quadratic discriminant analysis, or also artificial

neural networks. Some of the mentioned methods have good performance; however,

those that use a high complexity tend to be unstable. The SVM, although considered

a slow classifier, is chosen for its simplicity, versatility, and robustness. Note however

that the other types of classifiers work by separating a pair or several activities.

In [45] decoding the kinematics of walking directly from the EEG recording was

proposed. This allows a more complete user intent into the execution of the system,

rather than just task classification.

The feature vectors, required by the SVM for the classification, were extracted

from the EEG signal with the FFT. Although this method behaves rapidly and

grants the power spectra of the signal, there are also several ways to obtain a feature

vector. Methods like log variance, WPD, ApEn, and DWT. These methods give

another type of features, like time-frequency features, variance, autoregressive, or

adaptive autoregressive parameters.
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The EMG-Torque relation grants a user interaction with the system. Before

the relation takes place, the EMG signal also needed to be treated into a more

simpler signal known as the linear envelope. The methods to acquire this signal are

the MAV, RMS, and the usage of a low-pass filter. When processing the signal offline

any of these methods can be used. However, their computational time required for

calculations needs to be taken in consideration when realizing an online processing.

Moreover, the processing of the signal can be handled in a more efficient way. In

[40], for example, they used an advance EMG amplitude estimation with six stages.

This procedure gives a signal with better characteristics than the simpler method

here applied.

The relation, between the EMG signal and the torque required by the models to

move in the desired trajectories, was done using a NNMS. The NNMS has different

parameters to take in consideration, like the number of neurons, the sensibility

control and the margin of sensibility. The chosen parameters gave a very fair relation

between the processed EMG signal and the required torque. However, there exists

a variety of linear and non-linear models that can be used, also depending on what

type of physical activity to be studied, can be either static or dynamic.

The system of this thesis operated completely offline. Adapting the hBCI to

operate online will be desirable for real time applications. Also it is necessary that

the online process could be performed in a complete wireless manner. This way it

can be applied to ambulatory conditions in different environments.
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Equation Development

Lagrangian equation for Stance Phase:
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2
n1φ̈+m1l

2
n1q̈2 + I1φ̈+ I1q̈2

∂LSt(q, q̇)

∂q2
=−m1l2ln1 sin(q2)φ̇

2 −m1l2ln1 sin(q2)φ̇q̇2

+m1gln1 sin(φ+ q2)

(A.3)

τSt1 =
[
m2l

2
n2 +m1l

2
2 + 2m1l2ln1 cos(q2) +m1l

2
n1 + I1 + I2

]
φ̈

+
[
m1l2ln1 cos(q2) +m1l

2
n1 + I1

]
q̈2

− 2m1l2ln1 sin(q2)φ̇q̇2 −m1l2ln1 sin(q2)q̇
2
2

−m2gln2 sin(φ)−m1gl2 sin(φ)−m1gln1 sin(φ+ q2)

τSt2 =
[
m1l2ln1 cos(q2) +m1l

2
n1 + I1

]
φ̈+

[
m1l

2
n1 + I1

]
q̈2

+m1l2ln1 sin(q2)φ̇
2 −m1gln1 sin(φ+ q2)

(A.4)
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Lagrangian equation for Swing Phase:

LSw(q, q̇) =KSw(q, q̇)− USw(q)

=
1

2
m1l

2
m1q̇

2
1 +

1

2
I1q̇

2
1 +

1

2
m2l

2
1q̇

2
1 +

1

2
m2l

2
m2q̇

2
1

+m2l1lm2 cos(q2)q̇
2
1 +

1

2
m2l

2
m2q̇

2
2 −m2l1lm2 cos(q2)q̇1q̇2

−m2l
2
m2q̇1q̇2 +

1

2
I2q̇

2
1 +

1

2
I2q̇1q̇2 +

1

2
I2q̇

2
2 −m1glm1

+m1glm1 cos(q1)−m2gl1 −m2glm2

+m2gl1 cos(q1) +m2glm2 cos(q2 − q1)

(A.5)

Using the movement equations of Euler-Lagrange:

τSw1 =
d

dt

[
∂LSw(q, q̇)

∂q̇1

]
− ∂LSw(q, q̇)

∂q1
∂LSw(q, q̇)

∂q̇1
=m1l

2
m1q̇1 + I1q̇1 +m2l

2
1q̇1 +m2l

2
m2q̇1

+ 2m2l1lm2 cos(q2)q̇1 −m2l1lm2 cos(q2)q̇2

−m2l
2
m2q̇2 + I2q̇1 +

1

2
I2q̇2

d

dt

[
∂LSw(q, q̇)

∂q̇1

]
=m1l

2
m1q̈1 + I1q̈1 +m2l

2
1q̈1 +m2l

2
m2q̈1

+ 2m2l1lm2 cos(q2)q̈1 − 2m2l1lm2 sin(q2)q̇1q̇2
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2
2

−m2l
2
m2q̈2 + I2q̈1 +

1

2
I2q̈2

∂LSw(q, q̇)

∂q1
=−m1glm1 sin(q1)−m2gl1 sin(q1) +m2glm2 sin(q2 − q1)

(A.6)

τSw2 =
d

dt

[
∂LSw(q, q̇)

∂q̇2

]
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2
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2
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1

2
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[
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]
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2
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2
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2
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2
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(A.7)
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τSw1 =
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m1l

2
m1 +m2l12 +m2l

2
m2 + 2m2l1lm2 cos(q2) + I1 + I2

]
q̈1

+
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1

2
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2
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2
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[
1

2
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2
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+
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m2l

2
m2 + I2

]
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2
2 +m2glm2 sin(q2 − q1)
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Simulink Blocks

Figure B.1: Simulink Blocks for EEG processing.

Figure B.2: Code in MATLAB Function block for extracting the frequency bands

and applying the SVM classification.
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Figure B.3: Stance phase closed-loop system diagram with Simulink Blocks.
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Figure B.4: Swing phase closed-loop system diagram with Simulink Blocks.
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Figure B.5: High-pass filter, rectification and Low-pass filter applied to the Extensor

and Flexor signals.

Learning Pseudo-Code

LearningFunctionNNMS(X,Ye,W,AC,sm,Lambda,U)

Maximum Value and Position in SN;

If Maximum Value is >= sm

for pr=1, Total of inputs

W(Position,pr) = (W(Position,pr)+X(pr))/2;

end

for o=1, Total of outputs

AC(Position,o)=(AC(Position,o)+yo(o))/2;

end

else

if (CN+1) > Maximum value of neurons avaliable to use

Minimum Value and Position of the U

for pr=1, Total inputs

(Position, pr) = X(pr)

end

for o=1, Total of outputs

AC(Position,o)=yo(o);

end

elseif

New neuron = Number of neurons actualy used + 1;

for pr=1, Total inputs
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W(NewNeuron, pr) = X(pr)

end

for o=1, Total of outputs

AC(NewNeuron,o)=yo(o);

end

end

end

Application Pseudo-Code

ApplicationFunctionNNMS(X,W,AC,sm)

for n=1,Number of Neurons

S=0;

for i=1,Total of inputs

S=S+(x(i)-W(n,i)^2;

end

//fa = activation function

SN(n)=fa(sqrt(S),alpha);

end

Maximum Value and Position in SN;

if MaxValue > Maximum Sensibility Value

for o=1, Total of Outputs

y(o)=AC(pos,o)*SN(pos)

end

else

for o=1, Total of outputs

s1=0;

s2=0;

for n=1, CN

s1=SN(n)*AC(n,o)+s1;

s2=SN(n)+s2;
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end

y(o)=s1/s2;

end

end

Output Value of the NNMS = y

Parameter Description

α Activation function parameter

sm Maximum sensibility value

Table B.1: Parameters of the neural network.

Variables Description

X Input Pattern

Ye Output desired to learn

W Weights of first layer

SN Second layer output

AC Output value

Table B.2: Variables of the neural network.
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Figure B.6: hBCI system.
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