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Abstract 

This research is composed for two researches which abstracts are: 

 

Paper 1: Change-Point Estimation for a Sequence of Normal Observations and Integration 

with Q-Charts. 

 

This is the first research regarding to change-point analysis for independent observations 

normally distributed. It considers the case when a single step change has occurred and 

distribution’s parameters (before and after change) are unknown. Development of 

maximum likelihood estimators (MLEs) for the change-point and parameters is the main 

concern as well as an integration with control charts in order to show its application in 

practice, with which retrospective and on-line analysis are both covered. A change is 

considered as one of the three different cases: (1) change only in mean parameter, (2) 

change only in variance parameter or (3) change in both parameters. Due to there are 

change-point estimators for change in mean and change in variance, comparison is done to 

show what estimator is recommended to use in each situation. 

 

Paper 2: Estimation of multiple change-points in time series normally distributed using a 

construction Heuristic and a Genetic Algorithm. 

 

This is the second research related to change-point analysis for independent observations 

normally distributed. It considers case when multiple step changes have occurred assuming 

that distribution’s parameters as well as change-point positions are unknown. Maximum 

Likelihood estimators for change-points as well as for parameters were developed 

considering three cases based on single step change problem: (1) multiple changes only in 

the mean, (2) multiple changes only in variance and (3) multiple changes in both 

parameters at the same time. Obtaining these change-points MLEs could be considered as 

an optimization problem, so a Construction Heuristic and a Genetic Algorithm 

(Evolutionary) were developed based on them. Comparison between these estimators was 

done in order to show their performance. 
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CHAPTER 1. INTRODUCTION TO RESEARCH. 

1.1 History and Background. 

Every process has variation, which could be left to a chance or be attributed to assignable 

causes. According to Shewhart's (1931) third postulate assignable causes must be found and 

eliminated in order to secure a statistical control state: This provides advantages such as 

reduction in the cost of inspection and the cost of rejection. Thus, this way of management 

has two aspects: first, the detection of special causes of variation and second finding and 

eliminating these to bring the process back to control. As soon as the assignable causes are 

detected, the process will improve. Several tools and procedures have been developed in 

order to assist in the management of systems; one of the best known tools are control charts 

that are capable of determining whether or not the process is in statistical control. 

Nevertheless, when sustained changes have occurred, most of control charts are not able to 

determine the initial moment of the change, which provoke delays in the application of 

corrective actions. Change-point analysis is the study of structural changes in series of 

observations. The problem of estimating the moment of a change is called the change-point 

problem. Several control charts and change-point estimators have been created by assuming 

a priori knowledge of distribution parameters while, in practice, this assumption is not 

always met. In consequence, it seems reasonable to develop such tools. 

 

Control charts were first developed by Shewhart (1931) to determine whether or not 

variability could be left to chance or common causes. Since then, several control charts 

have been developed keeping the same objective. Control limits are calculated based on 

rules provided by the control chart itself, then data or a transformation is plotted with 

corresponding control limits. If one or more observations fall outside control limits, the 

chart is said to signal the presence of a potential change in the process and as a 

consequence, variation could be attributed to special causes, otherwise process’ variation is 

left to chance.  

 

There are two types of changes: isolated, which is an output that could be considered as an 

outlier because it is the only observation falling outside control limits while others falls 
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within them, and sustained, which is considered a change in the process distribution 

characteristics over the next outputs. As it was mentioned, control charts are not usually 

capable of estimating (estimation is always positively biased) the initial moment when a 

sustained change occurs. For instance, Figure 1 shows a shift in the mean at 50
th

 

observation while the chart detects it until 73rd observation. This delay represents a 

problem for managers because this signal is away from the real moment of the change and 

the process’ improvement might be retarded which means misspending resources.  
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Figure 1 Control charts for a time series with a change in the mean. 

(Chart created using Minitab
tm

). 

 

The search of initial moment of a change is called change-point problem, and it was first 

defined by Girshick and Rubin (1952) from a Bayesian approach. Since then, different 

change-point estimators were found in literature where authors commonly assume prior 

knowledge of initial parameters. For instance, Hinkley (1970) who was the first in using 

Maximum Likelihood Method to derive change-point estimators for normally distributed 

observations with a shift in the mean and for changes only in variance of normal process 

Samuel, Pignatiello, and Calvin (1998b) developed the change-point MLE. Later, Hawkins 
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and Zamba (2005a) developed a change-point estimator with no assumption of prior 

knowledge of parameters using a statistic based on Bartlett’s test. Recently, Amiri and 

Allahyari (2011) catalogued changes in the following 4 categories: single step changes, 

multiple step changes, changes with linear trend, and monotonic changes; they are 

presented in Figure 2. 

 

 

Figure 2. Types of changes studied in CPA.  

Image obtained from Amiri and Allahyari (2011). 

 

Other problem that was addressed is the case of multiple change points for which Perry, 

Pignatiello, and Simpson (2007, p.328) proposed that “… this type of behavior might occur 

as a result of one influential process input variable changing several times, or several 

influential process input variables changing at different times”. Jann (2000) addressed this 

problem by developing a genetic algorithm based on the t -test but using a cost function in 

order to determine the number and locations of the change-points of normally distributed 

independent observations with shifts in the mean. 
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Since the knowledge of time when the change occurred might boost an improvement 

process and reduce the cost of rework, waste and downtime, this research aims to develop 

change-point estimators without assuming prior knowledge about parameters before and 

after sustained changes occurred using the Maximum Likelihood Method. In addition, 

estimators for cases where more than one sustained change occurred in mean and/or 

variance of normal processes will be derivate in order to assess the problem defined by 

Perry et al. (2007). 

 

1.2 Problem Statement. 

Shewhart’s Third Postulate for Control states that assignable causes of variation may be 

identified and therefore eliminated, which is desirable to maintain a state of control 

(Shewhart, 1931). The following two major advantages are obtained: reduction in costs of 

inspection and rejection. This research addresses the problem of estimating changes 

moments in time series, in order to reduce the time required to look for assignable causes of 

variation to help reduce cost of inspection, rejections, and downtime. One approach to 

address this problem is by obtaining estimators of the change-points that have occurred. 

This also could answer a question previously proposed by Arunajadai (2009, p.58): “Are 

the data homogeneous and if not, what are the locations of the homogeneous segments in 

the data?” 

 

For a single sustained change, most approaches suppose previous knowledge of initial 

parameters (when in practice in several cases this is not true, for instance, in Phase I of 

SPC), while, in this research, this assumption is not considered. Change-point estimators 

when parameters (before and after sustained changes occur) are unknown will be developed 

by using maximum likelihood methodology due to maximum likelihood estimators (MLEs) 

provides the more likely values of the true parameters according to all available 

information. Assumptions made by the proposed solution model are that changes had really 

occurred and data is normally distributed. A change-point of the series (or process) is 

defined here as a change in distribution parameters’ values and three different cases are 
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addressed: (1) Change only in mean, (2) change only in variance and (3) change in both 

parameters at the same time. The results of this approach will be compared with those 

found in the literature in order to evaluate their performance in terms of accuracy and 

effectiveness in order to determine which estimator is recommended to use in each 

situation. 

 

Situations where a process is out of control and multiple change-points have occurred has 

been worked mostly through applications for shifts in the mean and Bayesian approach as 

can be found in Fotopoulos, Jandhyala, and Khapalova (2010). In this research MLEs for 

multiple change-points are developed as well as two heuristics algorithms (evolutionary 

and constructive) to avoid computational cost due to change-points MLEs time required to 

obtain them increases in a non-polynomial way which could lead in a retard in searching 

assignable causes of variation. Similarly to one sustained change, three cases are considered 

in this problem: (1) k changes only in mean, (2) k changes only in variance and (3) k 

changes in both parameters at the same time. Finally, simulation will be performed in order 

to show the behavior of these estimators. 

 

1.3 Research Questions. 

This research is two folded: the first one is focused on single step change-point problem, 

and second one, on multiple step changes. Since previous works in literature usually 

assume prior knowledge of parameters, it follows that: 

 Q.1. Does maximum likelihood change-point estimators exist when there is not 

previous knowledge of parameters for time series normally distributed in which k  

sustained changes occurred? This is not a trivial question, since MLEs do not 

always exist. 

 

Questions addressed in each research are presented in its respective subsection. 
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1.3.1. Research 1: Maximum Likelihood Change-Point Estimators for Normally 

Distributed Series with Unknown Parameters. 

In this research, change-point MLEs were developed for time series normally distributed 

with a single step change, considering three different cases: (1) change only in mean, (2) 

change only in variance, (3) change in both parameters at the same time. Change-point 

estimators found in literature, which are sensitive to: shifts in the mean (CUSUM estimator; 

Pettitt, (1980)), and shifts in variance (Hawkins and Zamba, (2005a)), were used to 

compare with. Finally, integration with Quesenberry’s Control Charts (Q-charts) 

(Quesenberry, 1991a, 1991b, 1991c) is presented in order to show its application in on-line 

monitoring. The sub-questions addressed in this research are: 

 Q.1.1. What is the bias and spread of estimators in cases (1), (2) and (3)? 

 Q.1.2. In which scenarios MLEs’ performance is better than CUSUM and Hawkins 

estimators by means of accuracy and effectiveness? 

 Q.1.3. What is the bias and spread of the change-point MLEs after signals of Q- 

Charts? 

 

1.3.2. Research 2: Maximum Likelihood Estimators for Multiple Change-Points.  

In this research, change-points MLEs for time series with multiple changes were developed 

as well as heuristic (evolutionary algorithm) and constructive algorithms to assess the 

problem of finding MLEs, which is a non-polynomial (NP) optimization problem. Three 

cases are considered: (1) k changes only in the mean, (2) k changes only in variance and (3) 

k changes in both parameters at the same time. Performance of MLEs and heuristics is 

shown by considering few scenarios. Questions: 

 Q.2.1. Is the multiple change-point estimation obtained by the Maximum Likelihood 

methodology solving time increasing in a non-polynomial way as number of 

changes increases? 

 Q.2.2. What is the bias and spread of estimators in cases (1), (2) and (3)? 

 Q.2.3. Is the evolutionary algorithm better than constructive algorithm at estimating 

multiple change-point in terms of time? In terms of bias and spread?  
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1.4 General Hypothesis. 

The general hypothesis of this research is: 

 H1. It is possible to develop the change-point (single or multiple) maximum 

likelihood estimators for parameters as well as for change-points when prior 

knowledge of parameters does not exist.  

1.4.1. Research 1: Hypothesis. 

The following hypotheses are proposed for research 1: 

 H1.1. Bias and spread of change-point MLEs tends to be smaller compared to 

CUSUM and Hawkins ones when change in both mean and variance occurred at 

same time. When there is only change in mean or only change in variance, CUSUM 

and Hawkins estimators biases and spread tends to be smaller than its corresponding 

change-point MLEs. 

 H1.2. Change-point MLEs’ performance is better than CUSUM and Hawkins 

performance when size of the series is big in means of bias and spread. 

 H1.3. Change-point MLE’s performance is precise and accurate when it is used 

after a Q-chart signal. 

 

1.4.2. Research 2: Hypothesis. 

The following hypotheses are proposed for research 2: 

 H2.1. The problem of finding multiple change-point MLEs correspond to 

optimization problem because of solving time increases in a non-polynomial way. 

 H2.2. What is the bias and spread of estimators for cases (1), (2) and (3)?. 

 H2.3. Evolutionary algorithm proposed here is more accurate than constructive 

algorithm developed here for cases considered here: (1), (2) and (3), but it requires 

more computational time than constructive.  
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1.5 Research Purpose. 

This research is mainly focused on developing change-point estimators for single and 

multiple step changes for normally distributed series. These estimators are expected to be as 

close as possible to the true change-points locations. Even though there are estimators for 

such data yet, the case when parameters (before and after the change) are unknown has 

been almost not worked in literature, and that case could be presented in practice. 

Moreover, by showing that these tools have less bias and spread in several scenarios than 

others estimators found in literature, particularly, Pettit’s CUSUM (1980) for shifts in the 

mean and Hawkins’ (2005a) estimators for shifts in variance. 

 

In other words, development of tools for system management which could help in 

identification of assignable/special causes of variation which might be eliminated according 

to third postulate of quality (Shewhart (1931)) is the main purpose. Determine whether or 

not a process is in control is a task relegated to control charts, as it can be seen with change-

point MLE’s integration with Q-charts. 

 

1.6 Research Objective. 

Let jix , be random variables following: 







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
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
 (1) 

 

Where mkfork ,...,2,1  are called the series’ change-points; j  is the number of 

replications and 1,...,2,1for  , 2  mrrr   are the parameters of the normal distribution in 

each sub-section and are unknown as well as the change-points. 
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Objective 1: Derive the change-points MLEs  k ˆ,...,ˆ,ˆ
21


 for change-points of the 

series  k ,...,, 21  for different cases:  

Case 1: .,...,2,1;...; 22

1

2

2

2

11 mkpmkk     (2) 

Case 2: .,...,2,1;; 2

1

2

1 mkkkkk     (3) 

Case 3: .,...,2,1;; 2

1

2

1 mkkkkk     (4) 

 

Objective 2: If 1k , show that change-point MLE ̂  for (2), (3) and (4) bias and spread 

tends to be lower as size of the series increases. Also show that change-point MLE (4) is 

more precise and accurate than Pettitt’s (1980) CUSUM and Hawkins’ (2005a) estimators. 

Objective 3: If 1k , show change-point MLE ̂  integration with Q-charts. 

Objective 4: If 1k , show that change-point estimation is a NP Problem. 

Objective 5: Develop heuristics for multiple change-points MLEs. 

Objective 6: Show that heuristics’ performance is similar to MLEs (in cases where they 

could be compared). 

 

1.7 Delimitations. 

The next sub-sections present the assumptions and limitations addressed by them. 

1.7.1. Assumptions. 

The following assumptions were made in the model: 

1.- Observations are independent random variables following (1). 

2.- It is known a priori that k changes have already occurred over the process. 

3.- It is considered that a change have occurred when one or both parameters distribution 

change. 

4.- Parameters before and after each change-point as well as change-points locations are 

unknown. 

5.- Time is considered discrete, not continuous. 
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1.7.2. Limitations. 

Under assumptions made above, the following limitations appear: 

With assumption of prior knowledge of that k  changes have already occurred, three 

limitations addressed:  

 It is necessary to know the number of changes that have occurred in order to obtain 

better estimations by using this procedure. Due to control charts only could help to 

determine if the process is out of control but are not capable to ensure that changes 

have already occurred. 

 When changes have occurred and the control chart signals that, they not provide a 

clue of the type of change, thus, changes with trend are not covered, such as the 

case when machines wear out.  

 Even when a control chart provides a signal of a process out of control, this signal 

could be a false alarm, but change-point estimators always determine a point of the 

time series of where it is more likely that the change have occurred according with 

the information provided. That is, this procedure could lead to an estimation of 

change-points, but this “change” could not be considered as statistically significant. 

 

There are some techniques which could help to estimate the number of changes in a time 

series, like CUSUM control charts of Page (1954). Nevertheless, this research assumes 

prior knowledge of the number of changes. Finally, hypothesis test is recommended to use 

to determine if there is a significant change-point in the series, but it is left as future work 

because it is beyond the research scope. It is noteworthy that normality assumption is not 

senseless because in practice, the data collection is often with replications, and then limit 

central theorem ought to be applied. 

 

1.8 Relevance of this study. 

The relevance of this study lies in the development of procedures to manage a system and 

assist in quality control for more cases under the SPC label. Change-points MLEs when 

parameters (before and after a change have occur) are unknown have not been developed 
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before. Maximum likelihood procedure was chosen because of its properties: they provided 

the most likely value of the parameters under estimation, and they are asymptotically 

unbiased, that is to say, if sample size tends to infinity, then estimator tends to be unbiased. 

 

Multiple change point problem has many applications in natural phenomena and Medicine 

as can be found in Arunajadai (2009) and Fotopoulos et al. (2010). However, almost all of 

the cited works there were done from a Bayesian approach, and maximum likelihood 

procedures were almost not found in literature.  

 

Even though control charts are important because they are useful to determine whether the 

process is in control, they are not capable to determine the change-points, which could 

retard the process improvement and leads in a waste of resources. Nonetheless, without that 

information provided by them no inferences about the change-point could be determined. 

This suggests that both tools should be used in a complementary way. So, change-point 

estimators boost the improvement process by giving one location in which start to 

searching special/assignable causes of variation. That is why integration with these 

estimators with Q-charts is presented as usefulness and necessary tools. 

 

1.9 Research Outputs and Outcomes. 

The major output of this research is the procedure to assist process management when there 

is not prior knowledge about distributions parameters, that is to say, Phase I of SPC. The 

following outcomes will be addressed: 

1. – Change-points MLEs. 

2. – Integration of change point MLE’s with Q-charts giving a procedure to system 

managers. 

3. – Multiple change-point estimations by heuristics based on MLE’s in order to avoid the 

computational time problem addressed in this case. 

4. – Procedure that helps in decision-making process for system managers. 
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CHAPTER 2.  LITERATURE REVIEW. 

2.1. Introduction. 

Statistical Process Control (SPC) is used to reduce variation leading to improvement in the 

performance of processes (Amiri and Allahyari, 2011) .There are two phases in SPC: Phase 

I in which parameters are estimated with historical data assuming that process is in 

statistical control whereas in Phase II the process is monitored: new data is tested to being 

in control according to information provided in the previous phase. Most common tools 

used in Phase II are control charts which use was explained in previous chapter Phase II is 

monitoring phase in which it is desirable to determine whether a change have occurred. 

Amiri and Allahyari (2011) classified different types of changes that have been studied, in 

which process get out of control: step changes, multiple step changes, changes with drift 

and monotonic changes which are a mixture of latter ones. In this section, it will be shown 

the connection of SPC and Change–point analysis going through those techniques and 

approaches used before CPA was defined and later.  

 

2.2. SPC and Change-Point Analysis. 

First tools developed under SPC label were control charts, which are tools that are used to 

monitor a process and detect assignable and special causes of variation Amiri and Allahyari 

(2011). Control limits are calculated and then when one or more than one observations fall 

outside that limits, then it is suspected that a change occurred. In 2007, Koutras, Bersimis, 

and Maravelakis (2007) classified control charts in 3 major categories: (1) Shewhart’s 

control charts, which have their name after Shewhart (1931); CUSUM control charts, 

developed by Page (1954); and Exponentially Weighted Moving Average first proposed by 

Roberts (1959). Shewhart’s control charts were created to determine if the process mean 

and/or variance changed along the time by choosing control limits as the values that are 

three standard deviations over or above the process mean. Nevertheless, these charts are not 

sensitive to small shifts and could not detect them while CUSUM and EWMA charts are 

capable to do that. First ones use a cumulative sum between observations and its average; if 

there is a sudden change in the slope of the CUSUM, then a change have occurred; second 
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ones, EWMA’s control charts, assign larger weights to new observations in order to avoid 

no detections of small shifts. 

 

All of these tools are good determining whether or not the process is under statistical 

control (which is the first step at system management), but when the process is out of 

control, it is desirable to know at which moment that happened and then apply corrective 

actions, and control charts have a delay at reporting that in almost all cases. The search of 

this moment is called change-point problem and change-point analysis was defined by Potts 

(2003) as a method to find thresholds in relationships between two variables. Taylor (2000) 

shows differences between use of control charts and CPA (the first one controls point-wise 

error rate while last ones, the change-wise error rate) and how they can be used in a 

complementary way in SPC. 

 

2.3. Literature review for Change-Point Analysis (CPA). 

Change-point problem was firstly worked, from a Bayesian approach, by Girshick and 

Rubin in 1952. They proposed quality control rules which have to be applied after a change 

in a random process was detected. Problem of determine the initial moment of a change has 

been worked from several approaches: parametric, non-parametric, Bayesian and 

regression. From parametric approach, almost all works found are about developing 

MLE’s, control charts and tests based on Likelihood Ratio (LR) tests. On the other hand, 

from a nonparametric approach, transformations of data to another with known 

distributions were worked. These works are detailed in the next subsections but 

summarized in Table 1. 

Approach Author(s). Contributions. 

P
ar

am
et

ri
c 

Page (1954) CUSUM charts. 

Hinkley (1970) 

Developed change-point MLE for change in 

process mean and a statistic. Also derived their 

asymptotic distributions. 

Hinkley (1971) 
Derived asymptotic distribution of CUSUM 

estimator as well as of its statistic. 

Samuel, Pignatiello, and 

Calvin (1998a) 

Change-point MLE using Shewhart’s X control 

chart, for a change in mean. 
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Samuel, Pignatiello, and 

Calvin (1998b) 

Change-point MLE for a change in variance 

using S or R control charts. 

Samuel and Pignatiello 

(1998) 
MLE for Poisson parameter. 

Timmer, Pignatiello, & 

Longnecker, (1998) 
Control chart for changes in AR(1) time series. 

Jann (2000) 

Change-point estimator for multiple changes in 

normal processes with shifts in the mean using a 

genetic algorithm. 

Dabye and Kutoyants 

(2001) 
MLE for Poisson using boundaries. 

Samuel and Pignatiello 

(2001) 
MLE for binomial’s p parameter. 

Nedumaran, Pignatiello 

and Calvin (2002) 

MLE for changes in mean of Normal 

Multivariate processes. 

Timmer and Pignatiello 

(2003) 
MLE for changes in AR(1) processes. 

Hawkins and Zamba 

(2005a) 

Control chart based on GLR test using Bartlett’s 

test for changes in variance. Parameters 

unknown. 

Zamba and Hawkins 

(2006) 

Control chart based on LR test for change in 

mean of multivariate normal processes. 

Liming (2008) MLE for autoregressive time series. 

Reynolds and Jianying 

(2010) 

Control chart based on GLR for shifts in the 

mean of normal processes. 

Fotopoulos (2010) 
Derived the exact asymptotic distribution of 

change-point MLE in a computable form. 

Cordero et al. (2012) 
Control chart based on 2 test for changes in 

variance. 

Tercero et al. (2012) 
Control chart for change in variance based on F 

test. 

Chen and Gupta (2012) Compiled Parametric CPA works. 

Tercero et al. (2013a) 
Integration of change-point MLE with a self-

starting CUSUM for normally distributed series. 

N
o
n
-P

ar
am

et
ri

c Page (1955) 

Use the sign function to determine changes in 

the known initial mean parameter for symmetric 

distributions. 

Bhattacharyya and 

Johnson, (1968) 

Test for shift in the mean of observations which 

has a symmetric cumulative distribution. 

Pettitt (1979) 
Nonparametric test for Bernoulli, Binomial or 

continuous distributions. 

Pettitt (1980) 
CUSUM based statistic for Bernoulli 

observations. 
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Hinkley, D. V., and 

Schechtman, E. (1987) 
Bootstrap method for shifts in the mean process. 

Ghazanfari, et al. (2008) 

Clustering technique to estimate change-points 

for normal or non-normal distributed time series 

with shifts in the mean. 

Ghazanfari, M., 

Alaeddini, A., and 

Noghondarian, K. (2008) 

Clustering method capable to estimate change-

points and parameters values after a change in 

the mean. 

Harchaoui, Bach, and 

Moulines (2009) 

Test statistic for homogeneity of two-subsamples 

and derived its asymptotic null distribution  

Tercero, G., Temblador, 

M., Beruvides, M. and 

Hernández A. (2013b) 

Change-point estimator using p-value of Mood’s 

median Test for random walks with drift. 

Table 1. Summary of CPA literature review. 

 

2.3.1. Parametric Approach CPA. 

Page (1954) started this line of research with his CUSUM control charts. Even though this 

procedure dos not estimate the initial moment of a change, gives a signal that a change have 

already occurred (Tercero (2011)). MLEs were considered by first time for Hinkley (1970). 

He developed MLEs for changes for independent random variables normally distributed for 

Phase II of SPC as well as LR tests. After that, Hinkley (1971) derived the asymptotic 

distribution of the MLE for changes in the mean when parameters are known or unknown, 

but it was not presented in a computable form. This could be considered as the base work. 

Next works are presented in three different categories: Estimation, Control Charts, and 

Ratio Tests. 

 

Change-point MLEs following Hinkley’s (1971) guideline were developed by the 

following authors. (Samuel, Pignatiello, and Calvin, 1998a) developed change-point MLE 

for a change in the mean of normally distributed data which is used after a signal of a 

Shewhart’s X  chart assuming in-control mean as known. In the same year, Samuel, 

Pignatiello and Calvin (1998b), developed the change-point MLE for change in variance of 

normally distributed observations and used it after a signal of a dispersion control chart 

such as S or R charts assuming initial parameters known. They also evaluate its 
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performance over different subgroup sizes and changes in variance measured in ratio of 

deviations.  

 

Change-points MLEs for other distributions were also developed. Samuel and Pignatiello 

(1998) proposed an estimator for a step change in a Poisson rate parameter, using the same 

analysis of their previous works. Dabye and Kutoyants (2001) also worked with this 

distribution but they demonstrate consistency of the change-point MLE by considering 

boundaries. MLE for Binomial distribution p parameter was developed by Pignatiello and 

Samuel (2001) and its performance was evaluated after a signal given by a p or np chart 

along different values of p. For multivariate normal process with a change in mean, 

Nedumaran, Pignatiello and Calvin (2000) developed the change-point MLE and evaluated 

its performance over different scenarios. Liming (2008) proposed some statistic for change-

point problem for autoregressive time series models with both cases of variance known or 

unknown.  

 

Control charts integration with change-point estimators were first done by Timmer, 

Pignatiello, and Longnecker (1998), they proposed a test for monitoring the level parameter 

of AR(1) processes which resulted in a CUSUM-based control chart. Later, Timmer and 

Pignatiello (2003) proposed three estimators for the parameters of such that model, using 

their previous control charts. Reynolds and Jianying (2010) developed a control chart using 

a moving window based on GLR methodology for small shifts in the mean of normally 

distributed data. Using GLR, Cordero et al. (2012) and Tercero et al. (2012) developed 

control charts and change-point estimators for changes in variance in normally distributed 

data using the F  test and the 2 test for Phases I and II, respectively. In 2013, Tercero et 

al. (2013a) integrated the change-point MLE for shifts in the mean after a signal of a self-

starting CUSUM. 

 

Hypothesis tests were worked by several authors after Hinkley’s (1970) work. Hawkins and 

Zamba (2005a) developed a LR test based on Bartlett’s test for mean and variance of 

normally distributed data using only one test for all cases: change only in mean, only in 
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variance or both parameters. After that, Zamba and Hawkins (2006) developed a LR Test 

for multivariate normal processes with shifts in the mean. Fotopoulos et al. (2010) 

continued Hinkley’s (1970) work and derived the exact asymptotic distribution of the MLE 

for changes in the mean as well as the LR Statistic obtaining good approximations of the 

actual MLE distribution.  

 

Several parametric CPA works were compiled by Chen and Gupta (2012) in 2012, 

including estimation, LR tests, and change-point null distribution. This monograph also 

includes applications of CPA for single and multiple change-point problems. 

 

2.3.2. Nonparametric Approach CPA. 

Assesing the problem from a nonparametric perspective, Page (1955) proposed a method to 

identify changes in the process mean where initial parameter was known using the sign 

function:   ii xy sgn  for symmetric distributions. Later, Bhattacharyya and Johnson 

(1968) worked in this approach, testing a shift in the process mean when initial parameter 

are known and unknown, only by assuming symmetry of observation’s cumulative 

distribution. Pettitt (1979) worked with binomial, Bernoulli and continuous observations 

obtaining approximate and exact results about testing null hypothesis of no change, stated 

as T where   is the change-point location and T is the size of the sample data. Later,  

Pettitt (1980) developed a simple cumulative sum type test and a conditional test of no 

change comparing this with the likelihood test. The estimator developed by him was also 

compared with the MLE for one-zero observations showing that his estimator performs 

generally superior to MLE. Bootstrap technique were used by Hinkley and Schechtman 

(1987) to develop estimators for models with a shift in the mean and compared its 

performance with parametric and semi-parametric methods. Jann (2000), construct a cost 

function to determine the number of changes in normal distributed processes with shifts 

only in the mean using a genetic algorithm based on the t-test. Later, Ghazanfari, et al. 

(2008) get away from normal series and developed a technique based on clusters to 

estimate change-points obtaining that true values of the in-control and out of control 

parameters of the process are estimated effectively. In the same year, Ghazanfari, 
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Alaeddini, and Noghondarian (2008) devised a new clustering method capable to estimate 

the time at which a sustained shift in the mean occurred as well as for true values of the out 

of control process’ parameters. Based on the maximum kernel Fisher discriminant ratio 

Harchaoui, Bach, and Moulines (2009) proposed a test statistic which was developed as an 

indicator of homogeneity of two sub-samples, and, when this statistic indicates that a 

change have occurred also gives an estimation of the change-point. They derive the 

asymptotic distribution of their statistic under null hypothesis of no change as well as its 

consistency under alternative hypothesis of change. Recently, Tercero et al. (2013b) 

developed a change-point estimator for random walks with drift using the p-value of the 

Mood’s median test. 

 

2.3.3 General Remarks. 

There are several approaches to solve the change-point problem as well as types of 

changes: single step changes, multiple step changes, changes with linear trend, and 

monotonic changes according to Amiri and Allahyari’s (2011) literature review. This 

research considers only parametric approach for single and multiple step changes in time 

series. Under this label, many approaches of solution suppose initial parameters as known; 

other works have approximate or asymptotic results for the estimator’s distributions.  

 

Change-point problem could be addressed from other approaches, like Bayesian and 

Regression in which there are the following works: Girshick and Rubin (1952), first 

proposed the Change-point problem from a Bayesian point of view. For stationary 

observations, several approaches were proposed by Shiryaev (1963), Chernoff and Zacks 

(1964), Barry and Hartigan (1993), Chib (1998), and Moreno, Casella and García-Ferrer 

(2005). For non-stationary observations, Ferreira (1975) studied trended observations with 

normal errors, developing estimator and confidence intervals for change-point. Multiple 

linear regression models were studied by Holbert (1982) and Chen (1998). Finally, Western 

and Kleykamp (2004) developed a change-point estimator for the coefficients of a 

regression line using simulation methods. 
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About multiple change points, according to Jann (2000) and Fotopoulos et al. (2010) there 

are several researches focused mainly in application of CPA like meteorology, analysis of 

DNA sequences, signal processing, econometrics, and statistical process control. A vast 

number of researches were found for climate data analysis trying to find change-point in 

rainfalls records (or find inhomogeneities in climatological time series): Potter (1981), 

Maronna and Yohai (1978), Easterling and Peterson (1995), Lanzante (1996), 

Alexandersson and Moberg (1997). For DNA sequences, Arunajadai (2009) presents a 

methodology to model the RNA unwinding mechanism using Tukey’s biweight function to 

detect changes in the mean. Fu and Curnow (1990) studied Bernoulli independent variables 

sequences, and derived the MLE distribution of the location of two changed segments to 

predict protein helical regions. Finally, tests for multiple change-point have been developed 

by Huskova and Slaby (2001), and Aly, Abd-Rabou and Al-Kandari (2003). 

 

For a literature review, see Amiri and Allahyari (2011), and Chen and Gupta (2012). Amiri 

and Allahyari (2011) summarized works categorized by approach of solution, change-point 

estimation method, parameter consider for the change, and control chart used (if is the 

case). Chen and Gupta (2012), compiled in a book several focused in the parametric 

approach and works for applications to genetics, medicine and finance. 
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CHAPTER 3.  RESEARCH 1. 

 

 
Change-Point Estimation for a Sequence of Normal Observations and Integration with Q-

Charts 

 

This is the first research of change-point analysis for independent observations normally 

distributed. It considers the case when a single step change has occurred and distribution’s 

parameters (before and after change) are unknown. Development of maximum likelihood 

estimators (MLEs) for the change-point and for parameters is the main concern as well as 

an  integration with control charts in order to show its application in practice, with which 

retrospective and on-line analysis are both covered. A change is considered as one of the 

three different cases: (1) change only in mean parameter, (2) change only in variance 

parameter or (3) change in both parameters. Due to there are change-point estimators for 

change in mean and change in variance, a comparison is done to show what estimator is 

recommended to use in each situation. 

 

This paper was submitted to the Institute of Industrial Engineers (IIE) Transactions journal 

and is currently under review. 
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Change-Point Estimation for a Sequence of Normal Observations and Integration with Q-

Charts. 

Víctor G. Tercero-Gómez, Ph.D, Alvaro E. Cordero-Franco, Ph.D, Jorge A. Garza-Venegas, 

B.S., María del Carmen Temblador-Pérez, Ph.D., Mario G. Beruvides, Ph.D. 

 

Many practical applications have to deal with situations where parameters are 

unknown and have to be estimated from collected data where a structural change 

happened at an unknown change-point. This situation is found during start-up 

processes, root cause analysis performed over past observations, and many other 

situations where backward-looking examination for a change-point in some measured 

variable is required. This paper presents and evaluates the performance of three 

maximum likelihood estimators (MLE) of the change-point in series for retrospective 

analysis and online monitoring through the sequential use with Q-charts. Process 

parameters, before and after a change, are assumed to be unknown. Different shifts, 

sample sizes, and locations of change-points were evaluated. For retrospective 

analysis, a comparison is made with estimators based on cumulative sums and 

Bartlett’s test. Performance analysis done with extensive simulations showed that the 

MLEs perform better (or equal) in almost every scenario, with smaller bias and 

standard error. Integration with Q-charts showed that the sequential use of both 

methodologies facilitates the detection and estimation of special causes of variations, 

fostering any quality improvement effort. Strategies to reduce bias and standard error 

of estimators through the use of additional observations are also presented. 

 

Keywords: MLE; CUSUM; Bartlett’s Test; unknown parameters; change-point 

analysis 
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3.1.  Introduction 

Control charts are known tools to detect isolated and sustained changes. However, when 

sustained changes occur, most of them are not capable of estimating the initial moment of 

the change. Knowing this exact time greatly simplifies the search for a cause of variation, 

and in consequence, might boost an improvement process. The search for this moment is 

called change-point estimation. Potts (2003) defines it as methods created to identify 

thresholds in the relationship between two variables; however, it can be generalized for 

multiple changes. From a parametric point of view, following the guidelines of Hinkley 

(1970), several authors like Samuel et al. (1998a) and Khoo (2004) have studied the 

behaviour of the maximum likelihood estimators (MLE) for a change-point of a normal 

process. These authors studied the behaviour of these estimators where a priori knowledge 

of initial parameters existed. Nevertheless, real life applications usually lack this 

information, and parameters have to be estimated from collected data. 

 

This research is focused on the construction and performance evaluation of several change-

point MLEs for normal observations collected over a discrete time where parameters before 

and after the change-point are unknown.  Given a time series of independent observations 

nnnn XXXXXXXX ,1,,11,1,1,,11,1 ,...,,...,,...,,,...,,...,,...,    following the subsequent 

model: 
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Where parameters  , 0 , 1 , 0  and 1  are unknown.   is called the change-point of the 

series, and   is the last sample observed. To estimate the change-point, three MLE 

estimators called 
1

ˆ
MLE , 2

ˆ
MLE , and 3

ˆ
MLE  are obtained based on three different scenarios, 

according to different assumptions about parameters of the normal distribution. 

1
ˆ

MLE  assumes that 10    but 10   . 

2
ˆ

MLE  assumes that 10    but 10   . 

3
ˆ

MLE  assumes that 10    and 10   . 
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To measure the performance of these estimators, this research evaluated, with extensive 

simulations, different scenarios where the size of the shift, sample size, and the change-

point position were modified to measure the sensitivity of estimators. Results are compared 

with estimators from Pettitt (1980) and Hawkins and Zamba (2005a). Additionally, to 

extend the applicability of the proposed estimators, integration with Q-charts is proposed 

and their performance is evaluated. 

 

Section 3.2 presents an overview of the research in change-point analysis, and briefly 

describes Q-charts with their related literature. The research showed no indication of the 

existence of an in-depth study of the biases and errors of the proposed estimators when 

applied in retrospective analysis for limited sample sizes. Neither was any study found 

about their performance when used sequentially with Q-charts. Section 3.3 presents the 

proposed change-point estimators. Section 3.4 shows how change-point estimators can be 

integrated with Q-charts. Experimental results from Monte Carlo simulations are described 

in Section 3.5; and finally, some general conclusions and opportunities for future research 

are mentioned in Section 3.6. 

3.2.  Background 

3.2.1 Previous Work on Change-Point Analysis 

Concerns of detecting sustained changes in time series started with Girshick and Rubin 

(1952) from a Bayesian paradigm. They defined a quality control rule to trigger corrective 

actions when a change in a random process was detected.  Soon after, Page (1954, 1955, 

1957), from a frequentist point of view, developed the cumulative sum (CUSUM) chart to 

be able to detect, faster than traditional Shewhart's control charts (1931), the presence of 

sustained changes. 

 

Hinkley (1970) sets the theoretical foundation to construct MLEs and likelihood ratio (LR) 

tests to detect change points in series of independent random variables. He applied these 

techniques to series with normally distributed observations. Following this theory, Samuel, 

Pignatiello, and Calvin (1998a, 1998b), Samuel and Pignatiello (1998), Dabye and 

Kutoyants (2001), Pignatiello and Samuel (2001), Nedumaran, Pignatiello, and Calvin 
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(2002), Timmer and Pignatiello (2003) and Liming (2008) developed MLEs for series 

following different distributions. They focused their work on the integration with control 

charts, where the MLEs were used as a plug in to estimate the change already detected. To 

detect if a change had happened, Timmer, Pignatiello, and Longnecker (1998) worked on a 

LR test based on the CUSUM chart to detect changes in a first order autoregressive process. 

Hawkins and Zamba (2005b), and Zamba and Hawkins (2006) and Batsidis (2010) worked 

on several LR tests to make inferences whether a change has occurred in individual 

stationary series. Hawkins and Zamba (2005a) presented a model to deal with variance 

changes, similar to the generalized likelihood ratio (GLR) control chart for variance, based 

on Bartlett’s test. Nevertheless, the proposed model grew in complexity as more 

observations were added into the time series. To solve the complexity issue of the GLR 

when dealing with mean changes, Reynolds and Jianying (2010) simplified the approach by 

suggesting the application of a moving window, where the amount of steps required with 

each new observation was restricted to the size of the window. 

 

Aside from MLE procedures, Ghazanfari et al. (2008) proposed the use of clustering 

principles to identify two partitions, within the time line, where the probability of an 

observation of belonging to one of the two sets in the series was used as a separation 

criterion. Page (1954), when developing the CUSUM, first pointed that results from this 

technique could be used to estimate the initial time of the change.  Hinkley (1971) 

compared the later estimation with the MLE for known initial parameters of normal and 

independent observations, concluding that the use of the CUSUM is asymptotically biased, 

but easier to use. Pettitt (1980) proposed the estimation with CUSUM for unknown 

parameters, and Nishina (1992) evaluated the performance against estimations obtained 

from EWMA and Moving Average charts, determining that estimation from CUSUM was 

superior, and, if the size of the change is known a priori, he proved that the estimation with 

the CUSUM was an MLE. 

 

For nonstationary series, Quandt (1958) first constructed a MLE and LR test for 

observations following two different schemes in a regression line with normally distributed 

errors.  Later, several LR tests were built by Kim and Siegmund (1989), Zou, Zhang, and 
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Wang (2006), Perry, Pignatiello, and Simpson (2006), Mahmoud, Parker, Woodall, and 

Hawkins (2007) and Zhou, Zou, Zhang, and Wang (2009).  All of these tests assumed 

normally distributed errors and were designed to detect changes in the intercept and the 

slope of trended series. 

 

On the other hand, Bayesian statisticians continued with the research line initiated by 

Girshick and Rubin (1952).  For stationary observations, several approaches were proposed 

by Shiryaev (1963), Chernoff and Zacks (1964), Barry and Hartigan (1993), Chib (1998) 

and Moreno, Casella, and Garcia-Ferrer (2005).  For non-stationary observations, Ferreira 

(1975) developed an estimator and confidence intervals for the change-point of trended 

observations with normal errors.  Holbert (1982) and Chen (1998) also worked with 

change-point analysis for multiple linear regression models.  Finally, Western and 

Kleykamp (2004) designed a change-point estimator for the coefficients of a regression line 

using simulation methods. 

 

Bhattacharyya and Johnson (1968) were responsible for the first construction of a 

nonparametric test with the explicit idea of doing a nonparametric method.  However, Page 

(1955) was the first one to develop a nonparametric change-point detection technique.  He 

applied the CUSUM technique to the dichotomy created by the sign of the difference 

between observations in a time series and a specification.  Later, Pettitt (1979) used 

nonparametric techniques to change-point analysis by developing tests for Bernoulli, 

binomial and continuous observations.  A year after, Pettitt (1980) approached the CUSUM 

for zero-one observations, similar to the one built by Page (1955).  Finally, Hinkley and 

Schechtman (1987) applied the re-sampling technique, the bootstrap, to estimate the 

moment of a shift in the mean. Tercero et al. (2013b), also from a nonparametric 

perspective, using the p-value of Mood’s median test (1954), constructed an estimator 

capable of detecting changes in the median of time series. Recently, Zou et al. (2007) 

proposed the use of the empirical likelihood ratio to approach the change-point test and 

estimation problems. 

To assess situations where the assumption of independent observations is not met, Perry 

and Pignatiello (2010) developed a MLE for a step change in the mean of stationary and 
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invertible ARMA processes.  Latter, Perry (2010) derived and evaluated the MLE for the 

time of polynomial change in mean of covariance-stationary autocorrelated process. 

Finally, Perry and Pignatiello (2012) obtained a MLE for the change point in the fixed-

effects components in a two stage-nested random model. 

 

For series of normally and independently distributed observation, many MLEs for known 

parameters have been developed and studied.  However, when dealing with real life 

situations, parameters are usually unknown.  Even when parameters are assumed to be 

known, most of the time they were estimated from historical data. From the reviewed 

literature, change-point estimation for unknown parameters hasn’t been deeply studied, and 

its construction and performance needed to be addressed.  The following section introduces 

the MLEs for unknown parameters under three different circumstances when mean and 

variance are assumed to be equal or different. Pettitt (1980) and Hawkins and Zamba 

(2005a) estimators are also presented. 

 

3.2.2 Q-Charts for Normal Observations 

Quesenberry (1991a, 1991b, 1991c) developed several control charts, called Q-charts, 

capable of monitoring sequences of observations under different scenarios of a priori 

knowledge about the population parameters of a process when it follows a Normal 

distribution, Binomial or Poisson. Shewhart type control charts follow an implementation 

paradigm of two phases. Phase I, also called estimation phase, is focused on finding a set of 

in-control observations that can be used to estimate the parameters of the in-control state of 

the process under consideration. Control limits that represent the variation under common 

causes are set at this stage. During Phase II, the system is monitored, and all parameters 

estimated in previous phase are considered as the population parameters. To avoid biases 

and underperformance during a Phase II, large amount of data need to be obtained when 

parameters are estimated. This might be unreasonable when samples are limited and the 

process needs to be monitored from early stages. By considering the estimation error, 

Quesenberry modified several Shewhart charts that can be used for start-up processes with 

short and long runs. Four of these Q-charts are considered in this research since they make 
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no assumptions about none of the true values of parameters in normal sequences of 

independent observations. These are the control charts for mean and variance for individual 

observations and rational subgroups where samples have at least two observations each. 

Charts formulas are shown in equations (2-11). 

Q control chart for individual observations. Here r stands for the moment in time. 
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Where 2rG  and 1  are for the t distribution with r – 2 degrees of freedom and the inverse 

normal standard distribution. 

Q control chart for mean using rational subgroups. 
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Q control chart for process variances with individual observations 
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Q control chart for process variances using rational subgroups. 
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Q-charts belong to the area of self-starting control charts. This type of control charts deal 

with the problem of monitoring processes without the need of a previous estimation of 

process parameters. This problem was first assessed by Hawkins (1987) by adapting the 

CUSUM chart to include running estimators of mean and variance. Later Quesenberry 

(1991a, 1991b, 1991c) used this approach to create self-starting Shewhart-type control 

charts (as previously presented) for Normal, Binomial, and Poisson observations. Zou et al. 

(2007) applied linear regression results to develop a self-starting control chart to monitor 

several related variables called linear profiles. He et al. (2008) proposed a different running 

estimator of the variance to reduce the bias of Q-charts when a change happened early (a 

bias occurs when the out-of-control ARL is larger than in-control ARL when a change does 

exist). To improve power of self-starting charts, Capizzi and Masarotto (2012) used 

EWMA statistics over Quesenberry´s Q variables, and applied a CUSCORE control chart 

for monitoring. Sullivan and Jones (2002) extended previous works to construct a self-

starting Multivariate EWMA control chart. A similar job was done by Hawkins and 

Maboudou-Tchao (2007). 

3.3.  Change-Point Estimators 

Following the theory developed by Hinkley (1970), three different scenarios are studied, 

giving three different estimates: mean changes (Section 3.3.1), variance changes (Section 

3.3.2), and mean and variance change at the same time (Section 3.3.3).  Derivation of these 

MLEs is shown below. Pettitt (1980) and Hawkins and Zamba (2005a) estimators are 

reviewed in Sections 3.3.4 and 3.3.5 respectively. 
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Let { ijx : nji ,...,2,1,,...,2,1   } be independent and identically distributed random 

variables (i.i.d.r.v.) ),( 00 N , and{ ijx : njTi ,...,2,1,,...,2,1   } be i.i.d.r.v. 

),( 11 N . For a given value of τ, the likelihood function is 
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MLEs are found by solving equations (15-17) for 1010 ,,,   and . Results are shown in 

the following three sections. 
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3.3.1  MLE with 10    and 10    

This scenario assumes that, between τ and τ + 1, a change occurs only in the mean 

( 10   ), but not in the standard deviation ( 10   ). Since all parameters are unknown, 

they are all estimated using the MLE technique. Equations (18-20) show the corresponding 

MLEs for the parameters of a normal distribution. Equation (21) gives the change-point 

MLE of the model shown in equation (1) with corresponding assumptions of this scenario. 
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Note that change-point MLEs omit the first and last five samples of the series. This is done 

to avoid the undesirably tendency of these MLEs to favour the locations of change-point at 

the beginning or end of the series, as suggested by Karl Tr. and Williams CN Jr. (1987). 

This was also suggested in Jann (2000) who estimates multiple change-points in normal 

series using an iterative method based on the t-statistic. This assumption of not having a 

change-point within the first and last five samples is used when constructing the other 

estimators in this section. 

 

3.3.2  MLE with 10    and 10     

This scenario assumes that after moment τ a change occurs only in the standard deviation 

( 10   ), but not in the mean ( 10   ). Using the MLE technique all unknown 

parameters are estimated. Equations (22) and (23) show the corresponding MLEs for the 

variances (before and after the change). The estimator of  , p̂ , is obtained after solving 

equation (24), which is actually a third degree polynomial equation with at least one real 

solution out of three possible ones, which need to be evaluated individually using equation 

(25). The latter equation gives the MLE change-point of the model from equation (1) with 

the conditions of this second scenario. 
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It can be shown that the Hessian Matrix of 2
0  and 2

1  is defined negative, independently 

of the value of   (see proof in Tercero-Gómez  (2011) when n = 1). Nevertheless, equation 

(24) has three different roots (including imaginary ones), and an evaluation of the 

loglikelihood function is required to choose the maximum out of the real results. Equation 

(26) shows the corresponding loglikelihood function without the constant values. Given 

any t, it can be seen, on equation (26), that as   or   then 0ln L , hence, the 

MLE for   exists, and it can be found by evaluating the roots obtained in equation (24) on 

equation (26). 
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3.3.3  MLE with 10    and 10     

This third scenario assumes that after moment τ a change occurs in both parameters 

( 10   ) and ( 10   ). Since all parameters are unknown, all of them are estimated using 

the MLE technique. Equations (18) and (19) show the corresponding MLEs for the means. 

Equations (22) and (23) are used to calculate the variances  0

2

0
ˆˆ   and  1

2
1

ˆˆ  , where 0̂  

and 1̂  are used instead of p̂ . Equation (27) gives the MLE change-point of the model 

from equation (1) with the conditions of this third scenario. 
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If variance values are smaller than 1, the minimization process over equations (21, 25 and 

27) can be made over the logarithms of these functions to reduce the risk of rounding 

errors. 

 

3.3.4  Change-Point estimation with CUSUM for shifts in mean 

From Pettitt (1980), estimation of the change-point for mean shifts is obtained by finding 

the maximum absolute deviation from the overall mean.  Deviation is calculated according 

to equation (28) and the change-point estimator is given in (29). 
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If subgroups exist, mean values within each subgroup of iX  observations are used as if 

they were individual observations. 

 

3.3.5  Change-Point estimation with Bartlett’s test statistic 

To assess for variance changes, Hawkins and Zamba (2005a) used the Bartlett’s test 

statistic and the GLR approach to create a change-point estimator. The change-point 

estimator is obtained by finding the moment t where equation (30), Bartlett’s test statistic, 
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 Where: 
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In consequence, Hawkins and Zamba’s (2005a) change-point estimator can be written as 
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3.4.  Sequential Use of Change-Point Estimators and Control Charts 

In the presence of sustained changes, Q-charts and MLE̂  can be used sequentially for online 

monitoring. Control charts can be used to detect whether a change occurred, and the MLE’s 

can be applied to estimate the initial moment of the sustained change. Process monitoring is 

done using Q-charts until a sample gives an out-of-control signal. This last sample is 

defined as T  from model (1). Then, a change-point MLE is used to estimate the initial 

moment of the change. 

 

To monitor mean changes, Q-charts for individual observations and mean values are used 

with 1
ˆ

MLE . To assess for changes in scale, Q-chart for variance with individual observations 

or subgroups are used together with 2
ˆ

MLE . If changes in both parameters at the same time 

are a concern, Q-charts for mean and variance can be used at the same time by adjusting 

their corresponding control limits to obtain a desired ARL under control. 3
ˆ

MLE  can be used 

after a change is detected using the previous control scheme. 

 

3.5.  Performance of Estimators 

3.5.1 Retrospective Analysis: Simulation Design 

To evaluate performance of 1
ˆ

MLE , 2
ˆ

MLE , 3
ˆ

MLE , CUSUM̂  and G̂ , several scenarios were 

simulated by considering the following factors and levels: 
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1. Shift in the mean ( ) was measured in standard deviations from an initial mean. 

Shifts considered were σ, 1.5σ and 3σ. 

2. Ratio of deviations (
01

 ) measures the amount of change in a process standard 

deviation. Ratios of 1.3, 1.5 and 3 were considered. 

3. Series length (T ) of 50, 100, 300 and 1000 samples were simulated. Each sample 

having different sizes, depending on the scenario studied. 

4. Subgroup sizes ( n ) of 1, 3 and 5 were evaluated. 

5. Change-point position (  ) of 0.2, 0.3 and 0.5 were used to measure how standard 

error of estimators improves as subgroups get larger.  

Monte Carlo experimentation was used to evaluate the performance of the change-point 

estimators.  The following general procedure was used for each scenario evaluated: 

1. Select the scenario from a combination of the factors and levels shown above. 

2. Generate nT random variables according to the selected scenario. 

3. Calculate  ˆ  (using estimators under analysis). 

4. Repeat step 2 and 3 10,000 times. 

5. Calculate the mean and standard deviation of the error (the latter is also called 

standard error). 

6. Return to step 1 and select another scenario. 

 

3.5.2 Online Monitoring with Q-Charts: Simulation Design 

To evaluate the performance of the sequential application of estimators 1
ˆ

mle , 2
ˆ

mle  and 

3
ˆ

mle  with Q-charts, several scenarios were assessed using Monte Carlo simulation. A 

sensitivity analysis was completed in order to evaluate bias and standard deviation of the 

online monitoring. Factors and their corresponding levels studied are similar to the ones 

evaluated for retrospective analysis, shift in the mean ( ) was also measured in standard 

deviations σ, 1.5σ and 3σ. Ratios of standard deviations (
01

 ) of 1.3, 1.5 and 3 were 

studied. Subgroup size, or sample size ( n ) also considered values of 1, 3 and 5. The 

difference in performance assessments between retrospective analysis and online 

monitoring is in the change-point position. The ratio   no longer can be used. Series 
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length is no longer a fixed value but a random variable. Change-point position is now set 

for specific   moments 50 and 100. Simulations were run setting up Q-charts to provide an 

in-control ARL of 370.4. To evaluate performance of 3
ˆ

mle , Q-charts for mean and variance 

were used at the same time. The latter scheme had control limits of ±3.205 on each chart to 

provide the same in-control ARL of a 3-sigma chart, 370.4. 

 

Once in a while Q-charts misbehave, giving large ARL values if the change is not detected 

within certain time window. This creates excessive computational times that make some 

computers run out of memory. To avoid this, the maximum series length allowed was 500 

per replicate. If no out-of-control signal was triggered after 500 samples, the replicate was 

run again. This reduces performance of change-point estimators since the amount of data to 

estimate the change is reduced. However, as seen in the simulation results, bias and 

standard error still behaves relatively well enough to make conclusions about the feasibility 

and performance of integrating Q-charts with change-point estimators. 

 

The procedure applied to evaluate integration between Q-charts and MLEs for each 

scenario is described below: 

1. Select the scenario using a combination of factors and levels as described above. 

2. Generate n observations in control according to the selected scenario and make 

i . 

3. Generate another observation out of control under the scenario selected and make 

1 ii . If 500i  repeat from step 2. 

4. If i  triggers and out-of-control signal with the Q-chart, then make i  and go to 

step 5. If not, repeat step 3. 

5. Calculate  ˆ  (using estimators under analysis). 

6. Repeat step 2 to 4 10,000 times. 

7. Calculate the mean and standard deviation of the error. 

8. Return to step 1 and select another scenario. 
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3.5.3  Simulation Results  

When 10    and 10   , 1
ˆ

MLE  and CUSUM̂  were evaluated over different series length 

(T), sample sizes (n), shifts of the mean (δ) measured in standard deviations, and change-

point locations (  ). Table 2 part a) shows, when 5.0 , that 1
ˆ

MLE  and CUSUM̂  

perform with similar biases—with a difference between estimators of at most 1.0 —but 

CUSUM̂  presents a smaller standard error than 1
ˆ

MLE . However, when 5.0  (Table 2 

part b)), 1
ˆ

MLE  tends to always have a smaller bias and standard error. Considering that, in 

practice, an analyst is not assumed to know beforehand when the change actually occurred, 

then 1
ˆ

MLE  is the recommended estimator, because it is more robust to the change-point 

location. 

 

Performance results of 2
ˆ

MLE  and G̂  when 10    and 10    are shown in Table 3. 

There can be seen, when 5.0 , 2
ˆ

MLE  and G̂  have almost the same performance. 

Biases and standard errors are within 1  in most cases (in both parts a) and b)). G̂  tends to 

have a bigger bias but a smaller standard error, mostly for smaller samples. However, when 

samples are large enough 2
ˆ

MLE  and G̂  performs alike. On the other hand G̂  requires less 

operations to be obtained, hence less computer time. 

 

If it is not possible to assume that only one parameter changed at the change-point, one 

should assume 10    and 10   . Tables 4 and 5 compare this situation using 3
ˆ

MLE  with 

CUSUM̂  and G̂ . In Table 4, using a 5.0 , when comparing part (a) versus part (b), it 

can be seen that as the ratio of standard deviations increases, the error bias and standard 

error of the CUSUM̂  also increase, while the 3
ˆ

MLE  improves its precision. Table 4 (c) shows 

that G̂  performs relatively well when there is no change in the mean, only in variance, its 

bias is similar to the 3
ˆ

MLE  and the standard error is smaller. Nevertheless, when 0 , 

bias and standard error of 3
ˆ

MLE  tend to be smaller than G̂  in every case.  Table 5 confirms 

the superiority of 3
ˆ

MLE  over CUSUM̂  and G̂  when changes in mean and variance occur at 

different  . In almost every case, 3
ˆ

MLE  give a smaller bias and standard error. 
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Additionally, when comparing 3
ˆ

MLE  with 1
ˆ

MLE  and 2
ˆ

MLE  it can be seen that performance 

of 3
ˆ

MLE  is not bad (absolute bias is smaller than the unit in most cases and standard error is 

similar). This makes 3
ˆ

MLE  a safe choice when compared with the other estimators that need 

to assume that only one parameter changed. 

 

Following the model presented in Section 3.4, for online monitoring, when 10    and 

10   , 1
ˆ

MLE  performance was evaluated after integrating it with Q-charts. Table 6 shows 

that in almost every situation, 1
ˆ

MLE  bias and standard error get smaller when Q-charts’  

ARL become larger, and that behavior is reversed when the ARL gets smaller, 1
ˆ

MLE  bias 

and standard error tend to get bigger . This can be expected since small ARL means quick 

detection and not many observations after the real change-point. If this happens, change-

point is located close to the end of the series. Because the search of the change-point is 

limited to be at least 5 observations before the end of the series, the feasible region of 

search might not contain the real change-point. This leaves change-point estimator with not 

much data to work with, making bias and standard error bigger. This situation can be 

solved by letting the process run 5 extra observations after the change is detected. 

 

Also, for online monitoring, performance of 2
ˆ

MLE  after its integration with Q-charts when 

10    and 10    was evaluated and results are shown in Table 6. Results of integration 

of Q-charts with 2
ˆ

MLE  shows that for almost every case, bias and standard error are greatly 

corrected by adding at least 5 observations of the out of control process after Q-charts’ 

detection. 

 

Finally, when 10    and 10   , performance of 3
ˆ

MLE was evaluated in Table 7. These 

tables show that for smaller samples bias and standard error is larger. This gets corrected by 

adding replications and/or new extra observations after Q-charts integration. In Tables 6 

and 7, w  extra observations were added to estimate the change-point. Maximum likelihood 

estimators improve their performance when more observations are used. However, this 

growth in precision implies an increase in the cost of the out of control observations 
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produced. An analyst should consider if the increment in precision overcomes the cost of 

having additional observations after a change is signaled by a Q-chart. 

 

3.6.  Conclusions and Future Work 

This paper presented three estimators of the change-point in series of independent normal 

observations that deal with changes in the mean, the variance, and in both parameters at the 

same time. Estimators were obtained by maximizing the likelihood function of time series 

when there is an unknown change at moment   and the mean and variance before and after 

the change are also unknown. Some of these estimators can be found in past literature; 

however there was no indication about their performance with fixed samples and their 

relationship with variance minimization (it was shown that all estimators could be written 

as a variance minimization problem). Also, no reference was found about estimator 2
ˆ

MLE , 

probably due to the lack of a single solution for the mean estimator that needed to be used. 

However, it was shown that 2
ˆ

MLE  was in fact a MLE since it provides a global maximum 

for the likelihood function. 

 

The MLEs here proposed were evaluated over different shifts, sample sizes, and locations 

of change-points; and they were compared with two estimators, one based on the 

cumulative sum (CUSUM) and the other on Bartlett’s test. The former, the CUSUM 

estimator, was designed to detect the moment when a change occurred in the mean of 

normal observations, and the latter, when the change happened in the variance. 

Performance was measured using extensive simulations, showing that the MLEs perform 

better (or equal) in almost every scenario when compared with their counterparts. Bias and 

standard error was generally smaller with the MLEs. Nonetheless, it is important to notice 

that CUSUM based estimators are easier to compute, and their performances could be 

acceptable in some situations, making them an alternative when only rough estimates are 

needed. These estimators can be used for retrospective analysis or as part of online control 

with unknown parameters control charts as presented here. The performance of MLEs 

when used after a signal of Q control charts was inspected. Sequential use of this control 
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charts and MLEs improves the bias of the change-point estimator. It was found that large 

changes create small ARL values. This means that not many observations might be 

available to estimate the change-point, which is reflected as an increase in bias and standard 

error. If precision is a must, to solve this situation, the use of at least 5 additional 

observations after a change is detected is recommended. 

 

Future work will deal with other types of situations seen in a Phase I or II of SPC. It is 

known that types of changes found in a sequence of Phase I process data are not necessarily 

that of a single shift.  Instead, if the system is out-of-control, multiple change points might 

be at hand in the form of shifts in mean, variance, drifts of a trend, seasonality, outliers, or a 

combination of these over independent or autocorrelated observations. Future research will 

focus on the development of multiple change-points, autocorrelated data, and nonnormal 

observations through  nonparametric change-point estimators. 

 

3.7.  References 

1. Barry D, Hartigan JA. (1993). A Bayesian Analysis for Change Point Problems. 

Journal of the American Statistical Association; 88: 309-319. 

2. Batsidis A. (2010). Robustness of the likelihood ratio test for detection and 

estimation of a mean change point in a sequence of elliptically contoured 

observations. Statistics: A Journal of Theoretical and Applied Statistics; 44: 17-24. 

3. Bhattacharyya GK, Johnson RA. (1968). Nonparametric Tests for Shift at an 

Unknown Time Point. The Annals of Mathematical Statistics; 39: 1731-1743. 

4. Capizzi, G., Masarotto, G. (2012). An Enhanced Control Chart for Start-Up 

Processes and Short Runs. Quality Technology and Quantitative Management; 9: 

189–202. 

5. Chen J. (1998). Testing for a change point in linear regression models. 

Communications in Statistics - Theory and Methods; 27: 2481-2493. 

6. Chernoff H, Zacks S. (1964). Estimating the Current Mean of a Normal Distribution 

which is Subjected to Changes in Time. The Annals of Mathematical Statistics; 35, 

999-1018. 



40 

 

7. Chib S. (1998). Estimation and comparison of multiple change-point models. 

Journal of Econometrics; 86: 221-241. 

8. Dabye A, Kutoyants Y. (2001). Misspecified Change-Point Estimation Problem for 

a Poisson Process. Journal of Applied Probability; 38: 122-130. 

9. Ferreira PE. (1975). A Bayesian Analysis of a Switching Regression Model: Known 

Number of Regimes. Journal of the American Statistical Association; 70: 370-374. 

10. Ghazanfari M, Alaeddini A, Niaki ST, Aryanezhad MB. (2008). A clustering 

approach to identify the time of a step change in Shewhart control charts. Quality 

and Reliability Engineering International; 24: 765-778. 

11. Girshick M, Rubin H. (1952). A Bayes approach to a quality control model. The 

Annals of mathematical statistics; 23: 114–125. 

12. Hawkins, D. M. (1987). Self-starting CUSUM charts for location and scale. The 

Statistician; 36: 299–316. 

13. Hawkins, D. M., Maboudou-Tchao, E. M. (2007). Self-starting multivariate 

exponentially weighted moving average control charting. Technometrics; 49: 199–

209. 

14. Hawkins D, Zamba K. (2005a). A change-point model for a shift in variance. 

Journal of Quality Technology; 37: 21–31. 

15. Hawkins D, Zamba K. (2005b). Statistical Process Control for Shifts in Mean or 

Variance Using a Changepoint Formulation. Technometrics; 47: 164-173. 

16. He, F., Jiang, W., Shu, L. (2008). Improved self-starting control charts for short 

runs. Quality Technology and Quantitative Management; 5: 289–308. 

17. Hinkley D. (1970). Inference About the Change-Point in a Sequence of Random 

Variables. Biometrika, 57: 1-17. 

18. Hinkley DV. (1971). Inference about the Change-Point from Cumulative Sum Tests. 

Biometrika; 58: 509-523. 

19. Hinkley, DV, Schechtman E. (1987). Conditional bootstrap methods in the mean-

shift model. Biometrika; 74: 85-93. 

20. Holbert D. (1982). A Bayesian analysis of a switching linear model. Journal of 

Econometrics; 19: 77-87. 



41 

 

21. Jann A. (2000). Multiple change-point detection with a genetic algorithm. Soft 

Computing-A Fusion of Foundations, Methodologies and Applications; 4: 68-75. 

22. Karl TR, Williams CN. (1987). An Approach to Adjusting Climatological Time 

Series for      Discontinuous Inhomogeneities. Journal of Climate and Applied 

Meteorology; 26:1744-63. 

23. Khoo M. (2004). Determining the time of a permanent shift in the process mean of 

CUSUM control charts. Quality Engineering, 17: 87–93. 

24. Kim HJ, Siegmund D. (1989). The Likelihood Ratio Test for a Change-Point in 

Simple Linear Regression. Biometrika; 76: 409-423. 

25. Liming W. (2008). Testing for Change-Point of the First-Order Autoregressive 

Time Series Models. 应用概率统计; 24: 28-36. 

26. Mahmoud MA, Parker PA, Woodall WH, Hawkins DM. (2007). A change point 

method for linear profile data. Quality and Reliability Engineering International; 

23: 247-268. 

27. Mood AM. (1954). On the Asymptotic Efficiency of Certain Nonparametric Two-

Sample Tests. Annals of Mathematical Statistics; 25: 514–522. 

28. Moreno E, Casella G, Garcia-Ferrer A. (2005). An objective Bayesian analysis of 

the change point problem. Stochastic Environmental Research and Risk Assessment; 

19: 191-204. 

29. Nedumaran G, Pignatiello JJ, Calvin J. (2002). Identifying the Time of a Step-

Change with chi^ 2 Control Charts. Quality Control and Applied Statistics; 47: 

125–126. 

30. Nishina K. (1992). A comparison of control charts from the viewpoint of change-

point estimation. Quality and reliability engineering international; 8: 537–541. 

31. Page E. (1954). Continuous Inspection Schemes. Biometrika; 41: 100-115. 

32. Page E. (1955). A test for a change in a parameter occurring at an unknown point. 

Biometrika; 42: 523-527. 

33. Page E. (1957). On problems in which a change in a parameter occurs at an 

unknown point. Biometrika; 44: 248-252. 



42 

 

34. Perry MB. (2010). Identifying the time of polynomial drift in the mean of 

autocorrelated processes. Quality and Reliability Engineering International; 26: 

399-415. 

35. Perry MB, Pignatiello JJ. (2010). Identifying the time of step change in the mean of 

autocorrelated  processes. Journal of Applied Statistics; 37: 119-36. 

36. Perry MB, Pignatiello JJ. (2012). Identifying the time of change in the mean of a 

two-stage nested process. Journal of Applied Statistics; 39: 419-33. 

37. Perry MB, Pignatiello JJ, Simpson JR. (2006). Estimating the Change Point of a 

Poisson Rate Parameter with a Linear Trend Disturbance. Quality and Reliability 

Engineering International; 22: 371-384. 

38. Pettitt A. (1979). A Non-Parametric Approach to the Change-Point Problem. 

Journal of the Royal Statistical Society. Series C (Applied Statistics); 28: 126-135. 

39. Pettitt A. (1980). A simple cumulative sum type statistic for the change-point 

problem with zero-one observations. Biometrika, 67: 79-84. 

40. Pignatiello JJ, Samuel T. (2001). Identifying the Time of a Step Change in the 

Process Fraction Nonconforming. Quality Engineering; 13: 357-365. 

41. Potts S. (2003). Change-Point Analysis. at <http://n-steps.tetratech-

ffx.com/PDF&otherFiles/stat_anal_tools/Change%20Point_final.pdf> 

42. Quandt RE. (1958). The Estimation of the Parameters of a Linear Regression 

System Obeying Two Separate Regimes. Journal of the American Statistical 

Association; 53: 873-880. 

43. Quesenberry, C. P. (1991a). SPC Q charts for start-up processes and short or long 

runs. Journal of Quality Technology; 23: 213–224. 

44. Quesenberry, C. P. (1991b). SPC Q charts for a binomial parameter p: short or long 

runs. Journal of Quality Technology; 23: 239–246. 

45. Quesenberry, C. P. (1991c). SPC Q charts for a Poisson parameter λ: short or long 

runs. Journal of quality technology; 23: 296–303. 

46. Reynolds MR, Jianying L. (2010). An evaluation of a GLR control chart for 

monitoring the process mean. Journal of quality technology; 42: 287-310. 

47. Samuel T, Pignatiello JJ, Calvin J. (1998a). Identifying the Time of a Step Change 

with Control Charts. Quality Engineering; 10: 521-527. 



43 

 

48. Samuel T, Pignatiello JJ, Calvin J. (1998b). Identifying the Time of a Step Change 

in a Normal Process Variance. Quality Engineering; 10: 529-538. 

49. Samuel T, Pignatiello JJ. (1998). Identifying the Time of a Change in a Poisson 

Rate Parameter. Quality Engineering; 10: 673-681. 

50. Shewhart WA. (1931). Economic control of quality of manufactured product. D. 

Van Nostrand Company, Inc.: Princeton, NJ, 1-501. 

51. Shiryaev AN. (1963). On Optimum Methods in Quickest Detection Problems. 

Theory Probab. Appl.; 8: 22-46. 

52. Sullivan, J. H., Jones, L. A. (2002). A self-starting control chart for multivariate 

individual observations. Technometrics; 44: 24–33. 

53. Tercero-Gómez, VG. (2011). Nonparametric Change-Point Estimation for 

Observations Following a Random Walk with Drift (Ph.D. Dissertation). Texas 

Tech University & Tecnológico de Monterrey dual program. 

54. Tercero-Gómez, V. G., Temblador-Pérez, M. del Carmen, Beruvides, M., & 

Hernández-Luna, A. (2013b). Nonparametric Estimator for the Time of a Step 

Change in the Trend of Random Walk Models with Drift. Quality and Reliability 

Engineering International, 29(1), 43–51. doi:10.1002/qre.1290 

55. Timmer D, Pignatiello JJ. (2003). Change Point Estimates for the Parameters of an 

AR(1) Process. Quality and Reliability Engineering International; 19: 355-369. 

56. Timmer D, Pignatiello JJ, Longnecker M. (1998). The development and evaluation 

of CUSUM-based control charts for an AR (1) process. IIE transactions; 30: 525-

534. 

57. Western B, Kleykamp M. (2004). A Bayesian change point model for historical 

time series analysis. Political Analysis; 12, 354-374. 

58. Zamba K, Hawkins D. (2006). A multivariate change-point model for statistical 

process control. Technometrics; 48: 539-549. 

59. Zhou C, Zou C, Zhang Y, Wang Z. (2009). Nonparametric control chart based on 

change-point model. Statistical Papers; 50: 13-28. 

60. Zou C, Liu Y, Qin P, Wang Z. (2007). Empirical likelihood ratio test for the 

change-point problem. Statistics & probability letters; 77: 374-382. 



44 

 

61. Zou, C., Zhang, Y. & Wang, Z. (2006). A control chart based on a change-point 

model for monitoring linear profiles. IIE Transactions, 38, 1093–1103. 

62. Zou, C., Zhou, C., Wang, Z., Tsung, F. (2007). A self-starting control chart for 

linear profiles. Journal of Quality Technology; 39: 364–375. 



45 

 

3.8.  Appendix. 

Table 2. Performance of change-point estimators when 10    and 10   . 

Change-point estimations using 1ˆMLE  and CUSUM̂  are evaluated over different series length (T), 

sample sizes (n), shifts of the mean (δ) measured in standard deviations and change-point locations 

( T ).  Estimations are presented next to their corresponding standard error, which are within 

parentheses. 

Part a) T =0.5. 

  
1

ˆ
MLE  CUSUM̂  

Τ n δ = 1 δ = 1.5 δ = 3 δ = 1 δ = 1.5 δ = 3 

 

50 

1 -0.04 (5.69) 0.03 (2.84) 0.00 (0.53) -0.04 (3.61) 0.03 (1.93) -0.01 (0.46) 

3 -0.02 (2.02) 0.00 (0.77) 0.00 (0.11) -0.03 (1.49) 0.00 (0.66) 0.00 (0.10) 

5 -0.02 (1.05) 0.00 (0.43) 0.00 (0.03) -0.02 (0.85) 0.00 (0.36) 0.00 (0.03) 

100 

1 0.01 (6.44) -0.03 (2.64) 0.00 (0.53) 0.02 (4.12) -0.01 (2.06) 0.00 (0.50) 

3 0.01 (1.82) 0.02 (0.75) 0.00 (0.10) 0.00 (1.51) 0.01 (0.69) 0.00 (0.10) 

5 0.00 (1.02) -0.01 (0.42) 0.00 (0.03) 0.01 (0.94) -0.01 (0.38) 0.00 (0.03) 

300 

1 0.03 (5.56) -0.01 (2.30) 0.00 (0.49) 0.03 (4.57) -0.01 (2.17) 0.00 (0.48) 

3 0.00 (1.73) 0.00 (0.71) 0.00 (0.09) 0.00 (1.62) 0.01 (0.69) 0.00 (0.09) 

5 -0.01 (0.98) 0.00 (0.38) 0.00 (0.03) 0.00 (0.94) 0.00 (0.37) 0.00 (0.03) 

1000 

1 0.09 (5.20) 0.01 (2.28) -0.01 (0.50) 0.07 (4.93) 0.00 (2.23) 0.00 (0.50) 

3 -0.01 (1.63) 0.00 (0.70) 0.00 (0.10) -0.01 (1.61) 0.01 (0.69) 0.00 (0.10) 

5 0.00 (1.00) 0.00 (0.38) 0.00 (0.03) 0.00 (0.98) 0.00 (0.38) 0.00 (0.03) 

 

Part b) δ  = 1.5 

  
1

ˆ
MLE

 

CUSUM̂
 

Τ n   = 0.2   = 0.3   = 0.5   = 0.2   = 0.3   = 0.5 

50 

1 0.73 (3.82) 0.26 (3.04) 0.02 (2.73) 3.26 (4.86) 1.47 (2.99) 0.03 (1.85) 

3 0.38 (1.07) 0.01 (0.81) 0.00 (0.79) 1.81 (2.24) 0.53 (1.21) 0.00 (0.66) 

5 0.02 (0.44) 0.00 (0.42) -0.01 (0.39) 0.82 (1.59) 0.31 (0.80) -0.01 (0.35) 

100 

1 0.24 (3.22) 0.12 (2.70) -0.01 (2.51) 3.96 (6.34) 1.72 (3.55) -0.02 (2.01) 

3 0.33 (0.93) 0.02 (0.74) -0.01 (0.74) 1.96 (2.64) 0.57 (1.34) -0.01 (0.67) 

5 0.00 (0.42) 0.00 (0.38) 0.00 (0.39) 0.83 (1.69) 0.30 (0.79) 0.01 (0.38) 

300 

1 0.05 (2.40) 0.01 (2.37) -0.03 (2.35) 4.47 (7.81) 1.86 (4.09) -0.02 (2.14) 

3 0.31 (0.86) 0.00 (0.72) -0.01 (0.71) 2.14 (3.09) 0.60 (1.43) -0.01 (0.70) 

5 0.01 (0.39) 0.00 (0.38) 0.00 (0.40) 0.87 (1.84) 0.32 (0.83) 0.00 (0.39) 

1000 

1 0.03 (2.27) -0.01 (2.33) 0.01 (2.25) 5.06 (9.33) 1.92 (4.26) 0.01 (2.17) 

3 0.30 (0.90) -0.01 (0.70) -0.01 (0.68) 2.24 (3.33) 0.60 (1.42) -0.01 (0.68) 

5 0.00 (0.39) 0.00 (0.38) 0.00 (0.41) 0.90 (1.88) 0.32 (0.86) 0.00 (0.40) 
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Table 3. Performance of change-point estimators when 10    and 10  
 

 

Change-point estimations using 2
ˆ

MLE  and G̂  are evaluated over different series length (T), sample 

sizes (n), shifts in the ratio of deviations (
01

 ) and change-point locations ( T ).  Estimations 

are presented next to their corresponding standard error, which are within parentheses. 

 

Part a) T =0.5. 

  
2

ˆ
MLE  G̂  

Τ N 3.1
01
  5.1

01
  3

01
  3.1

01
  5.1

01
  3

01
  

50 

1 -1.15 (12.20) -1.10 (10.15) -0.76 (3.00) -0.88 (14.36) -0.88 (11.88) -0.78 (2.92) 

3 -0.60 (9.24) -0.63 (5.99) -0.16 (0.81) -0.65 (10.69) -0.65 (6.54) -0.16 (0.80) 

5 -0.74 (7.18) -0.45 (3.93) -0.06 (0.43) -0.63 (8.07) -0.44 (4.08) -0.06 (0.43) 

100 

1 -1.67 (24.25) -1.48 (17.40) -0.80 (2.73) -1.27 (26.82) -1.18 (18.45) -0.81 (2.71) 

3 -0.87 (14.51) -0.91 (6.86) -0.14 (0.75) -1.05 (15.47) -0.93 (6.96) -0.15 (0.76) 

5 -0.68 (9.52) -0.51 (3.87) -0.05 (0.41) -0.71 (9.82) -0.50 (3.86) -0.05 (0.41) 

300 

1 -2.43 (48.80) -3.21 (21.57) -0.79 (2.39) 2.52 (50.44) .3.20 (21.24) -0.80 (2.40) 

3 -1.81 (16.24) -0.85 (5.84) -0.15 (0.72) -1.81 (16.04) -0.86 (5.84) -0.15 (0.72) 

5 -0.95 (8.79) -0.49 (3.46) -0.05 (0.42) -0.94 (8.84) -0.49 (3.45) -0.05 (0.42) 

1000 

1 -4.90 (47.74) -3.26 (17.08) -0.78 (2.35) -4.96 (47.25) -3.26 (17.23) -0.78 (2.35) 

3 -1.58 (13.71) -0.92 (5.39) -0.16 (0.74) -1.57 (13.73) -0.92 (5.39) -0.16 (0.74) 

5 -0.88 (7.81) -0.47 (3.14) -0.06 (0.42) -0.88 (7.80) -0.47 (3.13) -0.06 (0.42) 

 

Part b) 5.1
01
  

  
2

ˆ
MLE

 

G̂
 

Τ n   = 0.2   = 0.3   = 0.5   = 0.2   = 0.3   = 0.5 

50 

1 -9.74 (12.66) -6.15 (11.11) -1.01 (10.16) -10.24 (14.51) -6.36 (12.87) -0.73 (11.82) 

3 -4.15 (8.54) -2.10 (6.78) -0.59 (5.92) -4.54 (9.88) -2.23 (7.61) -0.60 (6.51) 

5 -1.83 (5.76) -0.97 (4.37) -0.37 (3.84) -1.87 (6.40) -1.06 (4.78) -0.40 (4.00) 

100 

1 -11.88 (23.32) -7.08 (19.50) -1.40 (17.43) -12.78 (25.36) -7.44 (21.20) -1.34 (18.59) 

3 -3.08 (10.48) -1.57 (7.97) -0.88 (6.71) -3.27 (11.16) -1.64 (8.14) -0.92 (6.81) 

5 -1.06 (5.35) -0.67 (4.11) -0.43 (3.79) -1.11 (5.54) -0.67 (4.09) -0.43 (3.79) 

300 

1 -8.77 (34.84) -4.90 (24.65) -2.66 (21.09) -9.19 (35.57) -5.27 (25.45) -2.68 (21.04) 

3 -1.57 (6.89) -1.05 (6.04) -0.95 (5.89) -1.63 (6.90) -1.05 (6.00) -0.94 (5.90) 

5 -0.53 (3.40) -0.54 (3.56) -0.48 (3.24) -0.54 (3.43) -0.55 (3.57) -0.48 (3.24) 

1000 

1 -3.83 (20.22) -3.38 (18.02) -2.92 (17.12) -4.04 (20.35) -3.48 (17.96) -2.94 (16.96) 

3 -1.40 (5.57) -0.94 (5.40) -0.91 (5.30) -1.41 (5.61) -0.96 (5.44) -0.91 (5.30) 

5 -1.40 (5.57) -0.94 (5.40) -0.91 (5.30) -0.47 (3.24) -0.46 (3.25) -0.48 (3.24) 
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Table 4. Performance of change-point estimators when 10    and 10  
 

 

Given a T = 100 and T  = 0.5, change-point estimations using 3
ˆ

MLE  are evaluated in part (a), 

CUSUM̂  in part (b), and G̂  in part (c) over different ratios (
01

 ), sample sizes (n), and shifts in 

the mean (δ).  Mean values are next to their corresponding standard error within parentheses. 

 

Part (a). Performance of the MLE 3
ˆ

MLE   

01
  n δ = 0.0 δ = 1 δ = 1.5 δ = 3 

1.0 

1 

N/A 

-0.04 (8.11) -0.03 (2.62) 0.00 (0.53) 

3 0.01 (1.83) 0.01 (0.75) 0.00 (0.10) 

5 0.03 (1.06) 0.00 (0.40) 0.00 (0.02) 

1.5 

1 -1.82 (20.27) -0.99 (8.02) -0.62 (3.74) -0.09 (0.82) 

3 -0.89 (7.49) -0.28 (1.97) -0.12 (0.97) -0.01 (0.19) 

5 -0.41 (4.07) -0.14 (1.10) -0.05 (0.55) 0.00 (0.08) 

3.0 

1 -0.77 (2.73) -0.73 (2.41) -0.65 (2.22) -0.38 (1.24) 

3 -0.15 (0.78) -0.13 (0.69) -0.11 (0.60) -0.05 (0.34) 

5 -0.05 (0.41) -0.04(0.37) -0.04 (0.32) -0.01 (0.15) 

 

Part (b). Performance of the CUSUM estimator CUSUM̂ . 

01
  n δ = 0.0 δ = 1 δ = 1.5 δ = 3 

1.0 

1 
N/A 

 

-0.03 (4.28) -0.01 (1.95) 0.00 (0.49) 

3 0.02 (1.48) 0.01 (0.70) 0.00 (0.09) 

5 0.02 (0.96) 0.00 (0.37) 0.00 (0.02) 

1.5 

1 -10.54 (19.48) -1.91 (6.06) -0.91 (3.17) -0.21 (0.82) 

3 -10.21 (19.52) -0.73 (2.53) -0.31 (1.17) -0.04 (0.25) 

5 -10.22 (19.75) -0.43 (1.53) -0.18 (0.70) -0.01 (0.12) 

3.0 

1 -18.39 (13.97) -8.20 (10.85) -4.58 (7.34) -1.42 (2.67) 

3 -18.32 (13.77) -3.78 (6.28) -1.90 (3.43) -0.46 (1.06) 

5 -18.13 (13.77) -2.43 (4.26) -1.18 (2.29) -0.24 (0.64) 

 

Part (c). Performance of the Hawkins’ estimator G̂ . 

01
  n δ = 0.0 δ = 1 δ = 1.5 δ = 3 

1.0 

1 

N/A 

0.60 (33.92) 0.35 (30.84) 0.16 (22.29) 

3 0.21 (31.38) 0.36 (27.36) -0.26 (20.81) 

5 0.28 (30.28) 0.16 (26.17) -0.05 (20.37) 

1.5 

1 -1.26 (18.64) 4.04 (18.06) 8.80 (16.44) 14.45 (10.6) 

3 -0.85 (6.85) 3.60 (7.17) 8.00 (7.64) 14.62 (4.82) 

5 -0.43 (3.91) 2.84 (4.91) 6.88 (5.98) 14.50 (4.00) 

3.0 

1 -0.77 (2.68) -0.56 (2.52) -0.20 (2.53) 1.36 (3.28) 

3 -0.15 (0.77) -0.07 (0.73) 0.01 (0.72) 0.66 (1.45) 

5 -0.05 (0.42) -0.02 (0.39) 0.02 (0.41) 0.40 (0.93) 
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Table 5. Performance of change-point estimators when 10    and 10  
 

 

Given a fixed 5.1
01
 , and a shift in mean of  δ = 1.5, performance of 3

ˆ
MLE  is evaluated in 

part (a) and CUSUM̂  in part (b), and G̂  in part (c) over different series length (T), sample sizes (n), 

and change-point locations ( T ).  Estimations are presented next to their corresponding standard 

error, which are within parentheses. 

 

Part (a). Performance of the MLE 3
ˆ

MLE . 

Τ n   = 0.2   = 0.3   = 0.5 

50 

1 -2.38 (7.06) -1.23 (5.22) -0.57 (4.16) 

3 -0.47 (1.57) -0.18 (1.24) -0.14 (1.10) 

5 -0.07 (0.63) -0.06 (0.61) -0.05 (0.58) 

100 

1 -1.19 (6.53) -0.79 (4.23) -0.60 (3.60) 

3 -0.38 (1.19) -0.15 (1.09) -0.12 (1.00) 

5 -0.06 (0.56) -0.06 (0.58) -0.04 (0.53) 

1000 

1 -0.65 (3.02) -0.65 (3.01) -0.58 (3.00) 

3 -0.35 (1.07) -0.13 (0.94) -0.12 (0.93) 

5 -0.05 (0.52) -0.04 (0.53) -0.05 (0.52) 

 

Part (b). Performance of the CUSUM estimator CUSUM̂ . 

Τ n   = 0.2   = 0.3   = 0.5 

50 

1 -5.61 (6.97) -3.03 (4.64) -0.79 (2.69) 

3 -2.99 (3.81) -1.24 (2.22) -0.29 (1.08) 

5 -1.69 (2.77) -0.76 (1.50) -0.16 (0.66) 

100 

1 -7.17 (9.92) -3.73 (5.98) -0.89 (3.11) 

3 -3.54 (4.81) -1.43 (2.62) -0.31 (1.19) 

5 -1.97 (3.42) -0.86 (1.73) -0.18 (0.72) 

1000 

1 -11.27 (19.42) -4.79 (8.68) -1.15 (3.81) 

3 -4.30 (7.01) -1.60 (3.17) -0.35 (1.24) 

5 -2.25 (4.27) -0.89 (1.86) -0.19 (0.73) 

 

Part (c). Performance of the Hawkins’ estimator G̂ . 

Τ n   = 0.2   = 0.3   = 0.5 

50 

1 -9.04 (15.02) -3.95 (13.26) 3.09 (11.11) 

3 -2.25 (10.00) 1.04 (6.84) 4.49 (5.56) 

5 0.01 (6.01) 1.62 (3.82) 4.09 (4.06) 

100 

1 -9.88 (27.16) -0.78 (20.87) 8.78 (16.67) 

3 0.52 (10.15) 3.36 (6.70) 7.82 (7.62) 

5 1.37 (4.27) 2.75 (4.14) 6.97 (5.86) 

1000 

1 9.82 (19.07) 19.08 (26.60) 61.68 (46.20) 

3 4.16 (7.97) 10.69 (14.85) 55.11 (32.71) 

5 2.90 (5.42) 7.87 (11.05) 53.52 (27.53) 
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Table 6. Performance of change-point estimators for on-line analysis for changes in mean and 

changes in variance, respectively. 

 

Given a fixed change-point located at  = 100.  Performance of 1ˆMLE  and 2ˆMLE  used sequentially 

with Q-charts for mean and variance were evaluated. Estimations are presented next to their 

corresponding standard error, which are within parentheses, over different sample sizes (n), shifts of 

the mean (δ)  and different ratios of deviations (
01

 ). ARL of Q-charts is indicated with bold 

numbers. 

  Change in mean Change in variance 

n w δ = 1 δ = 1.5 δ = 3 01  = 1.3 01  = 1.5 01  = 3 

1 

ARL 
91.11 

(108.36) 
40.75 (77.97) 2.42 (3.34) 

132.52 

(112.07) 

97.15 

(101.73) 
9.42 (14.28) 

0 
-3.32 (15.53) -6.36 (18.88) 

-18.69 

(28.11) 22.99 (71.27) 4.65 (30.10) -2.27 (9.73) 

5 -0.51 (9.20) -0.19 (4.32) -0.02 (0.60) 20.57 (67.52) 5.16 (29.55) 0.50 (4.07) 

10 -0.20 (7.91) -0.03 (3.03) -0.02 (0.52) 17.98 (66.44) 4.90 (28.35) 0.64 (3.24) 

15 -0.01 (6.68) 0.04 (2.54) -0.01 (0.52) 16.94 (63.98) 4.61 (27.24) 0.69 (2.66) 

20 -0.02 (6.55) -0.01 (2.57) 0.00 (0.51) 15.63 (64.09) 4.26 (25.93) 0.75 (2.68) 

3 

ARL 10.75 (10.82) 3.10 (2.66) 1.02 (0.13) 81.19 (91.47) 37.33 (57.82) 2.17 (1.69) 

0 
-6.55 (18.61) 

-15.72 

(26.70) 

-21.03 

(27.91) -0.28 (22.89) -3.06 (15.48) 

-6.58 

(14.01) 

5 -0.16 (3.10) -0.04 (0.86) 0.00 (0.11) 1.44 (21.37) 0.10 (10.38) 0.11 (1.05) 

10 -0.06 (2.13) -0.02 (0.74) 0.00 (0.09) 1.87 (21.01) 0.62 (7.83) 0.13 (0.78) 

15 -0.04 (2.02) -0.01 (0.77) 0.00 (0.11) 1.75 (19.57) 0.72 (7.56) 0.12 (0.74) 

20 -0.03 (1.92) 0.00 (0.75) 0.00 (0.09) 1.59 (19.05) 0.87 (7.17) 0.15 (0.75) 

5 

ARL 4.75 (4.33) 1.60 (0.99) 1.00 (0.00) 59.33 (77.74) 17.91 (32.34) 1.37 (0.72) 

0 
-11.76 

(23.90) 

-23.23 

(30.36) 

-13.33 

(21.39) -1.92 (16.69) -4.77 (16.34) 

-7.68 

(14.31) 

5 -0.07 (1.39) -0.02 (0.45) 0.00 (0.03) 0.23 (13.34) -0.05 (6.68) 0.04 (0.43) 

10 -0.05 (1.10) -0.02 (0.39) 0.00 (0.01) 0.37 (12.35) 0.25 (4.31) 0.04 (0.40) 

15 -0.03 (1.03) -0.01 (0.39) 0.00 (0.01) 0.62 (11.28) 0.31 (4.25) 0.05 (0.39) 

20 0.00 (1.04) 0.00 (0.41) 0.00 (0.02) 0.90 (10.87) 0.41 (3.73) 0.05 (0.40) 

 

 

 

 

 

 

 

 

 



50 

 

Table 7. Performance of change-point estimators when 10    and 10  
 
, for on-line 

monitoring. 

 

Given a fixed change-point located at  = 100.  Performance of  3
ˆ

MLE is evaluated when used with 

Q-charts. Estimations are presented next to their corresponding standard error within parentheses, 

over different sample sizes (n), shifts of the mean (δ)  and different ratios of deviations (
01

 ). 

ARL of Q-charts is indicated with bold numbers. 

 

Part (a)  = 100 and n = 1. 

01   w δ = 0 δ = 1 δ = 1.5 δ = 3 

1 

ARL 

N/A 

95.86 (107.75) 56.09 (92.57) 3.28 (15.12) 

0 -3.68 (16.62) -5.58 (17.93) -14.50 (25.33) 

5 -1.17 (11.62) -0.51 (6.18) -0.03 (0.98) 

10 -0.62 (9.34) -0.10 (3.61) -0.01 (0.60) 

15 -0.41 (8.42) -0.08 (2.96) 0.00 (0.54) 

20 -0.04 (7.80) -0.03 (2.76) 0.00 (0.53) 

1.5 

ARL 31.99 (46.52) 17.96 (33.18) 9.95 (20.66) 2.24 (3.40) 

0 -6.72 (34.51) -8.66 (23.71) -9.25 (22.32) -12.71 (23.24) 

5 -1.71 (31.96) -1.20 (14.82) -0.70 (9.31) 0.04 (1.53) 

10 -0.74 (31.05) -0.23 (11.96) 0.14 (6.06) 0.09 (0.94) 

15 -0.76 (29.34) 0.44 (9.45) 0.44 (4.15) 0.10 (0.88) 

20 -0.01 (27.68) 0.70 (8.40) 0.48 (3.94) 0.09 (0.83) 

3 

ARL 3.22 (2.83) 2.96 (2.51) 2.73 (2.28) 1.95 (1.40) 

0 -11.77 (23.27) -11.50 (22.58) -11.75 (23.01) -10.69 (20.78) 

5 -0.15 (7.73) -0.16 (7.21) 0.03 (6.07) 0.28 (2.08) 

10 0.51 (3.99) 0.47 (3.61) 0.50 (2.92) 0.35 (1.20) 

15 0.69 (3.10) 0.60 (2.67) 0.65 (2.13) 0.39 (1.30) 

20 0.71 (2.72) 0.73 (2.21) 0.62 (1.95) 0.39 (1.17) 
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Part (b)  = 100 and n = 3. 

01   
w δ = 0 δ = 1 δ = 1.5 δ = 3 

1 

ARL 

N/A 

10.36 (10.37) 3.04 (2.60) 1.02 (0.13) 

0 -7.74 (20.65) -15.42 (26.67) -12.44 (20.87) 

5 -0.29 (4.03) -0.07 (1.37) 0.00 (0.12) 

10 -0.09 (2.39) -0.02 (0.79) 0.00 (0.11) 

15 -0.07 (2.04) -0.02 (0.76) 0.00 (0.09) 

20 -0.03 (1.93) -0.01 (0.74) 0.00 (0.11) 

1.5 

ARL 15.94 (25.42) 4.55 (4.48) 2.45 (1.99) 1.08 (0.29) 

0 -9.39 (24.55) -11.84 (23.97) -14.18 (24.91) -11.47 (20.21) 

5 -1.70 (14.50) -0.19 (4.78) 0.00 (1.66) 0.00 (0.23) 

10 -0.78 (12.29) 0.13 (2.72) 0.07 (1.08) 0.01 (0.20) 

15 0.17 (9.27) 0.19 (2.08) 0.10 (0.99) 0.01 (0.20) 

20 0.27 (8.65) 0.25 (1.87) 0.11 (0.96) 0.01 (0.21) 

3 

ARL 1.58 (0.99) 1.49 (0.87) 1.39 (0.76) 1.14 (0.41) 

0 -11.69 (21.34) -10.60 (19.46) -10.34 (19.21) -7.92 (14.94) 

5 0.09 (0.96) 0.09 (0.69) 0.07 (0.62) 0.04 (0.35) 

10 0.14 (0.77) 0.12 (0.66) 0.10 (0.58) 0.05 (0.34) 

15 0.14 (0.75) 0.12 (0.64) 0.11 (0.59) 0.04 (0.32) 

20 0.15 (0.73) 0.13 (0.66) 0.12 (0.60) 0.05 (0.33) 

 

Part (c)  = 100 and n = 5. 

01   
w δ = 0 δ = 1 δ = 1.5 δ = 3 

1 

ARL 

N/A 

4.66 (4.22) 1.59 (0.97) 1.00 (0.01) 

0 -13.00 (25.03) -21.89 (29.70) -6.45 (10.10) 

5 -0.11 (1.88) -0.03 (0.48) 0.00 (0.02) 

10 -0.02 (1.31) -0.01 (0.43) 0.00 (0.02) 

15 0.01 (1.19) -0.01 (0.40) 0.00 (0.03) 

20 0.02 (1.17) -0.01 (0.42) 0.00 (0.01) 

1.5 

ARL 10.13 (14.79) 2.83 (2.40) 1.61 (1.01) 1.01 (0.08) 

0 -9.30 (22.49) -13.19 (22.96) -15.22 (24.71) -6.92 (12.01) 

5 -0.73 (9.04) 0.05 (0.81) 0.01 (0.55) 0.00 (0.08) 

10 -0.10 (6.04) 0.09 (0.76) 0.04 (0.55) 0.00 (0.06) 

15 0.16 (4.83) 0.10 (0.74) 0.04 (0.55) 0.00 (0.07) 

20 0.30 (4.53) 0.10 (0.72) 0.03 (0.52) 0.00 (0.07) 

3 

ARL 1.23 (0.53) 1.18 (0.47) 1.13 (0.38) 1.03 (0.18) 

0 -10.45 (19.07) -21.89 (29.70) -8.72 (16.27) -6.14 (10.83) 

5 0.04 (0.42) -0.03 (0.48) 0.03 (0.33) 0.01 (0.15) 

10 0.04 (0.40) -0.01 (0.43) 0.03 (0.31) 0.01 (0.15) 

15 0.06 (0.42) -0.01 (0.40) 0.04 (0.31) 0.01 (0.15) 

20 0.05 (0.38) -0.01 (0.42) 0.03 (0.31) 0.01 (0.14) 
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CHAPTER 4.  RESEARCH 2. 

 

 

Estimation of multiple change-points in time series normally distributed using a 

construction Heuristic and a Genetic Algorithm. 

 

This is the second research about change-point analysis for independent observations 

normally distributed. It considers case when multiple step changes have occurred assuming 

that distribution’s parameters as well as change-point positions are unknown. Maximum 

Likelihood estimators for change-points as well as for parameters were developed 

considering three cases based on single step change problem: (1) multiple changes only in 

the mean, (2) multiple changes only in variance and (3) multiple changes in both 

parameters at same time. Due to solve this problem leads to an optimization problem 

Construction Heuristic as well as a Genetic Algorithm (Evolutionary) were developed 

based on change-points MLEs. Comparison between these estimators was done in order to 

show their performance. 

 

This paper will be submitted to Communication in Statistics – Simulation and 

Computation. 
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Estimation of multiple change-points in time series Normally Distributed using a construction 

Heuristic and a Genetic Algorithm. 

 

Víctor G. Tercero-Gómez, Ph.D. Alvaro E. Cordero-Franco, Ph.D., Jorge A. Garza-

Venegas, B.S., José F. Camacho-Vallejo, Ph.D. 

 

Estimation of multiple change-points in a sequence of normal observations is 

a problem found in SPC. Frequently monitoring systems in statistical process 

control Phase I deals with situations where multiple change-points occur. 

Estimating these multiple change-points can be useful in the detection of 

assignable causes of variation in the process. In this research, maximum 

likelihood estimators of multiple change-points in a series of independent 

normal observations are derived for three cases: first one when multiple 

changes occurs only in the mean, second one when multiple changes occurs 

only in variance, and last one when multiple changes occur in both mean and 

variance. A combinatorial problem must be solved in order to find these 

multiple change-point estimators. For this reason a constructive heuristic and 

an evolutionary algorithm were developed to find these estimators. 

Performance analysis of maximum likelihood estimators and the heuristics 

mentioned previously is presented. Heuristics presented in this research 

present a similar behavior than the MLE.  

 

Keywords: Change point analysis, maximum likelihood estimator, heuristic 

algorithm.  
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4.1. Introduction. 

When monitoring a system, managers need tools to determine whether the process is under 

statistical control or not. In statistical process control (SPC), well known tools used are 

control charts, which are capable to detect if the process is under statistical control, but they 

are not capable of detecting the initial moment at which a sustained change occurred.  

Knowing this moment simplifies the search of assignable causes of variation.  Change-

point analysis is the methodology used to estimate the initial moment when processes get 

out of control. Estimators can be used with control charts in a sequential way for system 

management.  

 

Change-point analysis started from a parametric approach with Hinkley (1970) who 

constructed maximum likelihood estimators (MLE) and likelihood ratio tests (LRT) for a 

change in the mean of a normal process with initial known parameters. Following this 

guideline, several authors like Samuel, Pignatiello and Calvin (1998) and Khoo (2004) have 

analyzed the behavior of MLE in normal time series for different scenarios. These 

estimators were developed assuming prior knowledge of parameters, i.e. in the Phase II of 

SPC. For case when there is no information of initial parameters in a normally distributed 

process, Phase I of SPC, Tercero et al. (2013a) developed the MLE for a change in mean 

and integrated this estimation with a self-starting cumulative sum control chart (CUSUM).  

 

In Phase I of SPC is probably that multiple changes occur. Perry, Pignatiello, and Simpson 

(2007) mentioned that a process might have multiple step changes as a consequence of 

influential process input variables at different times. Amiri and Allahyari (2011) categorize 

the different changes types as step change, multiple step changes, drift change and 

monotonic change. Sullivan (2002) developed a multiple change-point estimator for the 

mean of a series using a clustering algorithm. Jann (2000) analyzed a time series with 

multiple changes in mean in a normal process and proposed an estimator of these multiple 

change points based on the t-test for shifts in mean. He also developed a genetic algorithm 

in order to deal with the non-polynomial time needed to obtain these estimators and used a 

cost function to estimate the number of changes in the series. 
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In this research multiple change-points MLEs of a normally distributed time series, where 

distribution parameters before and after each change are unknown, are derived. Also two 

heuristics are presented in order to find these estimators. This paper is organized as follows: 

Section 4.2 includes a literature review for change-point analysis. Section 4.3 presents the 

model and change-point and parameters MLE´s derivation. In Section 4.4 two heuristics to 

solve the optimization problem for finding the multiple change-points MLEs are described. 

In Section 4.5 numerical experimentation is done in order to analyze the performance of the 

MLE and the two heuristics developed. Finally, in Section 4.6 conclusion and future work 

are presented. 

 

4.2. Literature Review 

The problem of detection of a change in a random process was analyzed first, from the 

Bayesian approach, by Girshick and Rubin (1952), who defined a quality control rule to 

trigger corrective actions when a change is detected. In the classical perspective, Page 

(1955) developed the cumulative sum control chart, CUSUM, to detect sustained changes 

based on SPC theory. 

 

From parametric approach, Hinkley (1970) sets the theoretical foundations for constructing 

MLEs and LR tests to make inferences and estimate the change-point in a normally 

distributed time series with a shift in the mean in Phase II of SPC. Using these results, 

Samuel, Pignatiello, and Calvin (1998a); Samuel and Pignatiello (1998); Dabye and 

Kutoyants (2001); Pignatiello and Samuel (2001); Nedumaran, Pignatiello and Calvin 

(2002); Timmer and Pignatiello (2003); and Liming (2008) developed change-point MLEs 

for other distributions and different scenarios. Fotopoulos, Jandhyala and Khapalova (2010) 

derive an exact computable expression for the asymptotic distribution of the change-point 

MLE for normally distributed series. Most of these authors mainly work with the 

integration of change-point estimators with control charts. 
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Several tests to make inference about changes have been developed. Timmer, Pignatiello 

and Longnecker (1998) developed CUSUM chart based on LR test to detect changes in a 

AR(1) process. Hawkins and Zamba (2005a), proposed a model to deal with change in 

variance of a normal process the Generalized Likelihood Ratio (GLR) based on Bartlett’s 

test in SPC Phase I. Later, Zamba and Hawkins (2006) developed and LR test for 

multivariate normal process; and Batsidis (2010) developed a LR test for multiple changes 

in mean in elliptical countoured distributions. Using GLR methodology and adding a 

moving window to simplify the approach, Reynolds and Jianying (2010) developed a GLR 

control chart for small shifts in the process mean. Later, Tercero et al. (2013b) constructed 

an estimator based on the p-value function of the Mood’s median test for changes in the 

trend of Random Walk Models with Drift. For a detailed study of contributions of 

parametric approach, see Amiri and Allahyari (2011). 

 

The estimation of multiple change-points in time series has been studied because of its 

applications which include meteorology, analysis on DNA sequences, signal processing, 

econometrics, and statistical process control. In climate data analysis change-point problem 

addresses a lack of stationary in a time series. Examples of researches in this area includes: 

Potter (1981), who used a likelihood ratio test for bivariate normal distribution developed 

by Maronna and Yohai (1978) and proposed the maximum of the likelihood ratio tests for 

all feasible cuts in a series as a statistic test for a single change; Easterling and Peterson 

(1995) proposed using a combination of regression analysis and nonparametric statistics for 

detecting inhomogeneities in a climatological time series; Lanzante (1996), developed a 

non-parametric iterative test based on the Wilcoxon-Mann-Whitney test for a single and 

multiple changes; and Alexandersson and Moberg (1997) created a normal standard 

homogeneity test for testing changes in trends and variances using a likelihood ratio test. 

On DNA sequence’s analysis, Arunajadai (2009) presents a methodology to model the 

RNA unwinding mechanism by using Tukey’s biweight function to detect changes in the 

mean. Fu and Curnow (1990) derived the MLE distribution of the location of two changed 

segments in a sequence of Bernoulli independent variables and applied their results to the 

prediction of protein helical regions.  
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Tests for multiple change points have been developed by several authors, like Huskova and 

Slaby (2001) , who get approximations to the critical values for  tests in location models; 

Aly, Abd-Raboun and Al-Kandari (2003) developed a test when the changes are in the 

same direction and present the asymptotic null distribution (of no changes) of that test. Jann 

(2000), developed a genetic algorithm to find the number and the estimation of multiple 

change-points in a normal series for shifts in the mean using a statistic based on t-test. 

Because of the complexity of analyze all possible combinations of changes the author 

proposed a genetic algorithm to find the multiple change-point estimators. He also used a 

cost function based on the mean of the cumulative associated Student’s probability density 

function adding two parameters, one to reflects the wish of identifying potential change-

points, i.e., it helps in determine the number of change-points; and a second one for 

separate the bit sequences which contains interesting positions of the change-points from 

those who look not have interesting change-point positions, in other words, helps to keep 

solutions that have potential change-points locations 

 

This research derives multiple change-points MLEs in a process with observations 

normally distributed with changes in mean and/or variance in Phase I of SPC. Because of 

the complexity of analyze all possible combinations of multiple change-points in this 

research two heuristics procedures are developed and compared its performance with MLEs 

one using Monte Carlo simulation. 

 

In the following Section MLE´s derivation for multiple change-points when parameters, 

before and after changes, are unknown of normally distributed time series of independent 

observations is presented.  

4.3. Model. 

Suppose a normally distributed time series with m  sustained changes in one or both of its 

parameters. Let T  be the size of the time series of independent normal samples. 

Mathematically is expressed as follows: 
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where
iX  is a vector of sampled observations size n  and k , mk ,...,1 , are the m  

unknown change-points. Also, suppose that parameters k  
and 2

k , 1,,...,1  mmk are 

unknown and then they have to be estimated. 

 

In Subsections 4.3.1, 4.3.2 and 4.3.3 MLE’s for unknown parameters in (1) and multiple 

change-points are derived using Hinkley’s (1970) methodology for the following cases: 

 

Case 1: In the time series m  sustained changes occur only in the mean, while variance 

remains constant over the process, i.e.: 

 .,...,2,1;...; 22

1

2

2

2

11 mkpmkk     (2) 

Case 2: m  sustained changes occur only in variance, while mean of the process remains 

constant, i.e.: 

 .,...,2,1;; 2

1

2

1 mkkkkk     (3) 

 

Case 3: In the time series m  sustained changes occurred in both parameters, mean and 

variance. This case is the most general case because no assumption about the parameters is 

given; i.e.: 

 .,...,2,1;; 2

1

2

1 mkkkkk     (4) 

4.3.1. Maximum Likelihood Estimators for shifts in the mean. Case 1. 

Consider a process following (1) where m  changes occur, each one at time k  for 

mk ,...,1  and variance remains constant over the process. Following Hinkley´s (1970) 
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guideline maximum likelihood estimators for parameters and change-points are derived. 

The likelihood function for this scenario is: 
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And so, the log likelihood function is: 
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MLEs for r , k  and 
p , mr ,...,1 , 1,,...,1  mmk , are given by those values that 

maximizes (5) or (6). Mean and variance estimators for each subsection are presented in (7) 

and (8), respectively, using first order condition for optimality of (6). 
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(8) 

where Tand m  10 0  . 

 

Substituting (7) and (8) in (6), find mrr ,...,1 , 

 

values which maximize (6), i.e., the 

multiple change-points MLEs are: 

   121

2

},...,,{ ˆ,...,ˆ,ˆˆlogminargˆ
21  mpm

 


 (9) 

or 

  121

2

},...,,{
ˆ,...,ˆ,ˆˆminargˆ

21  mpm
 


 (10) 
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4.3.2. Estimators for multiple changes in variance. Case 2. 

This case considers a series following (1) in which m  changes occur in variance, but the 

mean over the process is the same. MLE for the common mean ̂ , and the variances 
2

ˆ
k  

of each sub-section as well as for the multiple change-points r , 

mr ,...,2,1 , 1,...,2,1  mk  are derived. The likelihood function (11) for this scenario is 

the following: 
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Log-likelihood function is presented in (12): 
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where Tand m  10 0  . 

 

Applying first order condition of optimality, estimators of variances were found:   
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(13) 

where Tand m  10 0  . 

 

The estimator of the process mean ̂  is obtained by solving the following equation for  : 
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(14) 

 

It can be proved that solving (14) leads to find the roots of a polynomial of odd grade 

2m+1, thus, it has at least one real root. If there are more than one real root, using those 

values and (13) in (12) to obtain the change-point MLEs: 

        

 ˆˆ...ˆˆˆˆlogminargˆ
121},...,,{

121

21

m

m

T

m









 (15) 
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This, (15), can also be written as: 

               ˆlog...ˆlogˆlogminargˆ 2

1

2

212

2

11},...,,{ 21  mmT
m


 (16) 

or:  

       


ˆˆ...ˆˆˆˆminargˆ

121},...,,{
121

21

m

m

T

m









 (17) 

4.3.3. Estimators for Shifts in mean and variance. Case 3. 

In this Subsection, m  changes have occurred in both parameters at same time. MLEs for 

mean and variance in each subsection, as well as for multiple change-points are derived. 

Equation (18) presents the likelihood function for this scenario: 
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And so, the log likelihood function is (19): 
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Applying first order conditions to find maximums, MLEs for mean and variance 

subsections were found:  
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(21) 

 

Substituting (20) and (21) in equation (19), change-point MLEs were found: 
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This can also be written as: 
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In all scenarios described previously finding the change-points MLEs is a combinatorial 

problem with 






 

k

pkpkT
 number of possible change-points locations where p  is the 

minimum data required to be between changes. Easterling and Peterson (1995) forced that 

at least five ( 5p ) observations must occur between change-points for statistical reasons. 

Computation time of all possible solutions increases as either number of changes or size of 

the series increases in a non-polynomial (NP) way. In next Section, two heuristics are 

presented in order to assess this problem. 

4.4. Heuristics. 

Modern optimization problems tend to deal with the analysis of large sets of information. 

When exact algorithms cannot be developed, or their time for finding the optimal solution 

is unacceptable, it is sufficient to find an approximate solution. Heuristics algorithms are 

defined by Kokash (2005) as algorithms that either give nearly the exact solution or provide 

good solution not for all instances of the particular problem.  Heuristics are optimization 

techniques which exploit the knowledge of a specific problem and which solution is not 

guaranteed to be the optimal solution. These methods are widely used when dealing with 

NP optimization problems.  

In this Section two heuristcs were developed to find a near solution of the optimization 

problem of finding the MLE. The first one, described in Section 4.4.1, is a constructive 

greedy algorithm, which in each stage takes the solution with best objective function within 

a neighbourhood, until a feasible solution is found, see Laporte (1992). Second heuristic is 
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an evolutionary algorithm; which finds a solution based on the natural selection (survival of 

the fittest) in a set of feasible solutions, see Eiben and Smith (2004). 

4.4.1 Greedy constructive heuristic 

The main idea in this constructive algorithm is detect the “most likely” single change–point 

in each step. After detecting this change-point, greedy algorithm looks for the next single 

change-point looking for the “most likely” change-point in the two subsections, the first 

one between the initial point and the first change-point estimated and the second subsection 

between this change-point estimation and the last observation, choosing the value which 

minimizes log likelihood function for 2m  as the second change-point. Greedy algorithm 

continues looking the “most likely” change point in each subsection and stops when m  

change-points are estimated. Pseudo code of this algorithm is described below: 

1. Name the fifth observation as 0T  and 5T  observation as 1T , initialize  1i . (This 

restriction for 0T  and 1T  was explained in Section 4.3.3). 

2. While ki  ,  

a. Estimate a change point in each subgroup  jj TT ,1 , for all ij 0 , looking the 

maximization of (10), (17) or (24), for cases 1, 2 or 3, respectively for 1m . 

Named each change-point found as jt . 

b. Let },,...,{ 11 jij tTTP  and set 
 rjj P



 for ir 0 , where 
 rjP  is the        

 order statistics of the sample jP . 

c.        Select *


  between all 


j which optimizes (7), (14) or (21), for im   

d. Rename )(* jT j



  for all ij 0  and 51  TTi . Do 1 ii . 

e.        End while. 

3. Make *ˆ


  C . 

This heuristic will be compared with a stochastic algorithm described in next Section.  

4.4.2 Evolutionary Heuristic 

Evolutionary algorithms are based on the principles of the natural selection laws, which 

state that the fittest individuals are those who survive. The most common approach is 

focused on the following scheme: there is an objective function that is going to be 

optimized, then randomly generates a pool of solutions (called a population of individuals); 
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in order to classify the population, these solutions are evaluated in the objective function 

(measure of fitness) and the best ones are selected in order to be the seed of the following 

solutions’ pool (next generation). New solutions are obtained by crossover and mutation. 

Crossover is the combination of two solutions (parents) to create one or more new solutions 

(children). The mutation is the process when a variation of an existing solution is made to 

create another individual. By these methods new solutions are added in the initial solutions’ 

pool. Then, by some pre-set rules the remaining solutions (survivors) are selected, 

preserving the size of that pool. After repeating this procedure several times (generations) 

good quality solutions are found. 

 

It is noteworthy that evolutionary algorithms manage a high level of stochasticity, which 

keeps diversity of the solutions’ pool. Selection process needs to be such that the solutions’ 

pool maintains the individuals with best objective function and few solutions with not so 

good fitness value. One of the main features of evolutionary algorithms is to be adapted to 

the environment in which the solutions are embedded. For this reason, every problem must 

have advantages and difficulties; therefore, evolutionary algorithms’ scheme needs to 

consider the essential characteristics of each problem. 

 

In this particular problem of finding multiple change-points, the evolutionary algorithm 

proposed omits the combination of solutions, because of it creates a high percentage of 

infeasible solutions (abortions).The diversity in the solution pool is maintained because of 

the randomness of the process and the number of selected tournaments for the selection 

part. Next the pseudo-code for the proposed algorithm is presented: 

1. CREATION of the initial random population. 

2. EVALUATION of the individuals. 

3. While STOP CRITERION is unsatisfied. 

 3.1 MUTATION to all individuals. 

 3.2 EVALUATION of the mutations. 

 3.3 SELECTION of the survivals. 

4. End while. 
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The description of each stage of the algorithm implemented is described below: 

1. The representation of a solution 
is  is made by a vector of k components, where 

each component represents the position where a change occurred in the time series.  

2. The initial population is created by generating N  solution vectors with exactly k  

randomly changes, always ensuring the feasibility, this is, changes are located at 

least five observations separated. Generate 
0P , where NP 0

. 

3. To evaluate the fitness of each individual’s fitness function was necessary to 

evaluate function (10), (17) or (24), according to the case choose, which obtains the 

more probably change-points of the time series. 

4. Mutation was applied to all the individuals, such that each individual always 

maintain its cardinality. Then, it was decided to only perform an exchange between 

components of the same solution. In this step we obtained 
mP . 

5. The selection step was carried out in an elitist way but being aware of keeping 

diversity, this is the reason for deciding to conduct a selection based on a 

tournament. It was considered
mPPP  0

, where evidently NP 2 , and randomly 

selected two elements of this pool of solutions, that is, Pss ji , , where ji  . Then, 

the fitness function  F  was evaluated and these values were compared, if 

   
ji sFsF   then     1 ii sWsW , where  isW  is the winner function 

associated to the thi   solution. Otherwise, if    ji sFsF  , 

then     1 jj sWsW . After a certain number of tournaments the N  best 

individuals based on their  W  were selected. If the number of tournaments held is 

not large, this criterion allows maintain diversity in the population. 

 

Selected parameters for this algorithm, such as the number of generations, the population 

size and the number of tournaments were chosen based on numerical results. 
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4.5. Experimentation Design 

As seen in Table 8, to evaluate change-point estimators’ performance, several factors were 

considered. Over different scenarios, a sensitivity analysis was done by determining the 

effects on bias (mean error) and the standard error of the estimators. 

 

Table 8. Factor to measure the performance of change-point estimation 

Factors Levels 

Estimators 
1

ˆ
mle , 2

ˆ
mle , 3

ˆ
mle , 1

ˆ
EV , 2

ˆ
EV , 3

ˆ
EV , 

1
ˆ

C , 2
ˆ

C , 3
ˆ

C  

Number of changes ( k ) 2, 3, 4 

Shift in the mean ( ) 

2σ, 1σ (k=2) 

2σ, 1σ, -3σ (k=3) 

2σ, 1σ, -3σ, 1σ (k=4) 

Ratio of deviations (
1kk

 ) 
2, 1.5 (k=2) 

2,1.5,0.5 (k=3) 

2,1.5,0.5,2 (k=4) 

Series length (T ) 300, 900, 1500 

Change-point position (  ) 

1/3,  2/3 (k=2) 

1/4, 2/4, 3/4 (k=3) 

1/5, 2/5, 3/5, 4/5 (k=4) 

 

Monte Carlo experimentation was used to evaluate the performance of the change-point 

estimators.  The following general procedure was used for each scenario under evaluation: 

1. Select the scenario from Table 8. 

2. Generate T random variables according to the selected scenario. 

3. Estimate the change-point ̂  (using estimators under analysis). 

4. Repeat step 2 and 3 10,000 times. 

5. Calculate the mean and standard deviation of 
̂

 . 

6. Calculate the average time to get estimations. 

7. Calculate performance of MLE, when it is feasible, and heuristics. 

8. Return to step 1 and select another scenario. 
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10,000 replicates in step 2 ensure that standard deviation of mean change-point ̂  is 

reduced 100 times. Results of the experimentation are resumed in Tables 9, 10 and 11. MLEi̂  

for 3,2,1i was obtained over all possible combinations. Due to the computational time 

required for obtaining these values and the number of simulations, estimations only were 

computed for 2k . Performance of estimators is shown in Tables 9, 10 and 11 which 

corresponds to k values of 2, 3 and 4, respectively. 

 

Table 9. Performance of multiple change-point estimators for 2k  changes. 

Performance of EV̂  and
 C̂ were evaluated over different cases (1,2,3), and size of the series 

according to Table 1 for 2k . Estimations are presented next to their corresponding standard 

error, which are within parentheses. Solving time (ST) is presented (in secs.). 

 

2k  MLE̂  EV̂  C̂  

Case  T=300 T=900 T=1500 T=300 T=900 T=1500 T=300 T=900 T=1500 

1 

1̂  
0.01 

(1.28) 

0.01 

(1.24) 

0.00 

(1.27) 

0.02 

(1.29) 

0.00 

(1.30) 

0.00 

(1.47) 

-0.42 

(1.84) 

-0.54 

(1.74) 

-0.54 

(1.67) 

2̂  
0.08 

(6.04) 

0.02 

(5.36) 

-0.02 

(4.99) 

0.08 

(6.04) 

0.07 

(5.41) 

-0.03 

(5.40) 

0.00 

(5.95) 

0.01 

(5.36) 

-0.09 

(5.01) 

ST
 

3.11 30.11 88.85 0.90 0.93 0.98 0.02 0.08 0.14 

2 

1̂  
0.06 

(11.72) 

-1.51 

(5.71) 

-1.61 

(5.72) 

0.44 

(13.47) 

-1.42 

(5.75) 

-1.38 

(5.86) 

-2.36 

(13.00) 

-4.31 

(8.75) 

-4.16 

(8.23) 

2̂  
-1.38 

(25.31) 

-3.46 

(17.98) 

-3.23 

(16.92) 

-0.34 

(28.38) 

-3.35 

(18.42) 

-2.86 

(17.07) 

-1.23 

(25.66) 

-3.42 

(18.96) 

-3.35 

(17.18) 

ST 2.15 23.90 77.63 0.98 1.07 1.20 0.02 0.11 0.22 

3 

1̂  
-0.14 

(5.69) 

-0.53 

(1.99) 

-0.55 

(1.96) 

0.41 

(9.29) 

-0.48 

(2.02) 

-0.33 

(1.06) 

-0.59 

(5.81) 

-0.92 

(2.18) 

-0.88 

(2.08) 

2̂  
-1.16 

(19.38) 

-2.37 

(11.53) 

-2.50 

(11.73) 

0.71 

(26.11) 

-2.19 

(11.63) 

-1.96 

(11.84) 

-1.51 

(18.74) 

-2.41 

(11.54) 

-2.51 

(11.71) 

ST 3.01 31.80 97.66 1.08 1.19 1.33 0.03 0.10 0.18 
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Table 10. Performance of heuristics for multiple change-point estimators for 3k  changes.  

Performance of EV̂  and
 C̂ were evaluated over different cases (1,2,3), and size of the series 

according to Table 1 for 3k . Estimations are presented next to their corresponding standard 

error, which are within parentheses. Solving time (ST) is presented (in secs.). 

 

3k  EV̂  C̂  

Case  T=300 T=900 T=1500 T=300 T=900 T=1500 

1 

1̂  
0.00 

(1.36) 

-0.03 

(1.73) 

-0.08 

(2.24) 

-0.17 

(1.76) 

-0.13 

(1.65) 

-0.13 

(1.71) 

2̂  
-0.17 

(6.47) 

-0.16 

(6.45) 

-0.03 

(7.56) 

-0.20 

(7.03) 

-0.12 

(5.46) 

-0.08 

(5.35) 

3̂  
0.00 

(1.14) 

-0.03 

(0.81) 

-0.03 

(1.16) 

-0.28 

(0.92) 

-0.29 

(0.92) 

-0.31 

(0.97) 

ST
 

1.17 1.18 1.22 0.04 0.12 0.20 

2 

1̂  
0.53 

(13.26) 

-1.14 

(8.35) 

-0.82 

(7.40) 

-0.73 

(13.39) 

-1.98 

(15.14) 

-1.62 

(19.72) 

2̂  
-6.27 

(31.11) 

-3.06 

(25.81) 

-2.00 

(27.70) 

-6.48 

(31.35) 

-6.11 

(42.90) 

-4.95 

(52.83) 

3̂  
-0.42 

(12.90) 

0.95 

(8.01) 

-0.48 

(8.04) 

-3.17 

(14.00) 

-2.51 

(20.25) 

-2.03 

(22.42) 

ST 1.55 1.61 1.75 0.05 0.15 0.29 

3 

1̂  
0.94 

(9.73) 

-0.21 

(3.13) 

0.18 

(2.51) 

0.18 

(6.67) 

-0.61 

(2.03) 

-0.55 

(2.01) 

2̂  
-2.39 

(32.07) 

-1.61 

(13.56) 

-0.88 

(13.04) 

-2.24 

(22.57) 

-2.40 

(12.16) 

-2.30 

(11.84) 

3̂  
-1.18 

(10.53) 

0.15 

(3.81) 

-0.20 

(2.59) 

-0.59 

(7.00) 

0.25 

(1.99) 

0.29 

(2.11) 

ST 1.32 1.49 1.53 0.04 0.13 0.25 
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Table 11. Performance of heuristics for multiple change-point estimators for 4k  changes. 

Performance of EV̂  and
 C̂ were evaluated over different cases (1,2,3), and size of the series 

according to Table 1 for 4k . Estimations are presented next to their corresponding standard 

error, which are within parentheses. Solving time (ST) is presented (in secs.). 

4k  EV̂  C̂  

Case  T=300 T=900 T=1500 T=300 T=900 T=1500 

1 

1̂  
0.01 

(1.84) 

-0.03 

(1.93) 

-0.08 

(2.64) 

0.03 

(2.08) 

0.20 

(1.79) 

0.25 

(1.81) 

2̂  
0.00 

(7.32) 

0.08 

(7.17) 

0.02 

(8.59) 

0.06 

(6.99) 

-0.05 

(5.59) 

0.04 

(5.30) 

3̂  
0.01 

(2.66) 

0.00 

(0.95) 

0.02 

(1.39) 

-0.06 

(1.97) 

-0.05 

(0.57) 

-0.04 

(0.58) 

4̂  
0.16 

(7.02) 

-0.14 

(6.91) 

-0.04 

(8.56) 

0.17 

(6.88) 

-0.04 

(5.70) 

0.00 

(5.26) 

ST
 

1.32 1.33 1.42 0.04 0.15 0.26 

2 

1̂  
1.11 

(13.90) 

-0.93 

(8.28) 

-0.56 

(6.76) 

0.87 

(15.49) 

-3.38 

(12.16) 

-3.70 

(11.32) 

2̂  
-7.33 

(33.05) 

-3.18 

(23.89) 

-1.74 

(20.71) 

-0.76 

(36.15) 

-8.91 

(46.33) 

-7.07 

(48.09) 

3̂  
-3.82 

(21.29) 

0.44 

(9.84) 

-0.11 

(8.63) 

-2.24 

(34.40) 

-3.99 

(43.39) 

-2.14 

(47.52) 

4̂  
-2.20 

(14.68) 

-0.88 

(7.73) 

-0.27 

(7.27) 

-4.76 

(26.98) 

-10.15 

(27.09) 

-11.54 

(30.63) 

ST 1.53 1.60 1.69 0.06 0.20 0.37 

3 

1̂  
1.16 

(9.41) 

-0.04 

(3.06) 

0.54 

(3.08) 

0.45 

(7.17) 

-0.65 

(2.04) 

-0.62 

(2.09) 

2̂  
-7.42 

(33.25) 

-1.47 

(16.00) 

-0.04 

(14.38) 

-4.89 

(24.45) 

-3.30 

(16.56) 

-2.55 

(13.68) 

3̂  
-6.23 

(20.76) 

-0.22 

(5.42) 

-0.66 

(2.99) 

-1.45 

(13.38) 

1.41 

(3.34) 

1.46 

(3.32) 

4̂  
-1.96 

(13.00) 

-0.33 

(6.02) 

0.47 

(6.25) 

-2.36 

(9.99) 

-1.44 

(5.03) 

-1.34 

(4.77) 

ST 1.64 1.71 1.80 0.06 0.18 0.32 

 

 

On all evaluated scenarios, time of simulations made with Constructive Algorithm’s were 

less than 0.38 seconds while Evolutionary’s ones were less than 1.80 seconds. For k = 2, 

tables shows that Evolutionary algorithm has more accuracy to MLEs estimations than 

Constructive.  
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When 2k , when there are only k shifts in the mean, performance of both algorithms is 

similar with differences of biases less than 6.0 . For only k changes in ratio of deviations, 

Constructive shows bigger bias and standard error in almost all scenarios and its standard 

error increases as T increases while Evolutionary’s bias and standard error decreases. 

Finally, when k changes occur in both parameters, Constructive has smaller bias and 

standard error when T = 300, if T>300 its bias are greater than Evolutionary. 

4.6. Example: measuring the length of a laser scanned object 

Laser scanners are useful tools to measure morphologies quickly and precisely. Sometimes 

it is necessary to use the data from the scanned object to measure its length. Figure 3 show 

a profile of 1024 measurements from a “flat” object that was positioned over the scanner 

table. There are two change points; the first one corresponds to the moment when 

measurements change table to object and the second change-point when measurements 

change from object to table. To measure the length of the object, the position of the two 

change points has to be determined in order to calculate the distance between them. 
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Figure 3. A profile of an object using a scanner laser with two change-points. 

A profile of an object is obtained using a laser scanner. Two change-points are estimated to 

obtain an automatic measurement of the length of the object. Change-points indicated with 

dotted lines corresponds to the ones estimated using the exact MLE.  Change points are 

estimated using estimators 1
ˆ

mle , 1
ˆ

C , and 1
ˆ

EV . Results from these estimations are shown in 
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Table 12. Using the laser scanner data, change-points are estimated using the three methods 

for situations when a change occurred only in the location parameter.  

 

Table 12. Change-point estimations for a series with 2 changes in the mean. Numerical example. 

Estimation Method 
Observation number of 

the first change-point 

Observation number of 

the second change-point 

Exact MLE ( 1
ˆ

mle ) 345 749 

Constructive heuristic ( 1
ˆ

C ) 345 749 

Evolutionary heuristic ( 1
ˆ

EV ) 344 749 

 

 

A change-point estimated at observation 345 indicates that a change occurred between 

observations 345 and 346, which is translated into positions -12.055 and -11.745 

millimeters, giving a midpoint of -11.9 millimeters. The second change-point was 

estimated between observations 749 and 750, which gives positions 13.465 and 14.06 

millimeters, giving a midpoint of 13.7625. The length of the scanned morphology is 

calculated by subtracting the second change-point minus the first change-point. A length of 

25.6625 millimeters is measured. 

 

4.7. Conclusions 

MLEs computation time increases in a non-polynomial way as sizes of series and number 

of changes increases. Results show that Constructive Algorithm estimations are obtained 

quickly, but they are less accurate to corresponding MLEs than Evolutionary Algorithm 

estimations (in cases which they could be compared) which require less than 2 seconds to 

be done. Also, the latter ones are more consistent while Constructive presents a variation 

which depends of the case chosen.  

 



72 

 

For future work, an integration of a local search to Constructive Algorithm will be done, as 

well as an integration of Evolutionary and Constructive algorithms. Because in real life it is 

difficult have a priori knowledge of the exact number of changes, this assumption could be 

discarded by using the CUSUM technique. Hypothesis test and confidence intervals will be 

developed to determine if the change(s) detected are significant or not and have a bind 

region for it (them). 
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CHAPTER 5.  CONCLUSIONS AND FUTURE WORK. 

 

5.1. General conclusions. 

This section summarized the state of art of the research. After that, remark the differences 

between assumptions and solution approaches of this research and the others found in 

literature. Contributions provided by this research are described in section 5.2 and future 

work in Section 5.3. This research addresses the change-point problem which generally 

speaking could be stated as question mentioned in section 1.2: Are the data homogeneous 

and if not, what are the locations of the homogeneous segments in the data? (Arunajadai, 

2009, p.58). These locations are called change-points and finding them in Change-point 

Analysis (CPA) is the main duty.  

 

This research is divided in two main works, which deals with the problem of estimation of 

change-points in a time series of independent normal observations. In next paragraphs they 

were explained. 

 

First one was focused on developing change-point MLEs for independent and normally 

distributed observations when parameters (before and after the change) are unknown. In 

addition, the evaluation of their performance in a retrospective analysis and a comparison 

with change-point estimators found in literature was performed. Finally, the integration 

with Q-charts was also performed to show their performance in on-line monitoring. 

Comparison was performed by exhaustive simulation, considering different sample size 

(50, 100, 300, 1000), subgroup size (1, 3, 5), change-point locations (at quantiles 0.2, 0.3, 

0.5), shifts in the mean ( , 1.5 , 3 ), and change in variance (1.3, 1.5, 3). Results show 

that MLE for shifts in the mean is robust to change-point location. 

 

Second research was focused on developing multiple change-point MLEs for normally 

distributed series and heuristics because according to Jann (2000, p.68) “it is found 

imperative to treat the problem of multiple change-point detection as one of global 
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optimization”. Additionally, an evaluation of their performance was performed. This 

evaluation was performed considering different sample sizes (300, 900, 1500), number of 

changes k  (2, 3, 4) and considering change-point locations at every )1(* kiT for 

.,...2,1 ki   Results suggest that Evolutionary Algorithm is more precise than Constructive 

Algorithm to MLEs estimations. 

 

Even though there are change-points MLEs in literature for simple step change-point 

problem, its derivation supposes knowledge about initial parameters. On the other hand, 

there are change-point estimators which do not assume that, but they do not correspond to 

MLEs.  

 

5.2. Findings from this research. 

In order to summarize conclusions of this research, they are divided for each of the 

hypothesis made in Chapter I.  

 Conclusion of H.1: It is possible to develop change-point MLEs for both single and 

multiple changes when there is not prior knowledge about parameters. These 

estimators were found considering independent normally distributed observations, 

and discrete time. That is to say, it is possible to find parameters values that 

maximized Likelihood Function even with discrete time. 

 Conclusion of H.1.1.: Considering separately three cases addresses, (1) for change 

only in mean results show that both estimators perform alike in means of bias, but 

CUSUM estimator has less spread when change-point location is in the middle of 

the series. Nevertheless, change-point MLE is more robust to the change-point 

location; (2) when there is only change in variance, both estimators perform alike in 

means of bias and spread, but Hawkins’ estimator requires less operations to be 

obtained due to avoid the problem of obtain roots of a polynomial of degree higher 

than 2; and (3) for change in both mean and variance, CUSUM and Hawkins’ 

change-point estimators tends to have smaller bias and spread than MLE when there 

is only change in mean, and only in variance, respectively. However, MLE 



78 

 

improves its precision as magnitude of the change increases for such cases. For 

cases with both changes, MLE perform better in means of bias and spread. 

 Conclusion of H.1.2.: Results suggest (as expected) that change-point MLEs bias 

and spread decreases as the size of the series and as the number of replicates 

increases in all cases. 

 Conclusion of H.1.3.: Tables 5 and 6 show that when Q-charts’ ARL is larger, then 

MLE spread and bias is smaller, except maybe for cases of small samples size. In 

the other hand, when Q-charts’ ARL is smaller, then MLE spread and bias is larger. 

Nevertheless, letting the process run 5 extra observations MLE performance 

improves for both situations. 

 Conclusion of H.2.1.: Finding the multiple change-point MLEs in multiple changes 

leads to an optimization problem due to there are 






 

k

pkpkT
different 

combinations which have to be compared in order to find them which make the time 

increase in a non-polynomial way as the number of changes increases. Thus, it is 

necessary to develop heuristics in order to address this problem. 

 Conclusion of H.2.2.: Change-point MLEs and Evolutionary algorithms tend to 

have smaller bias than Constructive Algorithm. 

 Conclusion of H.2.3.: Results for cases when it was possible to make a comparison 

(only 2 changes), Evolutionary Algorithm tends to be closer than Constructive from 

the MLEs estimations. Nevertheless, make one simulation of Evolutionary along all 

cases lies between 0.1 and 1.8 seconds, while Constructive is always less than 0.38 

seconds for cases considered here. 

 

It is noteworthy that: 

 Procedure for obtaining the change-point MLEs (single or multiple) was reduced to 

a minimization of variances problem. There is scarce (if not no) results in literature 

that show this estimation problem in this way.  

 For case of change only in variance, the derivation of the mean MLE leads always 

to a problem of finding the roots of a polynomial of degree 12 k  where k  is the 
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number of change-point supposed in the series. For every series and every feasible 

point of estimation, this polynomial must be obtained. 

 Change-point MLEs for multiple change-points requires an exhaustive number of 

comparisons and operations in each comparison. Actual computer resources do not 

allow us to make more extensive studies.  

 

H.2.2. is not completely accepted as true since multiple change-point problem add one 

more factor to the design of the experiment proposed for single change-point problem 

making it more complex for obtaining solutions and making comparisons and in this 

research only a few scenarios were considered. H.2.3. also could not be taken as true; we 

stated that Evolutionary Algorithm tends to behave similar to MLE, but it only was proved 

over few scenarios. Finally, integration with Q-charts gives to managers a procedure to 

ensure a state of control, which could reduce costs of inspection and rejections. 

 

5.3. Future Work. 

This research was focused mainly on the development of change-points MLEs and 

evaluation of their performance letting as a future work: 

 

 Development of hypothesis test for change-point in time series. 

 Development of confidence intervals for the change-point estimation. In order to do 

this is necessary development of hypothesis tests. 

 Consider series with trend, which in practice could represent the time at which a 

machine wears out. 

 Consider auto correlate series. 

 Comparison between Jann’s (2000) algorithm and Heuristics presented here by 

means of bias and spread. 

 Improve Constructive Algorithm by adding a local search or make an integration of 

both heuristics. 

 Development of these tools from a nonparametric approach. 
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