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Abstract

The efficiency of urban transport system strongly relies on the transit network planning

process that is commonly complex because of the number of related decisions. Usually this

process is divided into several subproblems such as line planning, timetable generation,

vehicle scheduling, and crew scheduling which are solved sequentially to obtain an entire

solution. In this study we focus on timetabling problems based on the transit network

of Monterrey, Mexico. The characteristics present in this network lead to the Synchro-

nization Bus Timetabling Problem (SBT) with the objective of maximize the number of

synchronization events between different lines to allow well timed passenger transfers and

avoid bus bunching. We design a mixed integer linear programming formulation (MILP)

for SBT considering constraints such as bounds of separation times between consecutive

trips and departure time dispersion along the planning period. We prove that SBT is

NP-hard. Nevertheless, the mathematical structure of SBT MILP allow to define a pre-

processing stage based on constraint propagation leading to the elimination of a high

percentage of decision variables and constraints.

Moreover, we define several families of valid inequalities to strength the SBT MILP

by implementing the ideas of the preprocessing stage. The numerical results show that we

practically solved our SBT adding our proposed valid inequalities at the MILP and using

the linear solver of CPLEX 12.3, since we obtain solution with less than 3% of relative

gap in seconds.

Although we solve SBT, we go a step forward to define the Multiperiod Synchro-

nization Bus Timetabling (MSBT). This problem generates a timetable for the entire day

considering synchronization of trips belonging to different planning periods and smooth

xi



Abstract xii

transitions between these periods. Since the implementation of valid inequalities do not

obtain high quality solutions for instances of MSBT in short time, we design several Iter-

ated Local Searches and Variable Neighborhood Searches algorithms to solve MSBT. The

numerical results show that these algorithms are comparable with the exact approach for

SBT. Moreover, these algorithms obtain solutions with less than 5% and 13% of mean

relative gap for small and large instances of MSBT, respectively.



Chapter 1

Introduction

Summary: One of the reasons to work in this project is the need of an
attractive, or at least, acceptable urban transport system. In this chap-
ter we exhibit the social impact of an efficient transit network planning
which is the context of our study. Moreover, we introduce the character-
istics of the transit network we focus on. All the presented information
is used to clarify the objective, justification, and contributions of our
work.

“Sweet ride.”

1.1 Urban transport service

A critical aspect for every city in the world is to obtain an efficient urban transport service

which is a difficult task. Indeed, it relies in several facets such as planning process, equip-

ment technology, urban design, and government policies. However, improving the urban

transport system leads to important benefits such as users satisfaction and reduction of

undesirable elements such as pollution, traffic congestion, and costs.

The efficiency of urban transportation is related with the operation of the system

which can be improved by an accurate planning process. Indeed, the context of this

study is the planning process to improve the behavior of transit networks using operation

research techniques. The entire planning problem of a transit network is difficult and

it is often divided in several subproblems solved in a sequential approach [Ceder, 2007,

Desaulniers and Hickman, 2007].

1



Chapter 1. Introduction 2

The first subproblem of the entire transit network planning is the line planning

problem that defines the routes, stops, and the frequency for each bus line in a specific

territory. Then, the timetable generation determines the departure times (and arrival

times) of all the trips of the lines to achieve a quality service level such as maximum

synchronization to allow transfer events and avoid bus bunching events for different lines.

We mostly focus on this subproblem in this study. Third subproblem is the vehicle

scheduling problem that assigns vehicles to sets of trips of each bus line with the aim of

minimizing vehicle costs. Finally, the crew scheduling problem defines tasks assigned to

drivers subject to work regulation constraints such as limit working time, guarantee lunch

time for drivers, and minimum working time with the objective of minimizing crew costs.

The first two subproblems are part of the strategical planning (increasing quality service)

while the last two are part of the operational planning (reducing costs).

Ceder [2007] presents a detailed scheme to remark the interaction between sub-

problems of transit network planning (Figure 1.1). We can notice that there are many

subsequent subproblems depending on the solutions of timetabling. Therefore, efficient

procedures to solve this subproblem are of great importance. Particularly, in this study we

identify accurate timetabling problems and design efficient solution algorithms to obtain

timetables of high quality in reasonable time.

The different characteristics in transit networks lead to a large number of different

timetabling problems. In the next section we present the details of the transit network

we focus on. Then, we define an accurate timetabling problem for our case study.

1.2 Problem statement

Private companies handle the transit network we base our study on. In this network,

competition to cover a large demand of passengers is always present. This characteristic

leads to a large network where different lines, even of the same company, share route seg-

ments causing considerable traffic congestion (left panel of Figure 1.2). Another important

characteristic is that many bus lines pass across downtown defining a centralized network.

Omar Jorge Ibarra Rojas Graduate Program in System Engineering
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Figure 1.2 Functional diagram (System Architecture) of a common transit-operation planning process
Figure 1.1: Subproblems of the transit network planning problem and their interaction
[Ceder, 2007].
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Chapter 1. Introduction 4

For example, there are more than 60 bus lines that cross by Monterrey’s downtown (right

panel of Figure 1.2).

Figure 1.2: The left panel shows traffic congestion caused by bus lines sharing an avenue
in downtown [Centro de Desarrollo Metropolitano y Territorial, 2012]. The right panel
shows the bus network of Monterrey’s metropolitan area. The marked area shows the line
concentration downtown [Rabut, 2010].

We are interested in the interaction between the different bus lines in the transit

network to allow well timed passenger transfers and avoid bus bunching. Particularly,

we define a synchronization event as the arrivals of two trips at a common stop (called

node) with a specific separation time. Uncertainties present in travel times are a handicap

for punctual synchronization. Therefore, we allow to the separation time to be within a

specific time window to define a flexible synchronization. Although this situation models

passenger transfers from one line to another, as it can be seen in the right panel of Figure

1.3, it can also model an accurate separation time between the arrivals of two trips to

avoid bus bunching at specific nodes, as in the left panel of the Figure 1.3. In the case of

transfer nodes we seek a small separation time while a larger separation time is needed

at bus bunching nodes. Then, our Synchronization Bus Timetabling problem (SBT) is to

determine regular departure times for all trips maximizing the number of synchronizations

for a given planning period.

Timetabling problem we study is relatively new since to the best of our knowledge,

synchronization between different bus lines with uneven headways in multiple nodes of

the transit network has been considered only in a few studies in the 2000’s. Moreover,

Omar Jorge Ibarra Rojas Graduate Program in System Engineering
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Bus bunching
 node

Transfer
 node

Figure 1.3: Synchronization nodes on the bus network. The left panel represents a bunch-
ing node while the right panel represents a passenger transfer node.

we redefine the synchronization events to represent two cases: passengers transfers and

bus bunching between different lines. As we can see in Chapter 2 previous similar studies

remark on the intractability of timetabling problems with these characteristics. There-

fore, efficient methodologies obtaining high quality timetables are needed since the entire

planning problem is often solved by sequential approach, i.e., subsequent subproblems

like vehicle and crew scheduling depend on the quality and efficiency of the timetable

generation process.

1.3 Objectives

Our main goal is to design efficient procedures based on operations research concepts to

generate high quality timetables for transit networks with characteristics like the ones in

Monterrey, Mexico. To achieve this main goal we need to achieve particular objectives

which are the following.

• The first step is to identify issues in the timetable generation for our case of study

that can be handled by operations research methodologies. Particularly, we focus on

the maximization of synchronization events to allow well timed passenger transfers

and avoid bus bunching between different lines. Passenger transfers is a common

objective for many timetabling problems while bus bunching events between differ-

ent lines is rarely taken into account. High quality timetables are needed by staff

agencies to provide a more efficient urban transport system that may obtain more

Omar Jorge Ibarra Rojas Graduate Program in System Engineering



Chapter 1. Introduction 6

passengers demand.

• Another particular objective is to define an accurate timetabling formulation to

model the characteristics of our case study. Since we want to maximize passenger

transfers and minimize bus bunching events it is difficult to define an objective

function to model both cases. Thus, we cannot use common approaches such as the

minimization of passengers waiting times because we need the separation between

trips at bus bunching nodes. We cannot use headway harmonization policies to

avoid bus bunching since we need the flexibility of uneven headways to get more

well timed transfers. Then, auxiliary decisions to model synchronization events are

needed.

• Once we define an accurate formulation, it is necessary to design efficient algorithms

to solve it. As we mentioned before, the required formulation must define auxiliary

decisions to model synchronization events but these events depend entirely of de-

parture time decisions. As we show in Chapter 3, this characteristic leads to a

large feasible space for departure times decisions where different combinations of

these variables obtain the same value of the objective function. Therefore, exact

approaches like the Branch and Bound algorithm is not capable to solve the small-

est instances of our problem. Moreover, in Chapter 5 we show that there are not

obvious efficient heuristic algorithms to obtain high quality feasible solutions.

• To show that our proposed formulations and solution algorithms can be used in real

life instances is necessary to design an experimental stage to measure the results

obtained by our solution methodologies.

As we show along this dissertation, we have a new timetabling formulation with

characteristics that makes difficult to obtain even high quality bounds and feasible so-

lution for large instances. However, the mathematical structure allow to define several

procedures to design efficient exact and heuristics approaches.

Omar Jorge Ibarra Rojas Graduate Program in System Engineering
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1.4 Justification

The urban transport system of Monterrey, Mexico,an be enhanced with strategic planning

methodologies scientifically supported. Commonly, in this kind of network, the planning

process is done manually by agencies staff and focuses only on feasibility and operation

costs rather than quality service, as we propose in this study. Considering all interactions

in the network, transport planning becomes an almost impossible task to perform in

a reasonable time even by the most experienced staff member of a transport company.

Therefore, well defined methodologies to improve the quality of the service maintaining

acceptable operational cost are quite useful. Moreover, since our methodology improves

the service quality, the use of bus lines instead of private vehicles is promoted which

represents a big impact in saving energy consumption and reducing pollution levels.

1.5 Scientific contributions

Our case of study has different characteristics than the ones studied in literature. There-

fore, we generate several scientific contributions such as the following.

• Two new formulations for timetabling problems with the objective of maximizing

the number of well timed transfers and minimizing the bus bunching events.

• Answer an open questions in the transit planning research area: we prove the com-

plexity of our timetabling problems and others similar present in literature.

• Obtain exact solutions for large instances of timetabling problems is a common

issue. We define several families of valid inequalities for our proposed formulation

that allow to find optimal solutions for large instances of the problem.

• Several metaheuristic algorithms (based in the mathematical structure of our pro-

posed formulations) are designed to obtain high quality solutions for timetabling

problems considering multiple planning periods.

• The results of this study were presented in the following seminars and conferences.

Omar Jorge Ibarra Rojas Graduate Program in System Engineering
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– Seminars of the Graduate Program of Systems Engineering, Universidad

Autónoma de Nuevo León (UANL), 2010-2012.

– Seminar of the Graduate Program of Industrial and Systems Engineering, Insti-

tuto Tecnológico y de Estudios Superiores de Monterrey (ITESM), September

2012.

– ALIO-INFORMS Joint International Meeting. Buenos Aires, Argentina, June

2010.

– II Encuentro Iberoamericano de Investigación Operativa y Ciencias Adminis-

trativas (IOCA), Monterrey, Mexico, July 2010.

– Operational Research Peripatetic Postgraduate Programme (ORP3), Cadiz,

Spain, September 2011.

– First Conference of the Sociedad Mexicana de Investigación de Operaciones

(SMIO), Guadalajara, Mexico, October 2012.

• We published results of this dissertation in Ciencia UANL, Transportation Research

Part B, and International Journal of Productions Economics. Moreover, one arti-

cle is under review in Transportation Science and another article is going to be

submitted in Computers & Operations Research.

1.6 Dissertation structure

This dissertation includes several mathematical formulations for timetabling problems

and different solution algorithms. Each chapter includes results published or submitted

for publication. The content of these chapters is summarized in the following.

Chapter 2 presents the necessary elements to define a timetabling problem and

details of timetabling problems present in literature. We remark on timetabling problems

with characteristics present in our case study and their solution methodology.

Chapter 3 defines our timetabling problem for the transit network of Monterrey,

Mexico. It is a large bus network where passenger transfers must be favored, almost

Omar Jorge Ibarra Rojas Graduate Program in System Engineering



Chapter 1. Introduction 9

evenly spaced departures are sought, and bus bunching of different lines must be avoided.

We formulate the timetabling problem of this network with the objective of maximizing

the number of synchronizations to facilitate passenger transfers and avoid bus bunching

along the network. We define these synchronizations as the arrivals of two trips with

a separation time within a time window to make a flexible formulation. This flexibility

is a critical aspect for the bus network, since travel times vary because of reasons such

as driver speed, traffic congestion, and accidents. By proving that our problem is NP-

hard we answer a 10-year-old open question about the complexity of similar problems

present in literature. Next, we analyze the structural properties of the feasible solution

space of our model. This analysis leads to a preprocessing stage that eliminates numerous

decision variables and constraints. The results of this chapter are published in the journal

Transportation Research: Part B [Ibarra-Rojas and Rios-Solis, 2012].

Chapter 4 is based on the fact that a timetabling solution that is not close to the

optimum has strong repercussions in the vehicle and crew scheduling problems since a

sequential resolution approaches are often required for solving the entire planning pro-

cess. We focus on the Synchronization Bus Timetabling Problem (SBT). Based on the

formulation of Chapter 3, we develop two classes of valid inequalities using combinatorial

properties of SBT on the number of synchronizations. Additionally, we present two lifting

procedures leading to new inequalities. Experimental results show that the enhanced MIP

formulation yields high quality solutions using a small computational time. In particular,

large instances based on real transit networks are solved within few minutes with a relative

deviation from the optimal solution usually less than 1%. The results of this chapter were

obtained during a research stage at the Laboratoire d’ Informatique de Paris 6 (LIP6)

and are going to be submitted to the journal Computers & Operations Research.

In Chapter 5 we show that usual procedures for generating a bus timetable that

covers a whole day are not suitable for our timetabling problem. Indeed, to compute

independent timetables for each one of the planning periods of the day (e.g., morning

rush hour, afternoon hours, night hours) and merge them leads to suboptimal solution

since it does not consider that trips from different periods of the day could have a transfer

o may bunch at some bus stop. Thus, we propose the Multiperiod Synchronization Bus

Omar Jorge Ibarra Rojas Graduate Program in System Engineering
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Timetabling problem that considers smooth transitions between periods and synchroniza-

tion events between trips belonging to different planning periods. We design six Iterated

Local Search and two Variable Neighborhood Search algorithms. The main contribution

of this work is that the neighborhoods needed by the metaheuristics are based on feasi-

ble departure time windows (structure inherited from the mathematical model) that are

applied by a constraint propagation methodology. We empirically obtain high quality

feasible solutions for real size instances. The results of this chapter are submitted to the

journal Transportation Science.

Chapter 6 presents the conclusions of our study and several future research areas.

In particular, the complete integration of two or more subproblems of transit net-

work planning is an interesting research area addressed by a few studies in literature.

Appendix B shows our preliminary results about complete integration approaches. On

the one hand, we present the integration of a less flexible timetabling problem (MT) and

the single type vehicle scheduling problem. Since quality service and operational cost

are naturally in conflict, we propose a multiobjectvie approach to handle this integra-

tion. We define a biobjective formulation and design an ε-constraint method to solve

considerable large instances of the problem. On the other hand, we present a multiobjec-

tive formulation for MT, vehicle scheduling and crew scheduling problems with particular

characteristics of Monterrey’s transit network such as working regulation constraints.

A background for this dissertation is presented in Appendix 2.3. It includes basic

concepts, definitions, and algorithms that helps to a better understanding of this study.

Although the main topic of this dissertation are subproblems of transit network

planning, we also study manufacturing planning problems. Particularly, Appendix C

addresses a real manufacturing process of pieces that are produced with molds that are

mounted on machines. The characteristics of the system include setup times between

jobs, dedicated parallel machines, dedicated molds, and a different production rate for

each piece-mold pair. There is a demand for each type of piece, and when the company

fails to meet this demand, is often forced to buy pieces from other companies to avoid

loss of customers. We describe the system with a new integer quadratically constrained
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programming model. Our proposed formulation improves others in literature as we do not

force a mold to be mounted on a single machine, which is a more realistic description of

the production process itself. To solve the problem we decompose the formulation into two

subproblems: one that solves the lot-sizing of the products and another one that verifies

if there is a feasible schedule for the solution of the first subproblem. This methodology

is empirically tested, demonstrating its effectiveness on real size instances. Moreover, it

reveals that the counter intuitive case where a mold visits more than one machine happens

more often than expected. The results presented in this appendix are published in the

journals Ciencia UANL [Chacón-Mondragón et al., 2012] and International Journal of

Production Economics [Ibarra-Rojas et al., 2011].
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State of the art

Summary: We have been working more than three years in this ex-
citing research area and we found literature about many interesting
studies considering different characteristics of urban transport systems.
Based on our literature review, we present the key elements that must
be considered to define a Timetabling Problem. Once this elements are
understood, it is easier to characterize most of the timetabling problems
present in literature.

“Thanks to Ada, Fernando, Paulina, and
Yasmin for joining me in the insight into
other studies.”

2.1 Timetabling problems

Timetabling problems determine the specific time in which a set of events occur to achieve

a specific goal. In the context of transit network planning, these events are the departure

and arrival of bus lines along the network. Figure 2.1 represents an example of a timetable

for bus line a. Rows represent the trips of line a while the columns show the arrival and

departure times at each stop for these trips. Column “depot” exhibits that departures

from the depot occur between 8:00 am and 10:00 am, i.e., there is a planning period of

two hours. The number of trips considered for this planning period, called frequency, is

12. We also remark that the separation time between consecutive trips, called headway,

is 10 minutes. Often, passengers have access to this kind of timetable. In other cases, this

timetable can be perceived by the passengers as regular services since buses should pass

at each stop every ten minutes.

12
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line a
depot stop 1 . . . stop 20

departure arrival departure arrival departure
trip 1 8:00 8:07 8:08 . . . 9:13 9:15
trip 2 8:10 8:17 8:18 . . . 9:23 9:25

...
...

...
...

. . .
...

...
trip 12 10:00 10:07 10:08 . . . 11:13 11:15

Figure 2.1: Timetable in a planning period of two hours (8:00 am to 10:00 am) for a line
a with a frequency of 12 trips, headway of 10 minutes, and 20 stops in its route.

Timetabling is a critical aspect to quality service for passengers. As it is mentioned in

Ceder [2007], inadequate and/or inaccurate timetables not only confuse the passengers but

also reinforce the bad image of public transit as a whole. Therefore, efficient procedures

to generate timetables fitting the passengers requirements are needed.

For the point of view of operations research, the main decisions are the departure and

arrival times of the bus lines along the transit network. There are as many timetabling

formulations as different transit systems. However, the difference between other deci-

sions and constraints depend on the timetable structure. In the following, we clarify the

elements used to define the timetable structure.

2.2 Timetable structure

In Section 2.3, we present a detailed literature review. In this section, we point out that

there is a large number of different timetabling problems. But these differences rely on

the type of decisions and constraints arising due to the following elements of the timetable

structure.

2.2.1 Headway policy

Based in the kind of information about the demand along the transit network, the two

main approaches for timetabling problems are even headways and even loads (passenger

activity based). On the one hand, timetables with even headways are regular trip services

and simple to memorize. This policy assumes that the passengers demand is adjusted
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to the timetable and not vice verse. It can be implemented when there is not enough

information about the demand along the transit network and also if passengers do not

have access to the timetable but they only known an estimate of waiting time to board

into a bus [Bookbinder and Désilets, 1992, Cevallos and Zhao, 2006, Jansen and Nielsen,

2002, Ibarra-Rojas and Rios-Solis, 2012]. On the other hand, timetabling with even loads

can be implemented when accurate information or efficient forecasting procedures of the

demand behavior are at hand [Ceder, 2007]. Indeed, its efficiency relies on the quality of

the information about the passenger demand.

The main disadvantage for timetables with even headways is the demand variability.

Figure 2.2 exhibits this case for a single bus line, horizontal axis represents the departure

times and vertical axis represents the accumulated demand in a specific stop. We can

remark that the arrival times at each stop leads to an almost total lack of balanced loads.

For example, the second trip arriving at 7:30am has a passengers load of 43 − 15 = 28

while fifth trip arriving at 8:15 has a passengers load of 90− 85 = 5.
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Figure 2.2: Departure times versus accumulated passenger demand at some stop for a bus
line.

Omar Jorge Ibarra Rojas Graduate Program in System Engineering



Chapter 2. State of the art 15

Although uncertainties in passenger demand and travel times are handicaps for the

implementation of timetabling with even headways, an entire day could be divided in

smaller planning periods with less variability in passengers demand and travel times. In

the example presented in Figure 2.2, a planning period could be from 8:00 am to 9:00 am

since a more accurate estimation for passenger demand and/or deterministic travel times

can be computed. Indeed, only a few timetabling problems consider an entire day while

a common assumption is the existence of smaller planning periods with less variability

in the transit network “behavior”. Then, the solution of these timetabling problems are

combined to generate a timetable for the entire day.

Another element based on demand information is the number of trips for each bus

line to fulfill passenger demand, called frequency. It can be considered as a parameter or as

a decision variable. For example, we can define the frequency as a parameter previously

computed (by software or staff analysis) to satisfy an assumed constant demand in a

planning period [Ceder and Tal, 2001, Ceder et al., 2001, Adamski, 1993, Eranki, 2004].

On the other hand, if we have information about the demand behavior along the time and

we have a policy of maximum load for each bus, we can define the frequency of each line

as a decision variable [Ceder, 2007, Ávila and López, 2012]. We consider the first case in

this study, i.e., the agencies staff determines a frequency considering a policy of regular

services and constant demand in small planning periods.

2.2.2 Flexibility

Suppose that there is a passenger that uses a bus line because he thinks that it provides

regular services as, for example, every 10 minutes but he really does not know the exact

timetable. However, the departure time of trips in the timetable are separated by an

amount of time between 8.5 and 11.5 minutes. If the variation in the regularity of the

service is considerable small, is really difficult that this passenger loses his idea of regular

services provided by the bus line. Then, the passenger will be using the same bus line.

However, even allow small variations in the separation times of consecutive trips could be

used to achieve other criteria such as reduce number of vehicles, keep a crew scheduling,
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allow passenger transfers, and avoid bus bunching.

The flexibility could be defined in different ways but a common approach is to con-

sider headway bounds instead of an unique value [Ceder and Tal, 2001, Ceder et al., 2001,

Eranki, 2004, Wong et al., 2008, Wong and Leung, 2004]. For example, assuming there is

an unique headway h for some bus line. If we determine a value for the departure time of

the first trip denoted as X1 the departure time of the second trip is automatically deter-

mined as X1+h, the third trip departs at X1+2h, and so on. On the other hand, flexibility

given by headway bounds allow to decide departure times for each trips respecting the

headway bounds to provide a regular service or minimum service requirement. Then, each

trip p must satisfy the following constraint.

lower headway ≤ Xp −Xp−1 ≤ upper headway (2.1)

Above panel in Figure 2.3 shows an example of departure times considering an even

headway of 10 minutes while below panel shows an example of “almost” evenly spaced

departure times considering headway lower and upper bounds of 8 minutes and 12 minutes,

respectively.

min10=h

8:05 8:15 8:25 8:358:00 8:40

evenly
spaced

almost
evenly

1 2 3 4

1 2 3 4

min12_

min8_

=
=

headwayupper

headwaylower

8:05 8:13 8:24 8:368:00 8:40

flexible headway

evenly
spaced

Figure 2.3: Example of departure times with an even headway of 10 minutes and headway
lower and upper bounds of 8 minutes and 12 minutes, respectively.

Obviously, headway bounds should be carefully determined since the quality service

depends on their values. For example, a headway lower bound of 0 minutes lack of sense
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if we want to avoid bus bunching while large values for headway upper bounds may lead

to long intervals within the planning period without trip departures. In our case of study,

we use a relative deviation from the even headway to define the corresponding bounds.

Analogously to the flexibility, there are cases where we have more restricted

timetabling problems. In the following section we clarify on how we can restrict the

feasible set of timetabling problems considering other stages of transit network planning.

2.2.3 Previous planning solutions

In many cases, timetabling problems consider planning solutions previously obtained

[Chakroborty et al., 1997, 1995, Guihaire and Hao, 2010a,b]. This commonly happens

to reduce the impact of a completely different timetable for the transit network that may

cause recalculation of solutions for other subproblems of the planning process such as ve-

hicle and crew scheduling. For example, some timetabling formulation consider an initial

timetable as a reference. Then, the deviation between the departure times obtained by

solving the timetabling problem and the departure times of the initial solution must be

bounded, i.e.,

lower deviation ≤ Xp −Xp ≤ upper deviation (2.2)

where Xp is the departure time of trip p in the initial solution. In some cases, this

deviation is used as objective function [Kwan and Chang, 2008].

Another bounds and constraints could arise if we are restricted to other elements

of the planning process such as maintain the fleet size, a vehicle schedule or/and a crew

schedule. For example, assume that a vehicle schedule must be maintained. Then, for

every two trips p and p′ such that p′ is just finishing trip p by the same vehicle, the

difference between the departure times of trip p′ and trip p, i.e., Xp′−Xp must be greater

or equal that the total travel time of trip p plus the time required for the vehicle to get

ready for the next trip p′.

Omar Jorge Ibarra Rojas Graduate Program in System Engineering



Chapter 2. State of the art 18

2.2.4 Travel times nature

As we mentioned before, the main decisions in timetabling problems are the departure

and arrival times of bus lines along the transit network. Nevertheless, in some cases is

not possible to slow down or speed up a bus to arrive at some stop at a desired time. For

example, if a city has high levels of traffic congestion, lack of holding stops, monitoring

tools, or space limitations, it is almost impossible to control the travel times of the bus

lines by speed variations. Therefore, the only decision variables are the departure times

from the depot for all trips while arrival times at each stop are entirely determined by the

transit network behavior. In this cases, it is useful to have small planning periods where

accurate estimations of travel times and passenger demand can be computed. In the case

where it is possible to control the speed of a bus or stop it in a specific node, the decision

variables are not only departures from the depot but also departure and arrivals at each

stop of the bus line [Hall et al., 2001, Dessouky et al., 1999].

To define the timetable structure, we should determine the type of the elements

such as headway policy, frequency nature, possible flexibility, consideration of previous

planning solutions, and travel times nature. For example, our timetabling problem con-

sider headway bounds to make it flexible, a given frequency to fulfill demand, and short

planning periods considering deterministic travel times. Once the timetable structure is

identified, an objective function should be considered. We present some common objective

functions in the next section.

2.2.5 Objectives of timetabling problems

Common objectives for timetabling problems are to satisfy headway policies, satisfy pas-

senger demand and minimize load unevenness, headway unevenness, travel times, or pas-

sengers waiting times [Guihaire and Hao, 2008b]. However, more interesting and complex

objectives are related with the interaction between different lines in the transit network.

As it is mentioned in Desaulniers and Hickman [2007] “perhaps the most pressing chal-

lenge in timetabling is the synchronization of vehicle timetables so that transfers within
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the network are well timed. Specifically, one would like to time the arrival of a vehicle on

one line with that on another line so that passengers transferring between lines could make

the connection with the minimum waiting time. Much of the early work on this problem

focused on methods for synchronization at a single timepoint; more recent methods have

used heuristics for larger network problems. However, the combinatorial nature of the

problem indicates that it is NP-hard, and the computational issues of exact solutions are

still vexing.”

In this study we address the two concerns mentioned in Desaulniers and Hickman

[2007]: complexity of timetables with the objective of synchronize different bus lines in

the network and efficient procedures to obtain optimal solution for large instances. On

the one hand, Chapter 3 present our timetabling problem with the objective of maximize

the synchronization between different lines to allow well timed transfers and avoid bus

bunching events. The timetable structure is determined by a given frequency for each line,

flexibility given by headway bounds, no consideration of planning solutions previously

obtained, and deterministic travel times for small planning periods. Moreover, we prove

that our problem is NP-hard along with other similar problems present in literature. On

the other hand, Chapter 4 present several families of valid inequalities that strength our

formulation to obtain optimal solutions for large instances with a reasonable amount of

time.

We present a literature review related with characteristics of our case study. To

achieve this, we complement an excellent literature review of timetabling problems for

bus transit networks [Guihaire and Hao, 2008b].

2.3 Literature review

Passenger transfer is crucial in public transit systems and it is present in all of them.

Zhao and Zeng [2008] present an overview of how transfers are affected by the network

structure, frequency of the lines, and other elements. In several studies [Bookbinder and

Désilets, 1992, Cevallos and Zhao, 2006, Chakroborty et al., 1997, 1995, Daduna and Voß,
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1995, Jansen and Nielsen, 2002, Wong et al., 2008, Zhao and Zeng, 2008] the authors seek

to minimize the overall transfer waiting times and consider evenly spaced departure times.

However, the minimization of overall waiting time could not be a representative objective

in our study since we also consider bus bunching events. Schröder and Solchenbach [2006]

remark on the necessity of better measurement of the transfer function, since minimizing

waiting times may lead to risky passenger transfers due common delays in bus arrivals

at stops. They make a formulation to minimize the cost of different kinds of transfers

using time windows. Ceder and Tal [2001] address the problem of synchronizing arrivals

of different lines at some nodes to achieve more efficient passenger transfer. They define

synchronization as the simultaneous arrival of two buses and consider limits for consecutive

trips’ separation times (referred to as headway times) and frequency (number of trips

for each line) as given. The objective of the problem is to maximize the number of

simultaneous arrivals. The authors note that their problem seems intractable since solving

small instances lead to large computational times. They design constructive heuristic

procedures to generate timetables. In Ceder et al. [2001], the mathematical formulation

of the previous problem is presented. In addition, they show the heuristic implementation

on a real case study, where they found feasible solutions within seconds.

One extension of Ceder et al. [2001] is presented in Eranki [2004], where synchro-

nization is redefined as the arrival of two trips at a synchronization node with a separation

time within a small time window instead of punctual synchronization (simultaneous ar-

rivals). Eranki designs a constructive heuristic algorithm on the basis of Ceder’s algorithm

to solve her problem. In Chapter 3 we propose a formulation that is based on the one

developed in Eranki [2004], but we enhanced several of its components to define a more

realistic and accurate representation of our case study. The complexity proof for problems

of Ceder and Tal [2001], Ceder et al. [2001], and Eranki [2004] is presented in Chapter 3.

Liu et al. [2007] address the synchronization timetabling problem based on the formula-

tion presented in Ceder et al. [2001]. They define an objective function for simultaneous

arrivals. The function consists of a ratio of the number of lines where there are vehicles

arriving simultaneously at a connection stop to the number of all lines passed at the same

stop. Another approach to achieve accurate passengers transfers is Hall et al. [2001] where
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a model for holding times to ensure passenger transfers is presented. We remark that we

are not able to implement this last approach in our problem since our case of study have

only a few potential stops where buses can wait. Nevertheless, considering bus holding

times would be an interesting research area.

The bus bunching problem has been addressed by Daganzo [2009], where the author

present a dynamic method based on real-time data to generate holding times for bus runs

to avoid bunching. Adamski [1993] addresses the synchronization problem of lines that

share common route segments. He presents a mathematical formulation to harmonize

headway times of different lines to separate trips in a planning period. He considers

possible departure times as given and solves the problem with an integrated tabu search

and genetic approach using small computational resources. This is different from our

case study since it might be difficult to harmonize headway times for bus lines of different

companies. In addition, he considers evenly spaced departures, i.e., an unique headway for

each line. However, in Chapter 5 we present a similar concept which is harmonize arrivals

at bus bunching nodes which is caused by maximizing the number of synchronizations of

our proposed timetabling problem.

Strategic planning is also based on passenger behavior (not constant demand) and

real-time (travel time) data. Li et al. [2010] study the transit scheduling problem to

optimize the interaction of different services at an intermodal transport network consid-

ering demand variability and therefore variable headways. They use a heuristic solution

algorithm that combines the Hooke-Jeeves method and an iterative supply-demand equi-

librium approach to solve their model. Dessouky et al. [1999] address the minimization of

transfer delays: they make a probabilistic model based on real-time data for delays, and

then determine the departure times to achieve their objective. Chung [1990] addresses

a travel time forecasting process in the bus network for peak and non-peak hours. On

the one hand, the author solves the simultaneous synchronization problem with the ob-

jective of minimizing overall waiting time using genetic algorithms. On the other hand,

the author presents a real-time control strategy to maintain transfers against unexpected

delays. Finally, Liebchen and Stiller [2009] present also a procedure to obtain timetables

resistant to delays for periodic and aperiodic cases in railway systems. In our case of
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study we do not consider a constant behavior of the network along the entire day. We

divide each day in planning periods such as peak hour (high demand periods) and valley

hour (less demand periods). In Chapter 3 we define a single period timetabling problem

while Chapter 5 presents a multiperiod timetabling problem to generate a timetable for

the entire day.

Although the previous studies consider a single objective, multiobjective approaches

are also present in timetabling problems. For example, Kwan and Chang [2008] present

a biobjetive approach to a timetabling problem considering both objectives; the cost

based on the number of transfers and the cost caused by the deviation from an initial

timetabling. The authors implement a NSGAII and other metaheuristic algorithms to

solve their proposed problem. Another example is presented in Ávila and López [2012],

where the authors formulate a problem to determine the frequency and the timetabling

considering different objective function such as maximize number of synchronizations,

minimize uneven loads and transfer times. Moreover they generate several metaheuristic

algorithms to find efficient solutions.

Integration of subproblems of transit network planning is an important research.

van den Heuvel et al. [2008] address the integration of the clock-face timetabling problem

(trips depart at regular intervals, and thus at the same number of minutes past each

hour) and multiple-depot multiple-vehicle-type scheduling problem. They design a tabu

search to solve their proposed integration. Guihaire and Hao [2008a] also implement a

similar idea. Their timetabling problem consists of minimizing the overall waiting time

considering a given frequency and even headways. They design an iterated local search

for solving their formulation. Fleurent and Lessard [2009] propose a measure function for

transfers based on ideal waiting times. They design an optimization approach to minimize

vehicle costs such as the number of vehicles and unproductive time. Fleurent et al. [2005]

propose an integral formulation for timetabling and vehicle scheduling problems that

considers weights on the objective function. However, these weights reflect the planner’s

necessity, which is a complex characteristic if two or more objectives are in conflict.

Guihaire and Hao [2010a] address the integration between timetabling problem and vehicle

assignment to optimize quality and service and vehicle costs forcing to respect a deviation
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form an initial timetabling. The authors implement an iterated local search algorithm in

instances of a real transit system in France. Later, Guihaire and Hao [2010b] present a

timetabling problem to maximize the number and quality of transfers considering vehicle

constraints such as maintain a initial vehicle schedule and respect a deviation of an initial

timetabling. The authors implement a tabu search to solve their formulation. Although

we do not design an efficient methodology to generate solutions for a complete integration

of timetabling with subsequent problems such as vehicle and crew scheduling, Appendix

[B] shows some mathematical formulations and preliminary results of the integration

between timetabling and vehicle scheduling problem.

We complement the excellent review of timetabling problems of Guihaire and Hao

[2008b] in Tables 2.1 and 2.2. Moreover, we include some studies of railway systems

that can be implemented in transit networks. Papers marked with (∗) are included in

the review of Guihaire and Hao [2008b]. First column shows the reference of the study.

Second column exhibits the objective in for the timetabling problem. Third column shows

the constraints of the problem. Fourth column exhibits the solution approach. Finally,

fifth column represent the instances used to the experimental stage. In this column there

are several categories where “Example” represent small instances designed by the authors

or partial networks in real systems; “Real” represent the implementation in real transit

networks; “Test” means that the authors generate randomly or real data based instances;

“Benchmark” represent a previous instance set.
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2.4 Chapter conclusions

The elements that define the structure of a timetable are headway policies, flexibility, pre-

vious planning consideration, travel time nature, and objective function. In particular,

our Synchronization Bus Timetabling Problem has the objective of maximize the number

of synchronization events to allow well timed passenger transfer and avoid bus bunch-

ing considering headway bounds to make it flexible, a given frequency due considering

constant demand, and short planning periods considering deterministic travel times.

Most of the characteristic of our Synchronization Bus Timetabling are considered

in some studies present in literature. However, there is not a single work that considers

all of them. Therefore, efficient algorithms are needed.
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Chapter 3

Synchronization Bus Timetabling

Problem (SBT)

Summary: It was not easy to define our research topic. We start from
nothing and we end with a problem suitable to the operation policies of
transit network agencies of our case study. In this chapter we present
the problem statement and exhibit that our problem and others similar
are difficult to be solved. Moreover, we analyze the structure of the
proposed mathematical formulation to understand the impact of the
characteristic of our timetabling problem.

“So, it is difficult. Great!”

3.1 Problem definition

The planning process of a bus network is complicated. Therefore, it is often divided into

several subproblems such as line planning, timetable generation, vehicle scheduling, and

crew scheduling [Ceder, 2007]. In the timetabling problem we determine departure times

for trips from different lines to achieve a specific goal, which in our case is to maximize the

number of synchronizations events, to favor well timed passenger transfers and avoid bus

bunching. Generate a timetable is a critical step in the planning process of a bus network

since service quality and subsequent planning steps such as vehicle and crew scheduling

depend on its solution.

We focus on Monterrey, Mexico, where the bus transit system is private. Moreover,

there are different bus companies sharing the demand. Competition among them creates

27
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a particularly large bus network. The left side of Figure 3.1 shows the entire bus network

of Monterrey’s metropolitan area.

Our case has the following characteristics:

• The bus network is private and has more than 300 bus lines (Monterrey has a

population close to the 4 million).

• There is almost full coverage of the territory. The area marked with a black box

on the left part of Figure 3.1 shows the line concentration downtown since there is

a tendency to design lines crossing this area. Therefore, many transfers are located

there.

• Many lines have “sub-lines” which share a common route segment but have varia-

tions at the beginning and at the end of the routes (see right part of Figure 3.1).

• The timetable is only for the company’s administration. Passengers do not know

the time at which bus arrives at each stop. They only have an estimate of their

waiting time to take the next bus. Then, a regular service is required.

sh
arin

g route se
gm

en
t

i(a)

i(b)

i(c)

Figure 3.1: The left panel shows the bus network of Monterrey’s metropolitan area. The
marked area shows the line concentration downtown [Rabut, 2010]. The right panel shows
a bus line i consisting of three sub-lines a, b, and c.

Considering the bus network with the above-mentioned characteristics, what can we

optimize? To answer this question, we noted the need to provide high quality service and
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meet other company priorities. Particularly, we found the following key components to

optimize through timetable generation.

• Passenger transfers: Travel from one point to another might imply transfer between

lines. We seek short waiting times at some key nodes like downtown.

• Bus bunching: Due to the presence of sub-lines, different lines commonly converge

on a specific node (called a bus bunching node). We aim to avoid bus bunching

between sub-lines or between different lines using trip separation.

• Almost evenly spaced departures: A large variation in the time between consecutive

trips affects the behavior of passenger demand, even in small planning periods.

Therefore, we are interested in regular services.

Passenger activity during the day also affects the bus network behavior. Peak hours

imply a large amount of bus bunching of different lines on multiple nodes of the network

and a large number of passenger transfers. Therefore, we categorize the days (weekend,

Monday, holidays, etc.) and then, we split each day into planning periods (peak hours,

morning, afternoon, etc.) to achieve more accurate deterministic travel times. However,

because of the uncertainties inherent in a public transportation system such as Monter-

rey’s, passengers prefer a flexible transfer rather than an instant transfer. For example,

different travel times due to variations in driver speeds are drawbacks for achieving punc-

tual synchronization.

In the basis of the above, the Synchronization Bus Timetabling Problem

(SBT) can be seen as scheduling the departure times for all bus line trips in order

to maximize the synchronizations between buses considering regular services in a given

planning period. A formal definition of the problem is given in the following.

The type of bus network we are interested in can be represented by a set of lines

denoted as I. As described in Section 1, the routes and the stops used by each bus line as

well as the frequency of each line are determined before the timetable generation phase.

We will call a synchronization node, a specific stop in the network where two lines cross
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each other and where passenger transfers are needed or bus bunching can happen. We

denote by B the set of all synchronization nodes. Let T be the planning horizon defined

in time units. For example, T will be 2 hours in rush periods in the morning or 3 hours

in valley periods in the afternoon. We will denote by f i the frequency of line i ∈ I, that

is to say the number of trips that have to be scheduled within T time units for line i. We

also assume that buses of the same line will run at regular speed and denote by tib, i ∈ I
the travel time for a bus to run from an initial node, called depot, of line i to node b ∈ B.

A headway is the separation time between consecutive trips for the same line. For

example, if the first (resp. second) trip of a line starts at time unit 3 (resp. 23), there

is a headway of 20 time units between these two trips. Since regularly spaced departure

times are required, each trip of a line i of I will start every T
f i

time units with a flexibility

of δi time units. Consequently, hi = T
f i
− δi (resp. H i = T

f i
+ δi) is the minimum (resp.

maximum) headway for a line i, i ∈ I. Moreover, the first (resp. last) trip of line i must

start before H i (resp. after T −H i). These headways guarantee that the entire planning

horizon is covered by the trips which is one of the main differences between the addressed

model and the ones studied in Ceder and Tal [2001], Eranki [2004]. Figure 3.2 illustrates

regularly spaced trips for a given line i of frequency f i = 4 with (case (a)) and without

(case (b)) flexibility.
min)2(%20

10

]40:8,00:8[

=∆=∂

=

=

h

T

i

iη

(a)

if
T

if
T

if
T

iH iHT −0 T

1 2 3 4

1 2 43

(b)

ii HX +1

0 T
1 2 43

ii hX +1
ii HX +2

ii hX +2
ii HX +3

ii hX +3

iH iHT −

Figure 3.2: Two different timetables. Case (a) shows regular departure times while Case
(b) shows departure times considering the headway flexibility given by parameter δi.

We recall that a synchronization at a stop between two bus trips occurs in two

different cases; when the difference between their arrival times is long enough to avoid

bus bunching in one hand or allow passenger transfers without long waiting times in
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another hand.

A bunching node is a particular synchronization node in the network where two

buses arriving simultaneously at this node will share a segment of their respective routes.

Consequently, to avoid a bus bunching at node b, the length of the time interval between

two bus arrivals at node b has to be greater than a specific value denoted wb. Moreover, if

we avoid bus bunching between i(p) and j(q), it is useless avoiding bus bunching between

i(p) and j(q + 1). Hence, it also important to consider a maximum separation time W b

such that W b − wb < hj in bus bunching nodes.

A transfer node is a particular synchronization node in the network where passengers

may transfer from one line i to some line j. Since it is common that passengers must

walk to make a transfer and uncertainties in travel times are present, flexible transfers

(waiting times greater than 0 minutes) are preferred. This way, it is less probable to miss

a transfer from line i to line j if there is not enough time to walk or the bus of line i (line

j, resp) arrives late (early, resp). Then, in order to permit well timed passenger transfer

at a transfer node b, the difference between two bus arrivals at node b has to be lower

(grater, resp) than a specific value denoted W b (wb, resp). An important characteristic

in Monterrey’s transit network is that passenger transfers from i to j are needed in some

node b at mornings while passenger transfers from j to i are needed in some node b′,

b′ 6= b, at afternoons. Therefore, there are oriented synchronizations, i.e., j ∈ J(i) does

not implies i ∈ J(j).

In the basis of the above, a synchronization at node b for two bus trips happens

if the difference of their arrival times is in the so-called waiting time window [wb,W b].

Then, SBT consists in determining the departure times X i
p of each trip p ∈ {1, ..., f i} of

every line i ∈ B so that X i
1 ≤ H i, hi ≤ X i

p+1 − X i
p ≤ H i for every i ∈ {1, ..., f i − 1},

T −H i ≤ X i
f i ≤ T and the number of synchronizations is maximized.

Figure 3.3 illustrates the two types of synchronization nodes. Case (1) represents a

bunching node b lines i and j (with hj = 8 minutes) converge and then share a segment

of their routes. The numbers by the side of node b represent the arrival times of a pair of

trips of these lines. The minimum and maximum separation times to avoid bus bunching
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between two buses at this node b are wb = 6 and W b = 12, respectively. Case (2)

represents a node b where passengers would like to go from one trip of line i to some

trip of line j considering the process of crossing a street. In this case, 5 time units is the

maximum desired passenger waiting time and 2 time units is the estimated required time

to cross the street. Then, the waiting time window is given by [wb,W b] = [2, 7].

j

i

b
8:20 am

8:14 am

8:38 am

8:35 am

bj

i

8=jh

[ ] [ ]12,6, =bb Ww(1) (2) [ ] [ ]7,2, =bb Ww

8=jh

Figure 3.3: Two cases of synchronization nodes: Case (1) represents a bus bunching node
where lines i and j converge and then share a segment of their routes while Case (2)
represents a transfer node where passengers would like to go from trips of line i to trips
of line j.

3.2 Mixed integer programming formulation for

SBT

We consider in the following an instance of SBTP and we now proceed with the 0-1 MIP

formulation of the problem already described in Ibarra-Rojas and Rios-Solis [2012]. For

a given a line i ∈ I, we will denote by i(p), p ∈ {1, . . . , f i}, the pth trip of line i and we

associate to i(p) the real variable X i
p that represents its departure time. For each line

i ∈ I, the set I(i) will contain the lines that share a synchronization node with line i. For

a pair of lines (i, j), j ∈ I(i), the set Bij is the set of all the synchronization nodes shared

by i and j. The binary decision variable Y ijb
pq is equal to 1, if and only if, trip i(p) arrives

first at node b and if trips i(p) and j(q) provide a synchronization at node b. In the case

that j ∈ I(i) (and then i ∈ I(j)), we remark that if a synchronization happens at node

b between trips i(p) and j(q), then either Y ijb
pq or Y ji

qpb will be set to 1. In the sequel, we
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will denote by (X, Y ) a solution of an SBTP instance.

Considering the previous parameters and decision variables, the MIP formulation of

SBTP, denoted by SBTP MIP, is given by

max
∑

i∈I

∑

j∈I(i)

∑

b∈Bij

f i∑

p=1

fj∑

q=1

Y ijb
pq

s.t. X i
1 ≤ H i ∀ i ∈ I (3.1)

T −H i ≤ X i
f i ≤ T ∀ i ∈ I (3.2)

hi ≤ X i
p+1 −X i

p ≤ H i ∀ i ∈ I, p = 1, . . . , f i − 1 (3.3)

(
Xj
q + tjb

)
−
(
X i
p + tib

)
≥ wb +M

(
1− Y ijb

pq

)
∀ i ∈ I, j ∈ I(i), b ∈ Bij,

p = 1, . . . , f i, q = 1, . . . , f j(3.4)

(
Xj
q + tjb

)
−
(
X i
p + tib

)
≤ W b +M

(
1− Y ijb

pq

)
∀ i ∈ I, j ∈ I(i), b ∈ Bij,

p = 1, . . . , f i, q = 1, . . . , f j(3.5)

X i
p ∈ R, Y ijb

pq ∈ {0, 1} ∀ i ∈ I, j ∈ I(i), b ∈ Bij,

p = 1, . . . , f i, q = 1, . . . , f j(3.6)

The objective function maximizes the total number of synchronizations. Con-

straints (3.1) and (3.2) guarantee that the entire planning horizon is covered by the

trips. Constraints 3.3 impose that consecutive trips of line i must happens with a min-

imum (resp. maximum) headway hi (resp. H i). Remark that the arrival time of trip

i(p) at node b is X i
p + tib. Hence constraints (3.4) and (3.5) activate the synchroniza-

tion variables Y ijb
pq if the difference between the arrival times of trips i(p) and j(q) at

node b is within
[
wb,W b

]
and trip i(p) arrives first at b. where M is a large con-

stant. Parameter M is a large number, we can bind it by the maximum difference of

arrival times for every pair of lines (i, j), j ∈ J(i) that synchronize at every node b,

that is, M = max

{
max

i,j∈J(i),b∈Bij

{(
T + tjb

)
− tib

}
, max
i,j∈J(i),b∈Bij

{(
T + tib

)
− tjb

}}
. Finally,

constraints (3.6) represent the domain of the decision variables.
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The previous MIP is an enhancement of the model proposed by Eranki [2004]. The

first modification to adapt Eranki’s model to Monterrey’s case is to redefine the synchro-

nization variables. We consider oriented synchronizations, i.e., trip i(p) synchronizes with

trip j(q) at node b if the arrival separation
(
Xj
q + tjb

)
-
(
X i
p + tib

)
is between wb and

W b. Therefore, Y ijb
pq models transfer from line i to line j and not vice verse. Since we

only seek trip separation in bus bunching nodes, we can model synchronization events in

these nodes as any directed transfer. We also add constraints (3.2) to achieve departure

dispersion along the planning period T . Finally, we consider the characteristics of almost

evenly spaced headway times using the flexibility parameter δi for each line i, i ∈ I.

3.3 Computational complexity of SBT

Computational complexity theory states that problems can vary in the effort required to

be solved them [e.g. Garey and Johnson, 1979]. An optimization problem that belongs to

the NP-hard class means, in simple terms, that an efficient algorithm for the exact solution

of this problem does not exist. Proving that a problem is NP-hard is important because

researchers are unlikely spend time searching for an efficient algorithm but instead seek

another options such as approximate solutions for large instances (as the ones we present

in Section 5).

In this study, we prove that SBT belongs to the NP-hard class. Studies of Ceder

et al. [2001] and Eranki [2004] remark on the intractability of closely related problems of

SBT with the help of empirical results. Nevertheless, the question whether these problems

were part of the NP-hard class was a 10-year-old open question. With our proof we also

guarantee that problems of Ceder et al. [2001] and Eranki [2004] are also NP-hard.

To prove that an optimization problem [P ] is NP-hard, we have to prove that its

decision version [DP ] is NP-complete. As it can be seen in Garey and Johnson [1979] and

Papadimitriou and Steiglitz [1998], there are basic steps to prove that a decision problem

[DP ] is NP-complete. These steps are the following.

1. Prove that problem [DP ] ∈ NP , i.e., the validity of a given solution can be verified

Omar Jorge Ibarra Rojas Graduate Program in System Engineering



Chapter 3. Synchronization Bus Timetabling Problem (SBT) 35

in polynomial time.

2. Exhibit a NP-complete problem [A] that can be polynomially reduced to [DP ]

(denoted as [A] ≺p [DP ]).

3. Prove the solution equivalence, i.e., the answer of an instance of problem [DP ] is

“YES” if and only if, the answer of the related instance of problem [A] is “YES”.

We propose a polynomial reduction from monotone NAE-3SAT, whose NP-

completeness is assured by Schaefer [1978], to the decision version of SBT called dSBT.

First of all, we present the decision versions of both problems.

Monotone NAE-3SAT:

INPUT: A set of r literals and a set {C1, C2, . . . , Cc} of c clauses. Each clause

has three different and unnegated variables. A clause is true if the values of

its literals are not all equal.

QUESTION: Is there an assignment of the literals values (false as 0 and true

as 1) such that the sentence φ = C1 ∧ · · · ∧ Cc is true?

An example is the sentence: φ = (x1 ∨ x2 ∨ x3)∧ (x4 ∨ x2 ∨ x3)∧ (x1 ∨ x4 ∨ x3) that

has a true value when x1 = x3 = 1 and x2 = x4 = 0.

Synchronization Bus Timetabling (dSBT):

INPUT: Planning period time T , set I of bus lines, set B of stops, sets Bij of

common nodes for each pair of lines (i, j) ∈ I × I, travel times tib from depot

of line i to each node b ∈ Bi, frequency vector f ∈ Z|I|+ , minimum headway

vector h ∈ R|I|, maximum headway vector H ∈ R|I|, minimum waiting time

vector w ∈ R|B|, maximum waiting time vector W ∈ R|B|, and a scalar K.

QUESTION: Are there any values for departure times variables X i
p ∈ R of

each trip p of line i ∈ I such that the first trip of each line i departs before

H i, the last trip of each line i departs after T −H i, separation times between
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consecutive trips of each line i are within [hi, H i], and the sum of pairwise

arrivals at synchronization nodes b with a separated time within [wb,W b] (sum

of synchronizations events) is greater or equal than K?

Next, we show the theorem of the complexity for dSBT.

Theorem 1. dSBT is NP-complete.

Proof. Claim 1. dSBT ∈ NP

Assume there exist an algorithm that generates a solution for dSBT. Determining if

the solution is feasible for dSBT implies several steps. Headway considerations represent

a quantity of inequalities of the order of the number of departure time variables, i.e.,

O (|X|), where X represent the set of departure time variables. On the other hand, verify

if the sum synchronization events is greater than or equal than K implies verify a number

of inequalities of the order of the trip pairs, i.e., O
(
|X|2

)
. In the basis of the above, we

need a polynomial number of steps to verify the feasibility of a solution for dSBT, i.e.,

dSBT ∈ NP.

Claim 2. Monotone NAE-3SAT ≺p dSBT

Consider an arbitrary instance of monotone NAE-3SAT with c clauses. We build a par-

ticular instance of dSBT, called dSBT ∗, as follows. We define a planning period of T = 1

minute; the number of lines as |I| = r (one line corresponds to each literal of monotone

NAE-3SAT); frequency f i = 1 for each line i; headway bounds hi = 0 and H i = 1 for each

line i; wb = W b = 0 for each synchronization node b. Notice that a synchronization event

is indeed defined as the simultaneous arrivals of two trips at a common node. Moreover,

by dSBT ∗ definition, there is not necessary to consider headway constraints (3.1)-(3.3).

The steps to define the synchronization nodes and arrival times are the following.

We make Bij = ∅ for all pair of lines (i, j) ∈ I × I. Then, for each clause Cl =

(xf ∨ xg ∨ xh), we do the following. First, we create six synchronization nodes labeled

as {bl1, bl2, . . . , bl6} and divide them between the sets of synchronization nodes of each
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pair of lines in clause Cl as Bfg = Bfg
⋃{bl1, bl2}, Bgh = Bgh

⋃{bl3, bl4}, and Bfh =

Bfh
⋃{bl5, bl6}. Next, we define the travel times from the depots to the synchronization

nodes using a reference time ol = 9(l − 1). Explicitly, tfbl1 = ol + 1 and tgbl1 = ol + 0, for

node bl1; tfbl2 = ol + 2 and tgbl2 = ol + 3, for node bl2; tgbl3 = ol + 4 and thbl3 = ol + 3, for

node bl3; tgbl4 = ol + 5 and thbl4 = ol + 6, for node bl4; tfbl5 = ol + 6 and thbl5 = ol + 7,

for node bl5; tfbl6 = ol + 9 and thbl6 = ol + 8, for node bl8. Finally, after create the

synchronization nodes and travel times related with each clause, we define K = 2c. This

reduction implies a number of steps bounded by the number of literals and the number

of clauses of monotone NAE-3SAT and the size of instance dSBT ∗ also depends on this

numbers.

By dSBT ∗ definition, each synchronization node b is related with two lines and the

travel times from the depot of these lines to node b are defined in such a way to have a

difference of 1 minute. Figure 3.4 shows the nodes and travel times related with the first

clause C1. There are three time lines and the quantities above the nodes represent the

arrival times at nodes when trips depart at reference time o1 = 9(1− 1) = 0. Notice that

the arrival times at these nodes are within a 9-min time window.

0

2

3

3

4

6

6

7

1 9

8

5

9time   0

line f

line g

line h

bl1 bl2 bl5 bl6

bl1 bl2 bl3 bl4

bl3 bl5 bl6bl4

Figure 3.4: Line design for the 9-minute time interval related to the first clause C1.

Moreover, if we assign the value of xi ∈ {0, 1} in monotone NAE-3SAT to the

variable X i in dSBT ∗, the following must be satisfied. If xi and xj are not equal in

monotone NAE-3SAT, X i 6= Xj and pair if lines (i, j ∈ J(i)) synchronize at one common

node. Figure 3.5 shows the cases of a true clause C1 = (xf ∨ xg ∨ xh) where the literal

xf has a different value than xg and xh. Dashed lines represents the synchronization

(simultaneous arrivals) of two lines in dSBT ∗. Indeed the synchronized pairs of lines are
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(f, g) and (f, h) since Xf 6= Xg and Xf 6= Xh.

1 4

4

5

7 8 9

6

2 61 9

9time 0

line f

line g

line h

bl1 bl2 bl5 bl6

bl1

bl3 bl4 bl5 bl6

bl3bl2 bl4

(a) (x f ∨ xg ∨ xh) = (0∨1∨1)

0 3

3

4

6 7 8

5

3 72 10

time 0 10

line f

line g

line h

bl1 bl2 bl5

bl1 bl2 bl3 bl4

bl3 bl4 bl5 bl6

bl6

(b) (x f ∨ xg ∨ xh) = (1∨0∨0)

Figure 3.5: True clause C1 = (xf , xg, xh) when literal xf is different than the other two.
The simultaneous arrivals at common nodes denoted with dashed lines correspond to the
pairs of lines (f, g) and (f, h) since Xf 6= Xg and Xf 6= Xh.

By definition of instance dSBT ∗, it has the following property.

Property 1. Every true clause Cl of monotone NAE-3SAT implies two synchroniza-

tions in instance dSBT ∗ and every false clause Cl′ of monotone NAE-3SAT implies zero

synchronizations in instance dSBT ∗.

Figure 3.6 shows the cases of a true clause Cl = (xf ∨ xg ∨ xh) on monotone NAE-

3SAT. For the dSBT ∗ instance, the nodes represent the bus lines and the dashed lines

represent the synchronizations.

Claim 3. Solution equivalence
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h

f

g g

f

h

f

g h

(1∨0∨1)(0∨1∨1)
(1∨0∨0)

(1∨1∨0)
(0∨0∨1)(0∨1∨0)

(x f ∨ xg ∨ xh)

Figure 3.6: Possible values for a true clause of monotone NAE-3SAT and the related pairs
of bus lines that are synchronized in instance dSBT ∗.

(⇒) Let x = (x1, . . . , xc) be a solution of the monotone NAE-3SAT problem with

a “YES” answer. Making X i = xi for each bus line i ∈ I in dSBT ∗ and by Property

1, each true clause implies two simultaneous arrivals. Therefore, the sum of pairwise

simultaneous arrivals is 2c = K, i.e., the answer for dSBT ∗ is “YES.”

(⇐) Let X = (X1, X2, . . . , Xr) be a solution of instance dSBT ∗, with a “YES”

answer. By Property 1, the sum of pairwise simultaneous arrivals is grater and equal

than K.

Now, suppose the solution for the related instance of monotone NAE-3SAT has a

“NO” answer, i.e., there is a false clause Cl′ in monotone NAE-3SAT. By Property 1, this

clause implies 0 simultaneous arrivals in dSBT ∗. Then, the sum of pairwise simultaneous

arrivals excluding pair of lines related to clause Cl′ is greater or equal than K which is a

contradiction since each clause in monotone NAE-3SAT implies at most two simultaneous

arrivals in dSBT ∗. Therefore, the solution for the instance of monotone NAE-3SAT has

a “YES” answer.

We have prove that dSBT is NP-complete and if a decision problem belongs to the

NP-complete class, the corresponding optimization problem belongs to the NP-hard class.

Thus, the following corollary is deduced.

Corollary 1. SBT is NP-hard.

Notice that our complexity proof do not depend on the nature of departure time

variables. Therefore, considering real or integer departure times, the computational com-

plexity remains. The concept of the previous polynomial reduction from monotone NAE-
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3SAT to dSBT can be used for the problems presented in Ceder et al. [2001] and Eranki

[2004] since the particular instance dSBT ∗ is precisely a subproblem of both timetabling

problems.

3.4 Preprocessing stage

The solution space of SBT has an interesting structure since there is a large number of

synchronization variables and many of them are zero. Moreover, there are many different

values for departure times variables leading to the same value of the objective function.

Our SBT MILP has a large feasible space and, as we show in this chapter, it is

difficult to obtain high quality feasible solutions in a reasonable amount of time using

the linear solver of CPLEX. Indeed in our SBT formulation, we define synchronization

variables Y ijb
pq for every trips i(p), j(q) with j ∈ J(i), and node b ∈ Bij. Nevertheless, it

is improbable that the first trip of line i could synchronize with the last trip of line j due

their departure time constraints (3.1) and (3.2). Figure 3.7 shows a typical structure of

the matrix formed by synchronization variables for the pair of lines (i, j) at some node

b where the element in pth row and qth column represents to variable Y ijb
pq . Zeros in the

matrix represent the variables forced to be zero. The variables between the curved lines

are the only ones whose values could be 1, i.e., they might satisfy the constraints of SBT.
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Figure 3.7: Typical structure of the matrix formed by the synchronization variables Y ijb
pq

related to the trips of the lines i and j ∈ J(i), and synchronization node b ∈ Bij.

Our preprocessing stage is based on feasible time windows for departures, arrivals,

and synchronizations. To obtain these feasible time windows we implement constraint

propagation which can be defined as a procedure embedding any reasoning that explicitly
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forbids values or combinations of values for some variables of a problem because a given

subset of its constraints cannot be satisfied otherwise [Bessiere, 2006]. As it is mentioned

by Barták [2001], constraint propagation can be used to solve fully the problem but this

is rarely done due to efficiency issues. It is more common to combine an efficient but

incomplete consistency techniques (that eliminate many “obvious” inconsistencies) with

a non deterministic search to simplify the problem and reduce the search space.

Our constraint propagation is based on headway parameters and constraints. For

example, assume the value for departure time X i
p has been set. We know that the headway

times should be within [hi, H i]. Thus, we can define a feasible departure time window Di
p′

for any other trip i(p′) such that p′ > p as Di
p′ =

[
X i
p + (p′ − p)hi, X i

p + (p′ − p)H i
]
. Anal-

ogously, for trips i(p′) such that p′ < p we set Di
p′ =

[
X i
p − (p− p′)H i, X i

p − (p− p′)hi
]
.

The more values of departure times are set, the more precise the departure time windows

is. If we do not have fixed values for the departure times, we can define Di
p for trip i(p)

using the bounds of departure time for the first and last trips given by constraints (3.1)

and (3.2), respectively. Procedure 1 shows the steps to obtain the Di
p using these bounds.

Procedure 1: Generate Di
p.

1. Suppose first trip departs at X i
1 = 0, calculate the earliest departure time for trip

i(p) given by earliest1 = (p− 1)hi.

2. Suppose first trip departs at X i
1 = H i, calculate the latest departure time for trip

i(p) given by latest1 = min {T, pH i}.

3. Suppose last trip departs at Xf i

p = T −H i, calculate the earliest departure time for

trip i(p) given by earliestf i = max {0, T − (f i − (p− 1))H i}.

4. Suppose last trip departs at Xf i

p = T , calculate the latest departure time for trip

i(p) given by latestf
i

= T − (f i − p)hi.

5. Define Di
p as [earliest1, latest1] ∩

[
earliestf i , latestf i

]
. Therefore, the departure

time window Di
p can be defined as follows.

[
max

{
(p− 1)hi, T −

(
f i − (p− 1)

)
H i
}
,min

{
pH i, T −

(
f i − p

)
hi
}]

(3.7)
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Figure 3.8 shows an example of the departure time window construction for trip

i(8). This example has a planning period of T = 30 minutes, a frequency of f i = 10, and

headway flexibility parameter of δi = 1 minute, i.e., hi = 2 and H i = 4. Figure 3.8 has

four time lines. First line shows the earliest departure time 7hi = 14 for the eighth trip,

assuming that first trip departs at X i
1 = 0 (step 1). Second time line shows the latest

departure time min {T, 8H i} = 30 for the eighth trip, assuming that first trip departs at

X i
1 = H i = 4 (step 2). Third line shows the earliest departure time max {0, 30− 3H i} =

18 for the eighth trip, assuming that the last trip departs at X i
f i = T − H i = 26 (step

3). Finally, fourth line shows the latest departure time T − 2hi = 26 of the eighth trip,

assuming that the last trip departs at X i
f i = T (step 4). Therefore, the intersection of

the earliest and latest departure times [max {14, 18} ,min {30, 26}] results in the feasible

departure time window Di
8 (see marked area of Figure 3.8).

3014

18

30

30

30

(1)

(2)

(2)

(1)
0

0

0

0

26

X i
8

X i
f i = 30

Di
8

X i
1 = 4

X i
8

X i
1 = 0

X i
f i = 26

X i
8

X i
8

Figure 3.8: Feasible departure time window Di
8 for trip of line i(8) corresponding to an

instance with a planning period T = 30 minutes, f i = 10, and δi = 1 minute.

By definition of window Di
p, it has an important property.

Property 2. Time window Di
p determines all the feasible departure time values of X i

p.

If we consider the departure time window Di
p of each trip i(p), we can define the

arrival time window Aibp for this trip at node b. We obtain Aibp by shifting Di
p by tib time

units. It can be expressed as

Aibp =
[
left(Di

p) + tib, right(Di
p) + tib

]
,
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where left(Di
p) and right(Di

p) represent lower and upper limit of time window Di
p, re-

spectively. Similarly, we define a synchronization window Sibp for each trip i(p) and node b

as

Sibp =
[
left(Aibp ) + wb, right(Aibp ) +W b

]
.

We can determine if synchronization between trips i(p) and j(q) is possible by look-

ing at synchronization time window of i(p) and arrival time window of j(q). We clarify

this idea with the following theorem.

Theorem 2. For any trips i(p), j(q), and any synchronization node b ∈ Bij of SBT,

Sibp
⋂
Ajbq = ∅, if and only if, Y ijb

pq is forced to be zero due feasibility, and constraints (3.4)

and (3.5) related to these indices are redundant.

Proof. (⇒) Let p and q be two trips of lines i and j, respectively, such that Sibp
⋂
Ajbq = ∅

for a synchronization node b. Now, suppose that Y ijb
pq = 1 is feasible.

By Property 2, there exist feasible values X
i

p ∈ Di
p and X

j

q ∈ Dj
q, such that Y ijb

pq = 1.

Then,
(
X
i

p + tib
)
∈ Aibp ,

(
X
j

q + tjb
)
∈ Ajbq and

[(
X
i

p + tib
)

+ wb,
(
X
i

p + tib
)

+W b
]
⊆ Sibp .

We have Y ijb
pq is feasible, therefore wb ≤

(
X
j

q + tjb
)
−
(
X
i

p + tib
)
≤ W b. Then,

(
X
j

q + tjb
)
∈
[(
X
i

p + tib
)

+ wb,
(
X
i

p + tib
)

+W b
]
⊆ Sibp .

Therefore, it follows that
(
X
j

q + tjb
)
∈ Sibp

⋂
Ajbq = ∅, which is a contradiction.

(⇐) Let p and q be two trips of lines i and j, respectively, such that Y ijb
pq must be

zero for a synchronization node b. Now, suppose Sibp
⋂
Ajbq 6= ∅. Then, there exists an

element a such that, a ∈ Ajbq and a ∈ Sibp .

By definition of window Ajbq , element a can be expressed as a =
(
X
j

q + tjb
)

, for

some feasible X
j

q ∈ Dj
q. By definition of window Sibp , element a can be expressed as
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a =
(
X
i

p + tib
)

+ γ, where wb ≤ γ ≤ W b, for some feasible X
i

p ∈ Di
p. Then,

(
X
j

q + tjb
)

=
(
X
i

p + tib
)

+ γ

⇒
(
X
j

q + tjb
)
−
(
X
i

p + tib
)

= γ

⇒ wb ≤
(
X
j

q + tjb
)
−
(
X
i

p + tib
)
≤ W b.

Therefore, Y ijb
pq = 1 is feasible since wb−M

(
1− Y ijb

pq

)
≤
(
X
j

q + tjb
)
−
(
X
i

p + tib
)
≤

W b +M
(
1− Y ijb

pq

)
, i.e., satisfies constraints (3.4) and (3.5) which is a contradiction.

Using Theorem 2, we can remove useless variables and constraints. The prepro-

cessing stage shown in Algorithm 1, calculates all the feasible departure, arrival, and

synchronization time windows for each trip. Then, it implements Theorem 2 to iden-

tify when the synchronization of two trips is impossible, in this case, its corresponding

synchronization variable and constraints of type (3.4) and (3.5) are eliminated.

Algorithm 1 : Preprocessing(SBT)

Input: SBT instance
Output: smaller formulation SBT’

1: for (i ∈ I, j ∈ J(i), p ∈ {1, . . . , f i}, q ∈ {1, . . . , f j} , and b ∈ Bij) do
2: Compute Aibp and Sjbq
3: if

(
Aibp
⋂
Sjbq = ∅

)
then

4: Eliminate variables Y ijb
pq and related constraints (3.4) and (3.5)

5: end if
6: end for

After the preprocessing stage, the new SBT’ formulation has considerably fewer

variables and constraints than the original SBT formulation. Therefore, performance of

the CPLEX’s linear solver can be improved.

3.4.1 Experimental Results

We present some preliminary results in Table 3.1 which shows the implementation of a

linear solver on SBT and SBT’ formulations using GAMS/CPLEX configured with default

options, except for execution time limited to 3 hours. We used a Sun Ray terminal
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connected to a Sun Fire V440 server with 4 Ultra SPARC III processors running at

1602 GHz, and fitted with 8 GB RAM. Each test instance has a planning period of

T = 200 minutes, 3 different lines, a frequency of f i = 20 for each line i, and one

synchronization node for pair of lines (1,2) and (1,3), and the same waiting time windows

for both nodes. Column one shows the minimum and maximum headway times. Column

two shows the waiting time window for all synchronization nodes b. Columns three and

five show the relative gap (difference between the best feasible solution and the best

upper bound obtained by CPLEX) for SBT and SBT’, respectively. Columns four and

six show the computational time needed by the linear solver of CPLEX to solve SBT

and SBT’, respectively. Finally, column seven shows the percentage of synchronization

variables and constraints eliminated from SBT to obtain SBT’. We do not specify the

computational time of the preprocessing stage since it is negligible (less than one second

for all experiments in this study).

SBT SBT’
[hi, H i]

[
wb,W b

]
gap Time (sec) gap Time (sec) % reduction

[9,11] [3,5] 0% 694 0% 72 79%
[8,12] [3,5] 108.4% 10800 11% 10800 69%
[5,15] [3,5] 410.5% 10800 66% 10800 44%
[9,11] [1,8] 35 % 10800 6.5% 10800 77%

Table 3.1: Results of solving small instances of SBT and SBT’ using CPLEX’s solver.

Note that even for small instances presented in Table 3.1, the formulations are

sensitive to large headway flexibility parameters (rows 2 and 3). Although, the variation

in waiting time windows also generates difficult instances (row 4), the formulations are not

as sensitive as they are in headway time variations. This behavior is also present in larger

instances of the problem. However, note that in some instances that are difficult to solve

(rows 2–4), there are high levels of eliminated variables using the preprocessing stage. The

new SBT’ formulation has at least 44% fewer synchronization variables and constraints

than the SBT formulation. This behavior is also present in larger instances. In particular,

we see high percentage levels of eliminated variables for instances with small headway

flexibility parameters

(
δi(
T

fi

) ≤ 0.30

)
. Therefore, the gap of the solutions obtained using

SBT’ formulation are improved. However, there are still large gaps inclusive in small

Omar Jorge Ibarra Rojas Graduate Program in System Engineering



Chapter 3. Synchronization Bus Timetabling Problem (SBT) 46

instances.

Although the constraint propagation is used to define our preprocessing stage, it can

be also used to define solution algorithms since it give us information about the feasible

space and potential synchronizations. Particularly, Section 4 present several families of

valid inequalities to remove fractional solutions and obtain high quality solutions for SBT.

One of these inequalities is based on Theorem 2. Moreover, Section 5 present several

metaheuristic algorithms which use our constraint propagation to obtain high quality

solutions for SBT and multiple period timetabling problems.

3.5 Chapter conclusions

In this chapter, we addressed Monterrey’s bus network. This network is composed of

several private companies and the government does not have a strong influence in the

operation of the bus lines. We focus on timetables generation meant for companies, while

passengers only have knowledge of an estimated frequency. We address two main issues

at some stops of the network: avoid bus bunching of different lines and allow well timed

passenger transfer. Bus network planners in Monterrey do not have access to real-time

optimization tools. Therefore, one sought to optimize the performance of the whole bus

network by controlling the departure time of the buses in the planning stage.

We propose a new formulation for the Synchronization Bus Timetabling Problem

(SBT) that is sufficiently flexible to model Monterrey bus network. We prove that SBT is

NP-hard, and this complexity proof also ensures the NP-hardness of problems presented

in Ceder et al. [2001] and Eranki [2004]. Moreover, we identify that flexibility given by

headway bounds is directly responsible for the intractability of the problem and also for

the presence of multiple optimal solution. We find a special structure of the solution space

of SBT, which gives us the possibility to identify and remove many decision variables and

constraints using a preprocessing stage. Although this preprocessing stage improves the

performance of CPLEXÂ´s linear solver, the intractability of small instances remains.

Obtaining a fast solution algorithm is beneficial to the planner in real-life transit net-
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works since re-optimization is needed, for example, to improve the quality of a timetable

considering other subproblems of the entire planning process. In this chapter we present

a simple idea based in constraint propagation concept to define the preprocessing stage.

However, the main idea could be used to define and explore the feasible solution space in

several exact and metaheuristic solution approaches.
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Valid inequalities for SBT

Summary: Since our problem is relatively new, it is difficult to find ac-
curate solution approaches. Indeed, exact solutions is a concern for most
of the timetabling problems (different than the periodic case) which are
often solved by heuristic algorithms. In our case, several of the ideas
that we consider as good, were useless. However, the simple idea of
our preprocessing stage is the the first step to develop efficient solution
approaches. Pierre Fouilhoux and Safia Kedad-Sidhoum from the Lab-
oratoire d’ Informatique de Paris 6 make a vital collaboration to obtain
the results presented in this chapter.

“It was like walking in a dark room. But step
by step, we found some light.”

4.1 Exact approaches

Some closely related problems on transport networks have been studied using integer

programming approaches. We can quote the scholar bus scheduling problem introduced in

Fügenschuh [2009] where starting times of schools and starting times of scholar buses must

be synchronized to minimize the number of vehicles to transport all students. The authors

develop different families of valid inequalities leading to a branch-and-cut algorithm. In

Quadrifoglio et al. [2008], the authors optimize a weighted objective function based on

vehicle resources and quality service for a transport network. They define logic constraints

to reduce the feasible space which allows to reduce up to 90% of the CPU time when

these cuts are added at the beginning of a branch-and-bound algorithm. In railway

systems, timetabling problems have been extensively studied using integer programming
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techniques. In particular, the periodic timetabling case has special structure (not present

in SBT) that favors the design of valid inequalities commonly implemented in branch-

and-cut algorithms [Caimi et al., 2011, Giesemann, 2002, Liebchen, 2004, 2007, Liebchen

and Möhring, 2002, 2007, Schröder and Solchenbach, 2006]. Unfortunately, timetabling

problems in urban transport networks do not share the structure of periodic timetabling

and a diversity of solution algorithms is developed. A comprehensive review can be found

in Guihaire and Hao [2008b].

An inequality is said to be valid for a MIP formulation if every solution of the MIP

formulation satisfies this inequality. Consequently, a valid inequality can be added to

a MIP in order to obtain a stronger formulation. Our main contributions are to define

four families of valid inequalities that will be used for the SBT. The first two families of

valid inequalities bound the number of possible synchronizations that can occur at a node

for a specific trip. The two other families are obtained from the previous ones using a

generic lifting procedure. Additionally, some inequalities of the SBT MIP formulation are

tightened by lowering some coefficients. We solve the enhanced SBT MIP with a standard

linear solver (CPLEX 12.3). Optimal solutions for most of the real size instances are found.

For all the instances, solutions with less than 3% of deviation from the optimum are found

in less than five minutes.

The rest of this chapter is organized as follows. We enhance the BTP MIP with our

proposed valid inequalities defined in Section 4.2. A generic lifting procedure is introduced

in Section 4.3 and is applied in order to produce another two families of valid inequalities.

Section 4.4 presents a way to tighten some inequalities. Experimental results for instances

based on a real transit network are presented in Section 4.5 where we show the impact

of some combination of the valid inequalities families. Finally, chapter conclusions and

future research areas are addressed in Section 4.6.
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4.2 Valid Inequalities

An alternative to obtain tighter formulations for the SBT consists in adding valid in-

equalities to SBT MIP before its resolution by a linear programming solver. In fact,

adding valid inequalities permits to cut fractional solutions of the linear relaxations of

integer programs or to cut non-optimal feasible solutions Wolsey [1998], Nemhauser and

Wolsey [1999]. In the following, we introduce two families of valid inequalities for the

synchronization bus timetabling problem obtained from the headway parameters and the

propagation of constraints (3.1), (3.2), and (3.3).

4.2.1 Synchronization inequalities

We can take advantage of the headway parameters to define a family of valid inequalities

for each trip to be synchronized. Let us consider two lines i and j to be synchronized at a

given node b such that the minimum headway time hj of line j is greater than the length

of the waiting time window of node b, i.e., hj > W b−wb. If a trip i(p) synchronizes with

another trip j(q), the synchronization of i(p) with trips j(q − 1) or j(q + 1) is impossible

since there would not be enough time units to ensure feasibility. Generalizing the previous

idea, we obtain the following result.

Let i, j be two distinct lines with j ∈ I(i) and b ∈ Bij, the maximum number of

synchronizations between one trip of line i and all the trips of line j is 1 +

⌊
W b − wb

hj

⌋
.

Proof. Let us suppose that there exists a feasible solution (X̃, Ỹ ) of SBT and a trip i(p)

such that there exist r > 1 +
⌊
W b−wb
hj

⌋
trips q1 < q2 < · · · < qr of line j that may synchro-

nize with trip i(p). We will show that it is impossible to schedule these synchronized trips

because of the imposed minimal headways between trips. Thus, the arrival times of these

trips are within the feasible synchronization time window
[
X̃ i
p + tib + wb, X̃ i

p + tib +W b
]
.

Therefore, the difference between the arrival times X̃j
qr + tib and X̃j

q1
+ tib of trips j(q1)

and j(qr) must be less than W b − wb, consequently we obtain X̃j
qr − X̃j

q1
≤ W b − wb.

However, since solution (X̃, Ỹ ) corresponds to a regularly spaced schedule, we have that
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X̃j
ql+1
− X̃j

ql
≥ hj. We then have

X̃j
qr − X̃j

q1
≥ (r − 1)hj ≥

(
1 +

⌊
W b − wb

hj

⌋)
hj>

(
1 +

(
W b − wb

hj
− 1

))
hj = W b − wb

which is a contradiction.

Using Lemma 4.2.1, we derive the following inequalities that will be called synchro-

nization inequalities.

fj∑

q=1

Y ijb
pq ≤ 1 +

⌊
W b − wb

hj

⌋
∀i ∈ I, j ∈ I(i), b ∈ Bij,∀p ∈ {1, . . . , f i} (4.1)

f i∑

p=1

Y ijb
pq ≤ 1 +

⌊
W b − wb

hi

⌋
∀i ∈ I, j ∈ I(i), b ∈ Bij,∀q ∈ {1, . . . , f j} (4.2)

Let us consider two lines i, j with j ∈ I(i), a node b ∈ Bij, and a trip i(p). Given a solution

(X̃, Ỹ ) of SBT, we can remark that
fj∑
q=1

Ỹ ijb
pq is exactly the number of synchronization

between trips of line j and trip i(p) at node b. Consequently, we have the following

theorem.

Theorem 3. Synchronization inequalities (4.1) and (4.2) are valid for the SBT MIP.

4.2.2 Headway inequalities

Using similar ideas, we can devise the following class of inequalities.

Y ijb
pq +

fj∑

q′=q+1

Y ijb
pq′ +

f i∑

p′=p+1

Y ijb
p′q ≤ 1 +

⌊
W b − wb

min(hi, hj)

⌋ ∀ i ∈ I, j ∈ I(i), b ∈ Bij,

p ∈ {1, . . . , f i}, q ∈ {1, . . . , f j}
(4.3)

Y ijb
pq +

q−1∑

q′=1

Y ijb
pq′ +

p−1∑

p′=1

Y ijb
p′q ≤ 1 +

⌊
W b − wb

min(hi, hj)

⌋ ∀ i ∈ I, j ∈ I(i), b ∈ Bij,

p ∈ {1, . . . , f i}, q ∈ {1, . . . , f j}.
(4.4)

We will denote these inequalities as headway inequalities as they depend on the value of

the desired mininimum headway between trips. We then have the following result.
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Theorem 4. Headway inequalities (4.3) and (4.4) are valid for the SBT MIP.

Proof. We will consider an inequality (4.3) corresponding to the two trips i(p), j(q) and

a node b ∈ Bij (the proof for inequalities (4.4) is analogous). Let (X̃, Ỹ ) be a feasible

solution of SBT. We consider the two quantities c and r defined as follows

r =

fj∑

q′=q+1

Ỹ ijb
pq′ and c =

f i∑

p′=p+1

Ỹ ijb
p′q .

If r = 0 then from inequality (4.2) we know that

Ỹ ijb
pq + c ≤

f i∑

p′=1

Ỹ ijb
p′q ≤ 1 +

⌊
W b − wb

hi

⌋
≤ 1 +

⌊
W b − wb

min(hi, hj)

⌋
.

Similarly, if c = 0, from inequality (4.1), we obtain that

Ỹ ijb
pq + r ≤

fj∑

q′=1

Ỹ ijb
pq′ ≤ 1 +

⌊
W b − wb

hj

⌋
≤ 1 +

⌊
W b − wb

min(hi, hj)

⌋
.

Let us now suppose that both r ≥ 1 and c ≥ 1. Since r ≥ 1 trip i(p) synchronizes

with r trips among trips q + 1, ..., f j of line j. Let q′ be the first of these trips that is

synchronized with i(p). Consequently, arrival times of trips q′, q′ + 1, ..., q′ + (r − 1) at

node b are within the time window
[
X̃ i
p + tib + wb, X̃ i

p + tib +W b
]
. Since the minimal

headway between two trips of line j is hj, the arrival time of trip j(q′) at node b satisfies

X̃j
q′ + tjb ≤ X̃ i

p + tib +W b − (r − 1)hj. Since X̃j
q+1 ≤ X̃j

q′ , we finally obtain

X̃j
q+1 + tjb ≤ X̃ i

p + tib +W b − (r − 1)hj.

Similarly, since c ≥ 1 there are c trips among p+ 1, ..., f i of line i that synchronizes

with j(q). Let p′ be the last of these trips that synchronized with j(q). thus we know that

X̃j
q + tjb ≥ X̃ i

p′ + tib + wb. Moreover, since trips p′ − (c − 1), ..., p′ are synchronized with

j(q) and because of the imposed minimum headways of line i, we know that X̃j
q + tjb ≥

X̃ i
p′−(c−1) + tib + wb + (c− 1)hi. Since X̃ i

p′−(c−1) ≥ X̃ i
p+1, we finally obtain
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X̃j
q + tjb ≥ X̃ i

p+1 + tib + wb + (c− 1)hi.

Because of the minimum headway between trips of line j, we then get

hj ≤ (X̃j
q+1 + tjb)− (X̃j

q + tjb) ≤ X̃ i
p − X̃ i

p+1 +W b − wb − (r − 1)hj − (c− 1)hi.

Because of the minimum headway between trips i(p) and i(p+ 1), we have X̃ i
p+1 −

X̃ i
p ≥ hi. Then, we obtain

hj ≤ −hi +W b − wb − (r − 1)hj − (c− 1)hi,

which then becomes

rhj + chi ≤ W b − wb.

W.l.o.g. we can suppose that hj ≤ hi. We then obtain

r + c ≤ r + c
hi

hj
≤ W b − wb

hj
.

Thus we obtain

Ỹ ijb
pq + r + c ≤ 1 +

W b − wb
hj

,

which proves the validity of inequality (4.3).

4.3 Lifting procedure

In this section, we present a generic lifting method that permits to compute new valid

inequalities from the previous ones. The synchronization and headway inequalities intro-

duced in Sections 4.2.1 and 4.2.2, respectively, use synchronization variables of a specific

pair of lines (i, j) to be synchronized. Then, the main idea of our proposed lifted inequal-

ities is to use the relation between synchronization variables belonging to different pair of
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lines (i, j) and (i0, j0).

Let us first introduce a useful notation. Let ξ be the set of all 5-tuples (i, j, p, q, b)

with i ∈ I, j ∈ I(i), p ∈ {1, ..., f i}, q ∈ {1, ..., f j} and b ∈ Bij. Notice that set ξ is

in a one-to-one correspondence with the set of Y ’s variables, that is to say, each 5-tuple

(i, j, p, q, b) ∈ ξ corresponds to a potential synchronization between trips i(p) and j(q) at

node b so that trip i(p) arrives first at node b.

Let us consider the following inequality:

∑

(i,j,p,q,b)∈E

Y ijb
pq ≤ γ (4.5)

where E ⊂ ξ and γ is an upper bound over the number of synchronizations in E. The

inequalities of type (4.5) are clearly valid. We note that synchronization and headway

inequalities belong to this class.

Given (i0, j0, p0, q0, b0) ∈ ξ, we define Ei0j0b0
p0q0

as the set of 5-tuples (i, j, p, q, b) of E

so that trips i(p) and j(q) cannot be synchronized at node b if trips i0(p0) and j0(q0) are

synchronized at node b0 and trip i0(p0) arrives first at node b0, that is to say that, for a

given solution (X̃, Ỹ ) of SBT MIP, Ỹ i0j0b0
p0q0

= 1 implies Ỹ ijb
pq = 0 for all (i, j, p, q, b) ∈ Ei0j0b0

p0q0
.

Then inequality (4.5) can be lifted to create the following inequality

∑

(i,j,p,q,b)∈E∩Ei0j0b0p0q0

Y ijb
pq ≤ γ

(
1− Y i0j0b0

p0q0

)
(4.6)

which is clearly valid. In the following, we present a generic lifting procedure to ob-

tain inequalities of type (4.6). This procedure will be applied to both synchronization

and headway inequalities in order to obtain lifted synchronization inequalities and lifted

headway inequalities.

In order to compute the lifted inequalities, given a 5-tuple (i, j, p, q, b), we will need

to find a list of 5-tuples that can not be synchronized if (i, j, p, q, b) is synchronized.

To achieve this, we will compare the feasible departure time window of the potentially

synchronized trips, that is to say the time window during which a trip has to start.
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The feasible departure time windows Di
p shown in Section 3.4 constitutes a generic

feasible departure time window. As it will turn out, when two trips synchronize, it

will be possible to tighten this window. This can be done using logical inferences that

are given by Theorem 2. Indeed, Theorem 2 ensures that Let (i, j, p, q, b) ∈ ξ and Di
p

(resp. Dj
q) be a feasible departure time window of trip i(p) (resp. j(q)). By setting

[α, β] =
[
left(Di

p) + tib + wb, right(Di
p) + tib +W b

]
∩
[
left(Dj

q) + tjb, right(Dj
q) + tjb

]
, we

obtain that (i, j, p, q, b) is synchronized with trip i(p) arriving first at b if and only if

[α, β] 6= ∅. In this case, [α − tjb, β − tjb] is a tighter feasible departure time window for

trip j(q) and Di
p ∩ [α−W b− tjb, β −wb− tjb] is a tighter feasible departure time window

for trip i(p).

Knowing a tighter feasible departure time window Di
p for a given trip i(p), it is easy

to infer tighter departure time window Di
p′ , for all trips p′ 6= p. This can be done using

the following procedure Propagate(Di
p).

Algorithm 2 Propagate(Di
p)

1: for p′ = 1 to p− 1 do
2: Di

p′ := Di
p′ ∩

[
left(Di

p) + (p′ − p)hi, right(Di
p) + (p′ − p)H i

]

3: end for
4: for p′ = p+ 1 to f i do
5: Di

p′ := Di
p′ ∩

[
left(Di

p)− (p− p′)H i, right(Di
p)− (p− p′)hi

]

6: end for

Algorithm 3, called Generic Lifting, shows the steps to generate lifted inequalities.

The general idea to obtain these inequalities is to consider a 5-tuple (i0, j0, p0, q0, b0) ∈ ξ
and see what implications arise if the corresponding synchronization is set, that is to

say when Y i0j0b0
p0q0

= 1. Step 2 consists in computing the initial feasible departure time

windows Di
p. Then, assuming that (i0, j0, p0, q0, b0) is synchronized at node b, we compute

tighter feasible departure time windows Di0
p0

and Dj0
q0

(Steps 3–5) using Theorem 2. Using

procedure Propagate, we then update the departure time windows for the rest of the

trips of lines i0 and j0 (Step 6). We then apply a specific procedure for every inequalities
∑

(i,j,p,q,b)∈E Y
ijb
pq ≤ γ of type (4.5): we determine a set E ′ of 5-tuples (i, j, p, q, b) of E

that cannot be synchronized and we then can create the corresponding lifted inequalities.

Unfortunately, these last Steps 7-9 must be dedicated to each of the two considered type
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of inequalities in order to consider sets E ′ with known upper bounds. In fact, lines 7-10

have to be replaced by Algorithm 5 for synchronization inequalities and Algorithm 6 for

headway inequalities.

Algorithm 3 Generic Lifting
1: for each (i0, j0, p0, q0, b0) ∈ ξ do
2: Compute generic Di

p for every trip i(p)

3: [α, β] :=
[
left(Di0

p0) + ti0b0 + wb0 , right(Di0
p0) + ti0b0 +W b0

]
∩[

left(Dj0
q0) + tj0b0 , right(Dj0

q0) + tj0b0
]

4: Dj0
q0 := [α− tj0b0 , β − tj0b0 ]

5: Di0
p0 := Di0

p0b0
∩ [α−W b0 − tj0b0 , β − wb0 − tj0b0 ]

6: Propagate(Di0
p0) and Propagate(D

j0
q0)

7: for each inequality of type (4.5)
∑

(i,j,p,q,b)∈E Y
ijb
pq ≤ γ do

8: Find a set E′ of 5-tuples (i, j, p, q, b) of E that cannot be synchronized

9: Create inequality
∑

(i,j,p,q,b)∈E′ Y
ijb
pq ≤ γ

(
1− Y i0j0b0

p0q0

)

10: end for
11: end for

In order to find which trips cannot be synchronized, we introduce another procedure

(Algorithm 4), called Test synchronization. This procedure determines if trip i(p) cannot

be synchronized with trip j(q) due to the fact that (i0, j0, p0, q0, b0) is synchronized. Using

Theorem 2, lines 2-5 tests if (i, j, p, q, b) is a potential synchronization and then, if this

synchronization becomes impossible after the update of the departure time windows.

Algorithm 4 Test synchronization(i, j, p, q, b)

1: [α, β] :=
[
left(Di

p) + tib + wb, right(Di
p) + tib +W b

]
∩[

left(Dj
q) + tjb, right(Dj

q) + tjb
]

2: if ([α, β] 6= ∅) then
3: Dj

q := [α− tjb, β − tjb]
4: Di

p := Di
p ∩ [α−W b − tjb, β − wb − tjb]

5: if
[
left(Di

p) + tib + wb, right(Di
p) + tib +W b

]
∩
[
left(Dj

q) + tjb, right(Dj
q) + tjb

]
=

∅ then
6: Return False
7: end if
8: end if
9: Return True

By assuming a variable Y i0j0b0
p0q0

= 1, the lifted inequalities find affected synchroniza-

tion variables of other pair of lines (i, j) 6= (i0, j0) to be synchronized. For creating lifted

synchronization inequalities using (4.1), Algorithm 5 enumerates every synchronization
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inequality of type (4.1) which can be affected by the modification of lines i0 and j0 (Steps

1-4). Remark that each of these inequalities is associated to a 4-tuple (i, j, p, b) (Steps

1-2). Each potential trip q is then tested by Algorithm 4 to know if (i, j, p, q, b) becomes

impossible and we then create a lifted synchronization inequality from the set E ′ which

represents the set of impossible synchronizations.

Algorithm 5 Create lifted synchronization inequalities using (4.1)

1: if ({i, j} ∩ {i0, j0} 6= ∅ and (i, j, b) 6= (i0, j0, b0)) then
2: for (p = 1 to f i) do
3: E ′ := ∅
4: for (q = 1 to f j) do
5: if Test synchronization(i, j, p, q, b)= False then
6: E ′ := E ′ ∪ {(i, j, p, q, b)}
7: end if
8: end for
9: Create

∑
(i,j,p,q,b)∈E′

Y ijb
pq ≤

(
1 +

⌊
W b−wb
hj

⌋)(
1− Y i0j0b0

p0jq0

)

10: end for
11: end if

The procedure to generate lifted synchronization inequalities using (4.2), is analo-

gous to Algorithm 5. Using similar ideas, Algorithm 6 enumerates headway inequalities

(4.3) and computes for each of them a lifted headway inequality and the procedure to

generate lifted headway inequalities using (4.4), is analogous to Algorithm 6.

4.4 Tightening inequalities (3.4) and (3.5)

An important aspect in integer programming is to compute tight parameters to reduce

the computational time of solving the linear relaxation of integer programs. In a similar

way that we use feasible departure, arrival, and synchronization time windows to define

lifting inequalities, we can use them to bound big M parameters for constraints (3.4) and

(3.5) of the SBT MIP.

We can recall that the earliest arrival time of trip j(q) at node b is left(Dj
q)+tjb and

the latest arrival time of trip i(p) at node b is right(Di
p) + tib. Therefore, the minimum

difference of arrival times between trips j(q) and i(p) at node b is right(Di
p) + tib −
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Algorithm 6 Create lifted headway inequalities using (4.3)

1: if ({i, j} ∩ {i0, j0} 6= ∅ and (i, j, b) 6= (i0, j0, b0)) then
2: for (p = 1 to f i and q = 1 to f j) do
3: E ′ := ∅
4: for (q′ ≥ q to f j) do
5: if Test synchronization(i, j, p, q′, b)= False then
6: E ′ := E ′ ∪ {(i, j, p, q′, b)}
7: end if
8: end for
9: for (p′ > p to f i) do

10: if Test synchronization(i, j, p′, q, b)= False then
11: E ′ := E ′ ∪ {(i, j, p′, q, b)}
12: end if
13: end for
14: Create

∑
(i,j,p,q,b)∈E′

Y ijb
pq ≤

(
1 +

⌊
W b−wb

min(hi,hj)

⌋) (
1− Y i0j0b0

p0q0

)

15: end for
16: end if

left(Dj
q)− tjb. Consequently, given a solution (X̃, Ỹ ) of SBT MIP, we know that

(
X̃j
qb + tjb

)
−
(
X̃ i
pb + tib

)
≥ right(Di

p) + tib − left(Dj
q)− tjb.

Similarly, we can remark that the maximum difference of arrival times between trips

j(q) and i(p) at node b satisfies the following inequality.

(
X̃j
qb + tjb

)
−
(
X̃ i
pb + tib

)
≤ right(Dj

q) + tjb − left(Di
p)− tjb.

In the basis of the above, for the given Constraints (3.4) and (3.5) corresponding

to (i, j, p, q, b) ∈ ξ, we can replace M by mijb
pq = right(Di

p) + tib − left(Dj
q) − tjb and

M ijb
pq = right(Dj

q) + tjb − left(Di
p)− tjb.

4.5 Experimental Results

To perform the experimental analysis, we use solver CPLEX 12.3 on a iMac OS X with an

Intel Core 2 Duo 3.06 GHz processor and 4 GB RAM. We design an instances generator
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based on information provided by a company of Monterrey’s transit network. The next

section show the different types of instances.

4.5.1 Instances

The instances size is determined by the number of lines |I|, the number of synchronization

nodes |B|, and the flexibility parameter δi which is responsible of the size of the feasible

solution space of the departure time variables. As it is mentioned in Section 3.4, the

larger the flexibility δi is, the harder is the instance. The name of the instance types and

their parameters are summarized in Table 4.1.

Instance T1 T2 T3 T4 T5 T6 T7 T8 T9
|I| 15 15 40 40 100 100 200 200 200
|B| 3 3 8 8 20 20 40 40 150
δi(
T

fi

) ∈ [.10,.20] [.25,.35] [.10,.20] [.25,.35] [.10,.20] [.25,.35] [.10,.20] [.25,.35] [.25,.35]

Table 4.1: Instance types and their parameter values. For each instance type, 10 instances
were generated.

All the instance types have the following common characteristics: a planning period

of T = 240 minutes; the frequency f i for each line i is randomly generated between

[13,18]; the travel time tib from depot to synchronization node b for each line i is between

[20,60]; the minimum (maximum) waiting time for each synchronization node b is within

[3,5] ([9,12]); finally, the number of different pairs of lines to synchronize at each node b

is between 1 and 7. We randomly generate ten instances for each one of the nine instance

types (a total of 90 instances) to analyze the algorithm performance. Notice that instances

of type T9 have a large number of synchronization nodes. In fact, we use these instances

to reach the limits of our solution approach.

The computational effort to generate the valid inequalities for SBT MIP is negligible

(less than one second) for all type of instances. Therefore, we measure the execution

time of CPLEX 12.3 for solving the SBT MIP using different combinations of the valid

inequalities proposed in this work.
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4.5.2 Solve to optimality

To find optimal solutions for SBT, we use CPLEX’s solver with default options, except

for the gap (relative deviation from the best feasible solution and the best upper bound)

that is set to 0% and limited to one hour of execution time. As we mentioned before,

we have ten instances for each instance type. Then, for each instance type we show the

mean gap (gap), mean time (time), and their standard deviation denoted as gap dev and

time dev, respectively.

We implement all the possible combination of valid inequalities, but we present only

the relevant results in Table 4.2 while details of all the experiments can be found in http:

//yalma.fime.uanl.mx/~yasmin/Yasmin_Rios-Solis/Instances.html. The labels for

block of rows in Table 4.2 represent the families of valid inequalities used to strength SBT

MIP before the execution of CPLEX. In the first block of rows, we can see that the

original formulation of SBT presented is intractable. A remarkable difference arises when

one family of valid inequalities is added to SBT. Individually, headway inequalities (4.3)-

(4.4) (second block of rows) are the ones that lead to the best results. However, we

can combine different families of valid inequalities to obtain better results than using a

single family. In this case, combination of synchronization inequalities (4.1)-(4.2) and

headway inequalities (4.3)-(4.4) (third block of rows) leads to the best results considering

both gap and time for instance types T2, T6, and T9. Moreover, adding lifted headway

inequalities (fourth block of rows) leads to the best results considering both gap and time

for instance types T4 and T8. Lifted synchronization inequalities seem to be the weakest.

In particular, the convergence of CPLEX is slower using all families of valid inequalities

(fifth block of rows). For example, we do not find feasible solutions for instances of type

T9 in an hour of computational time.
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T1 T2 T3 T4 T5 T6 T7 T8 T9

n
o
n
e

gap(%) 47.87 154.75 68.40 174.01 60.92 181.14 153.29 288.76 557.56
gap dev 23.66 32.14 14.61 5.62 20.99 14.81 27.18 50.00 18.81
time 3600 3600 3600 3600 3600 3600 3600 3600 3600

time dev 0.82 0.72 0.87 0.72 0.73 1.84 2.16 0.62 0.77

(4
.3
)-
(4
.4
) gap(%) 0 0.12 0.26 0 0.38 0 0.07 0.01 42.99

gap dev 0 0.37 0.81 0 0.52 0 0.13 0.03 10.45
time 10.04 362.31 419.08 15.23 2857.61 74.68 1935.55 696.22 3600

time dev 21.86 1138.46 1119.7 26.22 1305.87 51.128 1499.74 1109.73 2.61

(4
.1
)-
(4
.4
) gap(%) 0 0 0.21 0 0.51 0 0.07 0.01 35.81

gap dev 0 0 0.66 0 0.62 0 0.15 0.02 12.81
time 14.38 187.28 434.14 8.15 2729.5 72.25 1992.97 681.33 3600

time dev 27.40 582.30 1115.27 9.121 1387.95 63.075 1488.22 1055.17 2.66

(4
.1
)-
(4
.4
)

li
ft

(4
.3
)-
(4
.4
) gap(%) 0 0.14 0.20 0 0.45 0 0.34 0.01 37.22

gap dev 0 0.43 0.63 0 0.54 0 0.64 0.03 12.36
time 16.38 363.32 460.93 7.58 2743.91 77.45 2001.99 665.40 3600

time dev 39.87 1137.67 1114.64 6.34 1405.92 92.98 1222.56 1060.84 0

a
ll

gap(%) 0 0.15 0.23 0 0.67 0 0.15 0.09 -
gap dev 0 0.49 0.74 0 0.64 0 0.22 0.27 -
time 28.55 369.68 487.57 32.28 3156.04 438.27 3153.94 1798.79 3600

time dev 57.39 1135.89 1099.53 37.44 1078.94 466.16 747.79 1263.53 0

Table 4.2: Results for the instance types T1-T9 using the linear solver of CPLEX 12.3
and different combinations of our proposed families of valid inequalities. Each value is the
mean or deviation for the execution time or gap considering 10 instances of each type.

Obviously, there are limitations of our solution approach. For example, instances of

type T9 cannot be solved using our proposed valid inequalities and CPLEX 12.3. However,

to the best of our knowledge, an extremely large number of synchronization nodes (as in

the instances T9) is not considered in real transit networks like the one in Monterrey,

Mexico.

Considering all experiments, a large number of the instances were solved optimally

using at least one family of valid inequalities. Moreover, non-optimal mean gaps in Table

4.2 of each specific instance type represent the existence of some particularly complex

instance where the execution of CPLEX reaches the time limit. Another important result

is the fast convergence of CPLEX to small gaps using our proposed valid inequalities.

Particularly, most of the instances converge to gaps less than 3% in less than one minute.

Therefore, we can use a small gap limit for CPLEX to obtain high quality solutions in

seconds. To the best of our knowledge, these are the best results for the synchronization

bus timetabling problem.
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4.5.3 Solve till 3% of gap

To show the fast convergence of the CPLEX using the proposed valid inequalities, we

implement inequalities (4.1)-(4.4) for instances T1-T8 using a stop criterion of 3% of

relative gap. Table 4.3 show the numerical results.

T1 T2 T3 T4 T5 T6 T7 T8

gap 1.938% 1.275% 2.557% 0.849% 2.108% 1.238% 1.738% 1.729%
gap dev 1.142 0.989 0.440 0.571 0.553 0.869 0.428 0.750
time 1.733 2.981 334.509 4.47 41.917 18.623 91.245 85.485

time dev 0.952 3.270 1040.41 3.958 31.510 9.941 75.568 64.206

Table 4.3: Results of solving instance types T1-T8 implementing inequalities (4.1)-(4.4)
and CPLEX 12.3 with a stop criterion of 3% of relative gap.

Notice than our exact approach has a fast convergence to high quality solutions for

instances T1-T9 of SBT. In summary, we obtain high quality solutions for most of the

instances in a reasonable time (less than one hour) implementing our proposed solution

approach. Moreover, we can use a specific stop criterion such as a small time or gap

limit to obtain high quality solutions in short execution times. These characteristics are

very important since recalculation of timetables is usually needed to obtain a solution

of the entire transit network planning problem. Therefore, this study presents a tool for

planners to improve the quality and efficiency of the whole transportation process.

4.6 Chapter conclusions

We define an exact solution approach for the NP-hard Synchronization Bus Timetabling

problem (SBT). This problem determines regular spaced departure time for all the trips of

each line to allow well timed passenger transfers and avoid bus bunching between different

bus lines. The flexibility in the SBT given by headway bounds (instead of a fixed headway)

allow us to define different families of valid inequalities to tighten the SBT MIP.

Our solution approach is strength the SBT MIP using our proposed valid inequalities

and implement the linear solver of CPLEX 12.3. Numerical results show that high quality

solutions (optimal for most cases) can be found for large instances of SBT in a short time.
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Moreover, there is a fast convergence of our approach to solutions with less than 3% of

relative deviation from the optimal solution in seconds.

Although, we obtain high quality solutions in a short time, there are interesting

research such as determining the dimension of the valid inequalities proposed in this study.

Another natural improvement for this work is to develop a polyhedra study along with

a branch-and-cut approach to handle unsolvable instances by our approach. Integration

of SBT with other subproblems of transit network planning such as vehicle and crew

scheduling is a challenging research area. Moreover, the generalization of SBT to cover

the entire day instead of short planning periods is needed to define accurate integrated

approaches.
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Chapter 5

Metaheuristic algorithms for

Timetabling Problems

Summary: At the beginning of our work, we consider as many other
studies present in literature, the timetabling problem in a short plan-
ning period. However, we are convinced that the multiperiod approach
is necessary to generate an optimal timetable for the entire day. The re-
sults obtained in the previous chapter are very promising and we decide
to extend the timetabling problem to the multiperiod case.

“After founding a good idea to solve our prob-
lem, we wanted to go a step forward.”

5.1 Introduction

The timetabling generation problem is usually computed only once in a while (e.g., semes-

trally). However, this does not apply to this kind of network. Indeed, around 10% of ve-

hicle disruptions arise per day (accidents, fines, break downs, public manifestations, etc.)

and the high absenteeism of drivers requires the modification of the timetables almost

every day.

In such a bus transit network, timetabling generation is part of operations and no

longer part of the planning process. Therefore, it is crucial to be able to compute accurate

timetables in minutes since the vehicle and crew scheduling are solved in a sequential

manner and strongly depend on the timetabling solution quality. This iterative process

can be executed several times until the planner is satisfied with the entire solution.

64
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Timetables are usually built for each specific period of time during the day. But pa-

rameters such as the frequency of bus lines, travel times, and even headways vary through-

out the day. Chapter 4 of Ceder [2007] presents an excellent combination of the different

procedures to make smooth transitions between the different periods of the day based on

partial timetables. However, these methodologies lead to suboptimal solutions for SBT

since the synchronization of trips between different planning periods must be taken into

account. Therefore, we propose the Multiperiod SBT problem for an entire day (MSBT)

that considers smooth transitions between periods and synchronization events between

trips belonging to different planning periods. We design six Iterated Local Search and

two Variable Neighborhood Search algorithms based on feasible departure time windows

that are applied by a constraint propagation methodology.

The rest of this chapter proceeds as follows. A discussion of solution algorithms is

presented in Section 5.2. Section 5.3 presents the details of the formulation for MSBT. The

main idea for generating our proposed solution algorithms is the constraint propagation

of the feasible departure time windows of the trips, which is presented in Section 5.4. The

different components of the metaheuristic algorithms are presented in Section 5.5 while

the description of the entire algorithms is given in Section 5.6. The empirical results about

the presented metaheuristics on real size instances are exhibited in Section 5.7. Finally,

Section 5.8 summarizes the results and points to some lines of future research.

5.2 Solution algorithms for timetabling problems

SBT is solved in Chapter 4 using a several families of valid inequalities and the linear

solver of CPLEX 12.3. With this procedure, we exactly solve large instances in minutes,

considering a planning period of 240 minutes. Unfortunately, incorporating smooth tran-

sitions between periods to this strengthened MILP is, to the best of our knowledge, not

possible, because of the variation of parameters for different planning periods. Moreover,

assuming that the parameters of the different periods of the day are equal, as instance

of MSBT can be seen as an instance of SBT with a large planning period of 20 hours.

However, the enhanced MILP for MSBT does not give solutions close to the optimum in
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a short time as it happens with shorter planning periods.

It is imperative to have high quality solutions for MSBT that cover 20 hours of the

day, since vehicle and crew scheduling performed on partial timetables leads to suboptimal

solutions. In the literature, constructive algorithms have been used to solve different SBT

timetabling problems [Ceder and Tal, 2001, Ceder et al., 2001, Eranki, 2004]. However,

defining efficient local search algorithms for timetabling problems is not an easy task. For

example, in our case study, there is a large solution space and many different solutions

yield the same value of the objective function.

A local search that takes advantage of constructive algorithms to explore the solution

space is presented in Liu et al. [2007]. The main idea of the local search is to define

different combinations of pairs of trips to be synchronized. Then, the departure times of

the related trips are set using an algorithm proposed by Ceder and Tal [2001]. Guihaire

and Hao [2008a, 2010a] define run shift and line shift operators wich are applied randomly

within the domain of the related variables to design an iterated local search. Later, similar

movements are implemented in Guihaire and Hao [2010b] but are limited by the vehicle

schedule, i.e., it is possible to shift the departure times of a whole line or of a trip if

the vehicle and driver schedules would not be modified. A similar idea is presented

for clock face timetabling and the multidepot multitype vehicle scheduling problem in

[van den Heuvel et al., 2008], where the authors implement shifting movements (1–5 or

10 minutes) in a local search to decrease the vehicle schedule costs. In all the previously

mentioned studies, the shift operators are applied, and then, the evaluation function is

considered, i.e., it is difficult to categorize attractive movements. On the other hand,

Ceder [2011] address a timetabling problem to achieve even loads with minimum uneven

headways at maximum load points. In this last study, the information about the even load

is considered before applying the shift operators, i.e., not every possible shift is explored,

since the search is limited by the information of the objective function to explore only

attractive movements based on even loads.

A different kind of heuristic is presented in Wong et al. [2008], where the authors

present a train timetabling problem with most of the characteristics of our case study, but
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minimizing the waiting times as the objective function. The heuristic algorithm is based

on iteratively solving a linear relaxation of the formulation, then, rounding fractional

values of some variables. If the actual solution is not feasible, some rounded variables are

released and the formulation is solved again, and so on. This kind of approach to our

problem may lead to a exploration of a large number of binary variables in the objective

function. Moreover, there are many different solutions leading to the same value of the

objective function.

In this chapter, we propose eight metaheuristic algorithms for MSBT, which are of

two types: six multistart Iterated Local Search (ILS) and two multistart Variable Neigh-

borhood Search (VNS). One of the main contributions of this work are the neighborhood

structures which the ILS and VNS algorithms rely on. Contrary to all the local searches in

the existing literature, these new structures are based on feasible departure time windows

that arise from the mathematical structure of MSBT MILP. Our solution algorithms are

different than those presented in the literature, since they take advantage of the math-

ematical formulation to define and explore the feasible solution space, leading to high

quality solutions for some instances of MSBT.

5.3 Mixed integer linear programming for MSBT

In this section, we propose an MILP for MSBT. This formulation is not a straightfor-

ward generalization of SBT MILP presented in Chapter 3. The main differences between

SBT and MSBT are the smooth transitions and synchronization interaction between the

different periods of the day. Indeed, the synchronization events depend on the values of

the departure times, travel times, and waiting time parameters of each one of the trips.

Figure 5.1 shows an example with two planning periods in the morning (6:00 to 8:00 and

8:00 to 11:00) and two lines sharing a synchronization node. The trips of lines 1 depart

within the first planning period and the trips of line 2 depart within the second planning

period. However, these departure times define two synchronizations (dashed lines) since

their separation time at the common node is within the minimum and maximum waiting

times. Notice that synchronizations between trips belonging to different planning periods
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are considered. Therefore, we must define the waiting time parameters based on the trips

to be synchronized. We show in Section 5.3.1 how to generate accurate waiting times

parameters for MSBT.

Although we can obtain a timetable for an entire day by merging the solutions

of SBT, the synchronization between trips of different planning periods, as in the case

presented by Figure 5.1, would be ignored.

node

Departures:
7:35
7:45 
7:58

Departures:
8:02
8:10
8:19

Arrivals:
8:10
8:20
8:33

Arrivals:
8:10
8:18
8:27

depot 1 depot 2

35 min
8 min

Synchronization

Planning periods: 6:00 am - 8:00 am and 8:00 am - 11:00 am.

Minimum waiting time: 4

Maximum waiting time: 8

Figure 5.1: Example of a timetable for two lines with three trips each, and one synchro-
nization node. Notice that the first trip of line 1 arrives first at the node and synchronizes
with the second trip of line 2 since their separation time is 8 minutes, which is within the
waiting time window [4,8].

In MSBT, we define the transit network as we did for SBT, i.e., we use the sets

I, B, J(i), and Bij previously defined in Section 3.2. Now, let S be the set of planning

periods such as morning rush hours period, afternoon period, night period, and so on.

Parameter ds with s ∈ S represents the end of planning period s and the beginning of

planning period s+ 1. Let f i be the total number of trips of line i during the day, while

f is denotes the number of trips of i during period s. The travel time of trip p of line i from

the initial node (depot) to node b is a parameter denoted by tibp . Finally, the minimum

and maximum waiting times to define a synchronization between trips i(p) and j(q) at

node b ∈ Bij are wijbpq and W ijb
pq , respectively. The minimum and maximum headways for
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line i at period s are defined as his = ηis − δis and H i
s = ηis + δis, where ηis = ds−ds−1

f is
is the

even headway of period s and δis is a headway flexibility parameter for period s.

The main decision variables for MSBT are precisely the ones defined for SBT, i.e.,

departure times variables for each trip i(p), denoted by X i
p and binary variables Y ijb

pq to

count a synchronization of trip i(p) with trip j(q) at node b. Then, our proposed MILP

model for MSBT is the following.

max FMSBT(Y ) =
∑
i∈I

∑
j∈J(i)

∑
b∈Bij

f i∑
p=1

fj∑
q=1

Y ijb
pq (5.1)

s.t. his ≤ X i
p+1 −X i

p ≤ H i
s ∀ i ∈ I, p = first(s), . . . , last(s)− 1,

s ∈ S (5.2)

ds−1 + his
2
≤ X i

first(s) ≤ ds−1 + Hi
s

2
∀ i ∈ I, s ∈ S (5.3)

ds − Hi
s

2
≤ X i

last(s) ≤ ds − his
2

∀ i ∈ I, s ∈ S (5.4)

Xj
q + tjbq −

(
X i
p + tibp

)
≥ wijbpq −M

(
1− Y ijb

pq

)
∀ i ∈ I, j ∈ J(i), b ∈ Bij,

p = 1, . . . , f i, q = 1, . . . , f j (5.5)

Xj
q + tjbq −

(
X ip + tibp

)
≤ W ijb

pq +M
(
1− Y ijb

pq

)
∀ i ∈ I, j ∈ J(i), b ∈ Bij,

p = 1, . . . , f i, q = 1, . . . , f j (5.6)

X i
p ∈ R, Y ijb

pq ∈ {0, 1} ∀ i ∈ I, j ∈ J(i), b ∈ Bij,

p = 1, . . . , f i, q = 1, . . . , f j (5.7)

The objective function (5.1) maximizes the number of synchronizations. The con-

straints (5.2) guarantee that the departure times of the trips of line i are almost evenly

spaced during period s. To have smooth transitions between periods s and s− 1, we use

the constraints (5.3) and (5.4) that lead to an average headway for line i between the

last trip of period s− 1 (denoted by last(s− 1)) and the first trip of s (first(s)), i.e., the

separation between these trips must be within [
his−1+his

2
,
Hi
s−1+Hi

s

2
]. The constraints (5.5)

and (5.6) allow the variable Y ijb
pq to be one if the arrival times of the pth trip of line i and

j(q) at node b are within the time window [wijbpq ,W
ijb
pq ]. If the variable Y ijb

pq is equal to 0,
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then these constraints are redundant, since M is a big number.

Ceder [2007] points out that the average transitions between periods can cause

undesirable behavior such as uneven loads. Nevertheless, to the best of our knowledge,

for our problem and the data we have, there is no possibility of implementing smooth

transitions such as the one based on passenger load balance along time. As we show in

Section 5.3.1, to allow synchronization events between trips belonging to different planing

periods, the waiting time parameters should be carefully defined.

5.3.1 Waiting time parameters

Although most of the parameters of the MSBT MILP can be easily set by the planner,

the waiting time windows must be carefully computed since the synchronization events

strongly depend on them. In particular, the case of passenger transfer waiting time

windows are simple: the planner sets reasonable minimum and maximum waiting time

parameters such that they allow passengers to go from line i to j. Notwithstanding, the

case where the planner wishes to avoid bus bunching of a pair of lines at a node considering

parameter variations related with the different planning periods is not trivial. In the case

of a single period timetabling, the planner could define accurate waiting time parameters

since there are unique headway bounds for each bus line. But, the waiting time windows

should depend on the headways to induce a correct separation of the trips. Then, in the

case of MSBT, they also depend on the planning periods of the day.

To arrange synchronization at bus bunching nodes, we introduce the concept of

harmonized arrivals. First, consider the case of a single planning period where two lines i

and j are to be synchronized at some bus bunching node b such that the even headways

ηi and ηj are 10 and 5 minutes, respectively (see Figure 5.2). We try to harmonize the

arrivals of the different lines at the bus bunching node by defining the waiting time window

[wijbpq ,W
ijb
pq ] as

[
max{10,5}

2
− min{10,5}

2
, max{10,5}

2
+ min{10,5}

2

]
, i.e., [2.5, 7.5]. The harmonized

arrivals are shown in Figure 5.2. The horizontal arrow represents the time at the bus

bunching node b where we want to separate arrivals between trips of lines i and j. Notice

that for every trip i(p), there could be two trips of line j synchronizing with it.
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10=iη

synchronization
window

2.5
7.5

2.5
7.5

synchronization
window

10=iη

line i

window
time at
node b

5=jη

window

5=jη 5=jη
line j

Figure 5.2: Example of the waiting time window computation such that the arrivals of
the trips of lines i and j at node b are harmonized (even headways of ηi = 10 and ηj = 5).

In the previous case, it is possible that two trips of one line arrive at node b between

consecutive arrivals of another line at the same node b. However, we also consider the

case where only one trip of one line could arrive between consecutive arrivals of the

other line. For example, in the case of ηi = 10 and ηj = 6, we define the waiting

times window [wijbpq ,W
ijb
pq ] as

[
max{10,6}

2
− max{10,6}−min{10,6}

2
, max{10,6}

2
+ min{10,6}−min{10,6}

2

]
,

i.e., [3, 7]. Figure 5.3 shows this case where we can notice that trip i(p) synchronizes with

trip j(q) at some node b, and j(q) arrives at the end of the synchronization time window

of i(p). Then, it is possible to synchronize i(p + 1) with j(q + 1) at the same node b, if

j(q + 1) arrives at the beginning of the synchronization time window of i(p+ 1).

10=iη

synchronization
window

3
7

time at

3
7

10=iη

synchronization
window

line i
p 1+p 2+p

time at
node b

6=jη
line j q 1+q

Figure 5.3: Example of the waiting time window computation such that the arrivals of
the trips of lines i and j at node b are harmonized (even headways of ηi = 10 and ηj = 5).

The main idea of waiting time window generation is to try to harmonize the arrivals

of the different lines at the bus bunching nodes by the maximization of the number of

synchronizations.

Property 3. Let ηmax = max{ηis, ηjs} and analogously let ηmin = min{ηis, ηjs}. The follow-
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ing waiting time windows induce harmonized arrivals of lines i and j at node b within a

single period s of the day:

[
ηmax−

(⌊
ηmax
ηmin

⌋
−1
)
ηmin

2
,
ηmax+

(⌊
ηmax
ηmin

⌋
−1
)
ηmin

2

]
if

⌊
ηmax

ηmin

⌋
> 1, (5.8)

[
ηmax

2
− ηmax−ηmin

α
, ηmax

2
+ ηmax−ηmin

α

]
if

⌊
ηmax

ηmin

⌋
= 1. (5.9)

This property does not need a proof since the waiting time windows are obtained

by construction from the headway parameters. For the waiting time windows (5.8), more

than one possible synchronization arises for each trip of the line with maximum even

headway. The example shown in Figure 5.2 is of this type of time window, since bηmax

ηmin
c =

⌊
10
5

⌋
= 2 > 1. For waiting time windows (5.9), the headway parameters allow only one

possible synchronization for each trip. To get a larger waiting time window than that

illustrated in Figure 5.3, we set α = 1.5 instead of α = 2.

Now, let us consider the waiting time windows for trips that are from different

planning periods of the day. For trips i(p) and j(q) such that p belongs to planning

period s and q belongs to period s′, the waiting time parameters can be expressed as

functions of the headway values, i.e., wijbpq (ηip, η
j
q) and W ijb

pq (ηip, η
j
q) where ηip and ηjq have

the following different values depending of which trips may synchronize:

• If trip i(p) = last(s), the waiting time window is defined using ηip =
ηis+η

i
s+1

2
since

the separation time between i(p) and the first trip of the next period s+ 1 is close

the average headway related with these periods. We use a similar idea to define the

parameter ηjq. Otherwise, ηip = ηis.

• If trip j(q) = first(s′) or j(q) = last(s′ − 1) and it can synchronize with i(p), we

consider the following three cases. Trip i(p) may synchronize with trips of line j

belonging to periods s′ − 1, s′, or both. Then, to consider all the cases, we define

the waiting time window using the headway time ηjq = min

{
ηjs′−1,

ηj
s′−1

+ηj
s′

2
, ηjs′

}
.

Otherwise, ηjq = ηjs′ .

We remark that MSBT is NP-hard since SBT is a particular case of it. Indeed,
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solving the MILP of MSBT by a commercial linear solver does not offer high qualit y

solutions in reasonable time, as can be seen in Section 5.7. Moreover, it is not possible to

add any of the families of valid inequalities proposed in Chapter 4 for the single period

problem. The reason is that these valid inequalities strongly rely on the bounds of the

number of synchronizations that are a function of the headway and waiting times. For

MSBT, to the best of our knowledge, it is not trivial to generalize these bounds since we

would need to identify which parameters are we going to use for each trip, i.e., identify

which trips of a period can synchronized with trips of a different period.

5.4 Generalization of constraint propagation for

MSBT

Our solution algorithms are based on feasible time windows for departures, arrivals, and

synchronizations that are similar to the ones presented in Section 3.4 for SBT. These time

windows allow to explore the feasible solution space, different neighborhood structures,

and define efficient local search algorithms for the MSBT. To obtain these time windows,

we use constraint propagation, which is a remarkable difference from the other heuristics

presented in the literature, since we define a procedure to find potential synchronizations

before applying an operator.

Now, we present the generalization of the constraint propagation idea presented in

Section 3.4. For example, assume that the value for the departure time X i
p belonging to a

period s has been set. We know that the headways for period s are within [his, H
i
s]. Thus,

we can define a feasible departure time window Di
p′ for any other trip i(p′) in period s

with p′ > p as Di
p′ =

[
X i
p + (p′ − p)his, X i

p + (p′ − p)H i
s

]
. Analogously, for trips i(p′) in

period s with p′ < p, we set Di
p′ =

[
X i
p − (p− p′)H i

s, X
i
p − (p− p′)his

]
.

If we do not have already fixed values for the departure times, we can define

Di
p for trip i(p) in period s using the bounds of trips i(first(s)) and i(last(s)). On

the one hand, his
2

and Hi
s

2
are the lower and upper bounds for departure time X i

first(s),

respectively. On the other hand, ds − Hi
s

2
and ds − his

2
are the lower and upper
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bounds for departure time X i
last(s), respectively. Therefore, Di

p based on these bounds

is given by the intersection between
[
his
2

+ (p− first(s))his, H
i
s

2
+ (p− first(s))H i

s

]
and[

ds − Hi
s

2
− (last(s)− p)H i

s, ds − his
2
− (last(s)− p)his

]
.

The arrival time windows for each trip i(p) at node b can be obtained by shift-

ing Di
p by tibp time units, i.e., Aibp =

[
left(Di

p) + tibp , right(D
i
p) + tibp

]
. Similarly, the

synchronization time window for each trip i(p) with trip j(q) at node b is defined by

Sijbpq =
[
left(Aibp ) + wijbpq , right(A

ib
p ) +W ijb

pq

]
. A useful result of these time windows is

that we can detect impossible synchronizations with the following theorem which proof is

straight forward using the idea of the proof of Theorem 2.

Theorem 5. For any trips i(p) and j(q) at synchronization node b ∈ Bij of MSBT,

Sijbpq
⋂
Ajbq = ∅ if and only if Y ijb

pq is forced to be zero due the feasibility and the constraints

(5.5) and (5.6) related to these indices are redundant.

The feasible departure, arrival and synchronization intervals obtained with the

bounds of the first and last trip of each planning period are denoted by Di
p, A

ib
p , and

Sijbpq , respectively. From now on, the overline symbol “ ” on these intervals represents

the feasible time window obtained using a partial solution. The notation “ ̂ ” in these

intervals represents the restricted feasible time windows that ensure a synchronization

considering a partial solution (we introduce these intervals in the following section). By

definition Â ⊆ A ⊆ A for any feasible set A.

In the next section we show how these time windows can be used to define the

operators for our proposed metaheuristic algorithms.

5.5 Components of Iterated Local Search and

Variable Neighborhood Search

One of our main contributions are the eight metaheuristic algorithms for MSBT. Six of

them are multistart Iterated Local Search algorithms (ILS) and two of them are multistart

Variable Neighborhood Search algorithms (VNS).
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On the one hand, ILS takes an initial solution Y (which can be a local optimum)

and its iterations perform the following procedure. First, a perturbation is applied to

Y to obtain an intermediate feasible solution Y ′. Then, a local search algorithm finds

a new improved solution Y ′∗. If this new solution meets an acceptance criterion, the

incumbent solution is now Y ′∗, otherwise, the previous incumbent remains. We iterate

until the algorithm reaches a stop criterion. ILS is a simple and fast tool that can be

improved by increasing the quality of each one of its modules, where the interaction

between intensification and diversification is critical and challenging [Lourenço et al.,

2003].

On the other hand, as it is mentioned by Hansen and Mladenović [2003], the basic

idea of VNS is systematic change of neighborhood within a local search. Given a list

of different neighborhoods, the algorithm chooses one and moves to a random neighbor

from it and improves it with a local search. If this improved point is better than the

incumbent, then it becomes the new incumbent and the algorithm continues searching

in this neighborhood. Otherwise, it chooses another neighborhood until an acceptance

criterion is reached.

The components of ILS and VNS, such as constructive procedures, neighborhood

structures, local search algorithms, and perturbation movements, are based on the con-

straint propagation concept presented in Section5.4. In this section we provide details of

each one of the metaheuristic modules where we use a systematic constraint propagation,

while in Section 5.6 we put together the modules to obtain our proposed metaheuristics

for MSBT.

5.5.1 Constructive algorithms

Both ILS and VNS need constructive algorithms to build an initial solution. Algorithm

7 shows our randomized constructive algorithm for MSBT. For each line in the bus net-

work, Construct randomly generates a departure time for each one of its trips within

their feasible departure time window using a uniform distribution and considering the

actual partial solution (step 4). The departure time windows are updated by constraint
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propagation (step 6).

Algorithm 7 : Construct

Input: instance of MSBT
Output: solution Y for MSBT

1: for all lines i ∈ I do
2: D

i

first(s) = Di
first(s) and D

i

last(s) = Di
last(s) for all period s

3: for p = 1 to f i do

4: X i
p ←−Unif

(
D
i

p

)

5: if p 6= last(s) for all period s then

6: D
i

p+1 ←− Di
p+1 ∩

[
X i
p + his, X

i
p +H i

s

]

7: end if
8: end for
9: end for

Construct assigns departure times to all the trips of the lines in lexicographic or-

der, thus it ignores synchronization events. To build a solution with a larger number of

synchronizations, we use the idea of impossible synchronizations given by Theorem 5 to

establish a priority between the departure time variables.

The main idea is the following. Assume trip i(p) synchronizes with trip j(q) at node

b (i.e., Y ijb
pq = 1). We can use constraint propagation to compute the feasible departure

time windows D̂ijb
pq for trip i(p) and D̂jib

qp for trip j(q) that would ensure Y ijb
pq = 1. These

departure time windows are defined as follows.

D̂jib
qp =

[
left

(
S
ijb

pq ∩ A
jb

q

)
− tjbq , right

(
S
ijb

pq ∩ A
jb

q

)
− tjbq

]
∩Di

p (5.10)

D̂ijb
pq =

[
Xj
q + tjbq − tibp −W ijb

pq , X
j
q + tjbq − tibp − wijbpq

]
∩Di

p (5.11)

By Theorem 5 it is possible to identify the set E(Y ijb
pq = 1) of impossible synchroniza-

tions assuming Y ijb
pq = 1 in this updated feasible set. Therefore, we choose the variables

inducing the fewer impossible synchronizations in a systematic way.

LConstruct, summarized by Algorithm 8, integrates these ideas. First, a list LSYNC

with the possible synchronization events is defined. The first elements of LSYNC are

the ones that induce the fewest impossible synchronizations while the last ones are the

events that would cause many impossible synchronizations (step 1 of LConstruct). While
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LSYNC is not empty, the synchronizations are defined iteratively as follows. The first

variable of the list is selected and randomly sets the departure time of its related trips

such that their synchronization is forced to happen (step 4). Next, the departure time

windows and LYSTSYNC are updated. Then, the next variable in the list is selected, and

so on. After explore the entire list, the remaining (and unassigned) departure times are

randomly generated within their feasible departure time windows in step 9.

Algorithm 8 : LConstruct

Input: instance of MSBT
Output: solution Y for MSBT

1: LSYNC: increasing order list of the synchronization events Y ijb
pq with respect to∣∣E(Y ijb

pq = 1)
∣∣

2: while LSYNC 6= ∅ do
3: take first element Y ijb

pq ∈ LSYNC and compute D̂ijb
pq and D̂jib

qp

4: Xj
q ←− Unif(D̂jib

qp ), X i
p ←− Unif(D̂ijb

pq ), and Y ijb
pq ←− 1

5: update feasible departure time windows for trips of lines i and j
6: LSYNC = LSYNC -

(
{Y ijb

pq } ∪ E(Y ijb
pq = 1)

)

7: end while
8: for each trip i(p) with unassigned departure time do

9: compute D
i

p and X i
p ←− Unif

(
D
i

p

)

10: end for

LConstruct is more time consuming than Construct but empirically its initial solu-

tion has a larger number of synchronizations. We now present the neighborhood structures

that are used by the local search algorithms.

5.5.2 Trip neighborhoods

In this section we introduce three neighborhoods that rely on a trip shifting. The aim

of these neighborhoods is to find solutions with an improved number of synchronization

events by taking advantage of the departure, arrival, and synchronization time windows

of the trips. Given a current feasible solution, the main idea is shifting the departure

time of a trip within its feasible domain to force a synchronization with another trip. To

achieve this, we first identify the feasible domain for the departure time of a single trip
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i(p) using constraint propagation, i.e.,

D
i

p =
[
X i

(p−1) + his, X
i
(p−1) +H i

s

]
∩
[
X i

(p+1) −H i
s, X

i
(p+1) − his

]
∩Di

p.

Suppose that i(p) could synchronize with j(q) at node b but in the actual feasible

solution Y , the arrival time Xj
q+tjbq of trip j(q) is outside the synchronization time window

[X i
p+tibp +wijbpq , X

i
p+tibp +W ijb

pq ]. Then, we shift the departure time X i
p of i(p) such that the

synchronization window would also be shifted and coincide with the arrival time of j(q),

i.e., we move X i
p within D̂ijb

pq =
[
Xj
q + tjbq − tibp −W ijb

pq , X
j
q + tjbq − tibp − wijbpq

]
∩Di

p. Figure

5.4 shows a feasible solution Y . The potential time window D̂ijb
pq (dashed line) illustrates

where X i
p should be to induce a synchronization with j(q).

i
pX

timei
pD

ijb
pqD̂

Figure 5.4: Departure time window of trip i(p), and illustration of potential departure

time window D̂ipb
jq .

The operator ST (Y, i(p), j(q), b) shifts departure time X i
p inside D

ijb

pq ∩ D̂ijb
pq if this

set is not empty. Since departure time variables are real, there is an infinite number of

shifting movements that guarantee X i
p ∈ D

ijb

pq ∩D̂ijb
pq . However, in Section 5.5.4 we develop

a more efficient way to explore the search space. Now, we define neighborhood Ntrip i(Y )

as the set of all solutions obtained by applying operator ST (Y, i(p), j(q), b) to Y for all

pairs of trips (i(p), j(q)) with j ∈ J(i) and node b ∈ Bij.

For neighborhood Ntrip i(Y ), the departure time Xj
q of trip j(q) is fixed and the

departure time of trip i(p) is shifted to achieve a synchronization. But in an analogous

way, we can define shift operator ST (Y, j(q), i(p), b) that moves trip j(q) to achieve a

synchronization with another trip i(p) at node b ∈ Bij. In particular, departure time Xj
q

must be within D̂jib
qp =

[
X i
p + tibq + wijbpq − tjbq , X i

p + tibq +W ijb
pq − tjbq

]
∩Dj

q to guarantee that
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Y ijb
pq = 1. This idea leads to the neighborhood Ntrip j(Y ) that contains all the solutions

obtained by the implementation of operator ST (Y, j(q), i(p), b) for all trips i(p), j(q) with

j ∈ J(i), and node b.

The previous two neighborhood structures are based on an operator that shifts the

departure time of a single trip. However, we could simultaneously shift two departure

times, one of line i and other of line j, to achieve a synchronization. Formally, operator

ST (Y, [i(p), j(q)], b) moves the trip Xj
q within S

ijb

pq ∩ A
jb

q , and then, moves the trip X i
p

within
[
Xj
q + tjbq − tibp −W ijb

pq , X
j
q + tjbq − tibp − wijbpq

]
∩ Di

p. These movements guarantee

that Y ijb
pq = 1. Now, we define neighborhood Ntrip ij as the set of solutions obtained

by implementing operator ST (Y, [i(p), j(q)], b) for all trips i(p), j(q) with j ∈ J(i), and

b ∈ Bij.

5.5.3 Line neighborhoods

In the previous section, we defined three neighborhood structures based on shifting op-

erators for a single trip. A different type of neighborhood can be obtained by shifting

all the trips of a specific line i, i.e., line i is forced to synchronize with line j. More

precisely, let the line shifting operator SL(Y, i, j, b) be the successive application of the

operator ST (Y, i(p), j(q), b) for the following pairs of trips: (i(1), j(1)), (i(1), j(2)), . . . ,

(i (f i) , j (f j − 1)), and (i(f i), j(f j)). Thus, the neighborhood Nline i(Y ) contains all the

solutions reached by applying the operator SL(Y, i, j, b) to Y for all pair of lines (i, j ∈ J(i)).

Analogously to SL(Y, i, j, b), we define operators SL(Y, j, i, b) and SL(Y, [i, j], b) by

the successive implementation of operators ST (Y, j(q), i(p), b) and ST (Y, [i(p), j(q)], b),

respectively. Then, the definition of neighborhoods Nline i(Y ) and Nline ij(Y ) is straight

forward.

Forcing a synchronization between a pair of lines (solutions in Nline i(Y ), Nline j(Y ),

and Nline ij(Y )) could destroy many other synchronizations related with these lines.

Therefore, it could be beneficial to shift the line that has fewer synchronization nodes.

This idea leads to another neighborhood, named Nline min(Y ), containing all the solutions

reached by applying SL(Y, i, j, b) if i has fewer synchronization nodes, or SL(Y, j, i, b) in
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Figure 5.5: Left panel illustrates the neighborhoods Ntrip i(Y ), Ntrip j(Y ), Ntrip ij(Y ),
while the right one shows Nline i(Y ), Nline j(Y ), Nline ij(Y ), and Nline min(Y ).

other case, for all pair of lines (i, j ∈ J(i)).

Due to the possible synchronizations, our proposed neighborhood structures may

have intersections, but none of the neighborhoods are contained one within the other, as

is illustrated by Figure 5.5.

5.5.4 Local search algorithms

Designing efficient local search algorithms requires efficient procedures to explore the

search space. Since departure time variables are real, there is an infinite number of shifting

movements for trips or lines that guarantee synchronization events. Instead of explore an

infinite number of neighbors, we define random shifting operators. For example, operator

ST (i(p), j(q), b) define all the shifting movements that guarantee X i
p ∈ D

ijb

pq ∩ D̂ijb
pq , i.e.,

operator ST (i(p), j(q), b) synchronizes trip i(p) with trip j(q) at node b. Now, we define

the random shift operator randST (i(p), j(p), b) that makes X i
p = Unif

(
D
ijb

pq ∩ D̂ijb
pq

)
.

Similarly, for each shifting operator presented in Sections 5.5.2 and 5.5.3.

The previous random shift operators allow to explore the search space in a more

efficient way. Then, we define two local search algorithms for each neighborhood previ-

ously presented. For instance, consider Ntrip i. The local search Ftrip i(Y ) moves to the

first neighbor that surpasses in quality the actual feasible solution considering random

shifting movements. Ftrip i(Y ) is described by Algorithm 9.

The second type of local search is a greedy procedure that moves to the best neigh-
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Algorithm 9 : Ftrip i(Y )

Input: initial solution Y for MSBT
Output: improved feasible solution Y for MSBT

1: while there is no improvement in FMSBT (Y ) do
2: for each pair of lines i, and j ∈ J(i), and node b ∈ Bij do
3: for p = 1 to p = f i do
4: for q = 1 to q = f j do
5: Y ′ ←− randST (Y, i(p), j(q), b)
6: Y ←− Y ′ if FMSBT(Y ′) > FMSBT(Y )
7: end for
8: end for
9: end for

10: end while

borhood based on random shifting movements. It is denoted by Gtrip i(Y ) and its descrip-

tion is shown in Algorithm 10.

Algorithm 10 : Gtrip i(Y )

Input: initial solution Y for MSBT
Output: improved feasible solution Y ∗ for MSBT

1: Y ∗ ←− Y
2: while there is no improvement in the number of synchronizations of Y do
3: for each pair of lines i and j ∈ J(i), and node b ∈ Bij do
4: for p = 1 to p = f i do
5: for q = 1 to q = f j do
6: Y ′ ←− randST (Y, i(p), j(q), b)
7: Y ∗ ←− Y ′ if FMSBT(Y ′) > FMSBT(Y ∗)
8: end for
9: end for
10: end for
11: Y ←− Y ∗

12: end while

Analogously, we implement fist improvement and best improvement local searches

for the rest of the neighborhoods. Since we have seven neighborhood structures, we define

fourteen local search algorithms. In Section 5.6, these local searches are used as modules

of the iterated local search and variable neighborhood search metaheuristics.
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5.5.5 Perturbation

When a local search stops exploring the feasible solution, we propose a perturbation

function that drastically modifies the synchronizations of a specific pair of lines (i, j ∈
J(i)) at some synchronization node b ∈ Bij. As in any perturbation procedure, the value

of the perturbed solution may decrease, however the idea is to modify the local maximum

enough so as to reach a different zones of the solution space of MSBT.

The perturbation function is shown in Algorithm 11. First, there is an initialization

phase that clears the departure times of all trips of lines i and j (step 1). In step 4, for

each trips i(p) and j(q) that can synchronize, we compute their new feasible synchroniza-

tion time windows S
ijb

pq using a constraint propagation based on the previously assigned

departure time (denoted as prev p). In particular, this new synchronization interval is

given by

S
ijb

pq =
[
X i
prev p + (p− prev p)his + tibp + wijbpq , X

i
prev p + (p− prev p)H i

s + tibp +W ijb
pq

]
.

Next, for a trip j(q) that can synchronize with trip i(p), we compute its new feasible

arrival time window A
jb

q considering the previous assigned departure time (step 5):

A
jb

q =
[
Xj
prev q + (q − prev q)hjs + tjbq , X

j
prev q + (q − prev q)Hj

s + tjbq
]
.

If the arrival time window of trip j(q) intersects with the synchronization time

window of trip i(p) (step 6), we randomly generate the departure time of trips i(p) and

j(q) to ensure their synchronization (step 8). Finally, we calculate the departure times

of the unassigned departure time trips considering their nearest (previous and posterior)

assigned departure time trips (steps 13-15).
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Algorithm 11 : Perturbation(Y, i, j, b)

Input: Feasible solution Y , pair of lines i and j ∈ J(i), and node b ∈ Bij

Output: Feasible perturbed solution Y ′

1: clear departure times of all trips of lines i and j
2: for p = 1 to f i do
3: for q = 1 to f j do

4: compute S
ijb

pq considering X i
prev p for all j(q) that could synchronize with i(p)

5: compute arrival time window A
jb

q considering Xj
prev q

6: if i(p) can synchronize with j(q) at b, i.e., S
ijb

pq

⋂
A
jb

q 6= ∅ then

7: Xj
q ←− Unif

(
S
ijb

pq

⋂
A
jb

q

)
− tjbq

8: X i
p ←− Unif

([
Xj
q + tjbq − tibp −W ijb

pq , X
j
q + tjbq − tibp − wijbpq

]
∩Di

p

)

9: Y ijb
pq ←− 1, prev p = p, and prev q = q

10: end if
11: end for
12: end for
13: for each unassigned departure time of trip i(p) or j(q) do
14: search nearest previous and posterior assigned departure times of the trip and

calculate D
l

p

15: X l
p ←−Unif

(
D
l

p

)

16: end for

5.6 Metaheuristic algorithms

In this section we focus on the structure of two types of metaheuristics that use the local

searches presented in Section 5.5 in order to solve MSBT. Six of them are multistart iter-

ated local search algorithms (ILS) and are presented in Section 5.6.1, while the other two

are multistart variable neighborhood search algorithms and are described in Section 5.6.2.

5.6.1 Multistart Iterated Local Search algorithms

Our ILS algorithms use different combinations of the constructive and local search al-

gorithms presented in Section 5.5. Four of the ILS are single multistart iterated local

searches while the other two are chained multistart iterated local searches (CILS). Table

5.1 shows the six ILS algorithms with the best performance from more than thirty algo-

rithms using different combinations of the different components. The numbers in each
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row indicate the order of the implemented component, while “-” means that the specific

component is not included in that particular ILS algorithm. The block of columns “Main

Iteration” shows the components implemented iteratively after the perturbation of the

current solution. We implement a stop criterion of 10 iterations without improvements

or a total of 50 iterations, each one of these iterations implements the perturbation pro-

cedure and the local search algorithms for all lines i, j ∈ J(i), and synchronization node

b ∈ Bij. Finally, we execute the algorithm ten times to define the multistart approach.

Construct and Improve Main Iterations

A
lg

or
it

h
m

s

C
on
st
ru
ct

L
C
on
st
ru
ct

F
tr
ip
i

F
tr
ip
j

F
li
n
e
i

G
li
n
e
i

F
li
n
e
j

G
li
n
e
j

G
li
n
e
ij

F
tr
ip
i

F
tr
ip
j

F
li
n
e
i

F
li
n
e
j

F
li
n
e
ij

ILSa 1 - - - 3 - 2,4 - - - - 6 5,7 -
ILSb 1 - 3 2,4 - - - - - 6 5,7 - - -
ILSc - 1 - - - 3 - 2,4 - - - 6 5,7 -
ILSd 1 - - - - 4 - 3,5 2 - - 8 7,9 6

Table 5.1: Different Iterated Local Search algorithms implementing several neighborhood
structures. The numbers in the table represent the order in which each component is
implemented. For example, algorithm ILSa creates an initial solution with Construct,
then implement local searches Fline j, Fline i, and Fline j. In each iteration of ILSa the
perturbation is implemented followed by local searches Fline j, Fline i, and Fline j.

The two chained multistart sequential algorithms CILS start with one of the ILS

presented in Table 5.1. Then, the obtained solution is given as an input to a second ILS,

and so on. In particular, we define the algorithm CILSa as the chained implementation

of ILSd, ILSa, and ILSc, while the CILSb algorithm implements ILSb, ILSd, and ILSa.

5.6.2 Multistart Variable Neighborhood Search algorithms

VNS algorithms take advantage of several neighborhood structures to diversify the search

space, leading to different local optimum solutions. The two VNS procedures we present

are based on Algorithm 12. The VNS take a random solution from one of the kmax neigh-

borhoods (step 5). Then, this solution is improved with the best local search from the

fourteen possibilities. If the number of synchronizations of the obtained solution does
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not improve over the value of the current solution, neighborhood k is changed to k + 1,

otherwise, the current solution is updated (steps 6–10) and we continue exploring neigh-

borhood k. Finally, we include a perturbation movement if there are no improvements

from exploring all kmax neighborhoods after a fixed number of iterations (step 13).

Algorithm 12 : V NS

Input: instance of SBT
Output: feasible solution Y

1: Y ←− LConstruct, k = 1
2: while FMSBT(Y ) is not improved after a fixed number of iterations do
3: k = 1
4: while k ≤ kmax do
5: random neighbor Y ′ from Nk(Y ), Y ′∗ ←− best local search(Y )
6: if FMSBT (Y ′∗) < FMSBT(Y ) then
7: k ←− k + 1
8: else
9: Y ←− Y ′∗

10: end if
11: end while
12: if FMSBT(Y ) is not improved after a fixed number of iterations then
13: Y ←− perturbation(Y )
14: Y ←− best local search(Y )
15: end if
16: end while

After some preliminary experimentation, we set two different variable neighborhood

search algorithms using different local search modules. In particular, VNSa does not

implement the perturbation and improvement steps (steps 12-15) and uses only the first

improving local search algorithms. On the other hand, VNSb does implement step 14 and

uses only greedy local search algorithms. We show in the next section that there is no a

clear dominance between VNSa and VNSb.

5.7 Experimental results

As it is mentioned in Chapter 3, the preprocessing stage for SBT could be used to define

metaheuristic algorithms. In Section 5.4 we generalize the preprocessing stage of SBT to

consider multiple planning periods. Then, we define several metaheuristic algorithms to
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solve our proposed MSBT formulation since exact approaches for these cases are not at

hand. Moreover, these algorithms can also be implemented for SBT with the correspond-

ing feasible time windows defined in 3.4. We show the numerical results for SBT and

MSBT in the following sections. To perform the experimental analysis, we implement the

metaheuristic algorithms using C++ and an iMac OS X with an Intel Core 2 Duo 3.06

GHz processor and 4 GB RAM.

5.7.1 Results for SBT

To evaluate the behavior of the proposed metaheuristics for SBT, we use the instances

types presented in Section 4.5. Moreover, ILS and VNS algorithms implements the con-

straint propagation procedure presented in Section 3.4.

To show the solution quality obtained by our proposed metaheuristic algorithms,

we will compare the solutions with the ones obtained by CPLEX’s linear solver for SBT

MILP strengthened with synchronization and headway inequalities shown in Section 4.2.1

and 4.2.2, respectively. Moreover, to make an accurate comparison we implement a stop

criteria of 3% of relative gap for CPLEX’s solver. Tables 5.2 and 5.3 present the numerical

results. The rows show the instance types and the columns show the mean gap (consider-

ing the dual bound obtained by CPLEX’s linear solver) and mean time for each one of the

solution algorithms. The best results for metaheuristics are highlighted with underlined

text. We can notice that ILS algorithms overcome the behavior of VNS algorithms for all

the instances. However, the best approach to find high quality solution in a short time is

the implementation of CPLEX’s linear solver in the strengthened SBT MILP.

Although, metaheuristic algorithms obtain high quality solutions comparable with

the exact approach for the single period case, we compare in the next section the two

approaches for MSBT.
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ILSa ILSb ILSc ILSd CPLEX
gap time gap time gap time gap time gap time

T1 5.45 0.33 5.7 0.33 4.72 1.97 3.56 0.78 1.94 1.73
T2 4.28 0.38 2.66 0.36 4.47 2.81 4.43 0.82 1.27 2.98
T3 6.47 0.91 6.77 0.87 6.22 4.82 4.85 2.49 2.56 334.51
T4 3.12 1.1 2.36 0.94 3.01 6.49 4.57 2.9 0.85 4.47
T5 7.51 3.26 8.08 2.8 7.14 14.01 6.65 8.21 2.11 41.92
T6 4.55 3.92 3.15 2.47 4.85 18.43 7.49 7.26 1.24 18.62
T7 4.34 9.06 4.32 7.06 4.09 34.57 6.62 16.76 1.74 91.25
T8 5.54 8.83 2.85 6.83 5.78 40.06 8.61 16.23 1.73 85.48

Table 5.2: Results of the Multistart Iterated local searches and CPLEX’s linear solver.

CILSa CILSb VNSa VNSb
gap time gap time gap time gap time

T1 3.97 0.68 3.75 0.86 9.31 0.51 7.77 1.48
T2 3.53 0.81 2.94 0.49 7.25 0.68 4.89 1.99
T3 4.57 2.14 4.62 2.38 11.59 0.91 10.19 2.44
T4 2.87 3.62 2.4 2.47 9.69 1.1 8.1 2.61
T5 6.05 9.7 5.62 10.23 13.9 2.1 13.14 4.28
T6 3.89 12.74 3.9 9.06 11.66 2.68 10.18 4.98
T7 3.48 26.22 3.5 28.56 10.54 4.96 10.08 8.73
T8 4.87 33.48 4.43 30.3 12.06 6.03 11.18 9.96

Table 5.3: Results of the chained Multistart Iterated local searches and Variable Neigh-
borhood searches algorithms.
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5.7.2 Results for the Multiperiod timetabling case

For the case of multiple periods, we generalize the instances presented in Chapter 4. The

instance size is determined by the number of lines |I| and the number of synchronization

nodes |B| along the network. All the instance types have six planning periods of T = 240

minutes. The parameters for each one of the periods of the day are equal, to simplify the

comparisons and exhibit the efficiency of the algorithms. The frequency for each line i is

randomly generated between [13,18]; travel times from depot to a synchronization node

are between [20,60]; the headway flexibility parameters satisfy δis
ηis
∈ [0.15, 0.25]; finally, the

number of different pairs of lines that synchronize at each node b is between one and seven.

We randomly generate ten instances for each one of the four instance types to analyze

the algorithm’s performance. The name of the instance types and their parameters are

summarized in Table 5.4.

Instance T10 T11 T12 T13
|I| 10 50 100 200
|B| 1 5 10 20

Table 5.4: Instance types and parameter values.

It is worth noting that a commercial solver for solving a real sized instance of MSBT

usually does not give feasible solutions in an hour due to its extremely slow convergence.

Nevertheless, when the instance has the same parameters for all its periods, we can

implement the linear solver of CPLEX 12.3 using the SBT MILP strengthened with syn-

chronization and headway inequalities. We use two different stop criterion for CPLEX’s

solver to compare it with the metaheuristic algorithms. Notations CPLEX1 and CPLEX2

represent the results obtained by CPLEX’s optimizer with stop criteria of 10 minutes and

one hour, respectively.

Obviously, real life instances consider different planning periods but to consider these

types of instances in this study is useless since we do not have a solution methodology or

bounds to make a comparison and the variation in parameter values should not have a

strong influence on the behavior of the metaheuristics.
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Tables 5.5 and 5.6 present the results of the metaheuristic algorithms. The rows

show the instance types and the columns show the mean gap (considering the dual bound

obtained by CPLEX2) and mean time for each one of the solution algorithms. The best

results are highlighted with underlined text. Without considering the solutions obtained

by CPLEX’s optimizer (which in real instances we would not be able to implement),

we notice that VNSb obtains the best results for instances of types T12. Nevertheless,

VNSa obtains the best results for instances of types T10, T11, and T13. In overall

performance, the variable neighborhood search algorithms outperform the iterated local

searches. In spite of this general behavior, the ILS algorithms present the best results for

some particular instances. Therefore, there is no single metaheuristic that surpasses all

the others.

The solutions obtained by the metaheuristic algorithms for these academic instances

improves the ones obtained by CPLEX1. Moreover, there is a difference of around 5%

and 11% from the result obtained by the best metaheuristic algorithm and CPLEX2.

ILSa ILSb ILSc ILSd CPLEX1

gap time gap time gap time gap time gap time
T10 15.73 0.10 25.43 0.13 11.10 0.12 11.48 0.15 4.64 428
T11 15.74 1.17 18.71 1.26 12.63 1.28 11.86 2.51 23.4 600
T12 20.28 3.21 21.22 3.43 14.09 3.29 14.98 6.12 65.8 600
T13 20.23 10.50 23.1 9.12 13.99 10.64 15.34 18.42 127 600

Table 5.5: Results of the Multistart Iterated local search and CPLEX’s linear solver.

CILSa CILSb VNSa VNSb CPLEX2

gap time gap time gap time gap time gap time
T10 8.97 0.14 10.14 0.19 4.39 2.06 5.58 4.45 0.86 2271
T11 12.00 2.44 12.11 2.15 11.59 5.61 11.86 13.45 2.15 3600
T12 14.96 5.74 14.62 6.50 12.75 12.31 12.70 19.74 2.49 3600
T13 15.14 18.27 14.59 20.24 13.50 17.38 13.77 30.25 2.26 3600

Table 5.6: Results of the chained Multistart Iterated local search and Variable Neighbor-
hood search algorithms.

It is important to remark that our proposed metaheuristics are the only algorithms

available for obtaining solutions for MSTB with less than 13.5% of relative mean gap

for large instances (up to 200 lines and 20 synchronization nodes) in seconds while the

implementation of the powerful valid inequalites for SBT MILP requires minutes.
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5.8 Conclusions

We present the Multiperiod Synchronization Bus Timetabling Problem (MSBT) that

considers variations arising during different planning periods for parameters such as travel

times, frequency, and headways. MSBT offers smooth transitions between these periods

and allows synchronization events between trips that belongs to different planning periods,

something which is ignored by merging solutions of the single period case. The relevance

of MSBT is due to the fact that posterior planning problems such as vehicle and crew

scheduling need as input a complete timetable. Indeed, planning based on single period

timetabling problems leads to suboptimal solutions.

MSBT is an NP-hard problem that is difficult to solve in an exact way in a limited

time. We propose eight metaheuristic algorithms (six iterated local searches and two

variable neighborhood searches). To the best of our knowledge, these are the only solution

algorithms available for obtaining feasible high quality solutions for SBT and MSBT using

a reasonable amount of time. For example, we can obtain solution with less than 3.5% of

relative gap for large instances of SBT using seconds of computational time.

The quality of the solutions obtained with our metaheuristic algorithms for MSBT

overcomes the ones obtained by CPLEX1 and differ between 3% and 10% from those

obtained with CPLEX2 (which can be used only for our designed academic instances

where all the periods have the same parameters). This is an interesting result, since even

with implementing the powerful valid inequalities presented in chapter 4, consider multiple

planning periods leads to a considerable slower convergence of the CPLEX’s optimizer.

Although we obtain feasible solutions for this complex problem, there are many

research areas that could lead to important and necessary results. First, integer program-

ming techniques could be used to compute tight dual bounds. These bounds could be used

to define a more accurate measure for the solutions presented in this chapter. Secondly,

valid inequalities for the single period time tabling problem are not easy to generalize

for MSBT. However, there is an open door for developing definitions of new parameters

that would allow using these valid inequalities or considering new inequalities that would
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embed the variability of the parameter values through the entire day. Finally, the gen-

eration of solutions for timetabling problem considering the entire day are important for

defining an integrated approach with subsequent subproblems, such as vehicle and crew

scheduling. Precisely such an integrated approach could be a very important research

area where our results could be used.
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Chapter 6

Conclusions and Future Research

Summary: In this chapter we state several conclusions about our re-
sults but the most important, we define research areas where our con-
tributions could be useful.

“We leave an open door in transit network
planning.”

We define new and accurate timetabling problems for the Monterrey’s bus network

which is composed of several private companies leading to a large and centralized transit

network where efficient interaction between different bus lines is needed. Indeed, our

proposed Synchronization Bus Timetabling Problem has the objective of maximize the

number of synchronization events between different lines to allow well timed passenger

transfers and avoid bus bunching. In particular, our problem allows modeling the real

transit network by considering characteristics such as: flexibility using headway bounds,

a given frequency, and short planning periods. The proof that SBT is NP-Hard relies in

the combinatorial nature of synchronization between different lines. This means that to

choose which pairs are going to be synchronized to get an optimal solution is a difficult

task while determine the departure times knowing the synchronized pair of trips is easier

to handle.

Our proposed mixed integer linear programming formulation for the Synchroniza-

tion Bus Timetabling Problem (SBT) has a special structure which allows removing many

decision variables and constraints using a preprocessing stage based on constraint propa-

gation. Although this preprocessing stage improves the performance of CPLEX’s linear
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solver, the most important characteristic is that it is a tool to define and explore the

feasible space of the problem.

Constraint propagation is quite useful to define families of valid inequalities to

strength the SBT MILP. Our proposed valid inequalities attack the core of the problem

complexity, i.e., the synchronization events. In particular, two of the valid inequalities

bound the number of synchronization events while the other two families of valid in-

equalities identify impossible combination of synchronizations. Then, the search space is

considerable restricted and adding these inequalities to the BTP MILP leads to strength-

ened formulation. Then, it is possible to solve large instances of BTP with the linear

solver of CPLEX 12.3 using short computational times.

As we mentioned before, one of the assumptions of SBT is the existence of short

planning periods. This assumption is useful to define more accurate deterministic travel

times. However, it is necessary to generate a timetable for the entire day. This could be

achieved by solving several instances of SBT (one by each planning period of the day) and

merging the solution with considering some criteria. This kind of approach should leads

to suboptimal solution. Therefore, we introduce the Multiperiod Synchronization Bus

Timetabling Problem (MSBT) that models smooth transitions between planning period

periods and it allows synchronization events between trips belonging to different planning

periods (which is ignored by merging solutions of the single period case). We propose

eight metaheuristic algorithms (six iterated local searches and two variable neighborhood

searches) to solve this NP-Hard problem. To the best of our knowledge, these are the

only solution algorithms available for obtaining feasible high quality solutions MSBT in

a reasonable amount of time. Moreover, we can obtain solution with less than 3.5% of

relative gap for large instances of the SBT using seconds of computational time which is

comparable with the implementation of valid inequalities and the CPLEX’s linear solver.

Summarizing, we design two approaches to solve SBT. One is based on valid in-

equalities while the other is based on metaheuristic algorithms. In the case of MSBT, we

have at hand only our proposed metaheuristic algorithms to obtain solutions with less

than 5% and 13% of mean relative gap for small and large instances, respectively. We
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consider that these are good results, since solving small instances even for SBT (single

period) in a short time was not possible before this study. However, there are several

research areas open to other studies such as the following.

• One of the issues for MSBT is the lack of optimal solutions for most of the instances.

Then, an important research area is the design of a different solution approach such

as, branch and cut approach based on the generalization of the valid inequalities for

SBT presented in Chapter 4. In particular, this inequalities are focus on reduce the

search space of synchronization variables and they are not accurate in MSBT due

to parameter variation along the entire day. Therefore, it is necessary to identify

the impact of the parameter variation in the valid inequalities. For example, the

valid inequality
fj∑
q=1

Y ijb
pq ≤ 1 +

⌊
W b−wb
hj

⌋
for trip i(p) is based on a single headway

parameter and an unique waiting time window while in the case of MSBT we have

headway parameters for each planning period s (his) and waiting time windows

depend of the trips we are trying to synchronize
(
wijbpq and W ijb

pq

)
.

In the basis of the above, a simple generalization of the previous inequality can

be
fj∑
q=1

Y ijb
pq ≤ 1 +

⌊
max
q
{W ijb

pq −wijbpq }
min
s
{hjs}

⌋
. However, instead of consider all the planning

periods, the previous inequality should be generalized considering only the plan-

ning periods where trip i(p) can synchronize. This idea could be implemented to

generalize other families of valid inequalities.

• Several metaheuristics algorithms for our proposed timetabling problems are devel-

oped. All of them are based on shifting departure times of a single trip or an entire

line to achieve synchronizations A characteristic of these movements is that they

define neighborhoods with an infinite number of elements. Then, random shifts are

implemented to explore the neighborhoods in an efficient way leading to local search

algorithms.

In particular, a trip i(p) is shifted within an interval D
ijb

pq to guarantee that Y ijb
pq = 1.

However, this shift movement could be made based on different deterministic rules.

For example, one of these rules could be solving a linear program to shift i(p)

inside its feasible interval to maximize the number of synchronizations between trip
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i(p) and all the trips of lines J(i). The previous rule is really different since shifting

movements are made considering all the possible synchronization variables instead of

the related with only one pair of lines. Moreover, different heuristic algorithms could

be defined based on movements changing the combination of active synchronization

variables and then, determine the related departure times using ideas like constraint

propagation. In general, a large number of different movements can be studied to

define a more efficient solution algorithm.

• Another important research area is the integration of subproblems of transit network

planning. There are some studies of integration approaches but only a few of them

present formulations for a complete integration of two subproblems. Most of these

studies are integration between vehicle and crew scheduling. Moreover, there are

exact solution algorithms such as column generation and other metaheuristic to

solve the proposed integrations.

Since SBT is based on quality service, the integration of SBT with other subprob-

lems such as vehicle and crew scheduling could be defined by a multiobjective ap-

proach. This approach allow to the planner to decide which solutions are accurate

considering the agency policies instead of obtain suboptimal solutions implementing

sequential approaches. Therefore, obtain efficient solution algorithms for this multi-

objective problem is needed. Appendix A presents preliminary results for integrated

approaches considering timetabling with synchronization events.
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Appendix A

Integrated approaches

Summary: One of the hot topics in transit network planning (TNP) is
the complete integration of two or more subproblems of it. In particu-
lar, there are only a few studies that address the bridge between quality
service and operational cost and these studies are mostly focus on se-
quential approaches. Since the nature of the objectives of timetabling
problems and subproblems like vehicle and crew scheduling are in con-
flict, we propose to study multiobjective approaches to define complete
integrations of two or more subproblems of TNP.

“High quality service vs acceptable operational costs.”

A.1 Introduction

The entire planning process of a bus network is divided into several subproblems such as

line planning, timetable generation, vehicle scheduling, and crew scheduling. Commonly,

these subproblems are solved with sequential approaches to obtain a solution for the entire

planning problem. Moreover, it is difficult to obtain a common goal considering different

subproblems. In particular, timetabling and vehicle scheduling are two subproblems where

this issue is more obvious. The reason is that one problem is based on quality service

while the other one is based on operational costs.

In general, there are two categories of integrated approaches: Partial integrations

and complete integrations. On the one hand, partial integrations considers characteristics

of one of more subproblems while another subproblem is optimized. For example, sequen-

tial approaches are of this type and lead to suboptimal solutions. On the other hand,
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complete integrations define formulation and/or solution methodologies to determine the

decisions of two of more subproblems in a simultaneous way thus, it is possible to know

the optimal solution of each subproblem. In the following sections we present several

formulations of the complete integration of two or more subproblems of transit network

planning.

A.2 Integrating timetabling and vehicle

scheduling

The vehicle scheduling problem determines the assignment between a set of trips and

a set of vehicles with minimal vehicle costs. These problems are addressed in several

studies and have several formulations based on the different characteristics such as types

of vehicles, number of depots, compatibility of vehicles, and so on [Daduna and Paixao,

1995, Freling et al., 2001, Steinzen et al., 2010].

The integration of vehicle scheduling with timetabling problems is an important

research area and has been addressed only by few studies. For example, van den Heuvel

et al. [2008] address the integration of clock-face timetabling (i.e., services depart at the

same number of minutes past each hour) and multiple-depot and vehicle-type vehicle

scheduling problem. They design a tabu search to solve this integration. However, the

idea of the algorithm is a sequential solution methodology, since timetabling is modified

and then, vehicle scheduling problem is optimized considering the actual timetable. In

Guihaire and Hao [2008a], a similar sequential idea was presented. The authors address

the timetabling problem with objective of minimizing the overall waiting time consid-

ering a given frequency and fixed headway times. They design an iterated local search

for solving their formulation. In Fleurent and Lessard [2009], the authors propose a

measure function for transfers based on ideal waiting times. They design an optimiza-

tion approach to minimize other objectives such as number of vehicles and unproductive

time. In Fleurent et al. [2005] and Guihaire and Hao [2010a], an integral formulation

for timetabling and vehicle scheduling that considers weights on the objective function is
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presented. However, these weights must reflect the planner’s necessity, which is a issue

for two or more objectives in conflict.

An accurate formulation to represent the planner’s interests is needed. Due to

the nature of the objective function of timetabling and vehicle scheduling problems, we

propose a multiobjective approach to define a complete integration between these two

subproblems.

In this appendix we illustrate the justification and need to implement a multiobjec-

tive approach to integrate subproblems of transit network planning. Since in many cases

it is difficult to solve multiobjective formulations we introduce the integration of a sim-

pler version of MSBT with the single type vehicle scheduling problem with homogeneous

fleets.

A.2.1 Timetabling problem

To define our timetabling problem, we use exactly the same notation and decision variables

than MSBT. The only difference is the redefinition of flexibility to represent the agencies

that are more interested in provide regular services than achieving synchronizations. In-

stead of consider headway bounds as MSBT, we now consider a bounded deviation from

the timetable with even headways inside planning periods and average headways between

different planning periods (called smooth transitions). Figure A.1 shows a line considering

a planning period s of 40 minutes, a frequency of four trips, even headway of ηis = 10, and

relative deviation from the initial timetabling of δis = 10%. The above case represents the

initial timetable. The below case shows the feasible departure time window for each one

of the four trips. We can notice that a trip can depart at most 1 minute earlier or later

than the corresponding departure time of the initial timetable (deviation of 10% from

initial timetable).

Then, the MILP for our less flexible Multiperiod Timetabling Problem (MT) is given

as follows.

maxFMT(Y ) =
∑

i∈I

∑

j∈J(i)

∑

b∈Bij

f i∑

p=1

fj∑

q=1

Y ijb
pq
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Figure A.1: Flexibility considering a bounded deviation from the timetable with even
headway and smooth transitions between planning periods.

subject to

X i
p ≥ ds−1 + ηis

2
+ (p− first(s))ηis − ηisδis ∀ i ∈ I, s ∈ S,

p = first(s), . . . , last(s) (A.1)

X i
p ≤ ds−1 + ηis

2
+ (p− first(s))ηis + ηisδ

i
s ∀ i ∈ I, s ∈ S,

p = first(s), . . . , last(s) (A.2)

(
Xj
q + tjbq

)
−
(
X i
p + tibp

)
≥ wijbpq −M

(
1− Y ijb

pq

)
∀ i ∈ I, j ∈ J(i), b ∈ Bij,

p = 1, . . . , f i, q = 1, . . . , f j(A.3)

(
Xj
q + tjbq

)
−
(
X ip + tibp

)
≤ W ijb

pq +M
(
1− Y ijb

pq

)
∀ i ∈ I, j ∈ J(i), b ∈ Bij,

p = 1, . . . , f i, q = 1, . . . , f j(A.4)

Constraints (A.1) and (A.2) guarantee that each trip is inside the feasible departure

time window illustrated in Figure A.1. The remaining constraints, are the synchroniza-

tion constraints previously presented for SBT and MSBT. Next, we present the vehicle

scheduling to define our complete integration proposal.

A.2.2 Vehicle scheduling problem

Our vehicle scheduling problem minimizes the number of vehicles to cover a set of trips

considering homogeneous fleets. To define the formulation of our Common Fleet Vehicle
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Figure A.2: Network
(
N (γ), A(γ)

)
for a fleet γ ∈ Γ.

Scheduling Problem (VS), we introduce the following notation. Let be Γ the set of homo-

geneous fleets. Set I(γ) represent the lines that can be covered by each fleet γ ∈ Γ where

I(γ) ∩ I(γ′) = ∅ if γ 6= γ′ and
⋃
γ∈Γ

I(γ) = I. The parameters of VS are the fleet size sizeγ

for each γ ∈ Γ, the total travel time rip for each trip i(p), and the setup time sii
′

required

for buses to be ready for making a trip of line i′ just finishing a trip of line i.

The formulation of VS can be done using a bipartite network
(
N (γ), A(γ)

)
for each

fleet γ. To achieve this, the nodes N (γ) are the trips i(p) for all line i ∈ I(γ) and

trip p = 1, . . . , f i. Moreover, we add a node o representing the depot. There are

arcs for each trip i(p) ∈ N (γ) departing from the depot and arriving at it, and an arc

(i(p), i′(p′)) between two trips i(p) and i′(p′) exists, if and only if, it is possible for a

vehicle v to make trip i(p) prepare the vehicle and make trip i′(p′). Formally, A(γ) =
{

(o, i(p)), (i(p), o) : i(p) ∈ N (γ)
}
∪
{

(i(p), i′(p′)) : i(p), i′(p′) ∈ N (γ), X i′

p′ ≥ X i
p + rip + sii

′}
.

Then, the decisions of VS are determined by binary variables such as V ii′γ
pp′ taking the value

of one if a vehicle of fleet γ makes trip i′(p′) just finishing i(p), and being zero otherwise.

Figure A.2 represents a network
(
N (γ), A(γ)

)
for a fleet γ. Notice that a vehicle schedule

can be seen as a path starting from the depot and finishing in this depot.

Considering the previous elements, the integer programming formulation for VS is
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given as follows.

minFV S(V ) =
∑

γ∈Γ

∑

i(p)∈N(γ)

V iγ
op

subject to:

∑
i′(p′)∈N(γ)

V ii′γ
pp′ =

∑
i′(p′)∈N(γ)

V i′iγ
p′p = 1 ∀γ ∈ Γ, i(p) ∈ N (γ), i(p) 6= o (A.5)

∑
i(p)∈N(γ)

V iγ
op ≤ sizeγ ∀γ ∈ Γ (A.6)

The objective function represents the number of vehicles required to cover all trips.

Constraints (A.5) guarantee that exactly one vehicle is assigned to each trip i(p) and

equations (A.6) limit the number of vehicles for each fleet γ ∈ Γ. VS can be seen as

several single-type single-depot vehicle scheduling problems. These problems are easy to

solve [Daduna and Paixao, 1995, Freling et al., 2001] and represent simple cases of transit

networks. Now, we present the integrated formulation for MT and VS.

A.2.3 Multiobjective formulation for integrated MT and VS

As we mentioned before, we need a timetable to define the network of VS. Since we want

to simultaneously determine the decisions of MT and VS we can not assume an initial

timetable as given. Then, to achieve the integration of these two problems we add the

following decision variables.

Zii′γ
pp′ =





1 if it is possible for a vehicle of fleet γ make i′(p′) just finishing i(p),

0 otherwise.

The previous variable is useful to define potential arcs for the vehicle scheduling

problem. In the basis of these variables, the integrated formulation for MT and VS,

named as MTVS, is given as follows.

[maxFMT (Y ),minFV S(V )]
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subject to: (A.1)-(A.6)

X i′

p′ −
(
X i
p + rip + sii

′) ≥ −M
(

1− Zii′γ
pp′

)
∀γ ∈ Γ, i(p), i′(p′) ∈ N (γ) (A.7)

V ii′γ
pp′ ≤ Zii′γ

pp′ ∀γ ∈ Γ, i(p), i′(p′) ∈ N (γ) (A.8)

Now, we have a biobjective formulation to maximize the number of synchronization

events and minimize the number of vehicles. Constraints (A.7) allow to variable Zii′γ
pp′ take

the value of 1 if it is enough time for a vehicle to make trip i(p) prepare the vehicle, and

make trip i′(p′). Constraints (A.8) allow to a vehicle making trip i′(p′) just finishing trip

i(p) only if this is possible. Notice that the decisions of timetabling problem and vehicle

scheduling are determined in a simultaneous way. Analogously to MTVS, the definition

of a complete integrated formulation for MSBT and VS is straight forward.

A.2.4 Solution approach

In contrast to single objective optimization, a solution to a multiobjective problem is

more of a concept than a definition. Typically, there is no single global solution, and it

is often necessary to determine a set of points that all fit a predetermined definition for

an optimum. The predominant concept in defining an optimal point is that of Pareto

optimality, which is defined as follows [Marler and Arora, 2004].

Definition 1. Considering a multiobjective optimization problem {min[F1(x), . . . , Fk(x)] :

x ∈ X}, where X is the feasible space. A point, x∗ ∈ X, is Pareto optimal iff there does

not exist another point, x ∈ X, such that F (x) ≤ F (x∗), and Fi(x) < Fi(x
∗) for at least

one function Fi(x).

This mean that a point is Pareto optimal if it improves at least one objective function

without detriment to another function. Often, algorithms provide solutions that may not

be Pareto optimal but may satisfy other criteria, making them significant for practical

applications. For instance, weakly Pareto optimal is defined as follows.

Definition 2. A weakly Pareto optimal is a point x∗ ∈ X is and only if there does not

exist another point x ∈ X that improves all of the objective functions simultaneously.
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Pareto optimal points are weakly Pareto optimal, but weakly Pareto optimal points

are not Pareto optimal.

In multiobjective optimization the preferences of the decision maker have a great

importance to define an accurate formulation and solution approach for the problem. We

must consider different situations such as the following [Marler and Arora, 2004].

• There are methods with a priori articulation of preferences that allow the user to

specify preferences in terms of goals or the relative importance of different objectives.

Most of these methods incorporate parameters, which are coefficients, exponents,

constraint limits, etc. that can either be set to reflect the decision maker preferences,

or be continuously altered in an effort to represent the complete Pareto optimal set.

• In some cases, it is difficult for a decision-maker to express an explicit approximation

of the preference function. Therefore, it can be effective to allow the decision maker

to choose from a palette of solutions. To this end, an algorithm is used to determine

a representation of the Pareto optimal set. Such methods incorporate a posteriori

articulation of preferences, and they are called cafeteria or generate-first-choose-later

approaches [Messac and Mattson, 2002].

• Often the decision-maker cannot concretely define what he or she prefers. Then,

there are methods that do not require any articulation of preferences. Most of the

methods are simplifications of the methods mentioned in the first case, typically

with the exclusion of method parameters.

In our case, we implement a state of the art method that allow to obtain Pareto

optimal points for MTVS without a priori preferences of the decisions maker. Our so-

lution approach is known as the ε-constraint method which consist in the optimization

of a single objective function Fs(x) while all other objective functions are used to define

additional constraints such as Fi(x) ≤ εi, i = 1, 2, . . . , k, and i 6= s [Hai, 1971]. In this

case, a systematic variation of εi yields a set of Pareto optimal solutions [Hwang and

Masud, 1979]. However, improper selection of ε ∈ Rk can result in a formulation with no
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feasible solution. A general mathematical guideline for selecting εi is provided as follows

[Carmichael, 1980].

Fi(x
∗
i ) ≤ εi ≤ Fi(x

∗
s)

Where Fi(x
∗
i ) represents the minimum value of Fi(x) and Fi(x

∗
s) is the value of the

objective i obtained by optimizing the objective s. If it exists, a solution to the ε-constraint

formulation is weakly Pareto optimal [Miettinen, 1998]. Moreover, if a solution activates

the ε-constraints (i.e., satisfies these constraints as equalities) is necessarily Pareto optimal

[Carmichael, 1980].

In the basis of the above, our ε-constraint method for MTVS is given by Algorithm

13. Steps 1-6 define the extreme points of the Pareto front (optimizing an objective

function subject to the optimal value of the other objective). Steps 7-12 implements the

strategical variation of parameter ε. In particular step 10 updates the Pareto front if

the point obtained by solving P ∗ε is a Pareto optimal point. To do this, we verify if the

ε-constraint is active, i.e., if FV S(V ) = ε.

Algorithm 13 : ε-constraint
Input: MTVS instance
Output: List ListPareto of Pareto optimal points

1: ListPareto = ∅
2: Find V S∗ = {minFV S(V ) : (A.1)− (A.8)}
3: Find MT ∗ = {maxFMT (Y ) : (A.1)− (A.8)}
4: Find P ∗1 = {maxFMT (Y ) : (A.1)− (A.8), FV S(V ) ≤ V S∗}
5: Find P ∗2 = {minFV S(V ) : (A.1)− (A.8), FMT (Y ) ≥MT ∗}
6: ListPareto = ListPareto ∪ {(MT ∗, P ∗2 ) , (P ∗1 , V S

∗)}
7: Make a = V S∗ and ε = P ∗2 − 1
8: while ε > a do
9: Find P ∗ε = {maxFMT (Y ) : (A.1)− (A.8), FV S(V ) ≤ ε}
10: Update ListPareto considering (P ∗ε , ε)
11: ε = ε− 1
12: end while

Since large instances of our timetabling and vehicle scheduling problems can be

solved in a reasonable amount of time, we can implement this methodology to obtain in

most cases the entire set of Pareto optimal points.
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A.2.5 Experimental results

To implement our ε-constraint method, we use different instances types. The instance size

of the timetabling is determined by the number of lines |I| and the number of synchro-

nization nodes |B| along the network. All the instance types have six planning periods of

T = 240 minutes. The parameters for each one of the periods of the day are equal. The

frequency for each line i is randomly generated between [13,18]; travel times from depot

to a synchronization node are between [20,60]; finally, the number of different pairs of

lines that synchronize at each node b is between one and seven. The name of the instance

types and their parameters are summarized in Table 5.4.

Instances T13 T14 T15 T16 T17 T18
|I| 10 50 100 200 10 50
|B| 1 5 10 20 1 5
δis ∈ [7.5,12.5] [7.5,12.5] [7.5,12.5] [7.5,12.5] [15,25] [15,25]

Table A.1: Instance types and parameter values.

To define the parameters related with the vehicle scheduling problem we generate a

set of fleets Γ such that the fleet size sizeγ is randomly generated within [4,6] for each fleet

γ ∈ Γ. Moreover, as it happens with Monterrey’s transit agencies, the lines sharing bus

bunching nodes are assigned to the same fleet. Finally, turnaround times rip are randomly

generated between 120 and 180 and setup parameters sii
′
are zero. We randomly generate

ten instances for each one of the six instance types to analyze the algorithm’s performance

(we generate a total of 60 instances).

In particular, instances T13-T16 for MT are very similar to instances T9-T12 for

MSBT. The only difference is that the headway amplitude factor for MT is half of the

ones for MSBT. Then, by constraints (A.1) and (A.2) of MT, the headways for each line

i in the same planning period s is within [ηis − 2ηisδ
i
s, η

i
s − 2ηisδ

i
s] (which are the headway

constraints of MSBT), i.e., every feasible solution for MT is feasible for MSBT. On the

other hand, instances T17 and T18 are instances with more flexibility that may not be

feasible for MSBT.

In general, Algorithm 13 is very efficient for the designed instances. Table A.2 show
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the average and standard deviation of the execution times of our ε-constraint method for

all the instances types (avg time and dev time, respectively).

Instances T13 T14 T15 T16 T17 T18
avg time (secs) 10.26 231.64 818.38 3426.01 148.76 9018.64
dev time (secs) 4.26 78.24 424.14 2324.50 144.11 4037.17

Table A.2: Computational resources using Algorithm 13 for instances T13-T18.

Due to the less flexibility given by MT, the ideal point (solution leading to optimal

value of MT and VS) is found for 95% of the instances of types T13-T16. For the remaining

instances of these types, the Pareto front is defined by two or three points. However, even

in this timetabling instances with less flexibility, the conflict between objectives is present.

Figure A.3 shows an instance of type T16 where we can see the three points of the Pareto

front. The red circular point represents the ideal solution.

ideal 2177 1542

2166 1542

2168 1543

2177 1544

1542

1543

1544

Pareto optimal points

F

VSF

1541

2164 2166 2168 2170 2172 2174 2176 2178
MTF

Figure A.3: Pareto front of an instance of type T16.

In the case of instances T17 and T18, ideal point is found for only 15% of the

instances. In the instances of type T17, there are at most two Pareto optimal points

while there are at most five Pareto optimal points for instances T18. Figure A.4 shows

an instance of type T18 where we can see the five points of the Pareto front.

As we can see, the more flexible the timetable is, more Pareto optimal points can be

found. This is the justification of a multiobjective approach. However, efficient solution

algorithms are needed to handle larger instances. In particular, instances larger than T18
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ideal 636 371

636 375

631 374

626 373

617 372

607 371

371

372

373

374

375

Pareto optimal points

F

VSF

370

603 606 609 612 615 618 621 624 627 630 633 636 639
MTF

Figure A.4: Pareto front of an instance of type T18.

with the same flexibility parameters are intractable using Algorithm 13. This is also the

case of the integration of MSBT and VS.

A.3 Integrating timetabling and vehicle-crew

scheduling

Conflict between objectives is present in the integration of timetabling and vehicle schedul-

ing. In the case of the integration between two subproblems such as vehicle scheduling

and crew scheduling, a common objective can be seen as minimizing the total cost of

the vehicles plus the cost of drivers. This characteristic leads to accurate and complete

integrations of these two subproblems. For example, Friberg and Haase [1999] present

an integrated formulation for vehicle and crew scheduling problem based on set parti-

tion problems and a column generation approach is developed to solve small instances

of the problem (up to 20 trips). Mesquita et al. [2009] present an integration of these

two subproblems with characteristics like, possibility of changing vehicles for drivers, and

multidepot vehicle scheduling. The authors present an integer mathematical formulation

combining multicommodity flow model with a mixed set partitioning/covering model.

Solving linear relaxation along with branching procedures are proposed to solve their

formulation. Similar studies based on set partition formulations, column generation ap-
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proaches, and Lagrangian heuristics are presented in Freling et al. [2003] and Huisman

et al. [2005].

A different kind of approach is presented in Kéri and Haase [2007] where the authors

consider the possibility of modify the initial timetable to obtain better solutions for vehicle

and crew scheduling problems. An approach based on Lagrangian heuristics combined

with column generation is proposed to solve the problem.

The previous studies consider the trip-vehicle-driver assignment but, most of the

constraints based on working regulations are missing. As it is clearly exhibit in Torrance

et al. [2009], these working regulations constraints are required to obtain an accurate

solution for crew scheduling problems. An example of working regulation constraint in

integrated approaches can be found in Laurent and Hao [2008]. In this study, constraints

for maximum spread time, maximum working time, and changeovers of vehicles (vehi-

cle swaps) for drivers are considered to define an integration between vehicle and crew

scheduling to minimize the number of buses and drivers. The authors propose a constraint

based preprocessing and a GRASP algorithm to solve the proposed formulation. As it

happens with this study, planning process of Monterrey’s transit network must consider

several working regulation constraints. In the next section we define an accurate problem

definition for the case of Monterrey’s transit network.

A.3.1 Vehicle and crew scheduling Problem

Monterrey’s transit network is handled by several private agencies. Moreover, each agency

has one or more depots to operate. Commonly, the operation planning process (i.e., assign

vehicles and drivers) is done for each depot independently but the optimization can be

done in a global way by minimizing the sum of the costs generated by each depot. Other

characteristics of our vehicle and crew scheduling problems are the following.

• Accurate trip-vehicle-driver assignments should be done. To achieve this, we must

consider that a driver can not be assigned to any vehicle since a driver is compatible

with only a few vehicles (one or two in most cases).
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• Each driver can be assigned to a few of the bus lines thus, although there are

homogeneous fleets of vehicles, not all vehicles can be assigned to any bus line.

• By agencies policy, a working time of eight hours (regulated working time) for each

driver is preferred, and less amount of time is not desired.

• By working regulations, a driver must be paid a double amount of money for every

hour of work that exceeds the eight hours.

• By working regulations, each driver must have a resting time between every eight

hours of work.

• A driver can change of vehicle along his day of work but the vehicle swaps must be

bounded for each driver.

Figure A.5 shows a fleet γ with three vehicles and four drivers. The arrows represent

the possibility of assignment between two elements. As we mentioned before, each driver

is compatible with some vehicles V (d). However, drivers abssentism is frequent. Then,

a vehicle can be useless if its compatible drivers do not assist to work which is a major

issue in the actual planning process of Monterrey’s transit network. An example can be

illustrated in Figure A.5 where vehicle three is useless if driver four is not present.

In the basis of the above, our Vehicle-Crew Scheduling Problem with Working Regu-

lations (VCS) determines accurate trip-vehicle-driver assignments for an agency satisfying

the working regulations constraints based in the previously mentioned considerations.

In the next section, we present the working regulation constraints for Monterrey’s

transit network. Moreover, as we did for MTVS, the integration of MT and VCS can be

done using a multiobjective formulation.

A.3.2 Multiobjective formulation for integrated

timetabling, vehicle, and crew scheduling

We consider homogeneous fleets but, due to drivers compatibility with vehicles and bus

lines , we need to identify each vehicle. To achieve this, we introduce the following sets.

Omar Jorge Ibarra Rojas Graduate Program in System Engineering



Appendix A. Integrated approaches 110

1
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driver 1

driver 2

driver 3
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1

12
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driver 4 Bus line 213

Figure A.5: Example of a fleet γ and the relations between its elements.

Let V (γ) be the set of vehicles of fleet γ ∈ Γ. Analogously, let D(γ) be the set of

drivers of fleet γ. Compatibility between vehicles and drivers is defined by V (d) repre-

senting the vehicles that can be assigned to driver d and D(v) representing the drivers

that can be assigned to vehicle v. Sets V (i) and D(i) represent the sets of vehicles and

drivers compatibles with line i, respectively. Finally, the lines that can be assigned to

each driver d and each vehicle v are denoted as I(d) and I(v), respectively.

We use the same parameters of MTVS but we also consider the following parameters:

The maximum number of vehicle swaps for each driver d is given by swap(d); Regulated

working time for driver d is represented for work(d); max work(d) is the maximum working

time for driver d; Resting time for each driver is denoted as rest(d); The working time

without rest for driver d is bounded by no rest(d); c(d) represent the cost of an hour of

work of driver d. Parameter extra c(d) denotes the cost of an hour of work of driver d

exceeding work(d); Parameter c
i(v)
p is the cost to cover a trip i(p) with vehicle v; Finally,

the fixed cost of use a vehicle is given by fix c(v).

The decisions of our problems are the departure times and the sequence of trips for

vehicle and drivers. We denote i(p) → i′(p′) the fact of making trip i′(p′) just finishing

trip i′(p′) by a specific vehicle or a specific driver. Therefore, the decision variables of our
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integrated approach are the following.

• Zii′(v)
pp′ =





1 if it is possible to make i(p)→ i′(p′) for vehicle v,

0 otherwise.

• Zii′(d)
pp′ =





1 if it is possible to make i(p)→ i′(p′) for driver d,

0 otherwise.

• W ii′(v)
pp′ =





1 if vehicle v makes i(p)→ i′(p′),

0 otherwise.

• W ii′(d)
pp′ =





1 if driver d makes i(p)→ i′(p′),

0 otherwise.

• V ii′(d)
pp′ =





1 if driver d makes i(p)→ i′(p′) changing vehicle,

0 otherwise.

• U ii′(d)
pp′ =





1 if driver d makes i(p)→ i′(p′) with a rest between these trips,

0 otherwise.

• WT (d): Working time for driver d.

• R(d): Remaining working time of driver d to reach work(d).

• E(d): Extra working time for driver d.

In the basis of the previous decision variables, the total cost of the vehicle and crew

scheduling is given by

FV CS(W,E,R) = min
∑

γ∈Γ

∑

d∈D(γ)

c(d)
(
WT (d) +R(d)

)
+ extra c(d)E(d)

︸ ︷︷ ︸
driver costs

+

∑

γ∈Γ


 ∑

i(p)∈N(γ)

∑

v∈V (i)

fix ci(v)
p W i(v)

op +
∑

i(p)∈N(γ)

∑

i′(p′)∈N(γ)

∑

v∈V (i)∩V (i′)

ci(v)
p W

ii′(v)
pp′




︸ ︷︷ ︸
vehicle costs
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Therefore, our biobjective formulation MTVCS is the following.

[maxFMT (Y ),minFV CS(W,E,R)]

Subject to the following constraints. The first group of constraints (A.9)-(A.12)

define the potential networks for vehicle and crew scheduling and are analogous to the

ones defined for MTVS formulation.

X i′

p′ −


X i

p + rip + max



s

ii′ , rest(d)
∑

d∈D(v)

U
ii′(d)
pp′






 ≥ −M1

(
1− Zii′(v)

pp′

)

∀γ ∈ Γ, i(p), i′(p′) ∈ N (γ), v ∈ V (i) ∩ V (i′) (A.9)

W
ii′(v)
pp′ ≤ Z

ii′(v)
pp′

∀i(p), i′(p′) ∈ N (γ), v ∈ V (i) ∩ V (i′) (A.10)

X i′

p′ −
(
X i
p + rip + max

{
sii
′
, rest(d)U

ii′(d)
pp′

})
≥ −M2

(
1− Zii′(d)

pp′

)

∀γ ∈ Γ, i(p), i′(p′) ∈ N (γ), d ∈ D(i) ∩D(i′) (A.11)

W
ii′(d)
pp′ ≤ Z

ii′(d)
pp′

∀γ ∈ Γ, i(p), i′(p′) ∈ N (γ), d ∈ D(i) ∩D(i′) (A.12)

The next constraints (A.13) assign each trip i(p) to one and only one vehicle and

driver.

∑

i′(p′)∈N(γ)

∑

v∈V (i)∩V (i′)

W
ii′(v)
pp′ =

∑

i′(p′)∈N(γ)

∑

d∈D(i)∩D(i′)

W
ii′(d)
pp′ = 1 ∀γ ∈ Γ, i(p) ∈ N (γ) (A.13)

Constraints (A.14) and (A.15) guarantee that if a vehicle v or a driver d is assigned

to a trip, these vehicle and driver should be assigned to other trip or return to the depot

and vice versa.

∑

i′(p′)∈N(γ)

W
ii′(v)
pp′ =

∑

i′(p′)∈N(γ)

W
i′i(v)
p′p ∀γ ∈ Γ, i(p) ∈ N (γ), v ∈ V (i) (A.14)
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∑

i′(p′)∈N(γ)

W
ii′(d)
pp′ =

∑

i′(p′)∈N(γ)

W
i′i(d)
p′p ∀γ ∈ Γ, i(p) ∈ N (γ), d ∈ D(i) (A.15)

We must guarantee that if a driver d is assigned to a trip i(p), a compatible vehicle

v ∈ V (d) must be assigned to trip i(p). This means that if variable W
ii′(d)
pp′ is one in

constraint (A.16), there should be one vehicle in V (d) assigned to trips i(p) and i′(p). In

particular, if there is not an unique vehicle assigned to i(p) and i′(p′), driver d makes trips

i(p) and i′(p′) with different vehicles, i.e., there is a vehicle swap.

∑

i′′(p′′)∈N(γ))

∑

v∈V (d)∩V (i)∩V (i′)

W
i′′i(v)
p′′p +

∑

i′′(p′′)∈N(γ)

∑

v∈V (d)∩V (i)∩V (i′)

W
i′i′′(v)
p′p′′ ≥ 2W

ii′(d)
pp′

∀γ ∈ Γ, i(p), i′(p′) ∈ N (γ), d ∈ D(i) ∩D(i′) (A.16)

As we mentioned before, it is possible to identify a change of vehicles for some

driver by comparing the vehicle and crew scheduling variables. In particular, the first

constraints (A.17) allow to activate a vehicle swap variable related to trips i(p) and i′(p′)

for a driver d, if and only if, this driver makes i(p) → i′(p′). Constraints (A.18) activate

variable V
ii′(d)
pp′ , if and only if, there is no vehicle v ∈ V (d), making i(p) → i(p′). Finally,

constraints (A.19) limit the number of vehicle changes for each driver d.

V
ii′(d)
pp′ ≤ W

ii′(d)
pp′ ∀γ ∈ Γ, i(p), i′(p′) ∈ N (γ), d ∈ D(i) ∩D(i′) (A.17)

∑

v∈V (d)

W
ii′(v)
pp′ ≤ 1− V ii′(d)

pp′ ∀γ ∈ Γ, i(p), i′(p′) ∈ N (γ), d ∈ D(i) ∩D(i′) (A.18)

∑

i(p)∈N(γ)

∑

i′(p′)∈N(γ)

V
ii′(d)
pp′ ≤ swap(d) ∀γ ∈ Γ, d ∈ D(γ) (A.19)

The following group of constraint control the working time for each driver. The non

linear equations (A.20) define the working time for driver d. Constraints (A.21) define

the variables R(d) and E(d) considering the regulated working time work(d), if driver d is

assigned to at least one trip (i.e., is possible do not hire a driver d for some day). The
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last constraints (A.22) limit the working time for each driver.

∑

i(p)∈N(γ)

W i (d)
po

(
X i
p + rip

)
−

∑

i(p)∈N(γ)

W i(d)
op X i

p = WT (d) ∀γ ∈ Γ, d ∈ D(γ) (A.20)

WT (d) +R(d) − E(d) ≥ work(d)
∑

i(p)∈N(γ)

W i(d)
op ∀γ ∈ Γ, d ∈ D(γ) (A.21)

WT (d) ≤ max work(d) ∀γ ∈ Γ, d ∈ D(γ) (A.22)

Finally, the resting times of drivers are controlled by the following constraints. Con-

straints (A.23) allow activate variable U
ii′(d)
pp′ , if and only if, driver d makes i(p) → i′(p′).

Constraint (A.24) guarantee that it is enough free time between trips i(p) and i′(p′) for

resting time of driver d. Constraint (A.25) guarantee that a resting time is assigned to

driver d every no rest(d) amount of time.

U
ii′(d)
pp′ ≤ W

ii′(d)
pp′

∀i(p), i′(p′) ∈ N (γ), d ∈ D(i) ∩D(i′) (A.23)

X i′

p′ −
(
X i
p + rip + rest(d)

)
≥ −M4

(
1− U ii′(d)

pp′

)

∀i(p), i′(p′) ∈ N (γ), d ∈ D(i) ∩D(i′) (A.24)

no rest(d)
∑

i(p)∈N(γ)

∑

i′(p′)∈N(γ)

U
ii′(d)
pp′ ≥ WT (d) − no rest(d)

∀γ ∈ Γ, d ∈ D(γ) (A.25)

Our formulation MTVCS consider most of the characteristics in Monterrey’s transit

network. Moreover, it is a similar formulation than some of the presented in the literature

review. This may be an advantage since we can use ideas presented in literature to design

solution methodologies. Unfortunately, exact approaches seems not accurate for solving

this formulation. Then, efficient solution approaches are needed.
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A.4 Conclusions

The formulations presented in this chapter are based on Monterrey’s transit network

and are complete integrations of subproblems of transit network planning. Using these

formulation, we are able to know the optimal solution of each subproblem since decision

are determined simultaneously and not in a sequential way.

In particular, Multiperiod Timetabling Problem (MT) and Vehicle Scheduling Prob-

lem (VS) are examples of two problems where our multiobjective formulation can be used.

Using the Pareto optimal solutions, we are able to represent the cost of a vehicle in terms

of number of synchronizations (quality service) and give this information to the decision

maker. The characteristics of MT and VS, allow to solve problems of 50 lines and 5 depots

(reasonable sizes for agencies in real transit networks) with an ε-constraint method. In the

other hand, the integration of MSBT and VS is much more difficult and the ε-constraint

method is not accurate.

We propose an integrated formulation for timetabling, vehicle scheduling, and crew

scheduling based on Monterrey’s transit network. Our problem definition consider working

regulation constraints which are really important to obtain a representative solution for

our case study. Due to the complexity of the subproblems, efficient solution algorithms

are needed.
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Background

The context of this dissertation is the definition of problems and efficient solution algo-

rithms for transit network planning based on operations research concepts. In particular,

we use several basic concepts related with integer programming and heuristic algorithms

that can be easily found in several books such as Wolsey [1998], Nemhauser and Wolsey

[1999], and Talbi [2009]. However we recall the concepts used along this dissertation.

B.1 Mathematical formulations

As it is mentioned in Williams [1999], the essential feature of a mathematical formulation

in operational research is that it involves a set of mathematical relationships (such as

equations, inequalities, logical dependencies, etc.) which correspond to some more down-

to-earth relationships in the real world such as technological relationships, physical laws,

marketing constraints, etc. Some of the motives for building such models are the following.

• The actual exercise of building a model often reveals relationships which were not

apparent to many people. As a result a greater understanding is achieved of the

object being modeled.

• Having built a model it is usually possible to analyze it mathematically to help

suggest courses which might not otherwise be apparent.

• Experimentation is possible with a model whereas it is often not possible or desirable

to experiment with the object being modeled. It would clearly be politically difficult,
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as well as undesirable, to experiment with unconventional economic measures in a

country if there was a high probability of disastrous failure. The pursuit of such

courageous experiments would be more (though not perhaps totally) acceptable on

a mathematical model.

Now, we present the definition of the different types of formulations used along this

dissertation.

Definition 3. A Mixed Integer Linear Program (MIP) is given by vectors c ∈ Rn, b ∈ Rm,

a matrix A ∈ Rm×n and a number p ∈ {0, ..., n}. The goal of the problem is to find a

vector x ∈ Rn solving the optimization problem
{

max cTx : Ax ≤ b, x ∈ Zp+ × Rn−p
+

}
.

If p = n, then all variables are required to be integral. In this case, we speak of an

Integer Linear Program (IP) denoted as
{

max cTx : Ax ≤ b, x ∈ Zn+
}

.

If in an Integer Linear Program all variables are restricted to values from the set

B = {0, 1}, we have a 0− 1 Binary Linear Integer Program denoted as {max cTx : Ax ≤
b, x ∈ Bn}

The use of discrete decision variables usually leads to problems where it is difficult

to design solution algorithms to obtain optimal solutions. However, as we see in the next

section, there are well defined algorithms to solve these types of formulations.

B.2 Branch-and-Bound algorithm

There are generic solution algorithms such as the Branch and Bound (B&B) to solve

the formulation considering integer decision variables. For example, assume we have an

integer program z∗ =
{

max cTx : x ∈ X
}

where X =
{
x : Ax ≤ b, x ∈ Zn+

}
. The main

ideas of the Branch and Bound to solve a problem are:

• If we remove a integrality constraint xj ∈ Z+, the modified problem is a linear

program that can be easily solved and gives us a lower bound on z∗.

• If we fix xj to a feasible integer, the modified problem gives an upper bound on z∗.
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Branch and Bound uses these ideas in a divide and conquer strategy. The strategy

consist in solve linear relaxations of the problem and fix integer variables to update lower

bounds, feasible solutions, and upper bounds. The algorithm stops until the best lower

bound obtained by linear relaxations is equal to the best upper bound related to feasible

solutions, i.e., we have the optimal solution. An iteration k of B&B does the following:

• Select a problem Pk,

• Solve the linear relaxation of a problem Pk (relaxing the integrality constraint for

non-fixed integer variables).

• Let x∗ be the optimal solution obtained, and zPk the optimal objective function

value.

• If zPk ≥ U(best upper bound) we delete the problem (as zPk is a lower bound on all

integer solutions in this branch of the tree).

• If zPk ≥ U pick some variable xj whose optimal solution is fractional, and construct

two problems by adding the constraints xj ≤ bx∗jc and xj ≥ dx∗je in each problem.

Detailed examples of the implementation of B&B can be found in Wolsey [1998]. We

most remark that B&B is a generic solution algorithm but, it is not capable to solve all

kinds of problem. In particular, computational complexity theory states that problems can

vary in the effort required to be solved them [e.g. Garey and Johnson, 1979, Papadimitriou

and Steiglitz, 1998]. An optimization problem that belongs to the NP-hard class means,

in simple terms, that an efficient algorithm for the exact solution of this problem does not

exist. However, there are mathematical tools to help finding exact solutions for NP-hard

problems implementing B&B algorithm or others similar to it. We present one of these

tools in the next section.

B.3 Valid inequalities

Consider an integer program P = {max cx : x ∈ X} where X =
{
x : Ax ≤ b, x ∈ Zn+

}
.

As it is shown in [Nemhauser and Wolsey, 1999], solving P is equivalent to solve Pc =
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{max cx : x ∈ conv(X)}, where the called convex hull conv(X) is the smallest closed con-

vex set that contains X at it is given as follows.

conv(X) =

{
x ∈ Rn : x =

k∑

i=1

λix
i where k ≥ 1, λ ∈ Rk

+ and x1, . . . , xk ∈ X
}

Notice that conv(X) do not has integrality constraints thus, Pc is a linear program.

However, for NP-hard problems, there is almost no hope of finding a good description of

conv(X). Therefore, a common goal is approximate conv(X) considering a given instance

of the problem P . The fundamental concept to achieve this is that of a valid inequality.

Definition 4. An inequality πx ≤ πo is a valid inequality for X ⊆ Rn, if πx ≤ πo for all

x ∈ X.

By its definition, a valid inequality removes fractional solutions reducing the search

space of the linear relaxation. This characteristic is really useful if we implement a

state of the art algorithm such as the B&B. As it can be seen in Wolsey [1998], there

are different general types of valid inequalities for integer and mixed integer programs.

However, to define tailor-made valid inequalities for NP-hard problems that leads to

high quality results is not an easy task. Indeed, if tailor-made valid inequalities are

available for an optimization problem, different solution approaches based on them can

be implemented [Nemhauser and Wolsey, 1999]. For example, an approach is to define a

strengthen formulation with valid inequalities and solve it using an algorithm as a B&B.

B.4 Metaheuristics

In this section we present concepts related with metaheuristic algorithms. These concepts

are extracted from an excellent review of metaheuristics presented in Talbi [2009].

The word heuristic has its origin in the old Greek word heuriskein, which means

the art of discovering new strategies (rules) to solve problems. The term metaheuristic

was introduced in Glover [1986]. Metaheuristic search methods can be defined as upper
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level general methodologies (templates) that can be used as guiding strategies in design-

ing underlying heuristics to solve specific optimization problems. Then, metaheuristics

represent a family of approximate optimization that provide“acceptable” solutions in a

reasonable time for solving hard and complex problems. Unlike exact optimization algo-

rithms, metaheuristics do not guarantee the optimality of the obtained solutions.

In designing a metaheuristic, two contradictory criteria must be taken into account:

exploration of the search space (diversification) and exploitation of the best solutions

found (intensification). Promising regions are determined by the obtained “good” solu-

tions. In intensification, the promising regions are explored more thoroughly in the hope

to find better solutions. In diversification, nonexplored regions must be visited to be sure

that all regions of the search space are evenly explored and that the search is not confined

to only a reduced number of regions.

There is a large variety of metaheuristic algorithms. To classify them, criteria such

as the following can be used.

• Nature inspired versus nonnature inspired: Many metaheuristics are inspired by

natural processes: evolutionary algorithms and artificial immune systems from bi-

ology; ants, bees colonies, and particle swarm optimization from swarm intelligence

into different species (social sciences); and simulated annealing from physics.

• Memory usage versus memoryless methods: Some metaheuristic algorithms are

memoryless; that is, no information extracted dynamically is used during the search.

Some representatives of this class are local search, GRASP, and simulated annealing.

While other metaheuristics use a memory that contains some information extracted

online during the search. For instance, short-term and long-term memories in tabu

search.

• Deterministic versus stochastic: A deterministic metaheuristic solves an optimiza-

tion problem by making deterministic decisions (e.g., local search, tabu search). In

stochastic metaheuristics, some random rules are applied during the search (e.g.,

simulated annealing, evolutionary algorithms). In deterministic algorithms, using
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the same initial solution will lead to the same final solution, whereas in stochastic

metaheuristics, different final solutions may be obtained from the same initial solu-

tion. This characteristic must be taken into account in the performance evaluation

of metaheuristic algorithms.

• Population-based search versus single-solution based search: Single-solution based

algorithms (e.g., local search, simulated annealing) manipulate and transform a sin-

gle solution during the search while in population-based algorithms (e.g., particle

swarm, evolutionary algorithms) a whole population of solutions is evolved. These

two families have complementary characteristics: single-solution based metaheuris-

tics are exploitation oriented; they have the power to intensify the search in local

regions. Population-based metaheuristics are exploration oriented; they allow a bet-

ter diversification in the whole search space. In the next chapters of this book, we

have mainly used this classification. In fact, the algorithms belonging to each family

of metaheuristics share many search mechanisms.

• Iterative versus greedy: In iterative algorithms, we start with a complete solution

(or population of solutions) and transform it at each iteration using some search

operators. Greedy algorithms start from an empty solution, and at each step a

decision variable of the problem is assigned until a complete solution is obtained.

Most of the metaheuristics are iterative algorithms.

To define a metaheuristic algorithm, several components such as constructive algo-

rithms, neighborhood, local search, and perturbation are needed. We present the defini-

tion of the previous components since they are used along this dissertation.

Constructive algorithms start from scratch (empty solution) and construct a solution

by assigning values to one or several decision variables at a time, until a complete solution

is generated.

A partial solution s may be seen as a subset of elements Es from the set of all

elements E. The set defining the initial solution is empty. At each step, a a well defined

procedure is used to select the new element to be included in the solution. For example,
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it is said that we have greedy constructive algorithm if our element selection procedure

take the best element from the list considering the value of the objective function. We

remark that, once an element is selected to be part of the solution, it is never replaced by

another element, i.e., there is no backtracking of the already taken decisions. If we have

a initial solution a natural question is, how to improve it? To answer this question we

present the following definitions.

Definition 5. A neighborhood function N is a mapping N : S ∈ 2S that assigns to each

solution s of S a set of solutions N(s) ⊆ S.

A solution s′ in the neighborhood of s (s′ ∈ N(S)) is called a neighbor of s. A

neighbor is generated by the application of a move operator m that performs a small

perturbation to the solution s. Once the concept of neighborhood has been defined, the

local optimality property of a solution may be given.

Definition 6. Relatively to a given neighbor N(s), a solution s∗ ∈ S is a local optimum

if it has a better quality than all its neighbors; that is, f(s∗) ≤ f(s′) for all s′ ∈ N(s).

For the same optimization problem, a local optimum for a neighborhood N1 may

not be a local optimum for a different neighborhood N2. Then, it is important to define

procedure to explore these local optima such as the following.

Local search is likely the oldest and simplest metaheuristic method. We present a

template for it in Algorithm 14. It starts at a given initial solution. At each iteration,

the heuristic replaces the current solution by a neighbor that improves the objective

function. The search stops when all candidate neighbors are worse than the current

solution, meaning a local optimum is reached. For large neighborhoods, the candidate

solutions may be a subset of the neighborhood. The main objective of this restricted

neighborhood strategy is to speed up the search.

Designing a local search algorithm has to address the selection strategy of the neigh-

bor that will determine the next current solution. To achieve this, the following strategies

can be applied in the selection of a better neighbor.

Omar Jorge Ibarra Rojas Graduate Program in System Engineering



Appendix B. Background 123

Algorithm 14 : Template of a local search algorithm

Input: initial solution s0

Output: feasible solution s

1: s = s0

2: while not Termination Criterion do
3: Generate N(s) (Candidate neighbors)
4: if there is no better neighbor then
5: stop
6: else
7: s = s′ (select better neighbor s′ ∈ N(s))
8: end if
9: end while

• Best improvement (steepest descent): In this strategy, the best neighbor (i.e.,

neighbor that improves the most the cost function) is selected. The neighborhood is

evaluated in a fully deterministic manner. Hence, the exploration of the neighbor-

hood is exhaustive, and all possible moves are tried for a solution to select the best

neighboring solution. This type of exploration may be time-consuming for large

neighborhoods.

• First improvement: This strategy consists in choosing the first improving neigh-

bor that is better than the current solution. Then, an improving neighbor is im-

mediately selected to replace the current solution. This strategy involves a partial

evaluation of the neighborhood. In the worst case (i.e., when no improvement is

found), a complete evaluation of the neighborhood is performed.

• Random selection: In this strategy, a random selection is applied to those neigh-

bors improving the current solution. A compromise in terms of quality of solutions

and search time may consist in using the first improvement strategy when the initial

solution is randomly generated and the best improvement strategy when the initial

solution is generated using a greedy procedure. In practice, on many applications,

it has been observed that the first improving strategy leads to the same quality

of solutions as the best improving strategy while using a smaller computational

time. Moreover, the probability of premature convergence to a local optimum is less

important in the first improvement strategy.
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One of the main disadvantages of LS is that it converges toward local optima. More-

over, the algorithm can be very sensitive to the initial solution. Moreover, there is no

means to estimate the relative error from the global optimum and the number of iterations

performed may not be known in advance. Local search works well if there are not too

many local optima in the search space or the quality of the different local optima is more

or less similar. If the objective function is highly multimodal, which is the case for the

majority of optimization problems, local search is usually not an effective method to use.

However, many alternatives algorithms have been proposed to avoid becoming stuck at

local optima. Four different families of approaches that can be used to avoid local optima

are presented in Figure B.1:

LOCAL SEARCH 125

2.3.2 Escaping from Local Optima

In general, local search is a very easy method to design and implement and gives fairly

good solutions very quickly. This is why it is a widely used optimization method

in practice. One of the main disadvantages of LS is that it converges toward local

optima. Moreover, the algorithm can be very sensitive to the initial solution; that is,

a large variability of the quality of solutions may be obtained for some problems.

Moreover, there is no means to estimate the relative error from the global optimum

and the number of iterations performed may not be known in advance. Even if the

complexity, in practice, is acceptable, the worst case complexity of LS is exponential!

Local search works well if there are not too many local optima in the search space or

the quality of the different local optima is more or less similar. If the objective function

is highly multimodal, which is the case for the majority of optimization problems,

local search is usually not an effective method to use.

As the main disadvantage of local search algorithms is the convergence toward

local optima, many alternatives algorithms have been proposed to avoid becoming

stuck at local optima. These algorithms are become popular since the 1980s. Four

different families of approaches can be used to avoid local optima (Fig. 2.24) :

• Iterating from different initial solutions: This strategy is applied in multistart

local search, iterated local search, GRASP, and so forth.

Simulated 
annealing

 Tabu 
search

  Iterative local 
search, GRASP

Accept nonimproving 
      neighbors 

Iterate with different 
      solutions 

Strategies for improving local search

 Multistart 
local search

Change landscape 
    of the problem

Variable neighborhood 
           search

Guided local 
    search

Noisy method Smoothing 
   method

  Use different 
neighborhoods 

Change the objective function
         or the data input 

FIGURE 2.24 S-metaheuristic family of algorithms for improving local search and escaping

from local optima.
Figure B.1: Family of algorithms for improving local search and escaping from local
optima [Talbi, 2009].

To finish this chapter, we must remark that some of the previous metaheuristics

implement perturbation moves to escape from local optima. The perturbation operator

may be seen as a large random move of the current solution. The perturbation method

should keep some part of the solution and perturb strongly another part of the solution

to move hopefully to another basin of attraction.
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Piece-mold-machine manufacturing

planning

Summary: The main topic of this dissertation is the transit network
planning. However, I found some time to get involved in other research
areas. One of these studies is manufacturing planning which is the
research area of my master thesis. In particular, Mario Saucedo made a
vital participation to obtain the results presented in this chapter. I also
thank to Yasmin Rios-Solis and Roger Rios-Mercado for collaborating
in this study.

“We remembered an old friend during our
trip along transit network planning.”

C.1 Introduction

A number of manufacturing companies require auxiliary equipment, such as molds, for

their production processes. We base our study in a plastic injection system where molds

are employed for shaping plastics into useful objects. These molds vary in shape, size,

and mechanical properties as they are used for the production of different types of pieces.

Generally, molds are extremely heavy and need to be moved with cranes, resulting in

a large amount of time used for their installation, preparation, and removal (two hours

on average for the plastic injection molds). The problem arises when different molds are

able to process the same type of piece and when each mold can be installed on different

machines, which represent assignment decisions. If we add the fact that for every piece-

mold pair there is a different production rate, then the problem is evident: how to make an
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accurately schedule of the process to reduce wasted time due to installation and removal

of molds. Moreover, the objective of minimizing the cost of the unfulfilled demand is

interesting for the companies, since they are commonly forced to buy pieces from a third

party to fulfill the demand, in an effort to retain customers. We name this problem as

the Piece-Mold-Machine Problem (PMMP).

The characteristics of the PMMP system are the following (see Figure C.1).

• Dedicated molds: Each piece of type i has a set of molds J(i) that can be used to

make it. In Figure C.1 piece 1 can be produced with either mold 1 or mold 2.

• Different production rates: Each piece-mold compatible combination has its specific

production rate due to technical differences of the molds.

• Dedicated machines: Due to technical differences, each mold j can be assigned to

a certain number of machines M(j). In Figure C.1, mold 2 can only be placed on

machine 1.

• The demand of the plastic pieces is seldom fulfilled totally by the company. Thus,

the production capacity is expected to be fully used.

Pieces Molds Machines

Mold 1

Machine 1

Machine 2

Piece 1

Mold 2

Tuesday, January 18, 2011

Figure C.1: Illustration of a PMMP diagram.

Therefore, it is necessary to make an accurate lot-sizing and scheduling of the pieces

considering real system constraints. The system we base our study on has constraints such
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as scarce auxiliary equipment (molds), time-machine bounds, and presence of setup times.

When the production of a specific type of piece on some machine is finished, there are

two possible situations: to process the next type of piece with the same mold or to switch

the mold. In the former case, a preparation time (named here as piece-setup time) for the

next type of piece must be considered. For instance, this piece-setup time could represent

a color or plastic change. In the latter case, if another mold is used, its installation and

removal time incur in a mold-setup time. Indeed, setup times are dependent of both the

last processed event and the event to be next. In general, mold-setup times are larger

than piece-setup times.

In Figure C.2 a feasible solution of the PMMP system we are focusing on is repre-

sented. On machine 2 there is a mold-setup time because mold 1 is placed after mold 4.

Notice that mold 1 is also used on machine 1, so we must consider that a mold cannot be

used on more than one machine at the same time. On machine 3 there are piece-setup

times between the types of pieces 7 and 4 since mold 3 is used to produce pieces 7, 4, 5,

and 9.

Machine 1

Machine 2

Machine 3
Time

0 available
time

Mold 1

Mold 1

Mold 3

Mold 4

Mold 2

1 6 3

2 8

7 4 5 9

piece-setup time

mold-setup
 time

Figure C.2: PMMP production planning Gantt chart.

To consider the auxiliary equipment requirements in parallel machines one needs to

avoid the overlapping of processes that use the same mold, since most of the times this

equipment is scarce. Usually, scheduling formulations make assumptions about the aux-
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iliary equipment such as unique machine assignments. However, this implies sub-optimal

solutions since it does not consider the possibility of processing pieces with a specific mold

in different machines, which is a feasible solution and often occurs in real-life systems.

Therefore, our main contribution is a new approach that gives us the quantities of pieces

to produce and the piece-mold-machine assignments such that there is no overlapping of

scarce equipment along the planning period.

The new model representing PMMP is a quadratically constrained integer linear

program (QCILP) which is difficult to solve. Therefore, we propose a decomposition

approach based on lot-sizing and scheduling mixed integer linear programming (MILP)

formulations that gives high quality solutions in a reasonable time. A QCIQP is an opti-

mization problem in which both the objective function and the constraints are quadratic

functions (Boyd and Vandenberghe [2004]). PMMP is a special case of QCIQP since the

quadratic coefficients of its objective function are equal to 0, i.e., its objective function is

linear but some of its restrictions are quadratic.

The rest of this appenidx is organized as follows. First, in Section C.2 is presented

some related literature from the scheduling and lot-sizing fields. The mathematical model

of PMMP is described in Section C.3. Since its computational time is large, in Section

C.4 we propose a decomposition approach by decomposing its QCILP formulation into

two MILP subproblems. The first one is a formulation with the objective of minimizing

the weighted unfulfilled demand that sets the lot-sizing of each piece and the piece-mold-

machine assignments. The second one verifies if the solution from the first stage has a

feasible mold to machine schedule within the planning period. In Section C.5, we provide

empirical evidence of the efficiency of our approach on real-word instances. We conclude

with Section C.6 with some final remarks and directions for future research.

C.2 Literature review

There are several features present in our problem corresponding to scheduling and lot-

sizing problems. Scheduling problems often consider sequence dependent setup times
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between the processing of different types of jobs. However, most of these works are focused

on the single machine case (Eren [2007]; Eren and Güner [2006]; Sourd [2006]; Stecco et al.

[2008]). Studies that deal with the parallel machine case and sequence dependent setup

times, for example Weng et al. [2001], do not consider the use of auxiliary equipment

such as molds. Other formulations that present related characteristics to our problem are

based on job grouping or scheduling families of jobs (Chen and Powell [2003]; Haase and

Kimms [2000]; Li et al. [2005]; Shim and Kim [2008]; Viĺım [2006]). However, these types

of problems, once again, do not consider additional equipment (e.g. molds).

Chen and Wu [2006] study a scheduling problem on parallel machines with dedi-

cated requirements for the use of molds. Setup times occur when there is a job requiring

a different mold than the previous one. Although the authors consider the requirement of

molds, there is no possibility of producing a piece with a set of molds, i.e., the piece-mold

assignment is not needed as it is in our problem. There are other formulations of schedul-

ing problems that consider sequence dependent setup times and mold requirements, such

as Lin et al. [2002], where pieces have to be assigned to specific molds with different

production rates. It is noteworthy that a mold is assigned to one machine only. Boctor

et al. [2009] address a scheduling problem with the multiple-mold requirement, where

processing a specific job requires two specific mold types and a setup implies stopping

the entire production, since molds are unique and share common tools. This study has,

as far as we know, the most similar characteristics of mold handling when compared to

our problem, since the authors ensure molds that use common tools do not overlap for

different machines and each instance of time. The authors design heuristic procedures to

solve it.

The PMMP has some features present in lot-sizing models such as machine-time ca-

pacity, equipment assignment, and sequence dependent setup times (an excellent overview

on lot-sizing problems can be found in Karimi et al. [2003]). Chen et al. [2006] address the

problem of scheduling, where setups appear when different batch types (or job families)

are contiguously processed. Even so, auxiliary equipment is not considered. Dastidar and

Nagi [2005] consider lot-sizing and scheduling characteristics such as quantity production

calculation, mold-machine assignment, and sequence-dependent setup times. Neverthe-
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less, the authors suppose that a mold can be assigned to only one machine in each planning

period. Ibarra-Rojas et al. [2010] make the same simplification. This allows them to de-

rive an integer linear program by eliminating the sequence-dependent setup times since

they make the assumption of producing the pieces assigned to the same mold one after

the other. They determine the piece-mold assignment and the lot-size for each piece-

mold pair. They show that the problem is NP-hard and propose an iterated local search

algorithm for finding high quality solutions.

C.3 Quadratically constrained linear program

model for PMMP

In this section we present a model that integrates the lot-sizing and the scheduling char-

acteristics of PMMP. We assume that a mold is installed at most once on each machine,

but notice that it can visit many machines. Indeed, if we have a mold that is installed

twice in the same machine then a solution that reduces the mold-setup times is the one

that merges these two occurrences into one. On the left hand side of Figure C.3, on

machine 1 we have that mold 1 is installed twice. On the right hand side we have an-

other solution that has merged these two occurrences. Notice that mold 1 on machine 2

had to be rescheduled to avoid mold overlapping. This grouping idea is consistent with

the way that companies make their production and has been reported to yield positive

results when implemented in solution algorithms (e.g., Chen and Wu [2006]). In fact, the

company in which this study is based on, uses this assumption in practice.

For the formulation, let I be the set of pieces the company can produce, J the set

of available molds for the production of the pieces, and M the set of available machines.

We define J(i) as the set of molds that can produce piece i, M(j) as the set of machines

compatible with mold j, I(j) as the set of pieces that can be produced using mold j, and

Jm(k) as the set of molds that can be placed on machine k. The problem parameters

required for our mathematical model are now described, and are summarized in Figure C.5

of Section C.4.
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Machine 1

Machine 2

Machine 3

0

Mold 1

Mold 1

Mold 3

Mold 4

Mold 2

1 6 3

2 8

7 4 5 9
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0

Mold 1

Mold 1

Mold 3

Mold 4

Mold 2

6 3
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7 4 5 9

1210

Time

1

Figure C.3: Illustration of the assumption that a mold is installed at most once on each
machine.

Demand of piece i is denoted as di. The parameter denoted by stij corresponds

to the piece-setup time of i if produced with mold j, which is independent of the job

sequence. Parameters itjk and dtjk represent the installation and removal time of mold j

on machine k, respectively. There are molds that can produce the same piece type but

at a different rate (more or less cavities) due to technological reasons. Hence the inverse

production speed of piece i when using mold j is represented by vij. Each machine k has

an available time for production: tmk. These times can vary from one machine to another

due to the company’s preventive maintenance plans.

It is necessary to include a set of binary variables Bijk, taking the value of 1 when

there is at least one piece of type i produced with mold j in machine k. Similarly, we

make use of another set of binary variables Njk, which take the value of 1 if mold j is

installed on machine k. Variables Xijk represent the amount of pieces i to be produced

with mold j on machine k.

A common problem in industry is minimizing the cost of the unfulfilled demand. As

a consequence, we implicitly seek to maximize the cost of the weighted fulfilled demand.

The weight wi of each piece can be the cost of buying it from another company. Therefore,

the objective function of the Piece-Mold-Machine Problem is then

max
∑

i∈I

wi
∑

j∈J(i)

∑

k∈M(J)

Xijk. (C.1)
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System constraints for the lot-sizing of the pieces and for the piece-mold-machine assign-

ments are described by the following expressions.

∑
j∈J(i)

∑
k∈M(j)

Xijk ≤ di i ∈ I (C.2)

Xijk ≤ diBijk i ∈ I, j ∈ J(i),

k ∈M(j) (C.3)

∑
j∈Jm(k)

[Njk(itjk + dtjk) +
∑
i∈I(j)

(Xijkvij +Bijkstij)] ≤ tmk k ∈M (C.4)

∑
i∈I(j)

Bijk ≤ |I(j)|Njk j ∈ J, k ∈M(j) (C.5)

Xijk ∈ Z+, Bijk ∈ {0, 1}, Njk ∈ {0, 1} j ∈ J, i ∈ I(j), k ∈M(j)

Constraints (C.2) limit the quantity of produced pieces of type i to the demanded

amount, as demand must not be exceeded. Constraints (C.3) avoid producing pieces of

type i with mold j mounted on machine k if the pieces of type i are not assigned to mold

j or if mold j is not assigned to machine k. Constraints (C.4) limit the available time

of each machine by taking into account the mold-setup times, the production speed of

the pieces, and the pieces-setup times. Constraints (C.5) assign mold j to machine k if

there is at least one piece produced with this mold-machine pair, regardless of the type

of piece. Finally, last constraints define the domain of the decision variables. Notice that

sets I(j), M(j), J(i), and Jm(k) represent the equipment compatibility.

It is important to recognize as an infeasible case the situation where a mold is

assigned to different machines in such a way that this mold processes pieces simultaneously

on these machines, i.e., the situation when we have overlapping molds. One may think

that this situation is not very common, since the setup times tend to be minimized, but

in Section C.5 we empirically prove that it happens more often than imagined. However,

by adding to the model the following set of constraints

∑

k∈M(j)

[Njk(itjk + dtjk) +
∑

i∈I(j)

(Xijkvij +Bijkstij)] ≤ max
k
{tmk} ∀j ∈ J, (C.6)
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we considerably decrease the amount of overlapping molds as we are limiting the time

used by mold j in all machines to the maximum available machine time. Nevertheless,

the possibility of overlapping molds still exists. To ensure that we have a feasible solution

we must add new sets of variables and restrictions that guarantee a feasible scheduling of

the molds on the machines. First, one needs dependent variables Tjk to track the total

time each mold j is used on machine k:

Tjk = Njk(itjk + dtjk) +
∑

i∈I(j)

(Xijkvij +Bijkstij), ∀j ∈ J, k ∈M(j). (C.7)

Then, we introduce the set of precedence binary variables Fj′jk, taking the value of

1 when mold j is installed after mold j′ in machine k. In counterpart, the set of binary

variables Gjk′k take the value of 1 if mold j is installed on machine k′ before it is installed

on machine k. Moreover, we make use of binary variables Yjlk, acquiring the value of 1 if

mold j is the l-th event in machine k, i.e., each event of machine j is the installation of a

new mold. Finally, variables Zjqk take a value of 1 if machine k is the q-th machine visited

by mold j. Event index l belongs to the set Lk = {1, · · · ,∑j Njk} for all k. Similarly,

q ∈ Qj = {1, · · · ,∑kNjk} for all j. The set of constraints that make a feasible scheduling

of the molds on the machines are as follows.

∑
j′ 6=j

Tj′kFj′jk + Tjk ≤ tmk j ∈ J, k ∈M(j) (C.8)

∑
j′ 6=j

Tj′k′Fj′jk′ + Tjk′ ≤
∑
j′ 6=j

Tj′kFj′jk +M(1−Gjk′k) j ∈ J, k, k′ ∈M (C.9)

∑
l∈Lk

Yjlk = Njk k ∈M, j ∈ Jm(k) (C.10)

∑
j∈Jm(k)

Yjlk = 1 k ∈M, l ∈ Lk (C.11)

∑
l∈Lk

(lYjlk)−Njk =
∑
j′ 6=j

Fj′jk k ∈M, j ∈ Jm(k) (C.12)

∑
q∈Qj

Zjqk = Njk j ∈ J, k ∈M(j) (C.13)

∑
k∈M(j)

Zjqk = 1 j ∈ J, q ∈ Qj (C.14)
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∑
q∈Qj

(qZjqk)−Njk =
∑
k′ 6=k

Gjk′k j ∈ J, k ∈M(j) (C.15)

Fj′jk ≤ NjkNj′k j ∈ J, k ∈M(j), j′ 6= j (C.16)

Gjk′k ≤ NjkNjk′ j ∈ J, k ∈M(j), k′ 6= k (C.17)

Gjk′k +Gjkk′ ≤ 1 j ∈ J, k, k′ ∈M (C.18)

Fj′jk + Fjj′k ≤ 1 j, j′ ∈ J, k ∈M (C.19)

Fj′jk, Gjk′k, Yljk, Zqjk ∈ {0, 1} j, j′ ∈ J, k, k′ ∈M, l ∈ Lk, q ∈ Qj

Constraints (C.8) bound the completion time of mold j on machine k to the available

machine time. Constraints (C.9), illustrated by Figure C.4, imply that the time when

mold j can be installed on machine k must be larger than its completion times on other

machines k′ where it was placed before. Thus, mold j must be placed on machine k

after all its previous uses on different machines have been entirely finished. Value M
corresponds to a very large number. Notice that (C.8) and (C.9) are non linear.

Machine k’

Machine k

0

Mold 1

Mold jMold 4

Mold j

1 6 3

2 8

Mold 2

1210

�

j� �=j

Tj�k�Fj�jk� + Tjk�

0
�

j� �=j

Tj�kFj�jk

Mold 3

5

7

Figure C.4: Illustration of constraints (C.9) when Gjk′k = 1.

Assignment constrains (C.10) express that if mold j must be placed on machine k

(Njk = 1) then, this event must be one of the l events taking place on machine k, i.e.,

these equations assign one of the possible events to the task conformed by the use of

mold j in machine k. Constraints (C.11) say that each event in Lk of each machine k
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corresponds to only one mold-(machine k) assignment. Expressions (C.12) define that the

number of events that take place before mold j is installed on machine k must be equal

to the number of molds j′ installed before j on machine k.

Constraints (C.13)-(C.15) are analogous to (C.10)-(C.12) but now from the point

of view of the machines that every mold visits. For instance, constraints (C.13) assign

the q-th machine where mold j is installed. Constraints (C.14) are the assignments of

the q visits of mold j. Constraints (C.15) sets the q − 1 machines visited by mold j

before being installed on machine k. Moreover, constraints (C.16) and (C.17), that can

be easily linearized, set the relationship between variables Fj′jk and Gjk′k with Njk and

Nj′k. Constraints (C.18) and (C.19) avoid inconsistencies on the precedence variables.

Finally, last constraints define the domain of the decision variables.

Summarizing, the QCILP for PMMP is as follows:

max
∑
i∈I
wi

∑
j∈J(i)

∑
k∈M(j)

Xijk

subject to (C.2)− (C.19)

Xijk ∈ Z+, Bijk ∈ {0, 1}, Njk ∈ {0, 1} j ∈ J, i ∈ I(j), k ∈M(j)

Fj′jk, Gjk′k, Yljk, Zqjk ∈ {0, 1} j, j′ ∈ J, k, k′ ∈M, l ∈ Lk, q ∈ Qj

As mentioned in Section C.2, in Ibarra-Rojas et al. [2010] the authors propose a

similar problem to PMMP but suppose that a mold can be assigned to only one ma-

chine. Their mathematical model substantially differs from ours since they do not have

to guarantee a feasible schedule. Nevertheless, the same reduction they use to prove the

NP-hardness of their problem can be adapted for PMMP.

Solving PMMP with the quadratic solver of CPLEX 11.2 did not yield feasible solu-

tions in less than one hour. Indeed, constraints (C.8) and (C.9) are not convex, therefore

the CPLEX’s solver tries to convexify them which is probably the reason for the ineffi-

ciency of this approach. The number of original variables is already considerable, therefore
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we do not try to linearize the quadratic constraints. Instead, we propose to decompose

PMMP into two MILPs and solve them sequentially, as it is shown in Section C.4.

C.4 A decomposition approach for PMMP

Given the complexity of PMMP, a decomposition approach is proposed. This method

attempts to exploit the structure of two related subproblems. In the first level, the Lot-

Sizing and Assignment subproblem (LSA) obtains a lot-sizing of the pieces together with

a mold-machine assignment. Then, in a second level, a feasibility subproblem called Mold

Overlapping Detection (MOD) is solved to verify if there is a scheduling of the molds on

the machines for the solution obtained by LSA.

LSA is a MILP given by:

max
∑
i∈I
wi

∑
j∈J(i)

∑
k∈M(j)

Xijk

subject to (C.2)− (C.6)

Xijk ∈ Z+, Sijk ∈ {0, 1}, Njk ∈ {0, 1} j ∈ J, i ∈ I(j), k ∈M(j)

As mentioned before, LSA gives as a solution the number of pieces to produce of

each type, the molds in which the pieces are processed, and the machines where the

molds are placed. Nevertheless, this solution may be infeasible, since a single mold can be

installed in two machines at the same time. Although the presence of constraints (C.6)

considerably reduce the amount of overlapping molds, in Section C.5 we provide evidence

of the mold overlapping situation. Note LSA formulation is a relaxation of PMMP.

There is a simple way to verify if a solution given by LSA is feasible by looking at

the values of the variables Njk (mold j is installed or not on machine k). There is no risk

of having overlapping molds if each of the molds is assigned to at most one machine, that
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is,

∑

k∈M(j)

Njk ≤ 1, j ∈ J. (C.20)

This is a sufficient condition that guarantees that the solution given by LSA is optimal to

PMMP. If conditions (C.20) are not satisfied, we have at least one mold assigned to two

or more machines implying there could be mold overlapping in the schedule that must

be detected. To this end, we solve MOD that is an integer linear constraint satisfaction

problem where Njk, Sijk, and Tjk correspond now to input parameters.

MOD: Are there 0-1 values for variables Fj′jk, Gjk′k, Yljk, Zqjk (j, j′ ∈ J, k, k′ ∈
M, l ∈ Lk, q ∈ Qj) such that constraints (C.7)-(C.19) are satisfied?

Figure C.5 compiles the notation we have used so far. It also schemes the in-

put/output relations between LSA and MOD.

The decomposition method, named as DPMMP, is presented in Algorithm 15. First

Algorithm 15 DPMMP: Decomposition algorithm for PMMP.

Input: Instance of PMMP
Output: Xijk, Yjlk {Quantity-assignment variables and scheduling vari-
ables}
1: FeasibleF lag ← ∅
2: while (FeasibleF lag = ∅) do
3: Solve LSA to obtain the values of the variables X̄ijk, N̄jk, and B̄ijk

4: if (N̄jk ≤ 1, ∀j ∈ J, k ∈M(j)) then
5: FeasibleF lag ← 1 {The LSA solution is mold overlapping free}
6: else
7: Solve MOD with values of N̄jk, B̄ijk and X̄ijk as input
8: if (MOD is feasible) then
9: FeasibleF lag ← 1 {The LSA solution is mold overlapping free}

10: else
11: Add to LSA cut (C.21) associated to the actual values of X̄ijk

12: end if
13: end if
14: end while

LSA is solved. If sufficient conditions (C.20) are verified, then the LSA solution is over-

lapping free, hence optimal. Otherwise, MOD is solved with the values of variables X̄ijk,
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wi cost of piece i if bought to a third party

di demand piece i

itjk + dtjk mold-setup time of mold j on machine k

vij inverse of the production rate of piece i on machine j

stij piece-setup time of piece i if executed on mold j

tmk available time of machine k

i ∈ I pieces, j ∈ J molds, k ∈Mmachines

J(i) set of molds that can produce piece i

M(j) set of machines compatible with mold j

I(j) set of pieces that can be produced by mold j

Jm(k) set of molds that can be placed on machine k

l ∈ Lk = {1, ...
�

j

Njk}, l-th mold placed on machine k

q ∈ Qj = {1, ...
�

k

Njk}, q-th machine visited by mold j

Indices and sets

Fj�jk = 1 if mold j is installed after mold j� on machine k

Gjk�k = 1 if mold j is installed on machine k� before than in machine k

Yjlk = 1 if j is the l-th mold installed on machine k

Zjqk = 1 if k is the q-th machine visited by mold j

Xjk amount of pieces i produced by mold j on machine k

Bijk = 1 if at least one piece i is produced with mold j on machine k

Njk = 1 if mold j is installed on machine k

Tjk time mold j is used on machine k

Figure C.5: Input and output relations between LSA and MOD.

N̄jk, and B̄ijk as parameters. If there is a feasible mold to machine schedule, then the

LSA solution is optimal for PMMP. If this is not met, then one must solve again the LSA

model but this time the previously obtained solution X̄ijk must be avoided (as described

in the next subsection).

LSA and MOD can be solved by the CPLEX’s linear solver. Note that although

Step 11 may yield an exponential number of iterations, in practice this seldom happens.

In Section C.5, experimental evidence shows that DPMMP procedure needs at most two

iterations.
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C.4.0 Cutting-off a Previous LSA Infeasible Solution for

MOD

As mentioned before, when the problem MOD turns out to be infeasible it means that the

last LSA solution must be avoided from the solution set of LSA. To this end, we propose

the following cut.

Let x̄ = (x̄1, . . . , x̄n) be the values of the solution to be cutoff. Let I = {i|x̄i = 1}
and Ī = {i|x̄i = 0}. Then the following constraint cuts-off this particular solution without

cutting off any other feasible solution for LSA:

∑

i∈I

xi +
∑

i∈Ī

(1− xi) ≤ n− 1. (C.21)

Indeed, the only manner this inequality could be equal to n is by taking the values of

x̄. This cut is useful for binary variables but it is well known that any integer can be

expressed in a binary form.

C.5 Experimental results

In this section we test the efficiency of algorithm DPMMP to solve PMMP. To this end,

we use the same instance generator proposed by Ibarra-Rojas et al. [2010] since, except

for the weight of pieces, it is based on information provided by a real manufacturer

of plastic products. Parameters are integers uniformly generated within the following

ranges: di ∈ [1000, 18000], vij ∈ [1/120, 1/1000], wi ∈ [1, 10]. The piece-setup time is

set to stij = 0, for all i and j. Indeed, these values do not affect the behavior of the

algorithm, provided that stij � itjk + dtjk. The available time of all the machines is set

to tk = 24 hours.

On the one hand, the difficulty of the instances resides on the mold-setup times

(in hours). Hence, we generate two set of instances. Mold-setup times of instance set

E take integer values uniformly generated as follows: itjk + dtjk ∈ [.75, 1.15]. More
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difficult instances H are obtained by uniformly generating the installation setup time

and the removal setup time independently from [.75, 1.15], i.e., itjk ∈ [.75, 1.15], and

dtjk ∈ [.75, 1.15].

On the other hand, we consider (as in Ibarra-Rojas et al. [2010]) two density levels

(percentage of compatibilities) for the piece-mold compatibility, rij, and the mold-machine

compatibility, mjk. In general, a higher density makes a more difficult instance since there

are more choices (therefore more variables). We use densities of 5% and 15% for the piece-

mold compatibility together with a density of 60% for the mold-machine compatibility.

Preliminary tests showed that the difficulty of an instance does not reside in the mold-

machine density and 60% is close to the reality. Instances with 5% for the piece-mold

compatibility correspond to a small enterprise or to old molds and machines. Realistic

values are around 15%.

Note that we cannot compare our results to the ones of Chen and Powell [2003],

Tsai and Tseng [2007], or Ibarra-Rojas et al. [2010] because they assume that a mold can

be only placed on at most one machine, so in essence we address a different problem.

For solving the instances we used GAMS/CPLEX 11.2 as the MILP optimizer (we

kept the default settings except for the optimality tolerance that we set to 1 × 10−8) on

a Sun Fire V440 with 4 UltraSparc III processors at 1.062 GHz and 8 GB of RAM. We

set a time limit of one hour for each iteration of LSA, and another hour limit for each

iteration of MOD.

Table C.1 presents the experimental results obtained by solving the instance set

E with DPMMP, while Table C.2 is for the instance set H. Each row of these tables

is the average of 10 executions of different instances. The variance between each class

of instances is not significant, so the average is a good indicator of the results. The

tables present only the first iteration of the algorithm since only two out of 100 needed

a second iteration (these two instances will be discussed later). Column “Instances”

refers to the instance size: number of pieces, number of molds, and number of machines,

(|I|, |J |, |M |). Column “Densities” is about the densities of the piece-mold and the mold-

machine compatibilities denoted as rij and mjk, respectively. Column “LSA GAP %” is
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the relative gap obtained when solving LSA with CPLEX’s solver. Column “LSA Time”

is the average time in seconds that CPLEX took to solve LSA, limited to one hour.

Column “Molds (
∑

kNjk)” indicates how many molds are assigned to different machines

in the most extreme single instance: a value of 5→2 indicates that there is an instance for

which 5 molds visit, each of them, 2 machines (“-” indicates that all molds visit only one

machine). Column labeled as “MOD %” shows the percentage of instances that needed

MOD to check for a feasible scheduling. The “Overlap free %” column represents the

percentage of instances that have a feasible scheduling for the LSA solution. Finally, the

last column is the average time in seconds needed by CPLEX to solve MOD.

Instances Densities LSA LSA Molds MOD Overlap MOD
(|I|, |J |, |M |) (rij,mjk) GAP % Time (

∑
kNjk) % free % Time

(50,30,5) (15,60) 0.00 103.4 1→2 10 100 0.4
(120,80,20) (5,60) 0.76 3600.0 5→2 100 100 14.3
(120,80,20) (15,60) 1.00 3600.0 5→2 80 100 14.3
(200,120,25) (5,60) 1.09 3600.0 7→2 100 100 39.9
(200,120,25) (15,60) 2.49 3600.0 13→2 and 1→3 100 80 41.0

Table C.1: Results obtained by solving PMMP with algorithm DPMMP on the instance
set E (shorter mold-setup times).

Instances Densities LSA LSA Molds MOD Overlap MOD
(|I|, |J |, |M |) (rij,mjk) GAP % Time (

∑
kNjk) % free % Time

(50,30,5) (15,60) 0.00 71.4 – 0 – –
(120,80,20) (5,60) 2.73 3600.0 3→2 80 100 14.2
(120,80,20) (15,60) 4.17 3600.0 3→2 80 100 14.5
(200,120,25) (5,60) 3.83 3600.0 6→2 100 100 39.9
(200,120,25) (15,60) 6.20 3600.0 4→2 80 100 39.6

Table C.2: Results obtained by solving PMMP with algorithm DPMMP on the instance
set H (longer mold-setup times).

The real size of the instances we observed in a plastic manufacturing company were

(120, 80, 20) with a density of (5, 60), from the instance set E. Indeed, the maximum

size of the instances presented in Tables C.1 and C.2 is, to the best of our knowledge, the

largest in literature.

The density of the piece-mold compatibilities is a factor that makes an instance

harder than another one, regardless of the mold-setup times. Indeed, when the piece-
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mold compatibility is only 5% there are less options, therefore less variables.

Tables C.1 and C.2 show that the solutions given by LSA are close to the optimum

since the gap is never above 7% (or is never above 2.5% under the real system charac-

teristics denoted in set E), which is for the industry more than acceptable. Notice that

the gaps for the harder instance set H are larger since longer mold-setup times make the

assignments of the molds to the machines more difficult.

Except for the smallest instances, the computational times for the PMMP model

reach the time limit for LSA. Nevertheless, letting LSA run for more than one hour did not

improve the gap much. Figure C.6 represents the relative gap of LSA for a single instance

of set E along the time. Notice that the quality of the solution is already acceptable after

one hour: Although the gap keeps decreasing beyond this limit, the drop in the gap gets

shorter as the computational time increases.

Solving (LSA) for an instance of set E

3

G
A

P
 %

Time (hours)

1

2

0
0 2 4 6 8 10 12 14 16 18 20 22

Figure C.6: Relative gap of LSA for a single instance of size (200,120,80) with density
(15,60) of set E along the time.

We noted that the harder instances H required fewer times the use of MOD. Indeed,

since the mold-setup times are larger, in the optimal solution there is less tendency to use

a mold on several machines. Nevertheless, notice the case (200,120,25) from instance set

H where six molds visit, each one of them, two machines.
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The counterintuitive case of molds assigned to several machines is in fact real and

happens frequently, making it necessary, in most of the cases, to use MOD. Moreover,

MOD finds most of the times a feasible mold to machine scheduling in less than one

minute which is surprising for a scheduling problem that has a very large value M in

constraint (C.9). Actually, the number of molds that may overlap in several machines is

small compared to the ones that are fixed to only one machine, making easy for MOD to

find a feasible scheduling. Notice that the computational time of MOD is equivalent for

both H and E.

In Table C.1 we can see more counterintuitive cases. For example, the last line

instances present an instance where 13 molds are used twice on different machines and

one mold is used on three different machines. Nevertheless, it is in this set where we find

the two instances out of 100 for which MOD could not find a feasible mold to machine

scheduling for the solution given by LSA. These instances needed a second iteration of

the algorithm. We summarize the results obtained:

• The execution times of the second iteration where similar to the ones of the first

iteration.

• After the second iteration, the decrement of the initial solution value is around

0.25%.

• Although the more convenient way of cutting off the infeasible solution of LSA is

by including the cut (C.21) (this restriction only forbids the infeasible solution), we

obtained the same results (same solution and same objective value) by forbidding the

previous value of the objective function z̄ i.e., adding to LSA z ≤ z̄−1. Contrary to

cut (C.21), this last option does not guarantee that we are leaving out an interesting

feasible solution.

• Experimentally, we did not find two different solutions with the same objective value

which validates the use of the simpler cut.

From this experimental section we conclude that our decomposition approach is

efficient since for the company the solutions are close enough to the optimum. In practice,
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the production planning must be done only once a week therefore the computational time

of our algorithm is reasonable. As mentioned before, the optimality gap in this study is

set close to 0. For a practical use, a company could set the optimality gap to 1% to reduce

the execution time of LSA.

C.6 Conclusions

We present in this study a real manufacturing process of pieces that are produced with

molds which are mounted on machines. Setup times between jobs, dedicated parallel

machines, dedicated molds and different production rates for each piece-mold pair are

some of the main characteristics of the problem. Moreover, we do not make the common

assumption of forcing a mold to be placed on a single machine. As a consequence, we deal

with a more realistic description of the production process itself. The objective function

is about maximizing the weighted cost of the produced pieces.

We first propose a new integer quadratically constrained linear programming that

represents the PMMP problem. Since this model is difficult to tackle by itself, we present

a decomposition approach based on two new MILPs: the first one determines the lot-size

of each piece and the piece-mold-machine assignments, and the second one verifies that

there is a feasible mold to machine scheduling along the planning period.

Experimental results show that indeed, most of the solutions yield to configurations

where the molds visit more than one machine. Some instances have molds that visit up

to three machines. Our exact-based methodology gives, in a reasonable amount of time,

solutions of high quality for real size instances.
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T. Eren and E. Güner. A bicriteria scheduling with sequence-dependent setup times.

Applied Mathematics and Computation, 179(1):378–385, 2006.

C. Fleurent and R. Lessard. Integrated timetabling and vehicle scheduling in practice.

Technical report, GIRO Inc, Montreal, Canada, 2009.
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