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An Optimality System for the Risk-Sensitive
Average Cost Criterion in Markov Decision

Chains on a Finite State Space

A Dissertation Presented

by

ALFREDO ALANÍS DURÁN

Abstract

This work concerns Markov decision chains endowed with the risk-sensitive average cost
criterion, and the main goals are to characterize the optimal value function and to deter-
mine an optimal stationary policy. The exposition begins in Chapter 1 where the notion
of Markov decision chain is introduced, and the ideas of risk-aversion and risk–sensitivity
coefficient are briefly discussed. After this point, the risk-sensitive average cost criterion is
formulated, and the main objectives are formally stated. Next, in Chapter 2 a fundamental
theorem by Howard and Matheson (1972), as well as a recent extension on the character-
ization of the optimal average cost in terms of a single optimality equation are analyzed;
such results require that, under the action of any stationary policy, every state can be vis-
ited with positive probability regardless of the initial sate, and the arguments used in this
work emphasize the central role of that communication property. The presentation contin-
ues in Chapter 3 studying a recent theorem on the existence of solutions to the optimality
equation for ‘small’values of the risk-sensitivity coefficient, which was derived under the
assumption that there exists a state that can be always reached with positive probability
under the action of any stationary policy; the derivation presented in this work highlights
the fundamental role of such an accessibility condition. The conclusions in Chapters 2 and
3 provide the motivation to pursue the main objective of this thesis, namely, to establish a
characterization of the optimal risk-sensitive average cost without imposing any condition
on the structure of the transition law of the model. This goal is achieved in Chapter 4,
where the optimal risk-sensitive average cost function is characterized for general controlled
Markov chains with finite state space and compact action sets, a result that is the main
contribution of this thesis. It is supposed that the decision maker is risk-averse with con-
stant risk-sensitivity coefficient and, under standard continuity–compactness conditions, it is
proved that the (possibly non-constant) optimal value function is characterized by a nested
system of equations, generalizing the conclusions s presented in the previous chapters, which
require communication conditions on the transition law; moreover, it is shown that an op-
timal stationary policy can be derived form a solution of that system, and that the optimal
superior and inferior limit average cost functions coincide. The approach used to obtain the
main conclusions relies on the discounted method which, roughly, consists in using a family
of contractive operators whose fixed points are used to approximate the optimal average
index, to partition the state space in a family of equivalence classes, to determine a class of
admissible actions at each state, and to construct a solution of a ‘reduced’ optimality equa-
tion on each equivalence class; the presentation of these results is based on the recent paper
Alańıs Durán and Cavazos-Cadena (2012). Finally, the exposition concludes in Chapter 5
with a retrospective view of the material presented in this work, and with the statement
of two open problems concerning the extension of some of the conclusions in this work to
models with denumerable state space.
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Chapter 1

General Perspective

This chapter presents an overview of this work. The notion of Markov decision chain is
introduced, and the ideas of risk-aversion and risk–sensitivity coefficient are briefly discussed.
After this point, the risk-sensitive average cost criterion is formulated and the main problem
studied in this thesis is stated. The presentation concludes with an outline of the material
in the following chapters.

1.1. Introduction

This work concerns discrete-time Markov decision chains, which are mathematical models
for dynamical systems whose state Xt is observed at times t = 0, 1, 2, 3, . . .. by a decision
maker (controller). After observing the state Xt at time t, the controller attempts to
influence the evolution of the system by applying an action At, and such an intervention
has two consequences: (i) A cost C(Xt, At) is incurred, and (ii) regardless of the previous
states and actions, the pair (Xt, At) determines the probability distribution of the state
Xt+1 to be observed at time t+ 1. The rule (policy) π used by the controller to choose the
actions determines the distribution of the cost process {C(Xt, At)}, and the performance
of π is measured by an index (criterion) J(x, π), which depends on the initial state X0 = x
and involves the cost stream. The goal of the controller is to determine and apply a policy
π∗ satisfying

J(x, π∗) = inf
π
J(x, π) =: J∗(x)

for every initial state x; J∗(·) is the optimal value function and π∗ is an optimal policy. In
this work it is supposed that the system evolves on a finite state space, and the performance
index is based on the assumption that the controller is risk-averse, that is, when facing a
random cost Y , the decision maker is willing to pay a constant amount larger than the
expectation E[Y ] in order to avoid the uncertain cost Y . Under a technical assumption
on the risk-aversion of the controller, the performance criterion J(x, π) considered in the
subsequent development is given by the risk-sensitive average cost per unit of time, and the
main problem studied in this thesis can be stated as follows:

To establish a characterization of the optimal risk-sensitive average cost function
allowing to determine an optimal policy.

The diverse ideas used to formulate this goal, together with relevant facts already available
in the literature, will be analyzed in the remainder of the chapter, which is organized as
follows: In Section 2 the notion of Markov decision chain is briefly discussed, whereas Section
3 is concerned with the ideas of risk-aversion and risk-sensitivity coefficient. Next, in Section
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4 the risk-sensitive average cost criterion is specified and the main problem of the thesis is
formally stated. The presentation concludes in Section 5 with an outline of the content of
the following chapters.

1.2. Decision Model

A discrete Markov decision chain is specified as

M = (S,A, {A(x)}, P, C),

where

(i) The state space S is a (nonempty) denumerable set endowed with the discrete topology;

(ii) The action set A is a metric space;

(iii) For each x ∈ S, A(x) ⊂ A is the nonempty class of admissible actions (controls) at x;

(iv) The cost function C is a real-valued mapping defined on the set IK of admissible pairs,
which is given by

IK: = {(x, a) | a ∈ A(x), x ∈ S}, (1.2.1)

and

(v) P = [px y(a) |(x, a) ∈ IK, y ∈ S ] is the controlled transition law, where∑
y∈S

px y(a) = 1, (x, a) ∈ IK.

The interpretation of this model M is as follows: At each time t = 0, 1, 2, 3, . . ., a decision
maker observes the state of a dynamical system evolving on S, say Xt = x ∈ S, and
selects an admissible action At = a ∈ A(x) to be applied to the system. Then, a cost
C(Xt, At) = C(x, a) is incurred and, regardless of the states observed and the actions
applied before t, the state of the system at time t + 1 will be Xt+1 = y with probability
px y(a) = pXt y(At); this is the Markov property of the descision process.

For each t ≥ 0, IHt stands for the space of possible histories of the decision process up
to time t, where IH0: = S and IHt: = IKt × S when t ≥ 1, and a generic element of IHt is
denoted by ht, so that

h0 = x0, and ht = (x0, a0, x1, a1, . . . , xt−1, at−1, xt), t ≥ 1, (1.2.2)

where xt ∈ S and (xi, ai) ∈ IK. A policy π is a (possibly randomized) rule for choosing
actions, and at each time t the action applied may depend on the whole observed history
ht up to time t. Formally, a policy is a sequence π = {πt}, where πt is a stochastic kernel
on S given IHt, that is,

(a) For each ht ∈ IHt, πt(·|ht) is a probability measure on the Borel σ-field of the action set
set A, and is concentrated on the set of admissible actions at xt, i.e.,

πt(A(xt)|ht) = 1,

and

(b) For each Borel subset B of the action space A, the mapping ht 7→ πt(B|ht) is (Borel)
measurable on the set IHt.

When the controller chooses actions according to π and ht is the observed history up to
time t, the probability of applying a control At belonging to B is given by πt(B|ht); the
class of all policies is denoted by P. Define

IF: =
∏
x∈S

A(x), (1.2.3)
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a set that is naturally identified with the class of all functions f :S → A satisfying that
f(x) ∈ A(x) for every x ∈ S. A policy π is stationary if there exists f ∈ IF such that, for
every nonnegative integer t and ht ∈ IHt, the probability measure πt(·|ht) is concentrated
at the point f(xt), i.e., πt({f(xt)}|ht) = 1; in this case π and f are naturally identified and,
with this convention, IF ⊂ P.

Given an initial state X0 = x ∈ S and the policy π ∈ P being used by the con-
troller, the distribution of the state-action process {(Xt, At)} is uniquely determined by the
Ionescu-Tulcea theorem (Hinderer 1970, Hernández-Lerma 1989, Puterman 2005); such a
distribution is denoted by Pπx , whereas Eπx stands for the corresponding expectation opera-
tor. The distribution Pπx has the following Markov property:

For each B ⊂ S and t = 0, 1, 2, 3, . . .,

Pπx [Xt+1 ∈ B|Xi, Ai, i < t,Xt = x,At = a] =
∑
y∈B

px y(a),

and then

Pπx [Xt+1 ∈ B|Xi, Ai, i < t,Xt] =

∫
A(Xt)

∑
y∈B

pXt,y(a)

 πt(da|Xi, Ai, i < t,Xt); (1.2.4)

applying this relation to a stationary policy f ∈ IF, it follows that

P fx [Xt+1 ∈ B|Xi, Ai, i < t,Xt] =
∑
y∈B

pXt,y(f(Xt)),

so that, under f , the state process {Xt} is a Markov chain with time-invariant transition
matrix [px y(f(x)]x,y∈S .

The selection of an ‘appropriate’ policy π requires a criterion V (x, π) measuring the
performance of π when the initial state is x ∈ S; such a performance index can be thought
of as ‘a one-number summary’ of the cost process {C(Xt, At)}. Once V (x, π) has been
specified, the objective of the controller is to use an optimal policy π∗, that is, a policy π∗

satisfying

V (x, π∗) = V ∗(x), x ∈ S,

where the optimal value function V ∗(·) is given by

V ∗(x) = inf
π∈P

V (x, π), x ∈ S.

Examples of performance criteria are

(i) The total expected cost over a (possibly random) decision horizon T , which is given by

V (x, π) = Eπx

[
T−1∑
t=0

C(Xt, At)

]
; (1.2.5)

(ii) The total discounted cost, defined by

V (x, π) = Eπx

[ ∞∑
t=0

αtC(Xt, At)

]
, (1.2.6)

where α ∈ (0, 1) is the discount factor, and

3



(iii) The expected average criterion specified as follows:

V (x, π) = lim sup
m→∞

1

m
Eπx

[
m−1∑
t=0

C(Xt, At)

]
. (1.2.7)

Applications of Markov decision chains endowed with these (and other) criteria include a
wide variety of areas, as machinary replacement, inventory management, economic growth,
control of queues, fisheries and water reservoirs management, selling problems and transport
networks; see, for instance, Ross (1992), Sennott (1996), Tijms (2003), Puterman (2005), or
Bertsekas (2007, 2007a). In particular, the discounted criterion is widely used in economic
models since, setting α = 1/(1+ρ) where ρ is the interest rate payed by a risk-less asset in a
unit of time, the discounted criterion represents the value at time t = 0 of the accumulated
cost that will be incurred in the future (Stokey and Lucas, 1989). Among the three criteria
formulated above, the average cost index is mathematically the most challenging, since it
involves the ergodic behavior of the state-action process {(Xt, At)}, and its analysis is based
on recurrence properties of Markov processes as presented, for instance, in Loève (1977) or
Billinglsley (1995) for the case of a discrete state space, and in Nummelin (2004) or Meyn
(2009) for systems evolving on Borel spaces. A profound treatment of Markov decision chains
endowed with diverse criteria, including the three performance indexes considered above,
is contained in Hernández-Lerma (1988), Hernández-Lerma and Lasserre (1996, 1999) and
Bertsekas and Shreve (1996).

The performance criterion analyzed in this work is a variant of the average index in
(1.2.7), which is constructed by considering the risk-sensitivity of the controller before a
random cost, a notion that is discussed below.

1.3. Risk-Sensitivity

The idea behind the performance criteria in (1.2.5)–(1.2.7) is that the controller values a
random cost Y as much as the expectation E[Y ], so that the decision maker will be indifferent
between paying the fixed amount E[Y ], or paying the uncertain cost Y . However, it is not
difficult to visualize situations where the attitude before a random cost is different. For
instance, consider the owner of an expensive new car paying $500 for an insurance policy
guaranteeing that, in case of a crash in the next year, he/she will receive an identical brand
new vehicle. The cost of the car is $300, 000 and the owner feels that there is a small
probability equal to 0.0001 of participating in a crash. What the owner foresees for the
next year, is a random cost Y that can take the values $0 and $300, 000 with probabilities
0 and 0.0001, respectively, so that E[Y ] = $30; however, $500 were gladly paid to avoid
facing the random cost Y , indicating that Y is assessed higher than its expectation E[Y ].
Under certain assumptions on the behavior of a decision maker—the Von Neumann and
Morgestern’s rationality axioms—it can be proved that a random cost Y will be assessed
using a utility function U , in such a way that Y will be valued as E[U(Y )] ( Berger, 2010).
In this case, the real number

E ≡ E(Y ) (1.3.1)

satisfying
U(E) = E[U(Y )] (1.3.2)

is referred to as the certain equivalent of Y , and the controller will be indifferent between
paying the certain amount E or incurring the random cost Y ; also, when an offer of paying
a fixed amount c to avoid the random cost Y is presented to the decision maker, the offer
will be accepted if c ≤ E(Y ), and will be refused when c > E(Y ). In the situation considered
above, the random cost Y was avoided by the owner of the car paying $500, so that E(Y ) ≥
$500. Notice that the certain equivalent E(Y ) is well-defined when Y is bounded and U is
continuous and strictly increasing, properties that are supposed in the following discussion
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without explicit reference. On the other hand, since the relation (comparison) between two
expected utilities E[U(Y )] and E[U(Y1)] does not change when U is replaced by Ũ = aU +b
where a > 0, it follows that the utility function of the controller is determined up to an
affine transformation with positive slope.

A decision maker is referred to as

(i) risk-neutral if E(Y ) = E[Y ] always holds,

(ii) risk-averse if E(Y ) > E[Y ] when Y is a non-constant random variable, and

(iii) risk-seeking if E(Y ) < E[Y ] occurs for any non-constant random cost Y .

The attitude of the agent in the preceding paragraph is consistent with idea of risk-averse
controller, since E(Y ) ≥ $500 > $30 = E[Y ] for the cost Y under consideration. From
(1.3.1) and (1.3.2) it follows that the notion of risk-neutrality corresponds to the case in
which the utility function is the identity function, whereas the controller is risk-averse when

E[U(Y )] > U(E[Y ])

if the random cost Y is non-constant; from Jensen’s inequality (Rudin, 1982, Royden and
Fitzpatrick, 2010), this property is equivalent to the strict convexity of the utility function
U . Similarly, a controller is risk-seeking when its utility function is (strictly) concave. The
quantity

∆(Y ): = E(Y )− E[Y ], (1.3.3)

is referred to as the risk-premium corresponding to Y , and was used by Pratt(1964) to
determine a single number measuring the degree of risk-aversion of the controller when
facing a random cost which is ‘close’ to any specific value y. Consider a bounded random
variable Z with mean 0 and variance 1 and, for each σ > 0, define

Y (σ) = y + σZ (1.3.4)

In this case, Y (σ) converges in probability to y as σ goes to zero, since E[Y (σ)] = y and
Var [Y (σ)] = σ2; notice that

∆(Y (0)) = 0. (1.3.5)

Proposition 1.3.1. Suppose that the utility function U has a continuous derivative of order
2 in the real line, and that U ′ > 0. In this context,

∆(Y (σ))

σ2
→ 1

2

U ′′(y)

U ′(y)
as σ → 0.

Proof. Notice that

U(E(Y (σ)))− U(E(Y (0)))

σ
=
E[U(Y (σ))− U(Y (0))]

σ

=
E[U(y + σZ)− U(y)]

σ
;

since U ′ is continuous and Z is a bounded random variable with null expectation, the
bounded convergence theorem implies that

lim
σ→0

U(E(Y (σ))− U(E(Y (0))

σ
= E

[
lim
σ→0

U(y + σZ)− U(y)

σ

]
= E [U ′(y)Z]

= U ′(y)E [Z] = 0.
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It follows that the mapping σ 7→ U(E(Y (σ)) has null derivative at σ = 0 and, since U ′ > 0,
this implies that E(Y (σ)) is also differentiable at σ = 0, and that its derivative is null at
that point. Consequently (see (1.3.5)),

lim
σ→0

∆(Y (σ))

σ
= lim
σ→0

∆(Y (σ))−∆(Y (0))

σ

=
d

dσ
∆(Y (σ))

∣∣∣∣
σ=0

=
d

dσ
[E(Y (σ))− E[Y (σ)]]

∣∣∣∣
σ=0

=
d

dσ
[E(Y (σ))− y]

∣∣∣∣
σ=0

= 0,

so that
∆(Y (σ)) = o(σ).

From this point, Taylor’s theorem yields that

U(E(Y (σ)) = U(y + ∆(Y (σ)))

= U(y) + U ′(y)∆(Y (σ)) +O([∆(Y (σ))]2)

= U(y) + U ′(y)∆(Y (σ)) + o(σ2).

(1.3.6)

Next, recalling that Z is bounded, a second order Taylor expansion yields that

U(y + σZ) = U(y) + U ′(y)σZ +
1

2
U ′′(y)σ2Z2 +R(y, σZ),

where the residual satsifies |R(y, σ)| ≤ k(y, σ)σ2Z2 with k(y, σ) → 0 as σ → 0: it follows
that

E[|R(y, σZ)|] ≤ k(y, σ)σ2E[Z2] = k(y, σ)σ2 = o(σ2),

and then

E[U(Y (σ)] = E[U(y + σZ)]

= E

[
U(y) + U ′(y)σZ +

1

2
U ′′(y)σ2Z2 +R(y, σZ)

]
= U(y) + σU ′(y)E[Z] +

1

2
U ′′(y)σ2E[Z2] + E[R(y, σ)]

= U(y) +
1

2
U ′′(y)σ2 + o(σ2).

Combining this relation with (1.3.6), via (1.3.1) and (1.3.2), it follows that

U ′(y)∆(Y (σ)) =
1

2
U ′′(y)σ2 + o(σ2),

a relation that is equivalent to the desired conclusion. tu

The above result shows that, for a random cost Y taking values in a ‘small’ neighbor-
hood of y, twice the risk-premium ∆(Y ) is proportional to Var [Y ], and that the propor-
tionality constant is given by U ′′(y/U ′(y); in this work it is supposed that this quantity is
a positive constant, that is,

U ′′(y)

U ′(y)
≡ λ > 0, y ∈ IR, (1.3.7),
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and λ will be referred to as the risk-sensitivity coefficient of the controller. Notice that
the above display immediately yields that U(y) = aeλy + b for all y ∈ IR, where a and
b are constants and a > 0. Since a utility function is determined up to a location-scale
transformation, hereafter it is supposed that the decision maker values a random cost Y
using the exponential utility function

U(y) = eλy, y ∈ IR, (1.3.8)

and in this case the certain equivalent E(Y ) is given by

E(Y ) =
1

λ
log
(
E
[
eλY

])
. (1.3.9)

1.4. The Main Problem

As already mentioned, in this work the performance of a control policy will be measured by
an average criterion under the condition that the decision maker is risk-averse with constant
risk sensitivity λ > 0. The construction of such a criterion is as follows: Given a positive
integer n, consider the total cost

∑n−1
t=0 C(Xt, At) incurred by the controller after applying

the first n actions A0, A1, . . . , An−1. When the system is driven by π and x is the initial
sate, the certain equivalent of that random cost is

Jn(x;π) =
1

λ
log
(
Eπx

[
eλ
∑n−1

t=0
C(Xt,At)

])
; (1.4.1)

see (1.3.9). With this notation, the (superior limit λ-sensitive) average cost at the initial
sate x corresponding to the policy π ∈ P is given by

J(x;π) = lim sup
n→∞

1

n
Jn(x;π), (1.4.2)

and the corresponding (λ-sensitive) optimal average cost function is given by

J∗(x) = inf
π∈P

J(x;π). (1.4.3)

The above criterion J(x, π) measures the performance of π in terms of the largest limit point
of the sequence of average costs over a finite horizon. Focusing on the smallest of such limit
points, the inferior limit average criterion is obtained:

J−(x;π) = lim inf
n→∞

1

n
Jn(x;π), (1.4.4)

with corresponding optimal value function

J∗−(x) = inf
π∈P

J−(x;π). (1.4.5)

It follows from these specifications that the relation J−(x, π) ≤ J(x, π) is always valid, so
that J∗−(·) ≤ J∗(·); it will be shown that, in the context of this work, the superior and
inferior limit optimal value functions coincide.

Applications of risk-sensitive criteria to diverse areas are available, as decision theory
(Lin, 2005), analysis of inventories (Caravani, 1986, Bouakiz and Sobel, 1992), productive
maintenance (Gosavi, 2007), learning theory (Mihatsch and Neuneier, 2002), and mathe-
matical finance (Bielecki et al. , 1999, Bäuerle and Rieder, 2013, Stettner 2004). On the
other hand, the study of Markov decision chains endowed with the risk-sensitive average
criterion can be traced back, at least, to Howard and Matheson (1972), Jacobson (1973),
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and Jaquette (1973, 1976). The case of finite models was considered in Howard and Math-
eson (1972), where the Perron- Frobenious theory of positive matrices was used to obtain
an optimality equation characterizing the optimal risk-sensitive average cost and allowing
to obtain an optimal stationary policy, conclusions that were obtained under the following
communication assumption: regardless of the policy used to drive the system, for every
pair of states x and y it is possible to visit y when the initial state is x. The theory
sparkled again around 1990, with the works of Whittle (1990), Runolfsson (1994), James et
al. (1994), Flemming and McEneany (1995), where models with continous time-parameter
or Borel state space were considered. Discrete models were studied by Marcus et al. (1996),
Flemming and Hernández-Hernández (1997), Hernández-Hernández and Marcus (1997), us-
ing a game theoretical to study the criterion (1.4.2). On the other hand, in Cavazos-Cadena
and Fernández-Gaucherand (1998), it was shown the aforementioned results by Howard and
Matheson can not be directly conveyed to models satisfying strong recurrence requirements:
it was shown in that paper that the simultaneous Doeblin condition— under which there is
sate that is accessible from any other state regardless of the policy employed—is not suffi-
cient to ensure that the optimal risk-sensitive average cost is characterized by the optimality
equation, establishing an interesting contrast with the risk-neutral average index in (1.2.7).
On the positive side, in Cavazos-Cadena (2003) it was shown that, under the aforementioned
simultaneous Doeblin condition, the optimality equation for the criterion (1.4.2) admits a
solution whenever the risk-sensitivity coefficient is small enough; the results in these two last
papers, together show that obtaining a general characterization of the optimal risk-sensitive
average cost is an interesting problem. The average cost criterion in (1.4.2) has been studied
for models with general sate space or unbounded cost function; see, for instance Di Masi
and Stettner (1999, 2000, 2007), where the risk-sensitive average cost index is studied using
contractive mappings under the condition that the transition law satisfies a strong mixing
condition, Hernández-Hernández and Marcus (1999) and Jaśkiewicz (2007), where it was
supposed that the cost function is strictly unbounded and, via game theoretical arguments,
an optimality inequality was obtained at a class of states where the optimal average cost is
minimized, whereas a similar conclusion was established in Cavazos-Cadena and Salem-Silva
(2009) using standard dynamic programming arguments and Hölder’s inequality.

As already noted, the characterization of the optimal value average cost function in
terms of an optimality equation is not generally valid, even under strong recurrence condi-
tions. This fact motivates the main problem studied in this thesis:

• To establish a characterization of the optimal risk-sensitive average cost function, in such
a way that (a) no restriction on the transition mechanism of the system is required, and (b)
an optimal stationary policy can be obtained.

The main results obtained in this thesis can be briefly described as follows:

• For Markov decision chains with finite state space, under mild continuity conditions it
is proved that (a) The superior and inferior optimal value functions in (1.4.3) and (1.4.4)
coincide, and (b) The optimal risk-sensitive average cost function can be characterized using
a nested system of local optimality equations, from which an optimal stationary policy can
be derived.

These conclusions generalize the available characterizations of the optimal risk-sensitive
average cost in terms of a single optimality equation, which are only applicable in models
satisfying strong conditions on the transition mechanism.

1.5. The Organization

The content of the following chapters reflects the learning experience of the recent years
and, roughly, the presentation is divided into two parts: The first one analyzes the results
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motivating the main goal pursued in this work, whereas in the second part the main con-
tribution of the thesis is established and some open problems for future research are posed.
A special effort has been made to produce self-contained chapters, and a reader interested
solely in the main contribution of the thesis can go directly to Chapter 4.

The organization of the subsequent material is as follows: In Chapter 2 the char-
acterization of the optimal risk-sensitive average cost via a single optimality equation is
analyzed, including the fundamental result by Howard and Matheson (1972) concerning
models with finite action set, as well as an extension obtained in Cavazos-Cadena and
Fernández-Gaucherand (2002) for the case of compact action sets. Next, in Chapter 3 mod-
els satisfying a weak form of the communication property—the existence of an accesible
state—are studied, and an alternative proof is presented for the result in Cavazos-Cadena
(2003) establishing the existence of a solution to the optimality equation when the risk-
sensitivity coefficient is ‘small enough’; the analysis in these two chapters shows clearly the
essential role of the communication assumption to ensure the existence of solutions to the
optimality equation. The presentation continues in Chapter 4 where the main contribution
of the thesis is established, namely, under mild continuity-compactness assumptions, it is
shown that (i) the optimal average cost function is characterized by a system of ‘nested’
optimality equations, (ii) that the superior an inferior risk-sensitive average criteria have
the same optimal value function, and (iii) that a solution of the system of optimality equa-
tions renders an optimal stationary policy. Finally, the presentation concludes in Chapter
5 stating two problems for future research.
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Chapter 2

The Risk-Sensitive Average Optimality Equation
in Communicating Models

This chapter presents the results that motivate the main problem studied in this thesis. The
exposition analyzes a fundamental theorem on the existence of solutions of the optimality
equation originally established in the seminal paper by Howard and Matheson (1972), whose
approach is based on matrix analysis, as well as an extension of that result formulated in
Cavazos-Cadena and Fernández-Gaucherand (2002), where the conclusions were obtained
using a probabilistic analysis of a total cost problem. The conclusions in these two works
can be described as follows: If the Markov chain induced by any stationary policy is com-
municating, then the optimal risk-sensitive average cost is constant and is characterized by
a single equation, which also renders an optimal stationary policy. The analysis performed
below highlights the role of the communication assumption in the derivation of this result.

2.1. Introduction

This chapter analyzes two available results on the characterization of the optimal risk-
sensitive average cost for communicating Markov decision chains evolving on a finite state
space; for this class of models, under the action of an arbitrary stationary policy any state
y can be reached with positive probability regardless of the initial state x. In that context,
the main conclusions are that the optimal average cost does not depend on the initial state,
and that its common value is characterized by a single optimality equation. Under the
condition that the action set is also finite, this result was firstly established by Howard and
Matheson (1972) using an algebraic approach based on the Perron-Frobenious theorem, and
an extension to models with general compact action sets was given in Cavazos-Cadena and
Fernández-Gaucherand (2002) via dynamic programming techniques applied to an auxiliary
total cost problem up to the first return time to a given state. In the following sections
these results are analyzed and alternative proofs are provided, highlighting the role of the
communication assumption in both approaches. The discussion shows that, characterizing
the optimal risk-sensitive average cost and finding an optimal stationary policy in a frame-
work were the transition mechanism of the model is arbitrary, is certainly a very interesting
problem.

The organization of the chapter is as follows: The next three sections concern Markov
decision chains with finite state and action sets, and the exposition begins stating a version
of the fundamental conclusions by Howard and Matheson as Theorems 2.2.1 and 2.2.2 in
Section 2; the first theorem establishes the existence of solutions to the risk-sensitive average
optimality equation, whereas the second one shows that the optimal average cost and an
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optimal stationary policy can be obtained when a solution to the optimality equation is
available; in contrast with the original formulation, no restriction on the period of the
transition matrix corresponding to any stationary policy is imposed. The proof of those
conclusions relies on algebraic properties of nonnegative matrices which are presented in
Section 3, and Howard and Matheson’s results are established in Section 4. Next, form that
point onwards, models with finite state space and compact action sets are considered, and
a result on the existence of solutions to the optimality equation in that context is stated as
Theorem 2.5.1 in Section 5. The proof of that result is approached combining probabilistic
and dynamic programming ideas to analyze the total cost incurred up to the first return time
to a given state; such a problem is studied in Sections 6 and 7, and the proof of Theorem
2.5.1 is finally presented in Section 8. The exposition concludes in Section 9 with some brief
comments on the essential role played by the communication assumption in the derivation
of the main results.

Notation. A generic vector in the Euclidean space IRk is denoted by a boldface letter,
as in x = (x1, x2, . . . , xk)′, and is always considered as a column vector, whereas 1l =
(1, 1, . . . , 1)′ ∈ IRk stands for the vector with all of its components equal to 1. If A is square
matrix and t is a nonnegative integer, then At is the t-fold product of A with itself, that
is, A0 = I(the identity matrix) and At = A × At−1 for t ≥ 1. Finally, inequalities and
operations on vectors are interpreted componentwise; for instance, for x = (x1, x2, . . . , xk)′

and y = (y1, y2, . . . , yk)′,

x ≤ y ⇐⇒ xi ≤ yi, i = 1, 2, . . . , k,

and
xα = (xα1 , x

α
2 , . . . , x

α
k )′

whenever the right-hand side is meaningful. On the other hand, if IK is a topological
space, B(IK) stands for the class of all bounded and real-valued functions defined on IK,
whereas ‖C‖: = supx∈IK |C(x)| <∞ denotes the supremum norm of C ∈ B(IK). Finally, for
an event W , the corresponding indicator function is denoted by I[W ], and all the relations
involving conditional expectations are valid with probability 1 with respect to the underlying
probability measure.

2.2. The Optimality Equation

The fundamental results about the risk-sensitive average cost criterion were established
in Howard and Matheson (1972) where, under mild conditions on the decision model, it
was proved that (i) the optimal average cost does not depend on the initial state and is
characterized by a single equation, and (ii) that an optimal stationary policy can be derived
from a solution of such an equation. These conclusions are formally stated in the following
two theorems.

Theorem 2.2.1. [Optimality Equation.] Let M = (S,A, {A(x)}x∈S , P, C) be a Markov
decision chain satisfying the following conditions:

(i) The state space S and the action set A are finite, and

(ii) Under the action of each stationary policy f ∈ IF, the state space is communicating,
that is,

For every x, y ∈ S, there exists an integer n ≡ n(x, y) > 0 such that

P fx [Xn = y] > 0.
(2.2.1)

In this case, given a risk-sensitivity coefficient λ > 0, there exist a real number g and a
function h:S → IR such that the following optimality equation holds:

eλg+λh(x) = min
a∈A(x)

eλC(x,a)
∑
y∈S

px y(a)eλh(y)

 . (2.2.2)
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This theorem is slightly more general than the original result established in Howard
and Matheson (1972) where, additionally, it was supposed that the Markov chain associated
with any stationary policy is aperiodic. A proof of Theorem 2.2.1 will be given in Section 4
after the algebraic preliminaries presented in the following section. Next, the theorem below
shows that a solution (g, h(·)) ∈ IR × B(S) of (2.2.2) determines the (λ-sensitive) optimal
average cost, as well as an optimal stationary policy, showing clearly the importance of the
above optimality equation in the analysis of the risk-sensitive average criterion.

Theorem 2.2.2. [Verification theorem.] Let M = (S,A, {A(x)}, P, C) be a Markov decision
process satisfying the conditions (i) and (ii) in the statement of Theorem 2.2.1, and let
(g, h(·)) ∈ IR × B(S) be a solution of the optimality equation (2.2.2). In this case the
following assertions (i)–(iii) hold:

(i) For every policy π ∈ P
J−(x;π) ≥ g,

where J−(x, π) is the inferior limit λ-sensitive average criterion as specified in (1.4.4).

(ii) If f ∈ IF is such that

eλg+λh(x) = eλC(x,f(x))
∑
y∈S

px y(f(x))eλh(y) (2.2.3)

is satisfied for every x ∈ S, then

g = lim
n→∞

1

n+ 1
Jn(x; f) = J(x, f), x ∈ S.

(iii) At each state x ∈ S
J∗−(x) = g = J∗(x)

so that the policy f ∈ IF in (2.2.3) is λ-average optimal, and g is the λ-optimal average cost.

Proof. Let (g, h(·)) be a solution of (2.2.2) and observe that, for each x ∈ S and π ∈ P, the
following relations always hold with probability 1 with respect to Pπx :

eλg+λh(Xt) ≤ eλC(Xt,At)
∑
y∈S

pXt y(At)e
λh(y)

= Eπx

[
eλC(Xt,At)+λh(Xt+1)

∣∣∣Ht

]
,

(2.2.4)

where

Ht = (X0, A0, X1, A1, . . . , Xt−1, At−1, Xt) (2.2.5)

is the history of the process up to time t, and the equality is due to the Markov property;
see (1.2.4).

(i) Let x ∈ S and π ∈ P be arbitrary. Observing that e
∑n−1

t=0
λC(Xt,At) is σ(Hn)-measurable

for every positive integer n, it follows that

Eπx

[
eλ
∑n

t=0
C(Xt,At)+λh(Xn+1)

∣∣∣Hn

]
= eλ

∑n−1

t=0
C(Xt,At)Eπx

[
eλC(Xn,An)+λh(Xn+1)

∣∣∣Hn

]
≥ eλ

∑n−1

t=0
C(Xt,At)eλg+λh(Xn)

= eλgeλ
∑n−1

t=0
C(Xt,At)+λh(Xn),
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where (2.2.4) was used to set the inequality. It follows that

Eπx

[
eλ
∑n

t=0
C(Xt,At)+λh(Xn+1)

]
≥ eλgEπx

[
eλ
∑n−1

t=0
C(Xt,At)+λh(Xn)

]
. (2.2.6)

Notice now that (2.2.4) with t = 0 implies that

Eπx

[
eλC(X0,A0)+λh(X1)

]
≥ eλg+λh(x) (2.2.7)

Combining the two last displayed relations, a simple induction argument yields that for
every x ∈ S and π ∈ P,

Eπx

[
eλ
∑n

t=0
C(Xt,At)+λh(Xn+1)

]
≥ eλ(n+1)g+λh(x), n = 1, 2, 3, . . . ,

and then

eλ‖h‖+λJn(x;π) = eλ‖h‖Eπx

[
eλ
∑n−1

t=0
C(Xt,At)

]
≥ Eπx

[
eλ
∑n−1

t=0
C(Xt,At)+λh(Xn)

]
≥ eλng+λh(x)

≥ eλng−λ‖h‖;

it follows that
Jn(x;π) ≥ ng − 2‖h‖,

a relation that together with (1.4.4) immediately leads to

J−(x;π) = lim inf
n→∞

1

n
Jn(x;π) ≥ g.

(ii) Let f ∈ IF be as in (2.2.3). Since P fx [At = f(Xt)] = 1, it follows that for each nonnegative
integer t the equality holds in (2.2.4) P fx - almost surely, and then a conditional argument
similar to the one used to establish part(i) yields that relations (2.2.6) and (2.2.7) also occur
with equality when f is used instead of π, so that, by induction,

Efx

[
eλ
∑n−1

t=0
C(Xt,At)+λh(Xn)

]
= eλng+λh(x), x ∈ S, n = 1, 2, 3, . . . (2.2.8)

Notice now that for each positive integer n

eJn(x;f) = Efx

[
eλ
∑n−1

t=0
C(Xt,At)

]
= Efx

[
eλ
∑n−1

t=0
C(Xt,At)+h(Xn)e−λh(Xn)

]
≤ Efx

[
eλ
∑n−1

t=0
C(Xt,At)+h(Xn)

]
eλ‖h‖

= eλng+λh(x)eλ‖h‖

≤ eλng+2λ‖h‖

where (2.2.8) was used to set the third equality; thus, Jn(x; f) ≤ ng+2‖h‖; similarly, (2.2.8)
yields that the relation, Jn(x; f) ≥ ng − 2‖h‖ is always valid, and then

ng − 2‖h|‖ ≤ Jn(x; f) ≤ ng + 2‖h‖ x ∈ S, n = 1, 2, 3, . . . ,

so that g = limn→∞[n−1Jn(x; f)].
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(iii) A glance to (1.4.1)–(1.4.4) shows that parts (i) and (ii) together imply that, for every
x ∈ S and π ∈ P,

J−(x;π) ≥ g ≥ J(x; f) ≥ J∗(x)

where f is as in (2.2.3) and the third inequality is due to the specification of the optimal
value function J∗(·). Taking the infimum over π ∈ P, the above display yields that J∗−(x) ≥
g ≥ J(x; f) ≥ J∗(x) for every x ∈ S; hence, since J∗−(·) ≤ J∗(·), it follows that J∗−(·) = g =
J∗(·) = J(·; f), concluding the argument. tu

2.3. Algebraic Preliminaries

This section presents the technical tools that will be used to prove Theorem 2.2.1. In
Howard and Matheson (1972) such a result was established using that, under appropriate
conditons, the positive eigenvalue of a nonnegative matrix is larger than the module of
any other eigenvalue, a fact that is part of the classical Perron-Frobenious theorem (Meyer,
1995). In the following section, Theorem 2.2.1 will be derived using an alternative approach;
the argument is also based on (part of) the Perron-Frobenious theorem, and emphasizes the
importance of the concept of communicating matrix in the study of the risk–sensitive average
criterion, an idea that is introduced below.

Definition 2.3.1. Let A be a given matrix of order k × k such that

Ai j ≥ 0, i, j = 1, 2, 3, . . . , k.

In this case, A is communicating if for every pair of integers i, j ∈ {1, 2, . . . , k} there exists
a sequence i0, i1, . . . , ir contained in {1, 2, 3, . . . , k} such that

i0 = i, ir = j, and Ait−1,it > 0, t = 1, 2, . . . , r. (2.3.1)

Remark 2.3.1. The sequence i0 = i, i1, . . . , ir = j in (2.3.1) is referred to as a path from i
to j with length r. It is not difficult to see that if i 6= j and a path from i to j exists, then
a path with length less than k can be found.

(ii) The previous point and the specification of matrix multiplication yield that a nonnegative

matrix A is communicating if, and only if,
∑k−1
t=0 A

t > 0. tu

The main instrument that will be used to establish the existence of a solution to the
optimality equation (2.2.2) is the following result, which is part of the conclusions of the
Perron-Frobenious theorem (Meyer, 1995).

Theorem 2.3.1. Let A be a matrix of order k×k with nonnegative components, and suppose
that A is communicating. In this case, the assertions (i)–(iii) below occur:

(i) A has a positive eigenvalue which admits a positive eigenvector. More precisely, there
exists µ > 0 and m ∈ (0,∞)k such that

Am = µm;

the pair (µ,m) is referred to as a positive eigenpair of A.

(ii) The positive eigenvalue µ in part (i) is unique and is equal to the grow-rate of the
multiplicative iterates of A, that is, for each no-null vector x ∈ [0,∞)k,

lim
n→∞

[Anx]1/n = µ1l.
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(iii) A nonnegative sub-eigenvector or super-eigenvector of A corresponding to µ is, neces-
sarily, an eigenvector. More precisely, If x ∈ [0,∞)k satisfies that Ax ≥ µx or Ax ≤ µx,
then Ax = µx.

As it will be apparent in the following argument, the proof of this result is simpler when
all of the components of the matrix A are positive, a case that will analyzed separately. Also,
the argument below shows that the second part follows immediately form the existence of
a positive eigenvalue µ and the corresponding eigenvector m with positive components,
whereas the third part depends heavily on the communication property. Before going any
further, it is convenient to introduce the following notation.

Definition 2.3.2. Let A be a fixed matrix of order k × k with positive components.

(i) For each x = (x1, . . . , xk)′ ∈ (0,∞)k define

µ(x) = min

{
[Ax]i
xi

∣∣∣∣ i = 1, 2, . . . , k

}
,

and set
µ∗ = sup

x∈(0,∞)k
µ(x) (2.3.2)

(ii) The number a is given by

a = max

{
Ai j
Ar j

∣∣∣∣ i, r, j = 1, 2, . . . k

}
,

whereas the set K is specified by

K =

{
x ∈ (0,∞)k

∣∣∣∣ 1

ak
≤ xi ≤

a

k
, i = 1, 2, . . . , k

}
. (2.3.3)

Observe that, µ(·) > 0, since all of the components of A are positive, a property that
also yields that the number a is well-defined and belongs to (0,∞), so that the set K is a
compact subset of the positive cone (0,∞)k. The following properties follow directly form
Definition 2.3.2:

µ(cx) = µ(x), and Ax ≥ µ(x)x, x ∈ (0,∞)k, c > 0. (2.3.4)

It will be shown below that µ∗ in (2.3.2) is the positive eigenvalue of the matrix A; such
a characterization is known as the Collatz-Wielandt relation (Meyer, 1995). The following
auxiliary result is the starting point to establish Theorem 2.3.1.

Lemma 2.3.1. Let A be a matrix of order k × k be such that

Ai j > 0, i, j = 1, 2, 3, . . . , k.

Using the notation of Definition 2.3.2, the assertions (i)–(iv) below are valid.

(i) µ(Ax) ≥ µ(x) for every x ∈ (0,∞)k;

(ii) The inclusion
Ax

1l′Ax
∈ K

holds for every x ∈ (0,∞)k.

Consequently,
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(iii) µ∗ satisfies that
µ∗ = sup

x∈K
µ(x),

and then

(iv) There exists y∗ ∈ K ⊂ (0,∞)k such that µ∗ = µ(y∗).

Proof. (i) Let x be a given vector with positive components, and write z = Ax. Using the
inequality in (2.3.4) it follows that Az = A(Ax) ≥ A(µ(x)x) = µ(x)Ax, that is, Az ≥ µ(x)z,
a relation that leads to µ(Ax) = µ(z) ≥ µ(x), by Definition 2.3.2(i).

(ii) Notice that the specification of the number a in Definition 2.3.2(ii) yields that

Ai j ≤ aAr j , r, i, j = 1, 2, 3, . . . , k. (2.3.5)

Given a fixed possible index r this implies that, for every x ∈ (0,∞)k,

1l′Ax =

k∑
i=1

k∑
j=1

Ai jxj ≤
k∑
i=1

k∑
j=1

aAr jxj = a

k∑
i=1

[Ax]r = ak[Ax]r

so that
1

ak
≤ [Ax]r

1l′Ax
, r = 1, 2, 3, . . . , k. (2.3.6).

Similarly, for a fixed index i and x ∈ (0,∞)k, (2.3.5) implies that

k[Ax]i =

k∑
r=1

k∑
j=1

Ai jxj ≤
k∑
r=1

k∑
j=1

aAr jxj = a1l′Ax,

and then
[Ax]i

1l′Ax
≤ a

k
, i = 1, 2, 3, . . . , k,

a relation that together with (2.3.6) leads to the desired conclusion; see (2.3.3).

(iii) Notice that (2.3.2) and part (i) together yield that µ∗ = supx∈(0,∞)k µ(Ax), a fact that
combined with the equality in (2.3.4) implies that

µ∗ = sup
x∈(0,∞)k

µ

(
Ax

1l′Ax

)
= sup

y∈K
µ(y).

where part (ii) was used to set the second equality.

(iv) Since the set K is compact and µ(·) is a continuous mapping, there exists y∗ ∈ K such
that µ(y∗) = supy∈K µ(y), and then µ∗ = µ(y∗), by part (iii). tu

Next, the previous lemma will be used to establish the main conclusion of this section.

Proof of Theorem 2.3.1. The argument has been divided into two steps:

Case 1: All of the components of the matrix A are positive.

In this context, let µ∗ be as in (2.3.2) and, using Lemma 2.3.1(iv), select a vector y∗ ∈
(0,∞)k such that µ∗ = µ(y∗), so that

Ay∗ ≥ µ∗y∗,

by (2.3.4).
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(i) It will be verified that

Ay∗ = µ∗y∗. (2.3.7)

To achieve this goal, set
z = Ay∗ − µ∗y∗

and notice that z ≥ 0. Now, suppose that z is no-null. In this case, recalling that Ai j > 0
for every i, j, it follows that Az > 0, that is, A(Ay∗)−µ∗Ay∗ > 0, so that there exists ε > 0
satisfying A(Ay∗)− (1 + ε)µ∗Ay∗ > 0, i.e.,

A(Ay∗) > (1 + ε)µ∗Ay∗;

by Definition 2.3.2, this relation yields that µ(Ay∗) > (1 + ε)µ∗, contradicting the fact that
µ∗(> 0) is the supremum of the function µ(·). This contradiction stems from the assumption
that the vector z is no-null, and then z = 0, which is equivalent to (2.3.7). Therefore, the
pair (µ,m) ≡ (µ∗,y∗) satisfies the first conclusion of Theorem 2.3.1.

(ii) Notice that Am = µm leads to Anm = µnm for every positive integer n, and then

[Anm]
1/n

= µ[m]1/n, so that

lim
n→∞

[Anm]
1/n

= µ lim
n→∞

[m]1/n = µ1l. (2.3.8)

Now let x ∈ [0,∞)k be an arbitrary but fixed no-null vector, and notice that x̃ = Ax > 0.
Since m has positive components, it follows that there exist positive constants c0 and c1
such that c0m ≤ x̃ ≤ c1m so that

c0A
n−1m ≤ An−1x̃ = Anx ≤ c1An−1m; ;

taking the nth root and then the limit as n goes to ∞ in this relation, (2.3.8) yields that
[Anx]1/n → µ1l, a fact that implies the uniqueness of the positive eigenvalue µ.

(iii) Suppose that the vector x ∈ [0,∞)k satisfies Ax ≥ µx, so that z = Ax − µx ≥ 0, and
assume that z is no-null. In this case x 6= 0 and, using that Ai j > 0 is always valid, it
follows that Az > 0, that is,

Az = A(Ax− µx) = A(Ax)− µA(x) > 0.

Consequently, there exists ε > 0 such that Ay−(1+ε)µy ≥ 0, where y = Ax(> 0), and then
Any ≥ (1 + ε)nµny for n = 1, 2, 3, . . .; thus, limn→∞[Any]1/n ≥ (1 + ε)µ1l, in contradiction
with part (ii). Therefore , if x ∈ [0,∞)k satisfies that Ax ≥ µx, then Ax = µx. Similarly
it can be established that if Ax ≤ µx for some vector x ∈ [0,∞)k, then Ax = µx. This
completes the proof of Theorem 2.3.1 when all of the components of A are positive.

Case 2: The nonnegative and communicating matrix A is arbitrary.

Define the matrices Â and Ã by

Â = I +A and Ã = Âk. (2.3.9)

and notice that

Ã =

k∑
r=0

(
k

r

)
Ar > 0,

where the inequality is due to Remark 2.3.1. Applying the preceding Case 1 to this matrix
Ã, there exists a pair (µ̃, m̃) satsifying

Ãm̃ = µ̃m̃, (2.3.10)
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where µ̃ > 0 and m̃ ∈ (0,∞)k and, moreover,

µ̃1l = lim
n→∞

[Ãnm]1/n ≥ lim
n→∞

[m]1/n = 1l,

where the inequality is due to the relation Ã ≥ I; thus,

µ̃ ≥ 1.

Define

µ̂ = [µ̃]1/k, m =

[
k−1∑
r=0

µ̂k−1−rÂr

]
m̃ and µ = µ̂− 1, (2.3.11)

and observe that the following factorizations hold:

Ã− µ̃I = Âk − µ̂kI = (Â− µ̂I)

[
k−1∑
r=0

µ̂k−1−rÂr

]
=

[
k−1∑
r=0

µ̂k−1−rÂr

]
(Â− µ̂I). (2.3.12)

Using that Â ≥ A and µ̃ ≥ 1, Remark 2.3.1 yields that the matrix within brackets in the
above expressions has positive components, and then, since m̃ > 0, it follows that m > 0.
Notice that (2.3.10)–(2.3.12) together lead to

0 = (Ã− µ̃I)m̃ = (Â− µ̂I)

[
k−1∑
r=0

µ̂k−1−rÂr

]
m̃ = (Â− µ̂I)m. (2.3.13)

so that Âm = µ̂m̂, an equality that is equivalent to

Am = µm; (2.3.14)

see (2.3.9) and (2.3.11).

(i) Since m has positive coordinates, from (2.3.14) it is sufficient to show that µ > 0. To
achieve this goal, first notice that µ 6= 0; indeed, if µ = 0 the above display yields that
Am = 0, and then, since A has nonnegative components and m ∈ (0,∞)k, it follows that
A is null, contradicting that A is a communicating matrix. On the other hand, as already
noted, the relation µ̃ ≥ 1 holds, so that µ ≥ 0 (see (2.3.11)), and then µ is positive.

(ii) This part follows using the same argument as in Case 1 above.

(iii) Let x ∈ [0,∞)k be such that Ax ≥ µx. In this case, (2.3.9) and (2.3.11) yield that

Âx− µ̂x ≥ 0,

as well as Ãx ≥ µ̃x; from this last inequality, an application of Case 1 to the matrix Ã yields
that (Ã− µ̃I)x = 0, and combining this fact with the factorization in (2.3.12) it follows that[

k−1∑
r=0

µ̂k−1−rÂr

]
(Â− µ̂I)x = 0;

As already noted, all of the components of the matrix within brackets are positive, whereas
the vector Âx− µ̂x has nonnegative coordinates, so that that the above display yields that
(Â− µ̂I)x = 0, which is equivalent to Ax = µx, by (2.3.9) and (2.3.11). A similar argument
can be used to show that, if Ax ≤ µx for some x ∈ [0,∞)k, then Ax = µx. tu
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2.4. Proof of Theorem 2.2.1

In this section Theorem 2.3.1 will be used to establish the existence of solutions of the
optimality equation (2.2.2). LetM = (S,A, {A(x)}x∈S , P, C) be a Markov decision process
with finite state and action spaces, so that the set IF =

∏
x∈S A(x) is also finite. For each

f ∈ IF define the matrix A(f) whose rows and columns are indexed by the elements of S as
follows:

A(f)x y = eλC(x,f(x))px y(f(x)), x, y ∈ S. (2.4.1)

Next, suppose that x, y ∈ S and the positive integer n are such that P fx [Xn = y] > 0. In
this case, there exist states x1, x2, . . . xn−1 ∈ S such that

P fx [X1 = x1, X2 = x2, . . . , Xn−1 = xn−1, Xn = y] > 0

a relation that can be more explicitly written as

px x1(f(x))px1 x2(f(x))px2 x3(f(x)) · · · pxn−2 xn−1(f(x))pxn−1 y(f(x)) > 0,

and via (2.4.1) this inequality is equivalent to

A(f)x x1A(f)x1 x2A(f)x2 x3 · · ·A(f)xn−2 xn−1A(f)xn−1 y > 0,

so that, under the condition (2.2.1) in Theorem 2.2.1, each matrix A(f) is communicating;
see Definition 2.3.1. Consequently, an application of Theorem 2.3.1 yields that, for each
f ∈ IF, there exists µ(f) > 0 and m(f) ∈ (0,∞)k such that

µ(f)m(f) = A(f)m(f). (2.4.2)

Define
µ∗ = min

f∈IF
µ(f) (2.4.3)

and, recalling that IF is finite, select f∗ ∈ IF such that

µ(f∗) = µ∗; (2.4.4)

finally, set
m∗ = m(f∗). (2.4.5)

With this notation, it follows that µ∗m∗ = A(f∗)m∗, an equation that can be more explicitly
written as

µ∗m∗x = eλC(x,f∗(x))
∑
y∈S

px y(f∗(x))m∗y, x ∈ S; (2.4.6)

Proof of Theorem 2.2.1. It will be proved that

µ∗m∗x = min
a∈A(x)

eλC(x,a)
∑
y∈S

px y(a)m∗y

 , x ∈ S. (2.4.7)

To achieve this goal, for each x ∈ S select a minimizer f̃(x) ∈ A(x) of the right hand side
of this equation, so that

eλC(x,f̃(x))
∑
y∈S

px y(f̃(x))m∗y = min
a∈A(x)

eλC(x,a)
∑
y∈S

px y(a)m∗y


≤ eλC(x,f∗(x))

∑
y∈S

px y(f∗(x))m∗y

= µ∗m∗x,

(2.4.8)

19



where (2.4.6) was used to set the last equality. Since x ∈ S is arbitrary, using (2.4.1) this
relation is equivalent to A(f̃)m∗ ≤ µ∗m∗, and then, since µ∗ ≤ µ(f̃) (see (2.4.3)), it follows
that

A(f̃)m∗ ≤ µ∗m∗ ≤ µ(f̃)m∗.

Thus, starting form A(f̃)m∗ ≤ µ(f̃)m∗, an application of Theorem 2.3.1(iii) to the matrix
A(f̃) yields that A(f̃)m∗ = µ(f̃)m∗, an equality that combined with the previous display
yields that A(f̃)m∗ = µ∗m∗, that is, for every x ∈ S,

eλC(x,f̃(x))
∑
y∈S

px y(f̃(x))m∗y = µm∗x;

see (2.4.1). This relation and (2.4.8) together imply that (2.4.7) holds. To conclude, set

g =
1

λ
log(µ∗) and h(x) =

1

λ
log(m∗x), x ∈ S;

with this notation (2.4.7) is equivalent to the optimality equation (2.2.2). tu

2.5. Models with Compact Action Sets

In this section the fundamental result in Theorem 2.2.1 is extended to the case of Markov
decision chains with finite state space and compact action sets. Besides mild continuity
conditions to be stated below, the basic structural assumption on the model is, again,
that each stationary policy induces a communicating Markov chain. Within this modified
framework, the existence of solutions to the optimality equation will be established using a
probabilistic analysis of a total cost problem, and the argument emphasizes the central role
of the communication condition. Throughout the remainder M = (S,A, {A(x)}x∈S , P, C)
is a Markov decision process, where the state space S is finite and the action set A is a
metric space. Additionally, the following conditions are enforced.

Assumption 2.5.1. (i) For each x ∈ S the action set A(x) is a compact subspace of A;

(ii) For each x, y ∈ S the mappings a 7→ C(x, a) and a 7→ px y(a) are continuous functions
of a ∈ A(x);

(iii) For each stationary policy f ∈ IF the Markov chain induced by f is communicating; see
(2.2.1).

Theorem 2.5.1. For an arbitrary risk-sensitivity coefficient λ > 0, under Assumption 2.5.1
there exist g ∈ IR and h:S → IR such that the optimality equation holds, that is,

eλg+λh(x) = min
a∈A(x)

eλC(x,a)
∑
y∈S

px y(a)eλh(y)

 .
This theorem was originally established in Cavazos-Cadena and Fernández-Gaucherand

(2002) using probabilistic ideas to analyze a risk-sensitive total cost problem for controlled
Markov chains (Cavazos-Cadena et al. 2000, Cavazos-Cadena and Montes-de-Oca 2000,
2000a). In the following sections an alternative (simpler) derivation will be presented, which
is also based on the total cost criterion, but applied to uncontrolled models.

Remark 2.5.1. Notice that, under Assumption 2.5.1, for each x ∈ S the right-hand side of
the optimality equation has a minimizer f(x), so that the policy f ∈ IF satisfies (2.2.3), and
it is not difficult to see that the conclusions of Theorem 2.2.2 hold with the same proof. tu
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A verification of the above result will be presented in Section 8, after the preliminaries
established in the following two sections. The argument relies heavily on the concept of first
return time which is used to define an auxiliary problem with the risk-sensitive total cost
criterion; the relevant notions are introduced below.

2.6. Stopping Times and Total Costs

The main idea used below to establish Theorem 2.5.1 is the notion of first return time, which
is now introduced.

Definition 2.6.1. Let z ∈ S be a fixed state. The first return time to state z is defined by

Tz: = min{n > 0 |Xn = z},

where the minimum of the empty set is ∞.

Notice that for each positive integer t,

[Tz = t] = [Xt = z,Xr 6= z if 1 ≤ r < t] ∈ σ(Ht) (2.6.1)

so that Tz is a stopping time with respect to the filtration {σ(Ht)}; see (2.2.5). The following
consequence of the communication property in Assumption 2.5.1(iii) will play an important
role in the subsequent development.

Lemma 2.6.1. Let f be a stationary policy. Under Assumption 2.5.1(iii), for different states
x, z ∈ S,

P fz [Tx < Tz] > 0.

Proof. Given different states x and z, Assumption 2.5.1(iii) yields that there exists a positive
integer n such that

P fz [Xn = x] > 0.

Now let m be the minimum positive integer n satisfying this relation, so that

P fz [Xm = x] > 0 and P fz [Xt = x] = 0 when 1 ≤ t < m.

Notice now that the above equality and the Markov property together imply that, for each
positive integer r less than m, P fz [Tz = r,Xm = x|Hr] = I[Tz = r]P fz [Xm−r = x] = 0, so
that P fz [Tz = r,Xm = x] = 0. It follows that

P fz [Xm = x] = Pz[Xm = x, Tz ≥ m] = Pz[Xm = x, Tz > m],

where the second equality used that x and z are different. The two last displays yield
that P fz [Xm = x, Tz > m] > 0 and, form this point, the conclusion follows observing that
[Xm = x, Tz > m] ⊂ [Tx < Tz]. tu

Now suppose that the system runs until a given state z is reached in a positive time,
and that the system is halted at that moment. Also, assume that the system is driven by
a stationary policy f and that a cost D(x) is incurred every time that the state is x before

the first return time to z. In this case,
∑Tz−1
t=0 D(Xt) is the total cost incurred while the

system is running, and a special notation for such a quantity is now introduced.

21



Definition 2.6.2. Let f ∈ IF and the function D:S → IR be arbitrary, Given a state z ∈ S,
the function hz,f,D:S → IR is defined by

hz,f,D(x): =
1

λ
log

(
Efx

[
eλ
∑Tz−1

t=0
D(Xt)

])
.

Notice that hz,f,D(·) is well-defined—since it is expressed in terms of the expectation
of a nonnegative quantity—but may attain the value +∞. The following lemma establishes
some elementary properties of the functions hz,f,D.

Lemma 2.6.2. Suppose that the communication property in Assumption 2.5.1(iii) holds and,
given f ∈ IF and D : S → IR, assume that hz,f,D(z) <∞ for some state z ∈ S. In this case,

(i) hz,f,D(x) <∞ for every x ∈ S;

(ii) The function hz,f,D(·) satisfies the dynamic programming equation

eλhz,f,D(x) = eλD(x)

px z(f(x)) +
∑

y∈S\{z}

px y(f(x))eλhz,f,D(y)

 , x ∈ S. (2.6.2)

In particular,

(iii) If hz,f,D(z) = 0 then

eλhz,f,D(x) = eλD(x)
∑
y∈S

px y(f(x))eλhz,f,D(y), x ∈ S. (2.6.3)

Proof. (i) Let x ∈ S \ {z} be arbitrary, and notice that there exists a positive integer r
such that Pz[Tx = r < Tz] > 0, by Lemma 2.6.1; using that the event [Tx = r < Tz] is
σ(Hr)-measurable (see (2.2.5)), it follows that

Efz

[
eλ
∑Tz−1

t=0
D(Xt)

∣∣∣∣Hr

]
≥ Efz

[
eλ
∑Tz−1

t=0
D(Xt)I[Tx = r < Tz]

∣∣∣∣Hr

]
≥ eλ

∑r−1

t=0
D(Xt)I[Tx = r < Tz]E

f
z

[
eλ
∑Tz−1

t=r
D(Xt)

∣∣∣∣Hr

]
≥ e−λr‖D‖I[Tx = r < Tz]E

f
z

[
eλ
∑Tz−1

t=r
D(Xt)

∣∣∣∣Hr

]
= e−λr‖D‖I[Tx = r < Tz]E

f
x

[
eλ
∑Tz−1

t=0
D(Xt)

]
= e−λr‖D‖I[Tx = r < Tz]e

λhz,f,D(x)

where, using that Xr = x on the event [Tx = r], the first equality is due to the Markov
property, and the second one follows from Definition 2.6.2. After taking the expected value
with respect to P fz , it follows that

ehz,f,D(z) = Efz

[
eλ
∑Tz−1

t=0
D(Xt)

]
≥ P fz [Tx = r < Tz]e

−λr‖D‖ehz,f,D(x)

and then, since the probability is the above expression is positive, hz,f,D(z) < ∞ implies
that hz,f,D(x) is also finite.
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(ii) Given x ∈ S, Definition 2.6.2 yields that

eλhz,f,D(x)

= Efx

[
eλ
∑Tz−1

t=0
D(Xt)

]
= Efx

[
eλ
∑Tz−1

t=0
D(Xt)I[X1 = z]

]
+

∑
y∈S\{z}

Efx

[
eλ
∑Tz−1

t=0
D(Xt)I[X1 = y]

]
.

(2.6.4).

Notice now that Tz > 1 on the event [X1 = y] when y 6= z, and then, by the Markov
property,

Efx

[
eλ
∑Tz−1

t=0
D(Xt)I[X1 = y]

∣∣∣∣X1

]
= eλD(x)I[X1 = y]Efy

[
eλ
∑Tz−1

t=0
D(Xt)

]
= eλD(x)I[X1 = y]eλhz,f,D(y),

(2.6.5)

and taking the expectation with respect to P fx , it follows that

Efx

[
eλ
∑Tz−1

t=0
D(Xt)I[X1 = y]

]
= eλD(x)px y(f(x))eλhz,f,D(y).

On the other hand, the equality [Tz = 1] = [X1 = z] leads to

Efx

[
eλ
∑Tz−1

t=0
D(Xt)I[X1 = z]

]
= eλD(x)Efx [I[X1 = z]] = eλD(x)px z(f(x)),

and the conclusion follows combining this equality with (2.6.4) and (2.6.5).

(iii) When hz,f,D(z) = 1, equations (2.6.3) and (2.6.2) are equivalent. tu

Throughout the remainder, for each x ∈ S the indicator function of the singleton {x}
is denoted by δx, that is,

δx(y) =

{
0, if y 6= x,
1, when y = x.

(2.6.6)

The following result is the essential instrument that will be used to prove Theorem 2.5.1.
Among the assertions in the next theorem, the fourth one is the most important and can
be roughly described as follows: The class of all real valued functions D satisfying that
hz,f,D(z) < 0, is an open set in B(S).

Theorem 2.6.1. For a given policy f ∈ IF and D:S → IR, the following assertions (i)–(iii)
hold:

(i) If D1:S → IR is such that D1(·) ≥ D(·) with D1(y) > D(y) for some state y ∈ S, then
hz,f,D1

(z) > hz,f,D(z) when hz,f,D(z) is finite.

(ii) If hz,f,D(z) ≤ 0 for some state z, then

hy,f,D+aδz (y) ≤ 0 for every state y,

where
a = −hz,f,D(z). (2.6.7)

Consequently,

(iii) If hz,f,D(z) < 0 at some state z, then there exists a positive constant b such that
hx,f,D+bδz (x) < 0 for all x ∈ S and, moreover,
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(iv) If hz,f,D(z) < 0 at some state z, then the relation

hx,f,D+b(x) < 0 for all x ∈ S

holds for some b > 0.

Proof. (i) Let D and D1 be two real valued functions such that D1(x) ≥ D(x) for every
x, with strict inequality at y ∈ S, and suppose that hz,f,D(z) < ∞; since the inequality
hz,f,D1(z) > hz,f,D(z) is clear when y = z, assume that y 6= z. In this case

eλ
∑Tz−1

t=0
D1(Xt) ≥ eλ

∑Tz−1

t=0
D(Xt)

with strict inequality on the event Ty < Tz, which has positive probability with respect to
P fz , by Lemma 2.6.1. It follows that

eλhz,f,D1
(z) = Efz

[
eλ
∑Tz−1

t=0
D1(Xt)

]
> Efz

[
eλ
∑Tz−1

t=0
D(Xt)

]
= eλhz,f,D(z),

and then hz,f,D1
(z) > hz,f,D(z).

(ii) Let z ∈ S and notice that a ≥ 0. From (2.6.2) it follows that

1 = eλhz,f,D(z)+λa = eλ(D(z)+a)

pz z(f(x)) +
∑

y∈S\{z}

pz y(f(x))eλhz,f,D(y)

 (2.6.8)

Now, define D1, h1:S → IR as follows:

D1(x) = D(x) and h1(x) = hz,f,D(x) if x 6= z,

D1(z) = D(z) + a and h1(x) = 0 if x = z;
(2.6.9)

notice that
D1 = D + aδz, (2.6.10)

by (2.6.6). From the specifications of D1 and h1, it follows via (2.6.2) and (2.6.8), that for
every state x

eλh1(x) = eλD1(x)
∑

y∈S\{z}

px y(f(x))eλh1(y),

that is,

eλh1(x) = Efx

[
eλD1(X0)+λh1(X1)

]
, x ∈ S. (2.6.11),

Next, let y ∈ S be arbitrary but fixed. It will be proved, by induction, that

eλh1(y) =

n∑
r=1

Efy

[
e
∑Ty−1

t=0
λD1(Xt)+λh1(y)I[Ty = r]

]
+ Efy

[
e
∑n−1

t=0
λD1(Xt)+λh1(Xn)I[Ty > n]

]
.

(2.6.12)

for every positive integer n. To establish this assertion, notice that (2.6.11) yields that

eλh1(y) = Efy

[
eλD1(X0)+λh1(X1)

]
= Efy

[
eλD1(X0)+λh1(X1)I[Ty = 1]

]
+ Efy

[
eλD1(X0)+λh1(X1)I[Ty > 1]

]
= Efy

[
eλD1(X0)+λh1(y)I[Ty = 1]

]
+ Efy

[
eλD1(X0)+λh1(X1)I[Ty > 1]

]
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where the fact that X1 = y on the event [Ty = 1] was used to set the third equality; this
verifies assertion (2.6.12) when n = 1. Suppose now that (2.6.12) holds for certain positive
integer n, and notice that (2.6.11) and the Markov property yield that, with probability 1
with respect to P fy ,

eλh1(Xn) = EfXn

[
eλD1(Xn)+λh1(Xn+1)

]
= Efy

[
eλD1(Xn)+λh1(Xn+1)

∣∣∣Hn

]
,

and then, since e
∑n−1

t=0
λD1(Xt) and I[Ty > n] are σ(Hn)-measurable, it follows that

e
∑n−1

t=0
λD1(Xt)+λh1(Xn)I[Ty > n] = e

∑n−1

t=0
λD1(Xt)I[Ty > n]eλh1(Xn)

= e
∑n−1

t=0
λD1(Xt)I[Ty > n]Efy

[
eλD1(Xn)+λh1(Xn+1)

∣∣∣Hn

]
= Efy

[
e
∑n−1

t=0
λD1(Xt)I[Ty > n]eλD1(Xn)+λh1(Xn+1)

∣∣∣Hn

]
= Efy

[
e
∑n

t=0
λD1(Xt)+λh1(Xn+1)I[Ty > n]

∣∣∣Hn

]
;

taking expectation with respect to P fy , this leads to

Efy

[
e
∑n−1

t=0
λD1(Xt)+λh1(Xn)I[Ty > n]

]
= Efy

[
e
∑n

t=0
λD1(Xt)+λh1(Xn+1)I[Ty > n]

]
= Efy

[
e
∑n

t=0
λD1(Xt)+λh1(Xn+1)I[Ty = n+ 1]

]
+ Efy

[
e
∑n

t=0
λD1(Xt)+λh1(Xn+1)I[Ty > n+ 1]

]
= Efy

[
e
∑Ty−1

t=0
λD1(Xt)+λh1(y)I[Ty = n+ 1]

]
+ Efy

[
e
∑n

t=0
λD1(Xt)+λh1(Xn+1)I[Ty > n+ 1]

]
.

Combining this expression with the induction hypothesis, it follows that (2.6.12) is also valid
with n+ 1 instead of n. Using (2.6.12) it follows that

eλh1(y) ≥
n∑
r=1

Efy

[
e
∑Ty−1

t=0
λD1(Xt)+λh1(y)I[Ty = r]

]
,

and then

eλh1(y) ≥
∞∑
r=1

Efy

[
e
∑Ty−1

t=0
λD1(Xt)+λh1(y)I[Ty = r]

]
= Efy

[
e
∑Ty−1

t=0
λD1(Xt)+λh1(y)I[Ty <∞]

]
= Efy

[
e
∑Ty−1

t=0
λD1(Xt)+λh1(y)

]
= eλh1(y)Efy

[
e
∑Ty−1

t=0
λD1(Xt)

]
where the second equality is due to the fact that, for a communicating Markov chain over a
finite state space, the return time to a given state is finite with probability 1 (Loève, 1980,

Billingsley, 2010). The above relation yields that 1 ≥ Efy

[
e
∑Ty−1

t=0
λD1(Xt)

]
= eλhy,f,D1

(y),

which in turn leads to
hy,f,D+aδz (y) = hy,f,D1

(y) ≤ 0, (2.6.13)
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where the equality is due to (2.6.10); the conclusion follows since y ∈ S is arbitrary.

(iii) Suppose that hz,f,D(z) < 0, so that the number a in (2.6.7) is positive. Setting b = a/2
it follows that D(x)+bδz(x) ≤ D(x)+aδz(x) for every x ∈ S, with strict inequality for x = z.
In this case, part (i) yields that for every y ∈ S the inequality hy,f,D+bδz (y) < hy,f,D+aδz (y)
holds, and the conclusion follows form (2.6.13).

(iv) Suppose that hz,f,D(z) < 0 and write S = {x1, x1, . . . , xk} where z = x1, so that
hx1,f,D(x1) < 0. In this case, an application of part (iii) yields that there exists b1 > 0 such
that

hy,f,D+b1δx1
(y) < 0, y ∈ S.

In particular, hx2,f,D+b1δx1
(x2) < 0, and part (iii) with x2 and D + b1δx1

instead of z and
D, respectively, yields that there exists b2 > 0 such that

hy,f,D+b1δx1
+b2δx2

(y) < 0, y ∈ S.

Repeating this argument it follows that there exist positive constants b1, b2, . . . bk such that

hy,f,D+b1δx1+b2δx2+···+bkδxk (y) < 0 for all y ∈ S. (2.6.14)

Setting b = min{b1, b2, . . . , bk}/2, it follows that b is positive and that

D + b < D + b1δx1
+ b2δx2

+ · · ·+ bkδxk ;

from this point, part (i) yields that hy,f,D+b(y) < hy,f,D+b1δx1
+b2δx2

+···+bkδxk (y) for every
state y, and then (2.6.14) implies that hy,f,D+b(y) < 0. tu

2.7. Relative Costs up to a Return Time

This section contains the results about relative costs that will be used to establish Theorem
2.5.1. To begin with, for each stationary policy f ∈ IF define the section Cf :S → IR of the
cost function C by

Cf (x) = C(x, f(x)), x ∈ S, (2.7.1)

and let z ∈ S be an arbitrary state that will fixed throughout the remainder. Given γ ∈ IR,
the total cost relative to γ incurred up to the first return to state z is

∑Tz−1
t=0 [Cf (Xt)− γ],

and Rf,γ(x) stands for the certain equivalent of this quantity when x is the initial state;
more explicitly,

Rf,γ(x) =
1

λ
log

(
Efx

[
eλ
∑Tz−1

t=0
[Cf (Xt)−γ]

])
, x ∈ S. (2.7.2)

From this specification it is not difficult to see that Rf,γ is a monotone decreasing function
of γ, that is,

Rf,γ ≥ Rf,γ1
, γ ≤ γ1, (2.7.3)

as well as

Rf,‖Cf‖ ≤ 0, and Rf,−‖Cf‖−1 > 0, (2.7.4)

since Cf − ‖Cf‖ ≤ 0 and Cf + ‖Cf‖ + 1 > 0. Also, notice that with the notation in the
previous section

Rf,γ(·) = hz,f,Cf−γ(·). (2.7.5)
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The following result, which a a consequence of the communication property in Assumption
2.5.1(iii), will play an essential role in the proof of Theorem 2.5.1, Define the set G(f) by

G(f): = {γ ∈ IR |Rf,γ(z) ≤ 0}. (2.7.6)

and
γ(f) = minG(f) <∞. (2.7.7)

Theorem 2.7.1. Let f ∈ IF and z ∈ S be fixed. With the notation in (2.7.1)–(2.7.7), the
following assertions (i)–(ii) hold:

(i) γ(f) is finite, satisfies that the inequality γ(f) ≥ −‖Cf‖ − 1, and

G(f) = [γ(f),∞). (2.7.8)

(ii) Rf,γ(f)(z) = 0, and then

(iii) The following (Poisson) equation holds:

eλRf,γ(f)(x) = eλ[Cf (x)−γ(f)]
∑
y∈S

px y(f(x))eλRf,γ(f)(y), x ∈ S. (2.7.9)

Proof. (i) Notice that (2.7.4) and (2.7.6) together yield that G(f) is a nonempty and
proper subset of IR contained in (−‖Cf‖ − 1, ∞); moreover, using (2.7.3) it follows that
G(f) is an interval extending to ∞, so that G(f) = (γ(f),∞) or G(f) = [γ(f),∞), where
γ(f) > −‖Cf‖ − 1. Therefore, to establish (2.7.8) it is sufficient to show that γ(f) ∈
G(f). To achieve this goal select a sequence {γn} ⊂ G(f) such that γn ↘ γ(f). In this

case Rf,γn(z) ≤ 0 and eλ
∑Tz−1

t=0
[Cf (Xt)−γn] ↗ eλ

∑Tz−1

t=0
[Cf (Xt)−γ(f)], so that the monotone

convergence theorem leads to

1 ≥ eλRf,γn (z)

= Efz

[
eλ
∑Tz−1

t=0
[Cf (Xt)−γn]

]
↗ Efz

[
eλ
∑Tz−1

t=0
[Cf (Xt)−γ(f)]

]
= eλRf,γ(f)(z),

and then Rf,γ(f)(z) ≤ 0, so that γ(f) ∈ G(f).

(ii) Assume that Rf,γ(f)(z) < 0, In this case, using that Rf,γ(f) = hz,f,Cf−γ(f), an applica-
tion of Theorem 2.6.1(iv) with the function Cf − γ(f) instead of D yields that there exists
a positive number b such that

0 > hz,f,Cf−γ(f)+b(z) = hz,f,Cf−(γ(f)−b)(z) = Rf,γ(f)−b(z),

so that γ(f) − b ∈ G(f), which is a contradiction; see ( 2.7.7). Thus, Rf,γ(f)(z) ≥ 0, and
the conclusion follows since Rf,γ(f)(z) ≤ 0, by part (i).

(iii) Using (2.7.5), the desired conclusion (2.7.9) is equivalent to the dynamic programming
equation (2.6.3) applied with the function Cf − γ(f) instead of D. tu

In the above theorem the policy f ∈ IF is fixed, and the conclusions depend only on
the communication property of the Markov chain induced by f . The following result uses
the full strength of Assumption 2.5.1. Set

g∗: = inf
f∈IF

γ(f). (2.7.10)
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which is a finite number. Next, select a sequence of policies {fn} ⊂ IF such that

γn ≡ γ(fn)→ g∗ as n→∞. (2.7.11)

Since IF =
∏
x∈S A(x) is a compact metric space, by Assumption 2.5.1(i), taking a subse-

quence if necessary, without loss of generality it can be assumed that for a policy f∗ ∈ IF,

lim
n→∞

fn(x) = f∗(x), x ∈ S. (2.7.12)

Theorem 2.7.2. Suppose that Assumption 2.5.1 holds. In this case assertions (i) and (ii)
below are valid.

(i) For each x ∈ S and r = 1, 2, 3, . . .,

lim
n→∞

Efnx

[
eλ
∑r−1

t=0
[Cfn (Xt)−γ(fn)]I[Tz = r]

]
= Ef

∗

x

[
eλ
∑r−1

t=0
[Cf∗ (Xt)−g∗]I[Tz = r]

]
Consequently,

(ii) 1 ≥ Ef∗z
[
eλ
∑Tz−1

t=0
[Cf∗ (Xt)−g∗]

]
, and then

(iii) g∗ = γ(f∗).

Proof. (i) Let x ∈ S be fixed and, for a positive integer r, let Sr stand for the class of all
trajectories (x0, x1, . . . , xr) ∈ S × S × · · · × S satisfying that x0 = x, xr = z and xt 6= z for
1 ≤ t < r. Notice now that, for every positive integer n,

Efnx

[
eλ
∑r−1

t=0
[Cfn (Xt)−γ(fn)]I[Tz = r]

]
=

∑
(x0,x1,x2,...,xr)∈Sr

eλ
∑r−1

t=0
[Cfn (xt)−γ(fn)]

r∏
i=1

pxi−1 xi(fn(xi−1))

=
∑

(x0,x1,x2,...,xr)∈Sr

eλ
∑r−1

t=0
[C(xtfn(xt))−γ(fn)]

r∏
i=1

pxi−1 xi(fn(xi−1));

where (2.7.1) was used to set the second equality. Observe now that the continuity properties
in Assumption 2.5.1 together with the convergences (2.7.10) and (2.7.12) yield that

lim
n→∞

Efnx

[
eλ
∑r−1

t=0
[Cfn (Xt)−γ(fn)]I[Tz = r]

]
= lim
n→∞

∑
(x0,x1,x2,...,xn)∈Sr

eλ
∑r−1

t=0
[C(xt,fn(xt))−γ(fn)]

r∏
i=1

pxi−1 xi(fn(xi−1))

=
∑

(x0,x1,x2,...,xr)∈Sr

eλ
∑r−1

t=0
[C(xt,f

∗(xt))−g∗]
r∏
i=1

pxi−1 xi(f
∗(xi−1))

= Ef
∗

x

[
eλ
∑r−1

t=0
[Cf∗ (Xt)−g∗]I[Tz = r]

]
(ii) Recall that Rfn,γ(fn)(z) = 0, by Theorem 2.7.1(ii), so that (2.7.2) yields that

1 = eRfn,γ(fn)(z)

= Efnz

[
eλ
∑Tz−1

t=0
[Cfn (Xt)−γ(fn)]

]
=

∞∑
r=1

Efnz

[
eλ
∑r−1

t=0
[Cfn (Xt)−γ(fn)]I[Tz = r]

]
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It follows that 1 ≥
∑m
r=1E

fn
z

[
eλ
∑r−1

t=0
[Cfn (Xt)−γ(fn)]I[Tz = r]

]
for every positive m; taking

the limit as n goes to ∞ in this last inequality, part (i) yields that

1 ≥
m∑
r=1

Ef
∗

x

[
eλ
∑r−1

t=0
[Cf∗ (Xt)−g∗]I[Tz = r]

]
and then, since m is arbitrary,

1 ≥
∞∑
r=1

Ef
∗

x

[
eλ
∑n−1

t=0
[Cf∗ (Xt)−g∗]I[Tz = r]

]
= Ef

∗

x

[
eλ
∑n−1

t=0
[Cf∗ (Xt)−g∗]

]
.

(iii) Notice that part (ii) yields that Rf∗,g∗(z) ≤ 0, a relation that combined with (2.7.6)
and (2.7.8) implies that g∗ ≥ γ(f∗), and it follows that g∗ = γ(f∗), since g∗ is the minimum
value of the mapping f 7→ γ(f) over f ∈ IF. tu

2.8. Proof of Theorem 2.5.1

In this section the existence of a solution to the optimality equation is established uder
Assumption 2.5.1. To begin with, let g∗ ∈ IR and f∗ ∈ IF be as in (2.7.10)–(2.7.12). Since
g∗ = γ(f∗), Theorem 2.7.1(iii) and (2.7.5) yield that, for every x ∈ S,

eλg
∗+λRf∗,g∗ (x) = eλCf∗ (x)

∑
y∈S

px y(f∗(x))eλRf∗,g∗ (y)

= eλC(x,f∗(x))
∑
y∈S

px y(f∗(x))eλRf∗,g∗ (y), x ∈ S
(2.8.1)

where the second equality is due to the specification of the function Cf∗ ; see (2.7.1).

Proof of Theorem 2.5.1. Suppose that Assumption 2.5.1 holds. It will be shown that the
pair (g∗, Rf∗,g∗(·)) satisfies the optimality equation. To begin with observe that, for each
x ∈ S, the mapping a 7→ eλC(x,a)

∑
y∈S px y(a)eλRf∗,g∗ (y) is continuous in a ∈ A(x), and

then such a function attains its minimum at some action f̃(x) ∈ A(x), since the A(x) is
compact. Thus, the stationary policy f̃ satisfies

eλC(x,f̃(x))
∑
y∈S

px y(f̃(x))eλRf∗,g∗ (y)

= min
a∈A(x)

eλC(x,a)
∑
y∈S

px y(a)eλRf∗,g∗ (y)

 , x ∈ S,
(2.8.2)

an equality that together with (2.8.1) yields that eλC(x,f̃(x))
∑
y∈S px y(f̃(x))eλRf∗,g∗ (y) ≤

eλg
∗+λRf∗,g∗ (x) for every state x, and then, there exists a function ∆:S → [0,∞) such that

eλg
∗+λRf∗,g∗ (x) = eλ[C(x,f̃(x))+∆(x)]

∑
y∈S

px y(f̃(x))eλRf∗,g∗ (y), x ∈ S, (2.8.3)

a relation that is equivalent to

eλRf∗,g∗ (x) = Ef̃x

[
eλ[C(X0,f̃(X0))+∆(X0)−g∗]+λRf∗,g∗ (X1)

]
,
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and then

eλRf∗,g∗ (x) = Ef̃x

[
eλ[Cf̃ (X0)+∆(X0)−g∗]+λRf∗,g∗ (X1)

]
= Ef̃x

[
eλ[Cf̃ (X0)+∆(X0)−g∗]+λRf∗,g∗ (X1)I[Tz = 1]

]
+ Ef̃x

[
eλ[Cf̃ (X0)+∆(X0)−g∗]+λRf∗,g∗ (X1)I[Tz > 1]

]
, x ∈ S.

Combining the two last displays, an induction argument using the Markov property yields
that for every positive integer n and x ∈ S

eλRf∗,g∗ (x) ≥
n∑
r=1

Ef̃x

[
eλ
∑r−1

t=0
[Cf̃ (Xt)+∆(Xt)−g∗]+λRf∗,g∗ (Xr)I[Tz = r]

]
+ Ef̃x

[
eλ[Cf̃ (Xn)+∆(Xn)−g∗]+λRf∗,g∗ (Xn)I[Tz > n]

]
,

so that

eλRf∗,g∗ (x) ≥ lim
n→∞

n∑
r=1

Ef̃x

[
eλ
∑r−1

t=0
[Cf̃ (Xt)+∆(Xt)−g∗]+λRf∗,g∗ (Xr)I[Tz = r]

]
=

∞∑
r=1

Ef̃x

[
eλ
∑r−1

t=0
[Cf̃ (Xt)+∆(Xt)−g∗]+λRf∗,g∗ (Xr)I[Tz = r]

]
= Ef̃x

[
eλ
∑Tz−1

t=0
[Cf̃ (Xt)+∆(Xt)−g∗]+λRf∗,g∗ (z)

]
.

Setting x = z, the above dispay leads to 1 ≥ Ef̃x

[
eλ
∑Tz−1

t=0
[Cf̃ (Xt)+∆(Xt)−g∗]

]
, that is,

1 ≥ e
λhz,f̃,[C

f̃
+∆−g∗](z)

, by Definition 2.6.2, and then

hz,f̃ ,[Cf̃+∆−g∗] ≤ 0.

Suppose now that the nonnegative function ∆ is positive at some state. In this case, Theorem
2.6.1(i) yields that hz,f̃ ,[Cf̃+∆−g∗](z) > hz,f̃ ,[Cf̃−g∗]

(z), an inequality that together with the

above display implies that

Rf̃ ,g∗(z) = hz,f̃ ,[Cf̃−g∗]
(z) < 0,

where the inequality is due to (2.7.5). It follows that

g∗ ∈ G(f̃) = [γ(f̃),∞),

by (2.7.6) and Theorem 2.7.1(i); sinceRf̃ ,γ(f̃)(z) = 1, by Theorem (ii), the two last displays

together imply that γ(f̃) < g∗, which a contradiction, since g∗ is the minimum value of the
mapping f 7→ γ(f) over f ∈ IF. Consequently, ∆(x) = 0 for every state x, so that

eλg
∗+λRf∗,g∗ (x) = eλC(x,f̃(x))

∑
y∈S

px y(f̃(x))eλRf∗,g∗ (y) for all x ∈ S;

see (2.8.3). Combining this property with (2.8.2) it follows that

eλg
∗+λRf∗,g∗ (x) = min

a∈A(x)

eλC(x,a)
∑
y∈S

px y(a)eλRf∗,g∗ (y)

 , x ∈ S,
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that is, the pair (g∗, Rf∗,g∗) satisfies the optimality equation. tu

2.9. The Communication Property and the Optimality Equation

In this chapter two theorems on the existence of solutions of the optimality equation were
studied, and the proof of both results relied on the communication assumption of the Markov
chains induced by any stationary policy. For the algebraic approach by Howard and Mathe-
son, the essential instrument of analysis was (the Perron-Forbenious) Theorem 2.3.1 assert-
ing that, for a nonnegative and communicating matrix A, the following properties (a) and
(b) hold:

(a) There exists a positive eigenpair (µ,m) for A, and

(b) That a nonnegative sub-(or super-) eigenvector x corresponding to µ—that is, a vector
x ∈ [0,∞) satsifying Ax ≤ µx or AX ≥ x—necessarily belongs to the eigenspace of µ.

Although a positive eigenpair for a nonnegative matrix may exist even if A is non-
communicating, in general the above property (b) depends on the communication property
of the matrix A.

On the other hand, the argument used to establish Theorem 2.5.1 relied on the basic
property in Lemma 2.6.1, which is a consequence of the communication condition (2.2.1).
In the following chapter, a result on the characterization of the optimal average cost for
systems satisfying a weak form of communication will be analyzed.
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Chapter 3

The Optimality Equation for Markov Decision
Chains with an Accessible State

In this chapter a class of models satisfying a weak form of communication is studied. Such
a requirement is formulated in terms of the existence of a fixed state, say z ∈ S, such that
under the action of each stationary policy and regardless of the initial state, z is visited with
positive probability. This assumption is a form of the simultaneous Doeblin condition, which
has been widely used in the analysis of Markov decision chains with risk-neutral average
index. The main objective of the presentation is to show that a solution to the optimality
equation can be generally ensured only when the risk-aversion coefficient is ‘small enough’,
and that, even if the optimal average cost function is constant, it may not be characterized
by a single optimality equation. Besides standard dynamic programming ideas, the approach
used below relies on elementary continuity arguments, providing an alternative approach to
the one used in Cavazos-Cadena (2003) where, under the conditions in this chapter. the
optimality equation was studied via contractive operators.

3.1. Introduction

This chapter concerns Markov decision models satisfying a weak form of the communication
requirement in (2.2.1). The describe the version used below, let z ∈ S be fixed, and consider
the following conditions (a) and (b):

(a) Under the action of each stationary policy, the state z is accessible regardless of the
initial state, that is, given x ∈ S and f ∈ IF, there exists a positive integer n such that
P fx [Xn = z] > 0, and

(b) For each x ∈ S and f ∈ IF, there exists a positive integer m such that P fz [Xm = x] > 0.

It is not difficult to verify that the communication property (2.2.1) is equivalent to the
occurrence of both conditions (a) and (b). On the other hand, under condition (a) each
stationary policy has a single recurrent class which always contains z, properties that for
the risk-neutral average criterion ensure that the corresponding optimality equation has a
solution. However, in the risk-averse context of this work, it will be shown that condition
(a) alone renders a solution to the optimality equation only if the risk-aversion coefficient
λ is ‘small enough’, and that such an existence result generally fails for arbitrary λ > 0.
Moreover, a simple example will be used to show that, even is the (optimal) average cost
function is constant, in general it is not characterized by a single optimality equation.

The organization of the subsequent material is as follows: In Section 2 the accessibility
condition is formally introduced, the result on the existence of solutions to the optimality
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equation is stated as Theorem 3.2.1, and an example is given to illustrate the lack of solutions
when λ > 0 is arbitrary. Next, in Section 3 it is shown that when the state z is accessible, the
right-tails of the distribution of the return time Tz decay at a geometric rate, a conclusion
that is used in Section 4 to study the total relative utility of the cost incurred before the first
return to z. Finally, Theorem 3.2.1 is proved in Section 5 and the presentation concludes in
Section 6 with some brief comments.

3.2. Models with an Accessible State

In this section the risk-sensitive average optimality equation will be studied under the fol-
lowing condition on the transition law: There exists a (fixed) state z ∈ S such that, under
the action of any stationary policy, the state z can be reached with positive probability re-
gardless of the initial state, a requirement that, together with mild continuity-compactness
conditions on the decision model, is formally stated below.

Assumption 3.2.1. (i) The state space S is finite and A(x) is a compact set for each x ∈ S;

(ii) For each x, y ∈ S the mappings a 7→ C(x, a) and a 7→ px y(a) are continuous in a ∈ A(x);

(iii) For some state z ∈ S, the following property occurs::

Given x ∈ S and f ∈ IF, there exists a positive integer n(x, f) ≡ n
such that P fx [Xn = z] > 0.

(3.2.1)

Throughout the remainder, z is a (fixed) state such that the above condition (3.2.1)
holds. The following theorem establishes that Assumption 3.2.1 guarantees the existence of
solutions to the optimality equation whenever the risk-sensitivity coefficient λ is sufficiently
close to zero.

Theorem 3.2.1. Let M = (S,A, {A(x)}x∈S , P, C) be a Markov decision chain satisfying
Assumption 3.2.1. In this case, there exists a positive number β such that

If λ ∈ (0, β), then the optimality equation

eλg+λh(x) = min
a∈A(x)

eλC(x,a)
∑
y∈S

px y(a)eλh(y)

 , x ∈ S,

is satisfied by some pair (g, h(·)) ∈ IR× B(S).

This result was originally obtained in Cavazos-Cadena (2003), where the conclusions
were derived using the ‘discounted approach’, a technique that will play an important role
in Chapter 4, were it will be used to establish the main contribution of this thesis. On the
other hand, in the subsequent development a different method, highlighting the role of the
accessible state z, will be used to establish Theorem 3.2.1 in Section 5; the argument relies
on a simple probabilistic analysis of condition (3.2.1) presented in Section 3, which will be
used in Section 4 to study an auxiliary total cost problem. Notice that the accessibility
condition in Assumption 3.2.1(iii) is weaker that the communication requirement (2.2.1)
and, accordingly, the above theorem ensures the existence of a solution to the optimality
equation only when the risk sensitivity coefficient λ is ‘small enough’, that is, less than a
certain positive number β, which will be specified during the proof of Theorem 3.2.1. Before
going any further, it is interesting to see whether or not, within the framework of Assumption
3.2.1, a solution to the optimality equation can be obtained for arbitrary λ ∈ (0,∞) and
not only for λ ‘close’ to zero. The following example shows that, in general, the answer is
negative.
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Example 3.2.1. Consider a Markov chain over the state space S = {0, 1}, with transition
probabilities determined by

p1 0 = 0.5 = p1 1 and p0 0 = 1,

whereas the cost function C:S → IR be given by

C(0) = 0, C(1) = 1.

Notice that these specifications determine a Markov decision chain for which the action set
consists of a unique action, and that Assumption 3.2.1 holds in this example. tu

In this example the state 0 is absorbing (i.e., p0 0 = 1) and C(0) = 0, so that

J(0) = 0 (3.2.2)

regardless of λ.

Proposition 3.2.1. Let λ > 0 be arbitrary. For the model in Example 3.2.1, the (Poisson)
equation

eλg+λh(x) = eλC(x)
∑
y∈S

px ye
λh(y), x ∈ S, (3.2.3)

is satisfied by a pair (g, h(·)) ∈ IR× B(S) if, and only if,

λ < log(2).

Proof. The Poisson equation (3.2.3) can be explicitly written as

eλg+λh(1) = eλ
[
.0.5eλh(1) + 0.5eλh(0)

]
eλg+λh(0) = eλh(0)

(3.2.4)

The second equality yields that g = 0, and then the above system of two scalar equations is
equivalent to the single equation(

1− eλ

2

)
eλ[h(1)−h(0)] =

eλ

2

If λ ≥ log(2), then the left-hand side of this equality is less than or equal to zero, whereas
the right-hand side is positive, so that no solution exists in this case.

When λ < log(2), the above equation holds with

h(0) = 0 and h(1) =
1

λ
log

(
eλ/2

1− eλ/2

)
,

and the equalities (3.2.4) are satisfied by (g, h(·)), where g = 0 and h(·) is given above. tu

Next, in the following proposition the average cost will be determined when (3.2.3) does
not have a solution.

Proposition 3.2.2. In the context of Example 3.2.1, let the risk sensitivity coefficient λ be
such that

λ ≥ log(2).
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In this context,

J(1) =
1

λ
log

(
eλ

2

)
;

particularly,
J(1) = 0 if λ = log(2).

Proof. When the initial state is 1, notice that that C(Xt) = 1 before the system arrives

to state 0, that is, when t < T0, whereas C(Xt) = 0 when t ≥ T0, so that
∑n−1
t=0 C(Xt) =

min{Tz, n} ≡ Tz ∧ n, and then

eλJn(1) = E1

[
eλ
∑n−1

t=0
C(Xt)

]
= E1

[
eλTz∧n

]
=

n∑
r=1

E1

[
eλ[r∧n]I[T0 = r]

]
+ E1

[
eλnI[T0 > n]

]
=

n∑
r=1

eλrP1[T0 = r] + eλnP[T0 > n]

Notice now that the specification of the transition law in Example 3.2.1 yields that

P [T0 = r] = 1/2r = P [T0 > r] = 1/2r, r = 1, 2, 3, . . .

so that

eλJn(1) =

n∑
r=1

erλ

2r
+
enλ

2n
.

and then, since eλ/2 ≥ 1, (
eλ

2

)n
≤ eλJn(1) ≤ (n+ 1)

(
eλ

2

)n
so that

1

λ
log

(
eλ

2

)
≤ 1

n
Jn(1) ≤ 1

nλ
log(n+ 1) +

1

λ
log

(
eλ

2

)
and taking the limit as n goes to ∞, this relation yields that

J(1) = lim
n→∞

1

n
Jn(1) =

1

λ
log

(
eλ

2

)
;

thus, J(1) = 0 if eλ = 2, and J(1) > 0 when eλ > 2. tu

For the model in Example 3.2.1, Proposition 3.2.2 and the equality (3.2.2) together
yield that the average cost is not constant when λ > log(2) and then, in accordance with
Proposition 3.2.1, the Poisson equation (3.2.3) does not have a solution (otherwise, the
average cost must be constant). On the other hand, when λ = log(2) the average cost
function J(·) is constant and equal to 0, by Proposition 3.2.2 and (3.2.2), but the Poisson
equation does not have a solution, by Proposition 3.2.1, showing that, even if the average
cost is constant, its value is not characterized by a single optimality equation (which in the
context of uncontrolled models is referred to as the Poisson equation). This is fact provides
a strong motivation to pursue the main objective of this thesis, namely, to provide a general
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characterization of the (λ-sensitive) optimal average reward for arbitrary Markov decision
chains over a finite state space.

3.3. The Simultaneous Doeblin Condition

In this section an equivalent formulation of the accessibility property in (3.2.1) is formulated;
in the form presented below such a condition is usually referred to as the simultaneous
Doeblin condition. First, it is convenient to introduce the following notation.

Definition 3.3.1. Suppose that Assumption 3.2.1 holds, and let z ∈ S be a fixed state
such that (3.2.1) is valid. In this context, for each nonnegative integer n the function
Mn:S → [0, 1] is defined by

Mn(x) = sup
π∈P

Pπx [Tz > n], x ∈ S. (3.3.1)

Theorem 3.3.1. Under Assumption 3.2.1, the following assertions (i)–(ii) hold:

(i) For each state x ∈ S,
lim
n→∞

Mn(x) = 0.

Consequently,

(ii) There exist a positive constant B and ρ ∈ (0, 1) such that, for every x ∈ S and π ∈ P,

Pπx [Tz > n] ≤ Bρn, x ∈ S, π ∈ P, n = 1, 2, 3, . . . (3.3.2)

and then

Pπx [Tz = n] ≤ Pπx [Tz > n− 1] ≤ B

ρ
ρn, x ∈ S, π ∈ P, n = 1, 2, 3, . . . (3.3.3)

Remark 3.3.1. The relation (3.3.2) implies that, for every initial state x and π ∈ P,

Eπx [Tz] =

∞∑
n=0

Pπx [Tz > n] ≤
∞∑
n=0

Bρn ≤ B/(1− ρ) <∞.

Conversely, suppose that the inequality Eπx [Tz] ≤ B̃ for some constant B̃ regardless of x and
π, and let n0 be a positive integer larger than B̃. In this case, Markov’s inequality yields
that Pπx [Tz > n0] ≤ B̃/n0 = ρ̃ < 1, and an induction argument using the Markov property
of the process allows to conclude that Pπx [Tz > qn0] ≤ ρ̃q for every positive integer q. Given
a positive integer n, write n = qn0 + r where 0 ≤ r < n0 and notice that

Pπx [Tz > n] ≤ Pπx [Tz > qn0] ≤ ρ̃q = ρ̃−r[ρ̃1/n0 ]n ≤ ρ̃−n0 [ρ̃1/n0 ]n,

and it follows that (3.3.2) holds with B = ρ̃−n and ρ = ρ̃1/n0 . In short, (3.3.2) is equivalent
to

sup
x∈S,π∈P

Eπx [Tz] <∞,

which is the simultaneous Doeblin condition. tu

The proof of Theorem 3.3.1 relies on the following result.
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Lemma 3.3.1. Under Assumption 3.2.1, there exists an integer n0 such that

sup
x∈S, f∈IF

Px[Tz > n0] =: ρ0 < 1. (3.3.4)

Proof. Let x ∈ S be arbitrary, and denote by Sn the class of trajectories (x0, x1, . . . , xn) in
Sn+1 such that x0 = x and xt 6= z when 1 ≤ t ≤ n. Notice now that

P fx [Tz > n] =
∑

(x0,x1,...,xn)∈Sn

px x1(f(x))px1 x2(f(x)) · · · pxn−2 xn−1(f(x))pxn−1 y(f(x)),

and then Assumption 3.2.1(i) yields that

(a) The mapping f 7→ P fx [Tz > n] is continuous in f ∈ IF.

Now, let f̃ ∈ IF be fixed and, using Assumption 3.2.1(iii), select an integer n(x, f̃) such that

P f̃x [Tz > n0(x, f̃)] < 1, so that, using the above continuity property, there exists an open
set V (x, f̃) ⊂ IF such that

f̃ ∈ V (x, f̃) and P fx [Tz > n0(x, f̃)] < 1 for all f ∈ V (x, f̃).

The family {V (x, f̃)}f̃∈IF is an open covering of the compact set IF, and then there exist a

finite set of policies f̃1, f̃2, . . . , f̃r such that IF =
⋃r
i=1 V (x, f̃i); setting

n0(x) = max{n(x, f̃i), i = 1, 2, . . . , r},

it follows that P fx [Tz > n0(x)] < 1 for every f ∈ IF, and then the above continuity property
(a) yields that

sup
f∈IF

P fx [Tz > n0(x)] =: ρ(x) < 1,

so that supx∈S, f∈IF Px[Tz > n0] = maxx∈S ρ(x) < 1, where n0 = maxx∈S n0(x). tu

Proof of Theorem 3.3.1. Given a nonnegative integer n, x ∈ S and π ∈ P, an application of
the Markov property yields that

Pπx [Tz > n+ 1|A0, X1] = Pπx [X1 6= z,X2 6= z, . . .Xn 6= z,Xn+1 6= z|A0, X1]

= I[X1 6= z]Pπx [X2 6= z, . . .Xn 6= z,Xn+1 6= z|A0, X1]

= I[X1 6= z]P π̃X1
[X1 6= z,X2 6= z, . . .Xn 6= z]

≤ I[X1 6= z]Mn(X1),

where the inequality is due to the specification of Mn(·) in Definition 3.3.1, and the ‘shifted’
policy π̃ is obtained from π by prefixing a history with (x,A0), that is,

π̃t(·|x0, a0, . . . ar−1, xr−1, xr) = πt+1(·|x,A0, x0, a0, . . . ar−1, xr−1, xr).

It follows that
Pπx [Tz > n+ 1] = Eπx [Pπx [Tz > n+ 1|A0, X1]]

≤ Eπx [I[X1 6= z]Mn(X1)]

=

∫
A(x)

∑
y 6=z

px y(a)Mn(y)

π0(da|x)

≤ max
a∈A(x)

∑
y 6=z

px y(a)Mn(y)

 ,
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and then, since π is an arbitrary policy,

Mn+1(x) ≤ max
a∈A(x)

∑
y 6=z

px y(a)Mn(y)

 , x ∈ S. (3.3.5)

On the other hand, from Definition 3.3.1 it follows that, for each x ∈ S, Mn(x) is a decreasing
function of n, so that

lim
n→∞

Mn(x) =:M(x) ∈ [0, 1]. (3.3.6)

exists for every x; taking the limit as n goes to∞ in both sides of (3.3.5), and recalling that
S is finite, it follows that

M(x) ≤ max
a∈A(x)

∑
y 6=z

px y(a)M(y)

 , x ∈ S.

For each x ∈ S, the term within brackets in this last display is a continuous function of
a ∈ A(x); since the set A(x) is compact, the maximum is attained at an action f∗(x) ∈ A(x),
so that

M(x) ≤
∑
y 6=z

px y(f∗(x))M(y);

this relation implies that

M(x) ≤ Ef
∗

x [I[X1 6= z]M(X1)] = Ef
∗

x [I[Tz > 1]M(X1)] (3.3.7)

as well as M(Xn) ≤ Ef
∗

Xn
[I[Xn+1 6= z]M(Xn+1)|Hn]], by the Markov property, and then

M(Xn)I[Tz > n] ≤ I[Tz > n]Ef
∗

Xn
[I[Xn+1 6= z]M(Xn+1)|Hn]

= Ef
∗

Xn
[I[Tz > n]I[Xn+1 6= z]M(Xn+1)|Hn]

= Ef
∗

Xn
[I[Tz > n+ 1]M(Xn+1)|Hn]

so that Ef
∗

x [M(Xn)I[Tz > n]] ≤ Ef
∗

x [I[Tz > n + 1]M(Xn+1)]. This last inequality and
(3.3.7) together imply that for every x ∈ S and every nonnegative integer n,

M(x) ≤ Ef
∗

x [M(Xn)I[Tz > n]] ≤ max
y∈S

M(y)P f
∗

x [Tz > n],

and then, since x ∈ S is arbitrary,

max
x∈S

M(x) ≤ max
y∈S

M(y) max
x∈S

P f
∗

x [Tz > n].

Now, select the positive integer n0 as in Lemma 3.3.1 to conclude that

max
x∈S

M(x) ≤ ρ0 max
y∈S

M(y),

an inequality that, since ρ0 < 1, leads to maxy∈SM(y) = 0. Thus, M(·) = 0, and then
limn→∞Mn(x) = 0, by (3.3.6) .

(ii) Using part (i), select an integer n1 > 0 such that

Pπx [X1 6= z,X2 6= z, . . . , Xn1 6= z] = Pπx [Tz > n1] ≤ 1

2
, x ∈ S, π ∈ P; (3.3.8)
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via the Markov property, it follows that, for every state x ∈ S and π ∈ P

Pπx [Xt+1 6= z,Xt+2 6= z, . . . , Xt+n1
6= z|Ht] ≤

1

2
,

and then

Pπx [Tz > n1 + t|Ht] = Pπx [Tz > t,Xt+1 6= z,Xt+2 6= z, . . . ,Xt+n1
6= z|Ht]

= I[Tz > t]Pπx [Xt+1 6= z,Xt+2 6= z, . . . ,Xt+n1
6= z|Ht]

≤ 1

2
[Tz > t]

so that the inequality

Pπx [Tz > n1 + t] ≤ 1

2
Pπx [Tz > t]

is always valid. From this relation and (3.3.8) an induction argument yields that

Pπx [Tz > qn1] ≤
(

1

2

)q
, x ∈ S, π ∈ P, q = 1, 2, 3, . . .

To conclude, given a nonnegative integer n, write n = qn1 +r, where 0 ≤ r < n1, and notice
that, for every x ∈ S and π ∈ P,

Pπx [Tz > n] ≤ Pπx [Tz > qn1] ≤
(

1

2

)q
=

(
1

21/n1

)n1q

= 2r/n1

(
1

21/n1

)n1q+r

,

and then

Pπx [Tz > n] ≤ 21−1/n1

(
1

21/n1

)n
,

so that the desired conclusion is satisfied with B = 21−1/n1 and ρ = 1/21/n1 . tu

3.4. Total Relative Cost

In this section an auxiliary total cost problem is introduced and some basic continuity
properties of the corresponding optimal value function are established. To begin with,
notice that the conclusion of Theorem 3.2.1 is clear when the cost function C is null, so
that, from this point onwards, it will be supposed that ‖C‖ > 0. With this in mind, define
the number β > 0 by

β =
− log(ρ)

2‖C‖
, (3.4.1)

where ρ ∈ (0, 1) is as in Theorem 3.3.1(ii), and suppose throughout the remainder that the
risk-sensitivity coefficient λ satisfies that

λ ∈ (0, β). (3.4.2)

In this case 2λ‖C‖ < − log(ρ), and there exists δ such that

δ > 0 and 2λ[‖C‖+ δ] < − log(ρ) (3.4.3)

Notice that Theorem 3.3.1(ii) implies that, for every x ∈ S and π ∈ P,

Eπx

[
e2λ[‖C‖+δ]Tz

]
=

∞∑
n=1

e2λ[‖C‖+δ]nPπx [Tz = n]

≤ B

ρ

∞∑
n=1

e2λ[‖C‖+δ]nρn
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and then

Eπx

[
e2λ[‖C‖+δ]Tz

]
=
B

ρ

∞∑
n=1

(
e2λ[‖C‖+δ]ρ

)n
=: B̂ <∞, x ∈ S, π ∈ P. (3.4.4)

where the inequality is due the relation e2λ[‖C‖+δ]ρ < 1 , by (3.4.3). Consider now the total
relative cost with respect to g ∈ IR incurred before the first return time to state z, which is
given by

∑Tz−1
t=0 [C(Xt, At − g]; in the sequel, the expected utility of this quantity will play

an important role, and a special notation is now introduced.

Definition 3.4.1. For each g ∈ (−‖C‖ − δ, ‖C‖ + δ), x ∈ S and π ∈ P, the expected

utility corresponding to
∑Tz−1
t=0 [C(Xt, At − g] when x is the initial state and π is the policy

employed is denoted by

u(x, π; g): = Eπx

[
eλ
∑Tz−1

t=0
[C(Xt,At)−g]

]
,

whereas

u∗(x; g): = inf
π∈P

u(x, π; g)

stands for the optimal utility at x.

Lemma 3.4.1. With the notation in (3.4.1)–(3.4.4), the following assertions (i)—(iii) hold
for every x ∈ S and π ∈ P:

(i) For each g ∈ (−‖C‖ − δ, ‖C‖+ δ)

u(x, π; g) < B̂.

Moreover,

(ii) If |g| ≤ ‖C‖ and |h| < δ, then

|u(x, π; g + h)− u(x, π; g)| ≤ |h| B̂
λδ
.

Consequently,

(iii) The function u∗(x; ·) is continuous in [−‖C‖, ‖C‖] and satisfies that u∗(x; ‖C‖) ≤ 1 and
u∗(x;−‖C‖) ≥ 1.

Proof. (i) Suppose that |g| < ‖C‖+ δ and notice that

∣∣∣∣∣λ
Tz−1∑
t=0

[C(Xt, At)− g]

∣∣∣∣∣ ≤ λ
Tz−1∑
t=0

[‖C‖+ |g|]

= λTz[‖C‖+ |g|]
≤ λTz[2‖C‖+ |δ]

so that (3.4.4) and Definition 3.4.1 together yield that u(x, π; g) ≤ B̂.
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(ii) let h ∈ (−δ, δ) and g ∈ [−‖C‖, ‖C‖] by arbitrary. Using the inequalities |ex−1| ≤ |x|e|x|
and |x| ≤ ea|x|/a, which are valid for every x ∈ IR and a > 0, it follows that

|u(x, π; g + h)− u(x, π; g)| =
∣∣∣∣Eπx [eλ∑Tz−1

t=0
[C(Xt,At)−g−h]

]
− Eπx

[
eλ
∑Tz−1

t=0
[C(Xt,At)−g]

]∣∣∣∣
=

∣∣∣∣Eπx [(e−λhTz − 1)eλ
∑Tz−1

t=0
[C(Xt,At)−g]

]∣∣∣∣
≤ Eπx

[
|e−λhTz − 1|eλ

∑Tz−1

t=0
[C(Xt,At)−g]

]
≤ Eπx

[
|hTz||eλ|h|Tzeλ

∑Tz−1

t=0
[C(Xt,At)−g]

]
= |h|Eπx

[
Tze

λ|h|Tz+λ
∑Tz−1

t=0
[C(Xt,At)−g]

]
≤ |h|
λδ
Eπx

[
eλδTzeλ|h|Tz+λ

∑Tz−1

t=0
[C(Xt,At)−g]

]
=
|h|
λδ
Eπx

[
eλδTz+λ|h|Tz+λ

∑Tz−1

t=0
[C(Xt,At)−g]

]
.

Since |h| < δ and |g| ≤ ‖C‖, it follows that∣∣∣∣∣δTz + λ|h|Tz + λ

Tz−1∑
t=0

[C(Xt, At)− g]

∣∣∣∣∣ ≤ 2[‖C‖+ δ]Tz

and combining these two last displays with (3.4.4) it follows that

|u(x, π; g + h)− u(x, π; g)| ≤ |h| B̂
λδ
.

(iii) Let g, g1 ∈ [−‖C‖, ‖C‖] be arbitrary numbers satisfying |g1 − g| < δ, and notice that
part (ii) yields that, for every x ∈ S and π ∈ P, |u(x, π; g1)− u(x, π; g)| ≤ |g1 − g|B̂/[λδ], a
relation that leads to u(x, π; g1) ≤ u(x, π; g) + |g1 − g|B̂/[λδ], and then, taking the infimum
with respect to π ∈ P, Definition 3.4.1 yields that

u∗(x; g1) ≤ u∗(x; g) + |g1 − g|B̂/[λδ];

similarly, interchanging the roles of g and g1,

u∗(x; g) ≤ u∗(x; g1) + |g1 − g|B̂/[λδ].

and these two last dsiplays together yield that

|u∗(x; g1)− u∗(x; g)| ≤ |g1 − g|
B̂

λδ
, g, g1 ∈ [−‖C‖, ‖C‖ ],

so that u∗(x; ·) is a (Lipchitz-)continuous function on the interval [−‖C‖, ‖C‖ ]. To conclude,
notice that C(Xt, At) − g ≥ 0 when g = −‖C‖, and C(Xt, At) − g ≤ 0 if g = ‖C‖, so that

eλ
∑Tz−1

t=0
[C(xt,At)−g] ≥ 1 if g = −‖C‖ and eλ

∑Tz−1

t=0
[C(xt,At)−g] ≤ 1 when g = ‖C‖; hence,

the inequalities
u(x, π;−‖C‖) ≥ 1 and u(x, π; ‖C‖) ≤ 1

are always valid, by Definition 3.4.1, and taking the infimum with respect to π, these
relations yield that u∗(x; ‖C‖) ≤ 1 and u∗(x;−‖C‖) ≥ 1. tu
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3.5. Proof of Theorem 3.2.1

The conclusion in Theorem 3.2.1 will be verified by combining the continuity properties of
the optimal utility u∗ in Lemma 3.4.1(iii), with the dynamic programming equation stated
below.

Lemma 3.5.1. For each g ∈ [−‖C‖, ‖C‖ ] the optimal utility function u∗(·; g) satisfies the
following dynamic programming equation:

u∗(x; g) = inf
a∈A(x)

eλ[C(x,a)−g]

px z(a) +
∑

y∈S\{z}

px y(a)u∗(y; g)

 . (3.5.1)

Proof. Let g ∈ [−‖C‖, ‖C‖ ] and ε > 0 be arbitrary but fixed, and for each y ∈ S, select a
policy πy = {πyt } ∈ P such that

u∗(y; g) ≤ u(y, πy; g) + ε. (3.5.2)

Now, take an arbitrary policy f ∈ IF and define the new policy π = {πt} as follows:

• π0({f(x})|x) = 1 for every x ∈ S and,

• For t ≥ 1, πt(·|x0, a0, x1, a1, . . . , xt) = πx1
t−1(·|x1, a1, . . . , xt).

The behavior of a controller using this policy π can be described as follows: At time t = 0
actions are chosen according to f whereas, from time 1 onwards, if x1 = y is observed,
then the decisions are taken using πy as if the process had started again at time 1. With
this specification, an application of the Markov property yields that, for each y ∈ S and
regardless of the initial state x ∈ S,

Eπx

[
eλ
∑Tz−1

t=0
[C(Xt,At)−g]I[Tz > 1]

∣∣∣∣X1

]
= Eπx

[
eλ[C(x,f(x))−g]eλ

∑Tz−1

t=1
[C(Xt,At)−g]I[X1 6= z]

∣∣∣∣X1

]
= eλ[C(x,f(x))−g]I[X1 6= z]Eπ

X1

X1

[
eλ
∑Tz−1

t=0
[C(Xt,At)−g]

]
= eλ[C(x,f(x))−g]I[X1 6= z]u(X1, π

X1 ; g)

≤ eλ[C(x,f(x))−g]I[X1 6= z][u∗(X1) + ε]

and, taking the expectation with respect to Pπx , this yields that

Eπx

[
eλ
∑Tz−1

t=0
[C(Xt,At)−g]I[Tz > 1]

]
≤ eλ[C(x,f(x))−g]

∑
y∈S\{z}

px y(f(x)[u∗(y) + ε]

≤ eλ[C(x,f(x))−g]
∑

y∈S\{z}

px y(f(x)u∗(y) + e2λ‖C‖ε.

Combining this relation with the equality

Eπx

[
eλ
∑Tz−1

t=0
[C(Xt,At)−g]I[Tz = 1]

]
= eλ[C(x,f(x))−g]px z(f(x)),
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it follows that

u∗(x; g) ≤ u(x, π; g)

= Eπx

[
eλ
∑Tz−1

t=0
[C(Xt,At)−g]

]
= Eπx

[
eλ
∑Tz−1

t=0
[C(Xt,At)−g]I[Tz = 1]

]
+ Eπx

[
eλ
∑Tz−1

t=0
[C(Xt,At)−g]I[Tz > 1]

]
≤ eλ[C(x,f(x))−g]px z(f(x)) + eλ[C(x,f(x))−g]

∑
y∈S\{z}

px y(f(x))u∗(y) + eλ‖C‖ε,

where the first inequality is due to the specification of the optimal utility u∗ in Definition
3.4.1; since ε > 0 is arbitrary, it follows that

u∗(x; g) ≤ eλ[C(x,f(x))−g]

px z(f(x)) +
∑

y∈S\{z}

px y(f(x))u∗(y; g)

 .

This inequality holds for every f ∈ IF, so that the action f(x) in the above expression is an
arbitrary element of the action set A(x), and then

u∗(x; g) ≤ inf
a∈A(x)

eλ[C(x,a))−g]

px z(a) +
∑

y∈S\{z}

px y(a))u∗(y; g)

 . (3.5.3)

To establish the reverse inequality, let π ∈ P be an arbitrary policy, and notice that, by the
Markov property, for every initial state x ∈ S the following relations hold:

Eπx

[
eλ
∑Tz−1

t=0
[C(Xt,At)−g]I[Tz > 1]

∣∣∣∣A0, X1

]
= Eπx

[
eλ[C(x,A0))−g]eλ

∑Tz−1

t=1
[C(Xt,At)−g]I[X1 6= z]

∣∣∣∣A0, X1

]
= eλ[C(x,A0)−g]I[X1 6= z]Eπ

(x,A0)

X1

[
eλ
∑Tz−1

t=0
[C(Xt,At)−g]

]
where the shifted policy π(x,A0) is defined as follows: For each t = 0, 1, 2, . . .,

π
(x,A0)
t (·|x0, a0, x1, a1, . . . , xt−1, at−1, xt) = πt+1(·|x,A0, x0, a0, x1, a1, . . . , xt−1, at−1, xt).

Since Eπ
(x,A0)

X1

[
eλ
∑Tz−1

t=0
[C(Xt,At)−g]

]
≥ u∗(X1; g), it follows that

Eπx

[
eλ
∑Tz−1

t=0
[C(Xt,At)−g]I[Tz > 1]

∣∣∣∣A0, X1

]
≥ eλ[C(x,A0)−g]I[X1 6= z]u∗(X1; g),

and taking the expectation with respect to Pπx , this relation leads to

Eπx

[
eλ
∑Tz−1

t=0
[C(Xt,At)−g]I[Tz > 1]

]
≥ Eπx

[
eλ[C(x,A0)−g]I[X1 6= z]u∗(X1; g)

]
=

∫
a∈A(x)

eλ[C(x,a)−g]
∑

y∈S\{z}

u∗(y; g)

π0(da|x).
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On the other hand,

Eπx

[
eλ
∑Tz−1

t=0
[C(Xt,At)−g]I[Tz = 1]

]
=

∫
a∈A(x)

eλ[C(x,a)−g]px z(a)π0(da|x),

a relation that together with the previous display leads to

Eπx

[
eλ
∑Tz−1

t=0
[C(Xt,At)−g]

]
= Eπx

[
eλ
∑Tz−1

t=0
[C(Xt,At)−g]I[Tz = 1]

]
+ Eπx

[
eλ
∑Tz−1

t=0
[C(Xt,At)−g]I[Tz > 1]

]

≥
∫
a∈A(x)

eλ[C(x,a)−g]
∑

y∈S\{z}

px y(a)u∗(y; g)

π0(da|x)

+

∫
a∈A(x)

eλ[C(x,a)−g]px z(a)π0(da|x)

=

∫
a∈A(x)

eλ[C(x,a)−g]

px z(a) +
∑

y∈S\{z}

)px y(a)u∗(y; g)

π0(da|x),

and then

Eπx

[
eλ
∑Tz−1

t=0
[C(Xt,At)−g]

]
≥ inf
a∈A(x)

eλ[C(x,a)−g]

px z(a) +
∑

y∈S\{z}

px y(au∗(y; g)

 ,

After taking the infimum with respect to π ∈ P, it follows that

u∗(x; g) ≥ inf
a∈A(x)

eλ[C(x,a)−g]

px z(a) +
∑

y∈S\{z}

px y(a)u∗(y; g)


and then, recalling that x ∈ S is arbitrary, the conclusion follows combining this last relation
with (3.5.3). tu

The existence of solutions to the optimality equation under Assumption 3.2.1 can be now
established as follows:

Proof of Theorem 3.2.1. By Lemma 3.4.1(ii), the function u∗(z; ·) is continuous in the
interval [−‖C‖, ‖C‖ ] and satisfies the relations

u∗(z;−‖C‖) ≥ 1 and u∗(z; ‖C‖) ≤ 1.

Thus, by the intermediate value property, there exists g∗ ∈ [−‖C‖, ‖C‖ ] such that

u∗(z, g∗) = 1,

and then Lemma 3.5.1 yields that

u∗(x; g∗) = inf
a∈A(x)

eλ[C(x,a)−g∗]
∑
y∈S

px y(a)u∗(y; g)

 , x ∈ S.
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To conclude, define h∗:S → IR by

h∗(x): =
1

λ
log(u∗(x; g∗)), x ∈ S,

and notice that the above dynamic programming equation is equivalent to

eλh
∗(x) = inf

a∈A(x)

eλ[C(x,a)−g∗]
∑
y∈S

px y(a)eλh
∗(y)

 , x ∈ S,

showing that the optimality equation is satisfied by the pair (g∗, h∗(·)) ∈ IR× B(S). tu

3.6. Conclusion

In this chapter the existence of solutions to the (λ-sensitive) optimality equation was stud-
ied within the framework determined by Assumption 3.2.1. Besides standard continuity-
compactness properties, such an assumption postulates the accessibility condition (3.2.1),
which ensures that, under the action of any stationary policy, some state z can be reached
with positive probability regardless of the initial state, but does not guarantee that, start-
ing from z, any other state can be eventually visited. Thus, Assumption 3.2.1 is weaker
that Assumption 2.5.1 and, accordingly, the main result of this chapter, stated as Theorem
3.2.1, only ensures that the optimality equation has a solution whenever the risk-aversion
coefficient is small enough; moreover, it was shown in Example 3.2.1 that such a conclu-
sion can not be extended to include every positive risk-sensitivity coefficient. The proof of
Theorem 3.2.1 was approached using a total utility cost criterion, providing an alternative
method to the one used in Cavazos-Cadena (2003), where Theorem 3.2.1 was obtained via
the discounted technique, a method that will be used in the following chapter.

On the other hand, the analysis of Example 3.2.1 presented in Propositions 3.2.1 and
3.2.2 pointed out a remarkable fact:

Even if (i) all the stationary policies have a single recurrent class and share a
recurrent state, and (ii) the (optimal) average cost function J∗(·) is constant, in
general J∗(·) is not characterized by a single equation

This fact shows that the main goal of this thesis, namely, to provide a general characteriza-
tion of the optimal risk-sensitive average index in Markov decision chains over a finite state
space, is a very interesting problem; the proposed solution will be presented in the following
chapter.
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Chapter 4

Optimality Systems for Average Markov

Decision Chains Under Risk-Aversion

In this chapter the optimal risk-sensitive average cost function is characterized for general
controlled Markov chains with finite state space and compact action sets, a result that is the
main contribution of this thesis. It is supposed that the decision maker is risk-averse with
constant risk-sensitivity coefficient and, under standard continuity–compactness conditions,
it is proved that the (possibly non-constant) optimal value function is characterized by
a nested system of equations, generalizing the characterizations presented in the previous
chapters which require communication conditions on the transition law; moreover, it is
shown that an optimal stationary policy can be derived form a solution of that system, and
that the optimal superior and inferior limit average cost functions coincide. The approach
in this chapter relies on the discounted method which, roughly, consists in using a family of
contractive operators whose fixed points are used to approximate the optimal average index.
The presentation of the subsequent material is self-contained and is based on Alańıs-Durán
and Cavazos-Cadena (2012).

4.1. Introduction

This chapter is concerned with discrete-time Markov decision processes (MDPs) evolving
on a finite state space. The system is driven by a risk-averse decision maker with constant
risk sensitivity coefficient λ > 0, and the performance of a control policy is measured by the
(superior limit) risk-sensitive average cost criterion. It is supposed that the action set is a
compact metric space, and that the cost function and the transition law depend continuously
on the action applied, but otherwise they are arbitrary; in particular, no communication
conditions are imposed on the transition law, so that the optimal value function may not
be constant. Within that framework, the following problem is addressed:

To characterize the optimal value function using a system of equations form which
an optimal stationary policy can be determined.

The study of stochastic systems endowed with the risk-sensitive average criterion can be
traced back, at least, to the seminal papers by Howard and Matheson (1972), Jacobson
(1973) and Jaquette(1973; 1976). Recently, there has been an intensive work on (controlled)
stochastic system endowed with the risk-sensitive average criterion; see, for instance, Flem-
ming and McEneany (1995), Di Masi and Stettner (1999, 2000, 2007), Jaśkiewicz (2007),
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Sladký and Montes-de-Oca (2008), Sladký (2008) and the references there in. A fundamen-
tal result on the existence of solutions of the risk-sensitive optimality equation was obtained
by Howard and Matheson (1972), where controlled Markov chains with finite state and
action spaces were studied, and it was shown that the optimal average cost is determined
by a single equation whenever each stationary policy determines a communicating Markov
chain. In such a case, the optimal average cost function is constant, say g, and the exis-
tence of a solution to the optimality equation was established using the Perron-Frobenius
theory of nonnegative matrices (Gantmakher, 1959). Other approaches have been used to
obtain a solution to the optimality equation: the main result in Hernández-Hernández and
Marcus (1996) is based on game theoretical ideas, the approach in Cavazos-Cadena and
Fernández-Gaucherand (2002) relies on the risk-sensitive total cost criterion, and the dis-
counted technique—involving contractive mappings—was employed in Di Masi and Stettner
(1999) and Cavazos-Cadena (2003). On the other hand, there is an interesting contrast be-
tween the risk-neutral and the risk-sensitive average cost criteria: Under strong recurrence
conditions, like the simultaneous Doeblin condition—under which the Markov chain deter-
mined by each stationary policy has a single recurrent class—the risk-neutral optimality
equation has a solution, but a similar conclusion is not valid in the risk-sensitive context,
even if the optimal average cost is constant (Cavazos-Cadena and Fernández-Gaucherand,
1999, Cavazos-Cadena and Hernández-Hernandez, 2005). Thus, the characterization of the
optimal risk-sensitive average cost can not be based, in general, on a single equation, and
the problem posed above is an interesting and natural one.

The characterization of a general (risk-sensitive) optimal average cost function was
recently studied in Sladký (2008) for models with finite state and action sets; in that paper,
the analysis is based on Perron-Frobenius decompositions of a family of nonnegative matrices
(Rothblum and Whittle, 1982, Sladký, 1979, 1980, Whittle, 1953, Zijm, 1983). On the
other hand, the discounted approach has also been employed to study the case of a non
necessarily constant optimal average index; see, for instance, Hernández-Hernández and
Marcus (1999) for models with denumerable state space, and Jaśkiewicz (2007) and Cavazos-
Cadena and Salem-Silva (2009), which concern MDPs with Borel state space. Roughly,
in those papers a characterization of the optimal average cost is obtained at some states
where the optimal performance index attains its minimum. In the context of this work, the
discounted technique will play a central role to obtain a complete characterization of the
optimal average cost function.

The main results of this work involve the idea of optimality system introduced in Section
3, and can be briefly described as follows: An optimality system is determined by

(i) a partition S1, . . . , Sk of a state space,

(ii) a sequence of pairs {(gi, hi(·))}i=1,...,k, where gi is a real number and hi is a function
defined on Si,

(iii) the specification of a (generally proper) subset of B(x) of the original set admissible
actions A(x) at each state x.

In terms of these objects, an equation—similar to the usual optimality equation—
is stipulated for every i = 1, 2, . . . , k, and the following conclusions, extending those in
Cavazos-Cadena and Hernández-Hernández (2006) for uncontrolled models, are obtained:

(1) An optimality system characterizes the optimal average cost function and renders an
optimal stationary policy (the verification theorem);

(2) There exists and optimality system (the existence theorem).

The approach used below to establish these conclusions relies on basic probabilistic and
dynamic programming ideas, which are used to establish the verification theorem, whereas
the discounted method is employed to derive the existence result.

The organization of the exposition is as follows: In Section 2 a brief description of the
decision model is presented and, after introducing the notion of optimality system in Section
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3, the verification and existence results are stated as Theorems 3.1 and 3.2, respectively.
Then, in Section 4 a technical result on the inferior limit average criterion is presented, and
it is used to establish the verification theorem in Section 5. Next in Section 6 the discounted
approach is used to specify the components of an optimality system, and the presentation
concludes in Section 7 with a proof of the existence theorem.

Notation. The set of all nonnegative integers is denoted by IN and, for a given topological
space IK, B(IK) stands for the Banach space of all bounded functions C: IK → IR equipped
with the supremum norm:

‖C‖: = sup
x∈IK
|C(x)|.

On the other hand, for x ∈ IK, δx(·) is the Dirac’s measure concentrated at x, that is, for
every Borel subset D ⊂ IK, δx(D) = 1 if x ∈ D, and δx(D) = 0 when x 6∈ D. If A is an
event, the corresponding indicator function is denoted by I[A] and, as usual, all relations
involving conditional expectations are supposed to hold almost surely with respect to the
underlying probability measure.

4.2. Decision Model

Throughout the remainder M = (S,A, {A(x)}x∈S , C, P ) is an MDP, where the state space
S is a finite set endowed with the discrete topology, and the action set A is a metric
space. For each x ∈ S, A(x) ⊂ A is the nonempty set of admissible actions at x, whereas
IK: = {(x, a) | a ∈ A(x), x ∈ S} is the class of admissible pairs. On the other hand, C ∈ B(IK)
is the cost function and P = [px y(·)] is the controlled transition law on S given IK, that
is, for each (x, a) ∈ IK and z ∈ S, px z(a) ≥ 0 and

∑
y∈S px y(a) = 1. This model M

is interpreted as follows: At each time t ∈ IN the decision maker observes the state of a
dynamical system, say Xt = x ∈ S, and selects the action (control) At = a ∈ A(x). Then,
a cost C(x, a) is incurred and, regardless of the previous states and actions, the state of
the system at time t + 1 will be Xt+1 = y ∈ S with probability px y(a); this is the Markov
property of the decision process.

Assumption 4.2.1. (i) For each x ∈ S, A(x) is a compact subset of A.

(ii) For every x, y ∈ S, the mappings a 7→ C(x, a) and a 7→ px y(a) are continuous in
a ∈ A(x).

Policies. The space IHt of possible histories up to time t ∈ IN is defined by IH0: = S and
IHt: = IKt−1×S, t ≥ 1. A generic element of IHt is denoted by ht = (x0, a0, . . . , xi, ai, . . . , xt),
where ai ∈ A(xi). A policy π = {πt} is a special sequence of stochastic kernels: For each
t ∈ IN and ht ∈ IHt, πt(·|ht) is a probability measure on A concentrated on A(xt), and
for each Borel subset B ⊂ A, the mapping ht 7→ πt(B|ht), ht ∈ IHt, is Borel measurable;
when the controller chooses actions according to π the control At applied at time t belongs
to B ⊂ A with probability πt(B|ht), where ht is the observed history of the process up to
time t. The class of all policies is denoted by P. Given the policy π being used for choosing
actions and the initial state X0 = x, the distribution of the state-action process {(Xt, At)}
is uniquely determined (Araposthatis et al. 1993, Puterman 2005), and such a distribution
and the corresponding expectation operator are denoted by Pπx and Eπx , respectively. Next,
define IF: =

∏
x∈S A(x) and notice that IF is a compact metric space, which consists of all

functions f :S → A such that f(x) ∈ A(x) for each x ∈ S. A policy π is stationary if there
exists a sequence f ∈ IF such that the probability measure πt(·|ht) is always concentrated
at f(xt), and in this case π and f are naturally identified; with this convention, IF ⊂ P.

Performance Criterion. As already mentioned, the decision maker is supposed to be
risk-averse with constant risk-sensitivity coefficient λ > 0, that is, the controller assesses a
random cost Y using the expectation of eλY ; the certain equivalent of Y is the real number
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E [Y ] determined by eλE[Y ] = E[eλY ], so that the controller is indifferent between paying the
certain equivalent E [Y ] for sure, or incurring the random cost Y . It follows that

E [Y ] =
1

λ
log
(
E[eλY ]

)
,

whereas Jensen’s inequality yields that if Y has finite expectation, then E [Y ] ≥ E[Y ] and
the strict inequality holds if Y is non constant. Suppose now that the controller is driving
the system using policy π ∈ P starting at x ∈ S, and let Jn(λ, π, x) be the certain equivalent

of the total cost
∑n−1
t=0 C(Xt, At) incurred before time n, that is,

Jn(λ, π, x) =
1

λ
log
(
Eπx

[
eλ
∑n−1

t=0
C(Xt,At)

])
. (4.2.1)

With this notation, the (long-run superior limit) λ-sensitive average cost at state x under
policy π is given by

J(λ, π, x): = lim sup
n→∞

1

n
Jn(λ, π, x), (4.2.2)

and
J∗(λ, x): = inf

π∈P
J(λ, π, x), x ∈ S, (4.2.3)

is the optimal λ-sensitive average cost function; a policy π∗ ∈ P is λ-optimal if J(λ, π∗, x) =
J∗(λ, x) for each x ∈ S.

Remark 4.2.1. When X0 = x, the inferior limit λ-sensitive average criterion J−(λ, π, x)
corresponding to π ∈ P is defined by

J−(λ, π, x): = lim inf
n→∞

1

n
Jn(λ, π, x), (4.2.4)

and the corresponding (inferior limit) λ-optimal value function is given by

J∗(λ, x): = inf
π∈P

J−(λ, π, x), x ∈ S (4.2.5)

so that J∗(λ, ·) ≤ J∗(λ, ·); as it will be shown below, under Assumption 4.2.1 the optimal
value functions J∗(λ, ·) and J∗(λ, ·) coincide. tu

The Problem. The optimality equation corresponding to the average criterion in (4.2.2)
is given by

eλ(g+h(x)) = inf
a∈A(x)

eλC(x,a)
∑
y∈S

px y(a)eλh(y)

 , x ∈ S, (4.2.6)

where g is a real number and h:S → IR is a given function. When this equation is satisfied
by the pair (g, h(·)) ∈ IR× B(S), the optimal average cost function J∗(λ, ·) is constant and
equal to g; moreover, Assumption 4.2.1 yields that there exists a policy f∗ ∈ IF such that

eλ(g+h(x)) = eλC(x,f∗(x))
∑
y∈S

px y(f∗(x))eλh(y), x ∈ S,

and such a policy f∗ is λ-optimal. As already noted, a pair (g, h(·)) satisfying (4.2.6) exists
when the whole state space is a communicating class under the action of each stationary
policy; however, it was shown un Cavazos-Cadena and Hernández-Hernández (2006) that,
if the Markov chain associated with some f ∈ IF has two or more recurrent classes, or if the
set of transient states is nonempty, then (4.2.6) may not have a solution, even if the optimal
average cost function is constant. On the other hand, for uncontrolled Markov chains it was
recently shown in Cavazos-Cadena and Hernández-Hernández (2007) that, in general, the
average cost function is determined by a system of local Poisson equations, and the main
problem considered in this thesis consists in extending such a conclusion to the present
context of controlled models. The results in this direction involve the idea of optimality
system, which is introduced in the following section.
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4.3. Optimality Systems and Main Results

In this section the main conclusions of this note are stated as Theorems 3.1 and 3.2 below.
These results involve the idea of optimality system, which extends the notion of optimality
equation and allows to characterize the optimal value function in terms of a system of
equations, as well as to obtain a λ-optimal stationary policy.

Definition 4.3.1. Let M = (S,A, {A(x)}x∈S , C, P ) be the MDP described in Section 4.2.
An optimality system for M is a vector of triplets

O = ((S1, g1, h1), (S2, g2, h2), . . . , (Sk, gk, hk)) (4.3.1)

satisfying the following conditions:

(i) S1, S2, . . . , Sk is a partition of S.

(ii) For each i = 1, 2, . . . , k, (gi, hi(·)) ∈ IR× B(Si) and

g1 ≤ g2 ≤ · · · ≤ gk. (4.3.2)

(iii) For each i = 1, 2, . . . , k,

B(x): = {a ∈ A(x) |
∑
y∈S1∪S2∪···∪Si px y(a) = 1}, x ∈ Si is nonempty. (4.3.3)

(iv) For each i = 1, 2, . . . , k,

eλ(gi+hi(x)) = inf
a∈B(x)

eλC(x,a)
∑
y∈Si

px y(a)eλhi(y)

 , x ∈ Si. (4.3.4)

Remark 4.3.1. Notice that (4.3.4) implies that, for every x ∈ Si,
∑
y∈Si px y(a) > 0 for all

a ∈ B(x), since eλ(gi+hi(x)) > 0. tu

The number k of triplets in O will be referred to as the order of O. The above idea is
an extension of the notion of J-system used in Cavazos-Cadena and Hernández-Hernández
(2006) to characterize the average cost function for an uncontrolled Markov chain. In the
present controlled context, the following result shows that an optimality system renders (i)
the optimal value function, (ii) the equality of the superior and inferior limit optimal value
functions, as well as (iii) a λ-optimal stationary policy.

Theorem 4.3.1. [Verification.] LetM be the model described in Section 2 and suppose that
Assumption 4.2.1 holds. If O = ((S1, g1, h1), (S2, g2, h2), . . . , (Sk, gk, hk)) is an optimality
system for M, then the following assertions (i)–(iii) hold:

(i) For each i = 1, 2, . . . , k, the optimal average cost at each state x ∈ Si is given by gi:

J∗(λ, x) = gi, x ∈ Si.

Moreover,

(ii) J∗(λ, x) = J∗(λ, x) for all x ∈ S; see (4.2.3) and (4.2.5).
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(iii) Suppose that the stationary policy f ∈ IF satisfies that

f(x) ∈ B(x), x ∈ S (4.3.5)

and

eλ(gi+hi(x)) =

eλC(x,f(x))
∑
y∈Si

px y(f(x))eλhi(y)

 , x ∈ Si, i = 1, 2, . . . , k. (4.3.6)

In this case f is λ-optimal and

lim
n→∞

1

n
Jn(λ, f, x) = J∗(λ, x), x ∈ S.

Notice that Assumption 4.2.1 yields that the set B(x) in (4.3.3) is always compact, a
fact that using (4.3.4) implies the existence of a stationary policy f satisfying (4.3.5) and
(4.3.6). The following result establishes the existence of an optimality system.

Theorem 4.3.2. [Existence.] Under Assumption 4.2.1, there exists an optimality system O
for model M.

The proof of Theorems 4.3.1 and 4.3.2 will be presented in Sections 5 and 7, respec-
tively, after establishing the necessary preliminary results. The argument used to establish
the verification result relies on standard probabilistic and dynamic programming arguments,
whereas the existence of an optimality system will be obtained via the risk-sensitive dis-
counted criterion.

4.4. A Lower Bound for the Inferior Limit Average Criterion

In this section a basic technical tool that will be used to prove Theorem 4.3.1 is established.
The main objective is to show that if O is as optimality system for model M, then a lower
bound for the optimal inferior limit average cost function can be obtained, a result that is
precisely stated in the following theorem.

Theorem 4.4.1. Let O in (4.3.1) be an optimality system for model M. In this case, gi is a
lower bound for the inferior limit λ-sensitive average cost criterion at each state x ∈ Si:

J∗(λ, x) ≥ gi, x ∈ Si, i = 1, 2, . . . , k; (4.4.1)

see Remark 4.2.1.

This result will be proved below by induction. Since the argument is rather technical,
to ease the presentation the simple auxiliary facts involved in the argument are established
in the following three lemmas.

Lemma 4.4.1. If O = ((S1, g1, h1), (S2, g2, h2), . . . , (Sk, gk, hk)) is an optimality system for
model M, then the following assertions (i) and (ii) hold:

(i) For each positive integer n,

1

n
Jn(λ, π, x) ≥ gk −

2‖hk‖
n

, x ∈ Sk, π ∈ P.

Consequently,
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(ii) At each state x ∈ Sk, the constant gk is a lower bound for the optimal inferior limit
average cost function:

J∗(λ, x) ≥ gk, x ∈ Sk;

see (4.2.1), (4.2.4) and (4.2.5).

Proof. Since S1 ∪ · · · ∪ Sk = S, from (4.3.3) it follows that B(x) = A(x) when x ∈ Sk, and
then the fourth part in Definition 4.3.1 yields that

eλ(gk+hk(x)) ≤ eλC(x,a)
∑
y∈Sk

px y(a)eλhk(y), a ∈ A(x), x ∈ Sk. (4.4.2)

Now let π ∈ P be arbitrary. After integrating both sides of the above inequality with respect
to π0(·|x), it follows that

eλ(gk+hk(x)) ≤ Eπx
[
eλC(X0,A0)+λhk(X1)I[X1 ∈ Sk]

]
, x ∈ Sk, π ∈ P. (4.4.3)

On the other hand, for every positive integer n, the Markov property yields that

Eπx

[
eλ
∑n

t=0
C(Xt,At)+λhk(Xn+1)I[Xr ∈ Sk, 1 ≤ r ≤ n+ 1]

∣∣∣ (Xm, Am),m = 1, . . . n
]

= eλ
∑n−1

t=0
C(Xt,At)I[Xr ∈ Sk, 1 ≤ r ≤ n]eλC(Xn,An)

∑
y∈Sk

pXn y(An)eλhk(y)

≥ eλ
∑n−1

t=0
C(Xt,At)I[Xr ∈ Sk, 1 ≤ r ≤ n]eλgk+λhk(Xn)

where (4.4.2) was used to set the inequality. Therefore,

Eπx

[
eλ
∑n

t=0
C(Xt,At)+λhk(Xn+1)I[Xr ∈ Sk, 1 ≤ r ≤ n+ 1]

]
≥ eλgkEπx

[
eλ
∑n−1

t=0
C(Xt,At)+λhk(Xn)I[Xr ∈ Sk, 1 ≤ r ≤ n]

]
Combining this last relation and (4.4.3), a simple induction argument yields that, for every
positive integer n, x ∈ Sk and π ∈ P,

Eπx

[
eλ
∑n−1

t=0
C(Xt,At)+λhk(Xn)I[Xr ∈ Sk, 1 ≤ r ≤ n]

]
≥ eλ(ngk+hk(x)),

and then

eλ(Jn(λ,π,x)+‖hk‖) ≥ Eπx
[
eλ
∑n−1

t=0
C(Xt,At)+λhk(Xn)

]
≥ Eπx

[
eλ
∑n−1

t=0
C(Xt,At)+λhk(Xn)I[Xr ∈ Sk, 1 ≤ r ≤ n]

]
≥ eλ(ngk+hk(x)) ≥ eλ(ngk−‖hk‖)

so that, for every positive integer n,

1

n
Jn(λ, π, x) ≥ gk −

2‖hk‖
n

, x ∈ Sk, π ∈ P,

establishing part (i), and then the second assertion follows from (4.2.4) and (4.2.5). tu

Now let the optimality system O be as in (4.3.1), suppose that k > 1 and set

Ŝ = S1 ∪ · · · ∪ Sk−1. (4.4.4)
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Next, let x ∈ Ŝ be arbitrary, so that there exists i < k such that x ∈ Si for some i < k;
since

a ∈ B(x)⇒
∑

y∈S1∪···∪Si

px y(a) = 1⇒
∑
y∈Ŝ

px y(a) = 1,

it follows that
Â(x): = {a ∈ A(x) |

∑
y∈Ŝ px y(a) = 1}, x ∈ Ŝ, (4.4.5)

is always nonempty. Set ÎK: = {(x, a)|x ∈ Ŝ, a ∈ Â(x)} and define the transition P̂ = [p̂x y]

and Ĉ: ÎK→ IR by

p̂x y(a): = px y(a), Ĉ(x, a): = C(x, a), (x, a) ∈ ÎK, y ∈ Ŝ. (4.4.6)

Definition 4.4.1. Let O be an optimality system for model M as in Definition 4.3.1, and
suppose that the order k of O is larger than 1. With the notation in (4.4.4)–(4.4.6), the
reduced model M̂ is specified by

M̂ = (Ŝ, A, {Â(x)}x∈Ŝ , Ĉ, P̂ ) (4.4.7)

Combining Definitions 4.3.1 and 4.4.1 the following lemma follows immediately.

Lemma 4.4.2. If O = ((S1, g1, h1), (S2, g2, h2), . . . , (Sk, gk, hk)) is an optimality system for
model model M, where k > 1, then

Ô = ((S1, g1, h1), (S2, g2, h2), . . . , (Sk−1, gk−1, hk−1)), (4.4.8)

is an optimality system for the reduced model M̂. Moreover, setting

B̂(x): = {x ∈ Â(x) |
∑

y∈S1∪···∪Si

p̂x y = 1}, x ∈ Si, i = 1, 2, . . . , k − 1,

the equality B̂(x) = B(x) holds for every x ∈ Ŝ; see (4.3.3).

Remark 4.4.1. The class of policies for model M̂ will be denoted by P̂. For ∆ ∈ P̂,
Ĵ−(λ,∆, ·) denotes the inferior limit λ-sensitive average cost criterion associated with ∆,
and Ĵ∗(λ, ·) = inf∆∈P̂ Ĵ−(λ,∆, ·) stands for the optimal inferior limit average cost function

for model M̂. tu

The following lemma is the final step before the proof of Theorem 4.4.1. Write

Hn: = (X0, A0, . . . , Xn−1, An−1, Xn) (4.4.9)

Lemma 4.4.3. Let O in (4.3.1) be an optimality system for modelM, where k > 1. Suppose
that for some r ∈ {1, 2, . . . , k − 1}, the state x ∈ Sr and π ∈ P satisfy

J−(λ, π, x) < gr. (4.4.10)

In this case, the following assertions (i)–(iii) hold:

(i) With probability 1 with respect to Pπx , the actions chosen by π after observing Hn always
belong to Â(Xn). More precisely,

1 = Pπx [πn(Â(Xn)|Hn) = 1], n ∈ IN.
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Now let w: Ŝ → A be a stationary policy for model M̂, that is, w(x) ∈ Â(x) for each x ∈ Ŝ,
and define the policy ∆ ∈ P̂ as follows: For each n ∈ IN and hn ∈ ÎHn,

∆n(D|hn): = πn(D ∩ Â(xn)|hn) + (1− πn(Â(xn)|hn))δw(xn)(D), D ∈ B(A). (4.4.11)

With this notation,

(ii) For every n ∈ IN,

P∆
x [Hn ∈ D] = Pπx [Hn ∈ D], D ∈ B(ÎHn), (4.4.12)

and then,

(iii) Ĵ−(λ,∆, x) = J−(λ, π, x) < gr.

Proof. (i) The argument is by contradiction. Suppose that, for some n ∈ IN,

0 < Pπx [πn(A(Xn) \ Â(Xn)|Hn) > 0]. (4.4.13)

Notice now that

Pπx [Xn+1 ∈ Sk|Hn] =

∫
A(Xn)

∑
y∈Sk

pXn y(a)πn(da|Hn)

≥
∫
A(Xn)\Â(Xn)

∑
y∈Sk

pXn y(a)πn(da|Hn)

=

∫
A(Xn)\Â(Xn)

∑
y∈S\Ŝ

pXn y(a)πn(da|Hn).

For a ∈ A(Xn) \ Â(Xn) the summation inside the integral is positive, by (4.4.5), and then
the integral is larger that zero on the event [πn(A(Xn) \ Â(Xn)|Hn) > 0]. It follows from
(4.4.13) that Pπx [Xn+1 ∈ Sk|Hn] > 0 with positive Pπx -probability, so that

Pπx [Xn+1 ∈ Sk] > 0. (4.4.14)

Next, given h̃n ∈ IHn and ã ∈ A(xn), define the (shifted) policy πh̃n,ã as follows:

πh̃n,ã
t (·|ht): = πn+1+t(·|h̃n, ã,ht), ht ∈ IHt, t ∈ IN.

With this specification, the Markov property yields that for every m > n+ 1

Eπx [eλ
∑m−1

t=0
C(Xt,At)I[Xn+1 ∈ Sk]|Hn, An, Xn+1]

= eλ
∑n

t=0
C(Xt,At)I[Xn+1 ∈ Sk]Eπ

Hn,An

Xn+1
[eλ
∑m−n−2

t=0
C(Xt,At)]

≥ e−λ(n+1)‖C‖I[Xn+1 ∈ Sk]Eπ
Hn,An

Xn+1
[eλ
∑m−n−2

t=0
C(Xt,At)]

≥ e−λ(n+1)‖C‖I[Xn+1 ∈ Sk]eλJm−n−1(λ,πHn,An ,Xn+1);

see (4.2.1). From this point, Lemma 4.4.1(i) yields that

Eπx [eλ
∑m−1

t=0
C(Xt,At)I[Xn+1 ∈ Sk]|Hn, An, Xn+1]

≥ e−λ(n+1)‖C‖I[Xn+1 ∈ Sk]eλ(m−n−1)gk−2λ‖hk‖
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and then

eλJm(λ,π,x) = Eπx [eλ
∑m−1

t=0
C(Xt,At)]

≥ Eπx [eλ
∑m−1

t=0
C(Xt,At)I[Xn+1 ∈ Sk]]

≥ e−λ(n+1)‖C‖Pπx [Xn+1 ∈ Sk]eλ(m−n−1)gk−2λ‖hk‖

Using (4.4.14), this inequality immediately yields that

J−(λ, π, x) = lim inf
m→∞

1

m
Jm(λ, π, x) ≥ gk

and then (4.4.10) implies that gk < gr, an inequality that, recalling that r < k, contra-
dicts (4.3.2). Therefore, (4.4.13) does not hold and it follows that 0 = Pπx [πn(A(Xn) \
Â(Xn)|Hn) > 0], that is, 1 = Pπx [πn(Â(Xn)|Hn) = 1].

(ii) The argument is by induction. For n = 0, both sides of (4.4.12) are equal to δx(D).
Assume now that (4.4.12) holds for certain nonnegative integer n, and let D ∈ B(ÎHn),
D1 ∈ B(Â) and D2 ⊂ Ŝ be arbitrary. Next observe that

Pπx [Hn ∈ D,An ∈ D1, Xn+1 ∈ D2|Hn] = I[Hn ∈ D]

∫
a∈D1

∑
y∈D2

pXn y(a)πn(da|Hn);

since the equality ∆n(·|Hn) = πn(·|Hn) holds Pπx -a.s., by part (i) and (4.4.11), it follows
that

Pπx [Hn ∈ D,An ∈ D1, Xn+1 ∈ D2|Hn]

= I[Hn ∈ D]

∫
a∈D1

∑
y∈D2

pXn y(a)∆n(da|Hn) Pπx -a.s.,

and then

Pπx [Hn ∈ D,An ∈ D1, Xn+1 ∈ D2] =

∫
hn∈D

∫
a∈D1

∑
y∈D2

pxn y(a)∆n(da|hn)

Pπx [dhn].

By the induction hypothesis the distribution of Hn is the same under Pπx and P∆
x , so that

Pπx [Hn ∈ D,An ∈ D1, Xn+1 ∈ D2] =

∫
hn∈D

∫
a∈D1

∑
y∈D2

pxn y(a)∆n(da|hn)

P∆
x [dhn],

that is,

Pπx [Hn ∈ D,An ∈ D1, Xn+1 ∈ D2] = P∆
x [Hn ∈ D,An ∈ D1, Xn+1 ∈ D2].

Since D ∈ B(Ĥn), D1 ∈ B(Â) and D2 ⊂ Ŝ are arbitrary, Theorem 10.4 in Billingsley (1995)
yields that (4.4.12) holds with n+ 1 instead of n.

(iii) The previous part yields that E∆
x [eλ

∑n−1

t=0
C(Xt,At)] = Eπx [eλ

∑n−1

t=0
C(Xt,At)] for every

positive integer n. Therefore, Jn(λ,∆, x)/n = Jn(λ, π, x)/n, and the conclusion follows
taking the inferior limit as n goes to ∞ in both sides of this equality. tu

After the above preliminaries, the proof of the main result of this section is presented
below.
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Proof of Theorem 4.4.1. The argument is by induction in the order k of the optimality
system O. If k = 1 then (4.4.1) follows from Lemma 4.4.1(ii). Suppose now that (4.4.1)
holds when k = m− 1 for certain integer m ≥ 2, and let O be an optimality system for M
with order m. The reduced optimality system Ô in Definition 4.4.1 has order m − 1, and
then the optimal inferior limit average cost corresponding to M̂ satisfies

Ĵ∗(λ, x) ≥ gi, x ∈ Si, i = 1, 2, . . . ,m− 1. (4.4.15)

by the induction hypothesis, a fact that will be used to verify that

J∗(λ, x) ≥ gi, x ∈ Si, i = 1, 2, . . . ,m− 1. (4.4.16)

Indeed, if this relation fails, there exist r < m and a state x ∈ Sr such that J∗(λ, x) < gr, and
then J−(λ, π, x) < gr for some policy π ∈ P. Using Lemma 4.4.3(iii), there exists a policy
∆ ∈ P̂ such that Ĵ−(λ,∆, x) = J−(λ, π, x) < gr, and then Ĵ∗(λ, x) < gr, contradicting
(4.4.15). Thus, (4.4.16) holds, whereas an application of Lemma 4.4.1(i) to the present
optimality system of order m yields that J∗(λ, x) ≥ gm for all x ∈ Sm, a fact that together
with (4.4.16) yields that (4.4.1) holds when k = m, concluding the argument. tu

4.5. Proof of the Verification Theorem

In this section Theorem 4.3.1 will be established. The argument combines Theorem 4.4.1
with the following result, which provides an upper bound for the (superior limit) average
cost function associated with a stationary policy f satisfying (4.3.6). Although such a
result can be obtained from Cavazos-Cadena and Hernández-Hernández (2006), for the sake
of completeness a different proof is presented, which uses simple probabilistic arguments.
The following notation is involved in the argument: For each set W ⊂ S, the corresponding
hitting time is given by

TW : = min{n > 0 |Xn ∈W}, (4.5.1)

where the minimum of the empty set is ∞.

Theorem 4.5.1. (i) Let f be a stationary policy as in the statement of Theorem 4.3.1(ii). In
this case,

J(λ, f, x) ≤ gi, x ∈ Si, i = 1, 2, . . . , k. (4.5.2)

Consequently,

(ii) For each i ∈ {1, 2, . . . , k} and x ∈ Si, J∗(λ, x) ≤ gi.

Proof. To begin with, notice that (4.3.3) and (4.3.5) together imply that the set S1 ∪ · · ·Si
is closed under the action of policy f , that is, for each i = 1, 2, . . . , k,

x ∈ S1 ∪ · · · ∪ Si and px y(f(x)) > 0⇒ y ∈ S1 ∪ · · · ∪ Si. (4.5.3)

On the other hand, starting from (4.3.6), a standard induction argument using the Markov
property yields that, for every positive integer n

eλ(ngi+hi(x)) = Efx [eλ
∑n−1

t=0
C(Xt,At)+λhi(Xn)I[Xt ∈ Si, t < n]], x ∈ Si, i = 1, 2, . . . , k.

(4.5.4)
Since (4.5.3) implies that 1 = P fx [Xt ∈ S1] for every x ∈ S1 and t ∈ IN, it follows that if

the initial state x belongs to S1, the equality eλ(ng1+h1(x)) = Efx

[
eλ
∑n−1

t=0
C(Xt,At)eλh1(Xn)

]
holds for each n > 0, and in this case Efx

[
e
∑n−1

t=0
C(Xt,At)

]
≤ eλ(ng1+2‖h1‖), that is,

Jn(λ, x, f) ≤ ng1 + 2‖h1‖, x ∈ S1, n = 1, 2, 3, . . . (4.5.5)
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see (4.2.1). Next, for i ∈ {1, 2, . . . , k} consider the following claim.

Ci : J(λ, f, x) ≤ gi for every x ∈ Si.

It will be proved, by induction, that Ci is valid for every i = 1, 2, . . . , k. To achieve this
goal, observe that (4.5.5) implies that

J(λ, f, x) = lim sup
n→∞

1

n
Jn(λ, x, f) ≤ g1, x ∈ S1,

so that C1 is valid. Now, suppose that Cj holds for j = 1, 2, . . . , i−1, where i ∈ {2, 3, . . . , k}.
In this case, given ε > 0, for each x ∈ Sj with 1 ≤ j ≤ i− 1, there exists a positive integer
N(x) such that Jn(λ, f, x)/n ≤ gj + ε for n ≥ N(x), a relation that via (4.2.1) is equivalent
to

Efx

[
e
∑n−1

t=0
C(Xt,At)

]
≤ eλn(gj+ε), n ≥ N(x);

since gj ≤ gi for j < i , by (4.3.2), it follows that

Efx

[
e
∑n−1

t=0
C(Xt,At)

]
≤ D(ε)eλn(gi+ε), x ∈ S1 ∪ · · · ∪ Si−1, n = 1, 2, 3, . . . , (4.5.6)

where, setting

D̃(ε): = max
{
e−λn(gi+ε)Efx

[
e
∑n−1

t=0
C(Xt,At)

] ∣∣∣ 1 ≤ n < N(x), x ∈ S1 ∪ · · · ∪ Si−1

}
,

D(ε) is given by
D(ε) = max{D̃(ε), 1}.

Next, let x ∈ Si be arbitrary but fixed, and observe that (4.5.3) yields that

P fx [Xt ∈ S1 ∪ · · · ∪ Si, t = 1, 2, 3, . . .] = 1. (4.5.7)

Combining this relation with the specification of the hitting time TW in (4.5.1), it follows
that for every positive integers n and r the following equalities occur with probability 1 with
respect to P fx :

I[TS1∪···∪Si−1
= r] = I[Xm ∈ Si, 1 ≤ m < r]I[Xr ∈ S1 ∪ · · · ∪ Si−1]

I[TS1∪···∪Si−1
> n− 1] = I[Xm ∈ Si, 1 ≤ m ≤ n− 1]

Therefore, for a positive integer n,

Efx

[
e
∑n−1

t=0
C(Xt,At)

]
=

n−1∑
r=1

Efx

[
e
∑n−1

t=0
C(Xt,At)I[TS1∪···∪Si−1

= r]
]

+ Efx

[
e
∑n−1

t=0
C(Xt,At)I[TS1∪···∪Si−1

> n− 1]
]

=

n−1∑
r=1

Efx

[
e
∑n−1

t=0
C(Xt,At)I[Xm ∈ Si, 1 ≤ m < r]I[Xr ∈ ∪i−1

j=1Sj ]
]

+ Efx

[
e
∑n−1

t=0
C(Xt,At)I[Xt ∈ Si, t = 1, 2, . . . , n− 1]

]
.

(4.5.8)

To continue, each one of the terms in this last equality will be analyzed. First, recalling
that x ∈ Si, notice that (4.5.4) immediately implies that

Efx

[
e
∑r−1

t=0
C(Xt,At)I[Xt ∈ Si, t = 1, 2, . . . , r − 1]

]
≤ eλ(rgi+2‖hi‖), r = 1, 2, 3, . . . . (4.5.9)
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Next, for r ∈ {1, 2, . . . , n− 1}, the Markov property yields

Efx

[
e
∑n−1

t=0
C(Xt,At)I[Xm ∈ Si, 1 ≤ m < r]I[Xr ∈ ∪i−1

j=1Sj ]
∣∣∣Hr

]
= I[Xm ∈ Si, 1 ≤ m < r]I[Xr ∈ ∪i−1

j=1Sj ]e
∑r−1

t=0
C(Xt,At)EfXr

[
e
∑n−r−1

t=0
C(Xt,At)

∣∣∣Hr

]
≤ I[Xm ∈ Si, 1 ≤ m < r]I[Xr ∈ ∪i−1

j=1Sj ]e
∑r−1

t=0
C(Xt,At)D(ε)eλ(n−r)(gi+ε)

≤ I[Xm ∈ Si, 1 ≤ m < r]e
∑r−1

t=0
C(Xt,At)D(ε)eλ(n−r)(gi+ε)

where (4.5.6) was used to set the first inequality. Thus,

Efx

[
e
∑n−1

t=0
C(Xt,At)I[Xm ∈ Si, 1 ≤ m < r]I[Xr ∈ ∪i−1

j=1Sj ]
]

≤ D(ε)eλ(n−r)(gi+ε)Efx

[
e
∑r−1

t=0
C(Xt,At)I[Xm ∈ Si, 1 ≤ m < r]

]
≤ D(ε)eλ(n−r)(gi+ε)eλ(rgi+2‖hi‖)

≤ e2λ‖hi‖D(ε)eλn(gi+ε)

where (4.5.9) was used to set the second inequality. Combining this last display and (4.5.9),
from (4.5.8) it follows that

eλJn(λ,f,x) = Efx

[
e
∑n−1

t=0
C(Xt,At)

]
≤
n−1∑
r=1

e2λ‖hi‖D(ε)eλn(gi+ε) + e2λ‖hi‖eλngi

≤ ne2λ‖hi‖max{D(ε), 1}eλn(gi+ε)

that is,

Jn(λ, f, x) ≤ log(n) + 2λ‖hi‖+ log(max{D(ε), 1})
λ

+ n(gi + ε),

a relation that leads to

J(λ, f, x) = lim sup
n→∞

1

n
Jn(λ, f, x) ≤ gi + ε;

since x ∈ Si and ε > 0 are arbitrary, it follows that Ci holds, concluding the induction
argument. Therefore Cj occurs for every j = 1, 2, . . . , k, a fact that is equivalent to (4.5.2).
tu

Proof of Theorem 4.3.1. Since J∗(λ, ·) ≤ J∗(λ, ·), Theorems 4.4.1 and 4.5.1(ii) together
yield that

gi ≤ J∗(λ, x) ≤ J∗(λ, x) ≤ gi, x ∈ Si, i = 1, 2, . . . , k.

a relation that immediately implies parts (i) and (ii). Now, let f ∈ IF be as in (4.3.5) and
(4.3.6). Using that J(λ, f, ·) ≥ J−(λ, f, ·) ≥ J∗(λ, ·), by (4.2.2), (4.2.4) and (4.2.5), the
above displayed relation and Theorem 4.5.1(i) lead to

J(λ, f, x) = J−(λ, f, x) = gi = J∗(x), x ∈ Si, i = 1, 2, . . . , k,

where part (i) was used to set the last equality. Therefore, f is λ-optimal and, via (4.2.2)
and (4.2.4), limn→∞ Jn(λ, f, x)/n = J∗(λ, x) for all x ∈ S, completing the proof. tu
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4.6. Discounted Approach

This section presents the necessary technical tools that will be used to establish the existence
of an optimality system for model M. The approach relies on the discounted operators
introduced below which, when λ is small enough and appropriate communication conditions
are satisfied by the transition law, have been used to construct solutions of the optimality
equation (4.2.6) (Di Masi and Stettner 1999, Cavazos-Cadena 2003).

Definition 4.6.1. Given α ∈ (0, 1) define the operator Tα:B(S)→ B(S) as follows: For each
V ∈ B(S) and x ∈ S, Tα[V ](x) is determined by

eλTα[V ](x) = inf
a∈A(x)

eλC(x,a)
∑
y∈S

px y(a)eλαV (y)

 , x ∈ S. (4.6.1)

According to this specification, Tα[V ](x) is the minimum certain equivalent of the random
cost C(X0, A0)+αV (X1) that can be achieved when the initial state is X0 = x. On the other
hand, it is not difficult to see that T is a monotone and α-homogeneous operator, that is, for
V,W ∈ B(S) (i) V ≥W implies that T [V ] ≥ T [W ], and (ii) T [V + r] = T [V ] +αr for every
r ∈ IR. Combining these properties with the relation W − ‖W − V ‖ ≤ V ≤W + ‖W − V ‖,
it follows that

T [W ]− α‖W − V ‖ ≤ T [V ] ≤ T [W ] + α‖W − V ‖, V,W ∈ B(S), (4.6.2)

so that ‖T [W ]−T [V ]‖ ≤ α‖V −W‖, showing that Tα is a contractive operator on the space
B(S) endowed with the maximum norm. Consequently, by Banach’s fixed point theorem,
there exists a unique function Vα ∈ B(S) satisfying Tα[Vα] = Vα, that is,

eλVα(x) = inf
a∈A(x)

eλC(x,a)
∑
y∈S

px y(a)eλαVα(y)

 , x ∈ S, α ∈ (0, 1). (4.6.3)

Notice now that (4.6.1) yields that Tα[0](x) = inf C(x, a), so that ‖Tα[0]‖ ≤ ‖C‖. Using
(4.6.2) with Vα and 0 instead of W and V , respectively, it follows that

(1− α)‖Vα‖ ≤ ‖C‖. (4.6.4)

In the remainder of the section, the family {Vα}α∈(0,1) of fixed points will be used to con-
struct the components of an optimality system, and the idea in the following definition is
the essential step in that direction. Throughout the remainder, {αm} ⊂ (0, 1) is a fixed
sequence satisfying the following requirements:

αm ↗ 1 as m↗∞, (4.6.5)

and
For evey x, y ∈ S, the following limits exist:

lim
m→∞

[Vαm(x)− Vαm(y)] ∈ [−∞,∞]

lim
m→∞

(1− αm)Vαm(x) ∈ [−‖C‖, ‖C‖]
(4.6.6)

where the last inclusion follows from (4.6.4).

Definition 4.6.2. The relation ‘∼’ in the state space S is specified as follows:

x ∼ y ⇐⇒ lim
m→∞

[Vαm(x)− Vαm(y)] ∈ (−∞,∞). (4.6.7)
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From this definition it is not difficult to see that ‘∼’ is an equivalence relation, and
then it induces a partition of S into equivalence classes. Notice that for x, y ∈ S, (4.6.6)
and Definition 4.6.2 yield that

x 6∼ y ⇐⇒ lim
m→∞

[Vαm(x)− Vαm(y)] =∞ or lim
m→∞

[Vαm(x)− Vαm(y)] = −∞; (4.6.8)

moreover,

if x ∼ x1 and y ∼ y1 and lim
m→∞

[Vαm(x)− Vαm(y)] =∞,

then lim
m→∞

[Vαm(x1)− Vαm(y1)] =∞.
(4.6.9)

Definition 4.6.3. The relation ‘≺’ in the family of equivalence classes determined by the the
equivalence relation in (4.6.7) is defined as follows: If E and E ′ are two different equivalence
classes, then

E ≺ E ′ ⇐⇒ lim
m→∞

[Vαm(x)− Vαm(y)] =∞ for some x ∈ E ′ and some y ∈ E .

By (4.6.9) this relation is well-defined, whereas (4.6.8) implies that ≺ is a (strict) total
order, that is, if E and E ′ are two different equivalences classes, then either E ≺ E ′ or E ′ ≺ E .
Moreover, combining the above definition and (4.6.9), it follows that

E ≺ E ′ ⇐⇒ lim
m→∞

[Vαm(x)− Vαm(y)] =∞ for all x ∈ E ′ and all y ∈ E . (4.6.10)

Throughout the remainder,

S∗1 , . . . , S
∗
k are the different equivalence clasess of S with respect to ‘∼’ (4.6.11)

where, without loss of generality, the labeling of the equivalence classes is such that

S∗i ≺ S∗i+1 1 ≤ i < k; (4.6.12)

also, the states x1, . . . , xk are fixed and satisfy

xi ∈ S∗i , i = 1, 2, . . . , k. (4.6.13)

Now, for i ∈ {1, 2, . . . , k}, define

g∗i : = lim
m→∞

(1− αm)Vαm(xi), (4.6.14)

and
h∗i (x) = lim

m→∞
[Vαm(x)− Vαm(xi)], x ∈ S∗i . (4.6.15)

Notice that g∗i ∈ [−‖C‖, ‖C‖], by (4.6.4) whereas, observing that xi ∼ x for every x ∈ Si,
from Definition 4.6.2 it follows that hi(x) is finite for every x ∈ S∗i ; the above objects S∗i ,
g∗i and h∗i (·) will be used to build an optimality system for model M.

4.7. Proof of the Existence Result

In this section it will be verified that an optimality system for model M exists. With the
notation in (4.6.11)–(4.6.15), define the sequence of triplets O∗ as follows:

O∗: = ((S∗1 , g
∗
1 , h
∗
1), . . . , (S∗k , g

∗
k, h
∗
k)). (4.7.1)
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Proof of Theorem 4.3.2. It will be shown that O∗ specified above is an optimality system
for model M. To achieve this goal, the four conditions in Definition 4.3.1 will be verified.

(i) Since S∗1 , . . . , S
∗
k are the different equivalence classes of S with respect to the equivalence

relation in Definition 4.6.2, those S∗i sets form a partition of S.

(ii) As already noted, g∗i is a finite number and h∗i ∈ B(S∗i ). Now let i < j be arbitrary
in {1, 2, . . . , k}. Recall now that xi ∈ Si and xj ∈ Sj , by (4.6.13), and combine Definition
4.6.3 with (4.6.10) and (4.6.12) to obtain that limm→∞[Vαm(xj) − Vαm(xi)] = ∞, so that
Vαm(xj) > Vαm(xi) for m large enough, a fact that leads to

g∗j = lim
m→∞

(1− αm)Vαm(xj) ≥ lim
m→∞

(1− αm)Vαm(xi) = g∗i ,

and then g∗1 ≤ · · · ≤ g∗k.

(iii) Setting

B∗(x) = {a ∈ A(x) |
∑

y∈S∗1∪···∪S
∗
i

px y(a) = 1}, x ∈ S∗i , i = 1, 2, . . . , k, (4.7.2)

it will be shown below that B∗(x) is always a nonempty set. To achieve this goal, notice
that Assumption 4.2.1 yields that, for each α ∈ (0, 1), there exists a policy fα ∈ IF such
that, for every x ∈ S,

eλVα(x) = eλC(x,fα(x))
∑
y∈S

px y(fα(x))eλαVα(y). (4.7.3)

Now, let the sequence {αm} be as in (4.6.5) and (4.6.6), and consider the sequence {fαm} ⊂
IF. Recalling that IF is a compact metric space, taking a subsequence (if necessary), without
loss of generality it can be assumed that there exists f∗ ∈ IF such that

lim
m→∞

fαm(x) = f∗(x). (4.7.4)

Next, it will be shown that f∗(x) always belongs to B∗(x), an assertion that will be verified
by contradiction. Let i ∈ {1, 2, . . . , k} and x ∈ S∗i be arbitrary but fixed, and suppose that

px z(f
∗(x)) > 0 for some z ∈ S∗j where j > i. (4.7.5)

Replacing α by αm in (4.7.3) and multiplying both sides of the resulting equality by
e−λVαm (xi), where xi is the fixed state in (4.6.13), direct calculations yield that

eλ(1−αm)Vαm (xi)+λ[Vαm (x)−Vαm (xi)] = eλC(x,fαm (x))
∑
y∈S

px y(fαm(x))eλαm[Vαm (y)−Vαm (xi)],

(4.7.6)
and then

eλ(1−αm)Vαm (xi)+λ[Vαm (x)−Vαm (xi)] ≥ eλC(x,fαm (x))px z(fαm(x))eλαm[Vαm (z)−Vαm (xi)].
(4.7.7)

Since x, xi ∈ S∗i , taking the limit as m goes to ∞ in both sides of this inequality, the
continuity of the transition law and the cost function together with (4.6.6), (4.6.14), (4.6.15)
and (4.7.4), lead to

eλg
∗
i +λh∗i (x) ≥ eλC(x,f∗(x))px z(f

∗(x))eλ limm→∞[Vαm (z)−Vαm (xi)];

since z ∈ S∗j and xi ∈ S∗i with j > i, via (4.6.10) and (4.6.12) it follows that

lim
m→∞

[Vαm(z)− Vαm(xi)] =∞,
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so that, recalling that λ and px z(f
∗(x)) are positive, the above display yields that

eλg
∗
i +λh∗i (x) ≥ ∞,

a contradiction that stems from (4.7.5). Therefore, px z(f
∗(x)) = 0 when z ∈ S∗j with j > i,

and it follows that ∑
y∈S∗1∪···∪S

∗
i

px,y(f∗(x)) = 1,

that is,
f∗(x) ∈ B∗(x); (4.7.8)

since x ∈ S∗i and i ∈ {1, 2, . . . , k} were arbitrary in this argument, it follows that B∗(x) is
always a nonempty set.

(iv) It will be verified that

eλ(g∗i +h∗i (x)) = inf
a∈B∗(x)

eλC(x,a)
∑
y∈S∗

i

px y(a)eλh
∗
i (y)

 , x ∈ S∗i . (4.7.9)

Let i ∈ {1, 2, . . . , k} and x ∈ S∗i be arbitrary but fixed. Now take an arbitrary action
a ∈ B∗(x) ⊂ A(x) and notice that (4.7.2) yields that px y(a) = 0 when y 6∈ S∗1 ∪ · · · ∪ S∗i .
Using this fact (4.6.3) implies that, for every positive integer m,

eλVαm (x) ≤ eλC(x,a)
∑

y∈S∗1∪···∪S
∗
i

px y(a)eλαmVαm (y),

and multiplying both sides of this inequality by e−λVαm (xi) it follows that

eλ(1−αm)Vαm (xi)+λ[Vαm (x)−Vαm (xi)] ≤ eλC(x,a)
∑

y∈S∗1∪···∪S
∗
i

px y(a)eλαm[Vαm (y)−Vαm (xi)];

recalling that xi ∈ S∗i and using (4.6.6), (4.6.14) and (4.6.15), taking the limit as m goes to
∞ in both sides of the above inequality the following relation is obtained:

eλg
∗
i +λh∗i (x) ≤ eλC(x,a)

∑
y∈S∗

i

px y(a)eλh
∗
i (y)

+ eλC(x,a)
∑

y∈∪1≤j<iS
∗
j

px y(a)eλ limm→∞[Vαm (y)−Vαm (xi)].
(4.7.10)

Since
lim
m→∞

[Vαm(y)− Vαm(xi)] = −∞ when y ∈ S∗j with j < i, (4.7.11)

by (4.6.10) and (4.6.12), the positivity of λ yields that the second summation in the above
display vanishes, so that

eλg
∗
i +λh∗i (x) ≤ eλC(x,a)

∑
y∈S∗

i

px y(a)eλh
∗
i (y)

and then, since a ∈ B∗(x) was arbitrary in this argument,

eλg
∗
i +λh∗i (x) ≤ inf

a∈B∗(x)

eλC(x,a)
∑
y∈S∗

i

px y(a)eλh
∗
i (y)

 . (4.7.12)
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To establish the reverse inequality, notice that (4.7.6) yields that

eλ(1−αm)Vαm (xi)+λ[Vαm (x)−Vαm (xi)]

≥ eλC(x,fαm (x))
∑

y∈S∗
i
∪···∪S∗

i

px y(fαm(x))eλαm[Vαm (y)−Vαm (xi)].

Taking the limit as m goes to∞, the specifications of g∗I and h∗i (·) together with Assumption
4.2.1 and (4.7.4) lead to

eλg
∗
i +λh∗i (x) ≥ eλC(x,f∗(x))

∑
y∈S∗

i

px y(f∗(x))eλh
∗
i (y)

+ eλC(x,fαm (x))
∑

y∈∪1≤j<iSj

px y(f∗(x))eλ limm→∞[Vαm (y)−Vαm (xi)]

and then (4.7.11) and the positivity of λ yield that

eλg
∗
i +λh∗i (x) ≥ eλC(x,f∗(x))

∑
y∈S∗

i

px y(f∗(x))eλh
∗
i (y)

≥ inf
a∈B∗(x)

eλC(x,a)
∑
y∈S∗

i

px y(a)eλh
∗
i (y)


where the second inequality follows from the inclusion in (4.7.8). This display and (4.7.12)
together imply that

eλg
∗
i +λh∗i (x) = inf

a∈B∗(x)

eλC(x,a)
∑
y∈S∗

i

px y(a)eλh
∗
i (y)

 ;

since i ∈ {1, 2, . . . , k} and x ∈ S∗i are arbitrary, (4.7.9) follows.

In short, it has been verified that O∗ in (4.7.1) is an optimality system for M, establishing
the conclusion of Theorem 4.3.2. tu
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Chapter 5

Conclusion and Open Problems

In this final part of the exposition, the results presented in the previous chapters are briefly
discussed, emphasizing the main contribution of this thesis. Next, the essential tool used to
derive the conclusions in Chapter 4, namely, the existence of a solution to the discounted
dynamic programming equation, is briefly discussed in the context of Markov decision chains
with denumerable sate space, and two open problems concerning extensions of the main
conclusions of the thesis to models with infinite state space are posed.

5.1. A Retrospective View

In this work Markov decision chains evolving on a finite state space have been studied.
Starting with a brief discussion of the idea of risk-aversion, the notion of risk-premium of a
random cost Y was defined as the excess with respect to the expected value E[Y ] that the
controller is willing to pay in order to avoid the uncertain cost Y . Following Pratt (1964),
a single number measuring the controller’s aversion to risk when Y takes values around a
point y ∈ IR was determined, and the analysis showed that

(i) Twice the risk-premium is proportional to the variance of the random cost, where

(ii) The proportionality constant is given by the quotient of the second and first derivatives
of the underlying utility function evaluated a y; such a quotient is a natural measure of the
risk-sensitivity of the decision maker when facing a random cost taking values around y.

Under the basic condition that the risk-sensitivity coefficient of the controller is a positive
constant λ , the utility function is exponential and the certain equivalent of the random cost
Y is easily determined by (1.3.9), an expression that was used to specify the risk-sensitive
average performance criterion in (1.4.1) and (1.4.2). After this point, the main problem of
the thesis was sated as follows:

To establish a characterization of the optimal risk-sensitive average cost function
in such a way that an optimal stationar policy can be obtaied.

The already available results on this problem, concerning models satisfying strong com-
munication conditions ensuring that the optimal average cost function is a constant and
characterized by a single optimality equation, were studied in Chapters 2, and the analysis
in that context showed the central role of the communication assumption in the algebraic
approach by Howard and Matheson (1972), and in the probabilistic method in Cavazos-
Cadena and Fernández-Gaucherand (2002). Next, in Chapter 3 it was shown that when the
system is not fully communicating, even a constant optimal average cost function is not, in
general, characterized by a single optimality equation and, under the simultaneous Doeblin
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condition, under which a state z is accessible regardless of the starting point of the system,
it was proved that the existence of a solution to the optimality equation is guaranteed only
if the risk-sensitivity coefficient is small enough.

The discussion in Chapters 3 and 4 these two chapters provided a strong motivation to
pursue the main goal of this work, and the main contributions were established in Chapter 4
as Theorems 4.3.1 and 4.3.2, were, regardless of the communication structure of the model,
under mild continuty compactness conditions, it was proved that the optimal risk-sensitive
average cost function is characterized by a system of nested equations, and that a solution
of such a system renders an optimal stationary policy; moreover, the optimal value function
is the same if the superior or inferior limit are used in the specification of the average
performance index. .

The basic tool used to prove the existence of an optimality system—established in
Thorem 4.3.2—was the discounted method, and a central assumption behind that result was
the finiteness of the state space, so that, when the action sets are compact, any continuous
cost function is bounded. Accordingly, the problems described below concern the application
of the discounted technique in Markov decision chains with (infinite) denumerable state
space and possibly unbounded cost function. To pave the route to the statement of the
problems, the existence of solution to the discounted dynamic programming equation is
briefly discussed for model with a general denumerable state space in the following section.

5.2. Discounted Dynamic Programming Equation

Consider a Markov decision chain M = (S,A, {A(x)}, P, C) where the spate space is denu-
merable and, to begin with, also assume that the cost function is bounded, that is, ‖C‖ <∞.
In this context, for each α ∈ (0, 1) the same argument used in Section 4.6 yields that the
operator Tα in (4.6.1) is contractive on the space B(S) of bounded functions defined on
the state space S, and then there exists a Vα ∈ B(S) satisfying the dynamic program-
ming equation (4.6.3). Assume now that the cost function is just bounded below, that is,
C ≥ b for some real number b; replacing C by C − b, without loss of generality suppose
that C is nonnegative, and define Cr: IK → IR be Cr =:C ∧ r for each r ≥ 0 . It follows
that Cr is bounded, and then, for each α ∈ (0, 1), there exists a unique bounded funtion
Vα,r:S → [0,∞) such that

eλVα,r(x) = inf
a∈A(x)

eλCr(x,a)
∑
y∈S

px y(a)eλαVα,r(y)

 , x ∈ S

The monotonicity of the operator Tα immediately yields that Vα,r(·) increases with r, so
that

lim
r→∞

Vα,r(·) =:Vα(·)

is well defined and, assuming that Vα(x) <∞, it can be seen that the equality in the above
display is preserved after the passage to the limit:

eλVα(x) = inf
a∈A(x)

eλC(x,a)
∑
y∈S

px y(a)eλαVα(y)

 ,
so that the dynamic programming equation holds for Vα as soon as this function is finite.
The fixed point Vα is characterized by the above equation toghether with the following
property:

For each x ∈ S, Vα(x) = inf W (x),where W is bounded below and satisfies

eλW (x) ≥ inf
a∈A(x)

eλC(x,a)
∑
y∈S

px y(a)eλαW (y)

 , x ∈ S.
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The problem posed in the following section involves the functions {Vα}α∈(0,1) and the opti-
mal average reward function J∗.

5.3. Approximations in the Case of a Penalized Cost Function

As it was established in the proof of Theorem 4.3.2 , the optimal average reward J(x)
satisfies that, for every x ∈ S,

J∗(x) = lim
k→∞

(1− αk)Vαk(x), (5.3.1)

so that, if the state space is finite, the normalized sequence {(1− αk)Vαk} converges to the
optimal average reward function J∗. For models with denumerable state space the following
result is available.

Suppose that the cost function has a penalized structure in the following sense:

For each real number r, the set

{x ∈ S |C(x, a) ≤ r for some a ∈ A(x)} is finite.
(5.3.2)

In this context, given a sequence {αn} increasing to 1, there exists a subsequence
{αnk} and a state z ∈ S such that

(a) Vαnk (z) = minx∈S Vαnk (x), and

(b) limk→∞(1 − αnk)Vαnk (x) = J∗(x) at every state x such that the sequence
{Vαnk (x)− Vαnk (z)}k=1,2,3,... is bounded.

This result was firstly obtained in Hernández-Hernández and Marcus (1999) using a game
theoretical approach, and an extension to models with Borel state space was given in
Jaśkiewicz (2007); a different approach based on Hölder’s inequality was presented in
Cavazos-Cadena and Salem-Silva (2009). Using he terminology in Section 4.6, the con-
vergence (5.3.1) has been already established at states in the minimal class S∗1 , but not at
states in other classes; notice that if the state space is irreducible, the above convergence
holds at every state (Borkar and Meyn, 2002).

Problem 1: Let M = (S,A, {A(x)}x∈S , P, C) be a Markov decision chain with denumer-
able sate space, and assume that the cost function has a penalized structure, in the sense
that (5.3.2) holds. Is it true that the convergence

lim
α↗1

(1− α)Vα(x) = J∗(x)

holds at every state x ∈ S?

Of course, the question makes sense for an arbitrary (nonnegative) cost function, but
the problem is challenging even within the restricted framework determined by (5.3.2). In
the risk-neutral context, the above convergence holds; see, for instance, Sennott (1999).

5.4. General Denumerable Models

Before stating the next problem, it is convenient to point out a consequence of the charac-
terization of the (λ-sensitive) optimal average cost function in terms of an optimality system
as in the previous chapter. Given a number g ∈ IR , define

Sg: = {x ∈ S | J∗(x) > g}. (5.4.1)
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Now, by simplicity, consider an uncontrolled Markov chain over a finite state space, and
notice that the main results in the previous chapter render the following conclusion about
the (λ-sensitive) average cost function J(·).

The average cost J(·) is determined by a system of equations of the form

eλ(gi+hi(x)) =

eλC(x)
∑
y∈Si

px ye
λhi(y)

 , x ∈ Si, i = 1, 2, . . . , k,

where S1, S2, . . . , Sk is a partition of the state space, g1 ≤ g2 ≤ · · · ≤ gk and
px y = 0 when x ∈ Si and y ∈ Sj with i < j. In these circumstances, J(x) = gi if
x ∈ Si.

As it was shown in Chapter 4, the above displayed relation yields that,

J(x) = lim
n→∞

1

nλ
log
(
Ex

[
eλ
∑n−1

t=0
C(Xt)I[Xt ∈ Si, 0 ≤ t < n]

])
, x ∈ Si,

whereas the original specification of J(·) establishes that

J(x) = lim
n→∞

1

nλ
log
(
Ex

[
eλ
∑n−1

t=0
C(Xt)

])
, x ∈ S.

Consider now a nonempty set Sg as in (5.4.1). Let x ∈ Sg be arbitary and let Si be the
class that contains x; in this case Si ⊂ Sg and then

1 ≥ I[Xt ∈ Sg, 0 ≤ t < n− 1] ≥ I[Xt ∈ Si 0 ≤ t < n− 1].

The three last displays together imply that

J(x) = lim
n→∞

1

nλ
log
(
Ex

[
eλ
∑n−1

t=0
C(Xt)I[Xt ∈ Sg, 0 ≤ t < n]

])
, x ∈ Sg,

an equality that leads to the following conclusion:

For each state x ∈ Sg, the average cost J(x) depends only on

the costs incurred while the system stays in Sg
(5.4.2)

Next, an example will be used to analyze this property for a Markov chain on a denumerable
state space.

Example 5.4.1. Consider a Markov chain with state space S specified as follows: S is
the union of the set IN of nonnegative integers, and other denumerable disjoint set whose
elements are denoted by 1, 2, 3, . . .:

S = {0, 1, 2, 3, . . .} ∪ {1, 2, 3, . . .}.

The transition law is determined by

p0 0 = 1, px x−1 = 1, x = 1, 2, 3, . . . ,

px,x+1 = p = 1− px,x, x = 1, 2, 3, . . . ,

where p ∈ (0, 1) will be specified latter. Finally, let the cost function be given as follows:

C(x) = 1, C(x) = 0 = C(0), x = 1, 2, 3, . . . .
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Considering that the action set is a singleton, these specifications determine a controlled
Markov chain. tu

In the following proposition the (risk-sensitive) average cost for the above Markov chain will
be analyzed.

Proposition 5.4.1. In the context of Example 5.4.1 , select the parameter p as

p = e−λ/2.

In this case, the (λ-sensitive) average cost function J(·) satisfies the following relations:

J(x) = 0, x = 0, 1, 2, 3, . . . ,

and

J(x) ≥ 1

4
, x = 1, 2, 3, . . . .

Proof. Suppose that the initial state is a nonnegative integer x. In this case, the system
visits the states x, x1, x − 2, . . . , 1 at times 0, 1, 2, 3, . . . , x − 1, incurring a cost 1 ate each
step and, from time x onwards, stays at state 0 incurring a null cost. It follows that

Jn(x) = x ∧ (n+ 1), x, n = 0, 1, 2, 3, . . . ,

so that

J(x) = lim
n→∞

1

n+ 1
Jn(x) = 0, x = 0, 1, 2, 3, . . . .

Next, suppose that the initial state is x, where x is a positive integer. In this case, for each
even integer m = 2k > 0, the following trajectory of length m has probability pk−1(1− p):

x, x+ 1, . . . , x+ k − 1, x+ k − 1, x+ k − 2, . . . , x.

Along this trajectory, the total cost incurred is equal to k = m/2, and then

eλJm(x) ≥ pk−1(1− p)eλk =
1− p
p

(peλ)m/2 =
1− p
p

emλ/4

a relation that leads to J(x) ≥ lim infm→∞
1
mJm−1(x) ≥ 1/4, concluding the argument. tu

Now, in the context of Example 5.4.1, consider the set S0 as in (5.4.1), and notice that

S0 = {1, 2, 3, . . .}

and
J(x) ≥ 1/4, x ∈ S0,

by Proposition 5.4.1. On the other hand, the specification of the cost function in Example
5.4.1 prescribes that the cost function is null at each state in S0, so that the the costs
incurred while the system stays in S0 are null and, consequently, the property (5.4.2) fails
in the contest of the present example.

Problem 2: Given a Markov decision chain M = (S,A, {A(x)}x∈S , P, C) with denumer-
able state space, find a characterization of the optimal (risk-sensitive) average cost allowing
to obtain an optimal stationary policy.

The above discussion shows that an answer to Problem 2 will not be a direct general-
ization of the results in Chapter 4.
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[1]. A. Alańıs-Durán and R. Cavazos-Cadena (2012), An optimality system for finite average
Markov decision chains under risk-aversion, Kybernetika, 48, 83–104.

[2]. A. Araposthathis, V. K. Borkar, E. Fernández-Gaucherand, M. K. Gosh and S. I. Marcus
(1993), Discrete-time controlled Markov processes with average cost criteria: a survey, SIAM
Journal on Control and Optimization, 31 (1993), 282–334.

[3]. J. O. Berger (2010), Statistical Decision Theory and Bayesian Analysis, 2nd. Edition,
Springer, New York.

[4]. D. P. Bertsekas (2007), Dynamic Programming and Optimal Control, Vol. I, Athena
Scientific, Belmont, Massachusetts.

[5]. D. P. Bertsekas (2007a), Dynamic Programming and Optimal Control, Vol. II: Approx-
imate Dynamic Programming, Athena Scientific, Belmont, Massachusetts.

[6]. D. P. Bertsekas and S. E. Shreve (1996), Stohastic Optimal Control: The Discrete-Time
Case, Athena Scientific, Belmont, Massachusetts.

[7]. T. R. Bielecki, D. Hernández-Hernández and S. R. Pliska (1999), Risk sensitive control
of finite state Markov chains in discrete time, with applications to portfolio management,
Mathematical Methods of Operations Research, 50, 167–188.
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