UNIVERSIDAD AUTONOMA DE NUEVO LEON FACULTAD DE INGENIERIA MECANICA Y ELECTRICA

FUNDAMENTOS DE OPERACION Y MANTENIMIENTO DE EQUIPO ELECTRICO EN LA INDÚSTRIA

TESINA

QUE PARA OBTENER EL TITULO DE INGENIERO MECANICO ELECTRICISTA PRESENTA

FRANCISCO RICARDO RAMIREZ TREVIÑO

ASESOR: ING. EUDOCIO RODRIGUEZ GARCIA

CD. UNIVERSITARIA

OCTUBRE DE 1998

UNIVERSIDAD AUTONOMA DE NUEVO LEON FACULTAD DE INGENIERIA MECANICA Y ELECTRICA

FUNDAMENTOS DE OPERACION Y MANTENIMIENTO DE EQUIPO ELECTRICO EN LA INOUSTRIA

TESINA

QUE PARA OBTENER EL TITULO DE INGENIERO MECANICO ELECTRICISTA PRESENTA

FRANCISCO RICARDO RAMIREZ TREVIÑO

ASESOR: ING. EUDOCIO RODRIGUEZ GARCIA

CD. UNIVERSITARIA

OCTUBRE DE 1998

TK941 R33

AGRADECIMIENTOS

Señor:

Te doy gracias por haberme permitido llegar felizmente a este día, y te pido que con tu luz me guíes y me acompañes siempre a lo largo de mi vida profesional.

A los Catedráticos:

Que compartierón sus conocimientos con los alumnos de sus clases, mostrando siempre un gran desempeño en sus labores, guiando a sus alumnos con el rumbo del éxito. Que dios los bendiga.

PROLOGO

Este trabajo constituye una concepción integral de los principios de funcionamiento y mantenimiento de los elementos que intervienen en una subestacion eléctrica por lo cual una administración correcta de la energía eléctrica esta ligada a los objetos de autosuficiencia en el crecimiento industrial y al desarrollo de una economía que pueda competir en los mercados internacionales de aquí que las compañías se preocupen de una mayor calidad de servicio de sus equipos eléctricos.

Por ello, el uso racional de la energía en los sistemas eléctricos para su funcionamiento dependen del mantenimiento tanto el preventivo como el correctivo que garantice un funcionamiento confiable y seguro de estos equipos.

Espero que este trabajo constituya un auxiliar útil en la solución de problemas relacionados con el tema, ya que la intención, es la de dar una modesta aportacion al desarrollo industrial de países en desarrollo como lo es México.

INTRODUCCION

Esta texto, tiene la finalidad de disponer de un apoyo amplio y con enfoque moderno de manera tal, que no represente un texto mas sobre el tema, sino que constituya un material que represente un enlace entre los conceptos académicos y los prácticos del mantenimiento de los equipos eléctricos utilizados en la industria para que sea útil tanto a estudiantes como a profesionistas relacionados con el tema.

Aquí se trata de llevar información mas simple y compresiva para las personas de ingeniería que se inician en este campo y poder enfrentar los problemas de mantenimiento que se le presentaran en su vida profesional y tratar con suficiente detalle los temas de la parte eléctrica de una subestacion y así colaborar e impulsar al crecimiento académico del personal relacionado con dicho mantenimiento de los equipos eléctricos en la industria.

INDICE

Agradecimientos		Α		
Prólo	ogo ·	В		
Intro	ducción	С		
Capí	tulo 1 Introducción a los equipos, mantenimiento y pruebas			
1.1. 1.2. 1.3.	YY SANDON MANDEN OF THE PROPERTY OF THE PROPER	2 2 6		
Capitulo 2 Pruebas de corriente directa para equipos eléctricos				
2.1 2.2 2.3	Introducción a las pruebas de CD Transformadores Cables y accesorios	19 19 35		
Capítulo 3 Pruebas de corriente alterna para equipos eléctricos				
3.1 3.2 3.3	Introducción a las pruebas de CA Transformadores Pruebas de líquidos aislantes	45 45 51		
Apéndice				
Bibliografía				

CAPITULO 1

INTRODUCCION AL MANTENIMIENTO DE LOS EQUIPOS ELECTRICOS

1.1 Introducción

En los equipos eléctricos, su deterioro empieza desde el momento en que empiezan a funcionar; para la cual se deben de prevenir los cambios de carga o alteración en los circuitos, la razón de un mantenimiento eléctrico preventivo y un programa de pruebas son de gran importancia para alargar la vida del equipo.

1.2 Porque del mantenimiento

El mantenimiento y las pruebas que se le hacen a los equipos, reduce los paros de la empresa y los accidentes prolongando el tiempo de falla del equipo, dándonos como resultado un rendimiento del personal y de la empresa además de incrementos de productividad y en la habilidad de los empleados.

Con todo esto hay que hacer una planeación de un programa de (MEPP) mantenimiento eléctrico preventivo y pruebas, teniendo puntos importantes como son la administración.

La planeación del programa (MEPP) debe incluir sus ventajas, costos, perdidas de la producción por fallas del equipo, además de suministros de equipos de pruebas, herramientas, tiempos requeridos, personal y de tomarse en cuenta los factores o bases de mantenimiento, datos de equipos de quedan fuera de servicio, perdida de producción, análisis de costo, conveniencia del mantenimiento, establecer las mejores técnicas del mantenimiento.

Todo lo anterior va en conjunto con lo que ya es en si la puesta en marcha del programa de mantenimiento siendo lo esencial la responsabilidad que deben tener los departamentos, la inspección es decir la verificación de las condiciones de nuevos equipos instalados y hacer reparaciones, calendarios para su ejecución, ordenes de trabajo que son establecidas por inspección de rutina, y archivos de reportes deben ser formados para tener acceso cuando sea necesario.

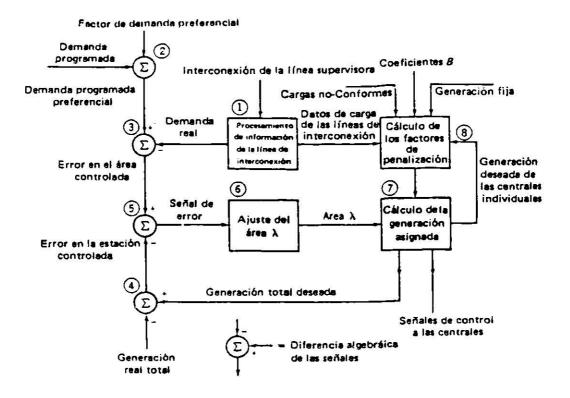
Otro punto importante, además de lo administrativo son los requisitos técnicos que son los siguientes:

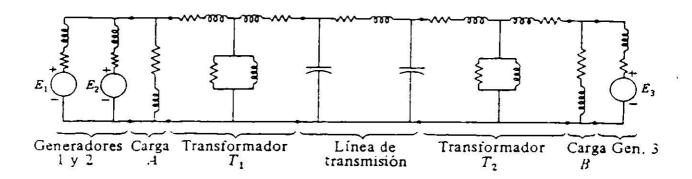
- Examinar el equipo de la planta

- Hacer un listado del equipo según su importancia
- Hacer un plan para llevar a cabo un mantenimiento con frecuencia.
- Desarrollar procedimientos para el programa.

La examinación del equipo debe de tener datos acerca de la potencia del sistema, deberá incluir diagramas unifilares, estudio de corto circuito, diagramas de alumbrado y demás diagramas importantes.

Diagramas de bloques son un grupo de bloques interconectados, los cuales representan un elemento del sistema como en la fig. 1.1




Fig. 1.1 Diagrama de bloques

Los diagramas unifilares nos muestran por medio de simples líneas y símbolos gráficos, el flujo de la potencia eléctrica o el curso de los circuitos eléctricos y como están interconectados, en la fig. 1.2. se muestra un diagrama unifilar.

Fig. 1.2 Diagrama unifilar

Los diagramas de impedancia y reactancia se usan para estudiar el comportamiento de un sistema en condiciones de carga o al presentarse un corto circuito; aquí el unifilar se transforma a uno de impedancias y muestre el circuito equivalente de cada componente del sistema, referido al mismo lado de uno de los transformadores.

El diagrama de impedancias no incluye las impedancias limitadoras de corriente, que se ven en el unifilar entre los neutros de los generadores y tierra, porque en condiciones de equilibrio, no circulan corrientes por la tierra y neutros de los generadores están al mismo potencial que el neutro del sistema.

En un diagrama esquemático como el de la fig. 1.3 (a), este nos indica todos los circuitos y dispositivos de los elementos de los equipos; además nos indica los dispositivos de los elementos y funciones y siempre muestra mediante líneas a todos los dispositivos de un modo desenergizado.

En un diagrama de cableado, fig. 1.3 (b), es utilizado para localizar e identificar dispositivos eléctricos, terminales y cables interconectados y ensamblados. Este muestra cables interconectados por líneas y terminales.

Y en un diagrama de interconexión, fig. 1.3 (c), nos muestra las conexiones externas entre controles y equipos asociados o entre varias unidades de equipos ensamblados o asociados a un mismo interruptor.

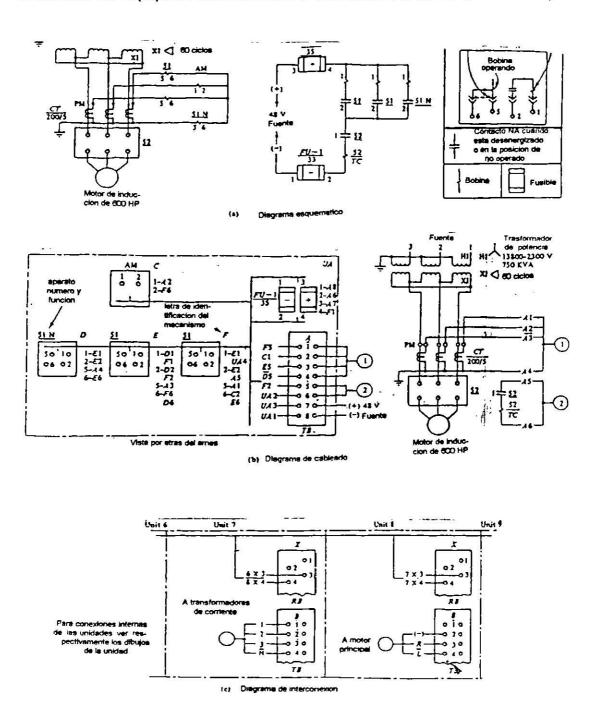


Fig. 1.3 Diagramas (a), (b), (c)

1.3 Que debe incluir un programa (MEPP)

El programa de mantenimiento eléctrico preventivo y pruebas para tener una operación eficiente y efectiva debe cubrir las siguientes actividades:

Mantenimiento eléctrico preventivo y pruebas

Este abarca la inspección, ajustes, limpiezas, pruebas de equipos para asegurar una operación sin problemas para predecir o impedir fallas de piezas de algún equipo y que puedan ser reemplazados a tiempo.

Reparaciones eléctricas.

Las reparaciones a equipos y maquinas asociadas con la producción de una planta es un punto importante del mantenimiento. El objetivo del programa de mantenimiento deberá evitar tiempos de paro de los equipos o maquinas.

Análisis de fallas

Estas deben ser analizadas para atender y valorar los tiempos de paro de los equipos o maquinaria por que aun que los equipos estén bien diseñados pueden fallar.

Tipos de métodos de pruebas

En las pruebas a los equipos eléctricos hay que revisar el aislamiento de los sistemas, propiedades eléctricas y otros relacionados con la operación del sistema de potencia siendo las siguientes:

- Pruebas de aislamiento de estado sólido
- Pruebas de dispositivos de protección
- Pruebas de aislamiento en líquidos (aceites)
- Análisis de tiempos de disparo en interruptores
- Pruebas de resistencia de tierra
- Pruebas y análisis de gases
- Pruebas de inspección infrarrojo (rayos)

Pruebas De Aislamiento De Estado Solido

El aislamiento puede ser de material dieléctrico (sólido, liquido o gas), y que prevenga flujo eléctrico entre puntos de diferente potencial. Esto es aplicar un alto potencial de voltaje y determinar mediante pruebas de la corriente de fuga que fluye bajo estas condiciones de prueba. Una

corriente excesiva de fuga puede indicar las condiciones de deterioro y una falla. Estas pruebas se hacen con los voltajes siguientes, voltaje de corriente directa (CD), voltaje de corriente alterna (CA).

En las pruebas destructivas que son llevadas a cabo mediante la aplicación de bajos voltajes el equipo sometido a prueba remanente es dañado.

La prueba destructiva o de alto potencial de corriente alterna es una prueba en la cual el voltaje es incrementado hasta un nivel especificado. Si el equipo falla o muestra una corriente de fuga excesiva, el equipo bajo prueba queda inutilizable. Si el equipo no falla entonces ha superado la prueba.

Algunas de las ventajas y desventajas de las pruebas de alto potencial de CD son las siguientes.

Ventajas

La prueba de CD es preferida en equipo cuya carga capacita es muy alta, tal como los cables.

El esfuerzo en una prueba de CD es menos dañino que en una prueba de CA

El tiempo de aplicación de un voltaje en una prueba de CD no es tan critico como el voltaje en una prueba CA

La prueba puede ser detenida antes de que falle el equipo.

No es necesario hacer pruebas de aislamiento de resistencia en forma separada de una prueba de sobrepotencial de CD

Desventajas

La distribución de esfuerzo para transformadores, motores y generadores es diferente para un voltaje de CD que para uno de CA

La carga residual después de una prueba CD es mas dañina al ser descargada

El tiempo requerido para hacer una prueba de alto potencial de CD es mas largo que en CA

Pruebas de aislamiento de estado sólido en voltaje CD

En esta se realizan las pruebas de la resistencia de aislamiento y la prueba de voltaje de alto potencial

Prueba de resistencia de aislamiento

Esta prueba se hace aplicando voltajes de 100 a 5000 volts. Se utiliza el megohmetro con mecanismo manual, motorizado o electrónico, el cual indica la resistencia de aislamiento en megaohms.

La calidad dei aislamiento es evaluado tomando como base un nivel de resistencia de aislamiento, el cual puede variar, dependiendo de la

temperatura, humedad y otros factores ambientales. Por lo tanto las lecturas de las pruebas deberán ser corregida de acuerdo con un standard de humedad y temperatura, ver tabla 1.1.

El valor de la resistencia de aislamiento en megohmetro es inverso al volumen de aislamiento en que esta siendo probado. Como ejemplo, un cable de 167 mts de longitud (500 pies) deberá tener 1/10 de la resistencia de aislamiento de un cable de 50 pies bajo condiciones idénticas. Esta prueba nos da una indicación del deterioro del aislamiento, los valores de la resistencia de aislamiento no nos indica los puntos de debilidad ni tampoco los esfuerzos dieléctricos, pero si nos indica la contaminación del aislamiento.

Temperatura	Transformador		
°C	En aceite	Tipo seco	
0	0.25	0.40	
5	0.36	0.45	
10	0350	0.50	
15	0.75	0.75	
20	1.00	1.00	
25	1.40	1.30	
30	1.98	1.60	
35	2.80	2.05	
40	3.95	2.50	
45	5.60	3.25	
50	7.85	4.00	
55	11.20	5.20	
60	15.85	6.40	
65	22.40	8.70	
70	31.75	10.00	
75	44.70	13.00	
80	63.50	16.00	

Tabla 1.1 Factores de conversion de resistencia de aislamiento a 20°C

Los valores medidos de las resistencias de aislamiento pueden hacerse mediante 5 métodos que son:

- Lecturas de tiempo corto

Esta prueba muestra el valor de la resistencia de aislamiento para una duración de 30 a 60 seg. Las lecturas obtenidas se comparan con algunas anteriores y su interpretación es hace con las tablas normalizadas a 20 °C con efectos de humedad.

- Lecturas de tiempo - resistencia

Un sistema con buen aislamiento muestra un incremento continuo de los valores de resistencia sobre un periodo de tiempo en el cual un voltaje es aplicado y el efecto de la corriente de absorción (ver apéndice) decrece a medida que el tiempo se incrementa y si un sistema esta contaminado con polvo e impurezas muestra baja resistencia y el efecto de la corriente de absorción se traduce en una alta corriente de fuga (ver apéndice).

Las lecturas tiempo - resistencia pueden ser usadas para indicar las condiciones del aislamiento del sistema. La razón de las lecturas a 30 y 60 seg. es llamada relación de absorción dieléctrica (RAD) unidades es megohmetro.

Una relación (RAD) abajo de 1.25 es necesaria una investigación o una reparación de un aparato eléctrico.

- Lecturas de picos de voltaje

Esta prueba es aplicada en forma de picos para que el aislamiento que esta bajo prueba, sea fijado por un voltímetro. A medida que el voltaje es incrementado los puntos débiles de aislamiento deberán mostrar resistencias bajas que no se muestran con bajos niveles de voltaje. Residuos, polvos pueden ser detectados a niveles de voltajes bajos, esto es mas abajo de los voltajes de operación, mientras que un daño físico, un aislamiento malo, solo pueden ser detectados con altos voltajes.

Prueba de absorción dieléctrica

La prueba de absorción es hecha con voltajes de 100 kilovoltios aplicado en un tiempo de 5 a 15 min. La prueba es evaluada tomando como base la resistencia de aislamiento, si este esta en buenas condiciones, la resistencia de aislamiento deberá incrementarse a medida que la prueba es desarrollada.

- Prueba de clasificación de polarización

La prueba de clasificación de polarización es una especialización de la de absorción dieléctrica, la clasificación de polarización es la razón de la resistencia de aislamiento en 10 min. a la resistencia de aislamiento en 1 min. Una clasificación menor de 1 indica deterioro en el equipo y necesita un mantenimiento inmediato y se utiliza para cables, transformadores y maquinas giratorias.

La otra prueba de las que se realizan de aislamiento de estado sólido en voltaje CD es la siguiente:

Prueba de voltaje de alto potencial

Esta se da con un voltaje aplicado a través del aislamiento por encima del voltaje de operación (1.41 veces). Cuando un voltaje de alto potencial es aplicado a una prueba de absorción dieléctrica, el máximo voltaje es aplicado en un periodo de 60 a 90 seg. y el máximo voltaje es mantenido por 5 min., tomando lecturas de corriente de fuga cada minuto, si esta prueba es aplicada en la prueba de picos de voltaje, el voltaje es aplicado en incrementos iguales no menores a 8, en el cual cada pico de voltaje es mantenido en intervalos de tiempos iguales.

El intervalo de tiempo en cada pico (o paso) deberá ser entre 1 y 4 minutos, y al final de cada intervalo deben ser tomadas las lecturas de corriente de fuga y de resistencia de aislamiento antes del siguiente pico. Las pruebas de mantenimiento son hechas con un voltaje máximo abajo de 75 % del voltaje de prueba máximo permitiendo en pruebas de aceptación.

Pruebas de aislamiento de estado sólido en voltaje CA

Se pueden hacer varias pruebas para determinar las condiciones del aislamiento del sistema siendo estas:

Prueba de alto potencial

Esta prueba es conocida como la prueba de Hi-Pot (CA), es hecha con un voltaje por encima del voltaje nominal de operación del sistema por un corto tiempo (1 min.).

Prueba de aislamiento del factor de potencia

Esta prueba esta basada de que los valores bajos de factor de potencia, el factor de disipación puede suponerse lo mismo que el factor de potencia. El factor de disipación es igual a la tangente del ángulo S, donde S es igual a 90 °0.

El factor de potencia es igual al coseno del ángulo entre la corriente de carga y el voltaje aplicado.

El aislamiento del factor de potencia es importante para determinar la calidad del aislamiento para transformadores, interruptores, maquinas giratorias, cables, reguladores y líquidos aislantes.

Precauciones a tomar en la prueba.

El equipo bajo prueba deberá estar aislado del resto del sistema.

La prueba deberá hacerse a una temperatura superior a 32 °F (0 °C) y con una humedad relativa abajo del 70 %.

El equipo de prueba deberá ser capaz para producir una onda de 60 ciclos a un voltaje de por lo menos de 2500 volts.

El mínimo voltaje de prueba no deberá ser menor a 5000 Volts, en todos los casos.

La evaluación de los datos de la prueba deberá estar basada con estándares comparativos de la industria con valores de otros equipos similares, o con resultados de pruebas previos en equipo similares.

Pruebas A Dispositivos De Proteccion

Las Pruebas a dispositivos involucran pruebas y mantenimiento de interruptores de bajo voltaje, conexiones, relevadores y equipos como transformadores de instrumentos y cableados de baja tensión.

Mantenimiento a interruptores

Los interruptores (ver apéndice) durante las operaciones de apertura y cierre se ven sometidos a esfuerzos mecánicos de accionamiento y a esfuerzos dieléctricos y térmicos el los contactos.

Esta acción hace que los interruptores eventualmente puedan fallar en la parte mecánica y/o en los contactos, por esta razón se debe especificar un numero de maniobras mecánicas determinadas pudiéndose indicar:

- Máximo numero de maniobras.
- Efecto térmico en los contactos y se expresa por el numero de maniobras a determinado valor de corriente.

Por ejemplo:

Los contactos deben permitir antes de su reemplazo las siguientes interrupciones:

- Tres interrupciones a máxima corriente de corto circuito
- Cinco interrupciones al 50 % de la máxima corriente de corto circuito.
- Diez interrupciones al 15 % de la máxima corriente de corto circuito.

Otra forma de especificar el aspecto de tiempo de vida en los contactos es por amperes acumulados que deba ser capaz de soportar el interruptor, simplemente se indica una cantidad equivalente al numero obtenido anteriormente, pero sin indicar cada valor particular.

Entre las pruebas a los interruptores prototipos se encuentran:

- 1) Prueba de interrupción de corriente de corto circuito simétrico.
- 2) Prueba de interrupción de corriente de corto circuito asimétrica.

- 3) Prueba de interrupción de pequeñas corrientes inductivas
- 4) Prueba de interrupción de corrientes capacitivas
 - 4.1 Desconexión de bancos de condensadores.
 - 4.2 Desconexión de líneas en vacío.
- 5) Desconexión y cierre en oposición de fase.
- 6) Desconexión asincrónica.
- 7) Recierre sobre falla y operación monopolar.

Las pruebas recomendadas como de rutina son:

- a) Pruebas de comportamiento mecánico.
- b) Medición de la resistencia de los circuitos principales.
- c) Prueba de calentamiento en los circuitos principales y auxiliares.
- d) Prueba de aislamiento en los circuitos principales y auxiliares.

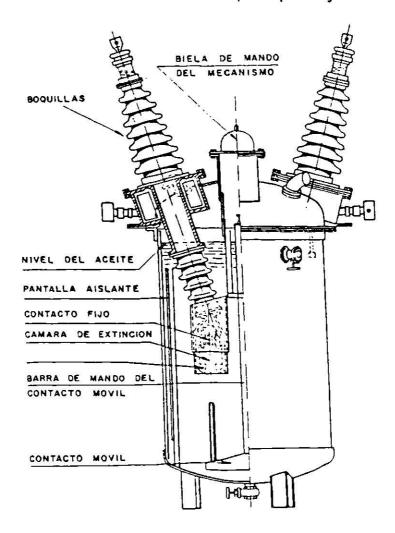


Fig. 1.4 Interruptor en gran volumen de aceite.

Cuando opera el interruptor de la fig. 1.4 debido a una falla, los contactos moviles se desplazan hacia abajo, separandose los contactos fijos.

Apartarrayos

Las sobretensiones que se presentan en las instalaciones de un sistema pueden ser de tipo atmosférico y por fallas en el sistema

El apartarrayos es un dispositivo que permite proteger las instalaciones contra sobretensiones de origen atmosférico. Para la protección del mismo se deben de tomar en cuenta los aspectos que si son de descargas directas sobre la instalación y descargas indirectas.

El caso que se presenta mas es el de descargas indirectas (ver apéndice), y el apartarrayos, que se encuentra conectado en el sistema, opera cuando se presenta determinada descarga, frenando la corriente a tierra. Su principio general de operación se basa en la formación de un arco eléctrico entre dos explosores cuya separación esta determinada de acuerdo con la tensión a la que va a operar.

La función del apartarrayos no es eliminar las ondas de sobretensión presentadas durante las descargas atmosféricas, sino limitar su magnitud a valores que no sean perjudiciales para las maquinas del sistema.

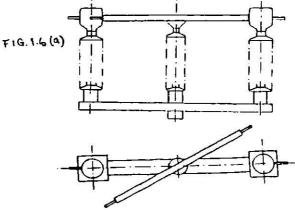
Los apartarrayos mas usados son apartarrayos tipo autovalvular figura 1.5 (a) (ver apéndice) y de tipo resistencia variable figura 1.5 (b) (ver apéndice).

Fig. 1.5 Tipos de apartarayos

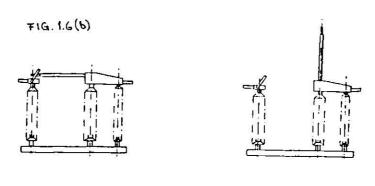
Pruebas a cuchillas desconectadoras

El valor de corriente de corto circuito es el mismo (simétrico y asimétrico) calculado para la especificación de interrupciones.

En el caso de las cuchillas desconectadoras (ver apéndice), solo se tiene el propósito de indicar su capacidad dinámica y térmica ya que las cuchillas no tienen capacidad interruptiva, pero si en cambio deben soportar en forma satisfactoria los esfuerzos térmicos. (figura 1.6 a y b).


Desde el punto de vista dieléctrico se especifican los valores necesarios de tensión para la coordinación de aislamiento en la subestación.

Los niveles básicos a verificar son:


- El nivel básico de aislamiento al impulso por rayo.
- Tensión de flameo a 60 Hz en seco.
- Determinación del nivel del ruido.

Especificaciones adicionales

- Corriente de corto circuito dinámica, sirve para verificar el comportamiento mecánico de las cuchillas, especialmente en los soportes.
- Corriente de corto circuito térmica, normalmente se especifica a 1 seg., y tiene como objetivo determinar el comportamiento térmico de la cuchilla especialmente en las uniones.
- Prueba mecánica de operación, se especifica un determinado numero de maniobras de apertura y cierre en la cuchilla para verificar el correcto comportamiento mecánico de las cuchillas y de sus elementos auxiliares de accionamiento.

CUCHILLA DESCONECTADORA DE TRES COLUMNAS CON ACCIONAMIENTO EN LA COLUMNA CENTRAL.

CUCHILLA DESCONECTADORA DE TRES COLUMNAS Y APERTURA VERTICAL

Fig. 1.6 Tipos de cuchilla desconectadora de tres columnas

Relevadores

Todos los relevadores figura 1.7 a y b funcionan en respuesta a una o mas magnitudes eléctricas cerrando o abriendo contactos, sus principios de operación son de atracción e inducción electromagnética (ver apéndice). Las principales características funcionales de los relevadores usados en la protección de subestaciones son las siguientes:

- a) Bajo voltaje, baja corriente y baja potencia.
- b) Sobre voltaje, sobre corriente y sobre potencia.
- c) Direccionales o de corriente inversa.
- d) Direccional o de potencia inversa.
- e) Diferencial.
- f) De distancia.

Los transformadores de potencia pueden estar sujetos a los siguientes tipos de fallas, sobre cargas o corto circuito externo, fallas en los devanados, fallas en las terminales y fallas incipientes.

Cualquier condición de falla produce esfuerzos mecánicos y térmicos en los devanados del transformador, las sobrecargas se pueden sostener por periodos de tiempo mas o menos largos, estando limitadas solo por las elevaciones de temperatura permisibles en los devanados y el aceite, desde luego por las sobre cargas excesivas deterioran el aislamiento y producen las fallas subsecuentes.

Las fallas en las terminales del transformador si son en el lado de alimentación no tienen efecto severo en el transformador, pero las que ocurren en el lado de carga lo tienen, este tipo de fallas no hacen operar a los relevadores Buchholz, debido a esto se deben ajustar las zonas de protección de los relevadores diferenciales o de falla a tierra.

La mayoría de las fallas internas o son fallas a tierra o de fase a fase, la severidad de estas fallas depende de su localización, diseño del transformador y del método de conexión a tierra del transformador.

Las fallas incipientes son fallas de tipo interno que no constituyen un riesgo inmediato, sin embargo, si se dejan sin detectar pueden conducir a fallas mayores. La mayoría de este tipo de fallas son las de bobina a núcleo debido a fallas de aislamiento, o bien fallas de aislamiento entre laminaciones del núcleo o también fallas en el aceite debido a perdidas u obstrucción, en cualquier caso se presenta un sobre calentamiento en el transformador.

Las protecciones aplicadas a los transformadores son:

- Relevadores de presión de gas y aceite.
- Relevadores de sobrecorriente y de falla a tierra.
- Relevador de falla a tierra restringida.
- Protección diferencial.
- Fuga a tanque o herraje.

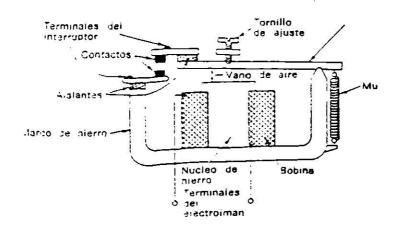


Fig. 1.7 (a) Relevador basico

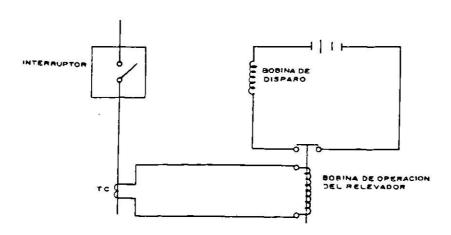


Fig. 1.7 (b) Representacion del circuito de un relevador.

Pararrayos

Los pararrayos (ver apéndice) no evitan los rayos, sino que mas bien evitan que las cargas se acumulen en los edificios en los que están puestos. El pararrayos figura 1.8 deberá unirse a un conductor introducido en el suelo con una profundidad según la NOM para que siempre este rodeada de tierra húmeda, si no se entierra adecuadamente, el pararrayos puede ser mas bien una amenaza que una protección, ya que facilitara la descarga de las nubes.

Los objetos altos aislados en espacios abiertos tales como un árbol aislado en un terreno grande acumulan las cargas rápidamente y son, por lo tanto, presa fácil de los rayos. Los edificios con estructura de acero tienen numerosas partes metálicas que se extienden hasta dentro de la tierra y, por lo tanto, tienen una buena protección.

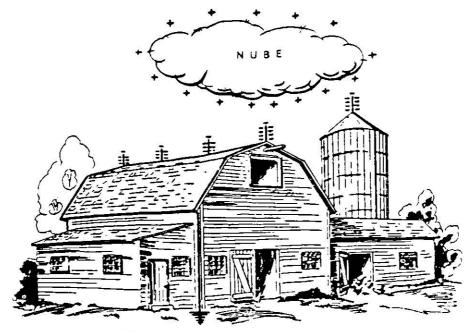


Fig 1.8 Aplicacion del pararrayos.

Pruebas De Aislamiento De Liquidos (Aceites)

El aislamiento de líquidos usados en transformadores o en otros aparatos eléctricos están sujetos a contaminación, la cual perjudica las propiedades del aislamiento de los devanados. Los elementos que causan deterioro de el aislamiento de los líquidos son: humedad, temperatura, oxigeno y otros que resultan de reacciones químicas que producen ácidos y sedimentos.

El aislamiento a base de liquido que hoy en día están en uso son: aceites, askarel y silicona, sin embargo el uso de askarel ha sido prohibido por el alto grado de tóxicos que contiene.

Las pruebas se recomiendan regularmente para monitorear las condiciones del aislamiento de los líquidos. Se deben tomar pruebas de los líquidos de los equipos en periodos para hacer pruebas de acuerdo con los métodos de los ASTM de acuerdo a la tabla 1.2.

Prueba	Metodos de pruebas ASTM
Acidez	D1534 o 1902
Color	D1500
Voltaje de ruptura dielectrica	D877 (silicona askarel)
	D1816 Aceite
Examinacion visual	D1524 Aceites
	D1702 Askarel
Tension Interfases	D971
(unicamente aceite)	D2285
Numero de neutralizacion	D974; D664
Factor de potencia	D924

Prueba De Resistencia De Electrodos De Tierra.

Un sistema integral de tierras es importante en un sistema eléctrico de potencia por las siguientes razones:

- Para mantenerse un punto de potencia de referencia para los equipos y seguridad del personal.
- Para proveer un punto de descarga para ondas viajeras debido a descargas atmosféricas (rayos).
- Para prevenir altos voltajes excesivos debido a voltajes inducidos en los sistemas de potencia.

Por lo tanto para mantener un potencial de tierra efectivo se requieren pruebas periódicas a los electrodos del sistema de tierras, siendo su escala en ohm.

Pruebas Y Analisis De Fallas De Gases

Las pruebas y análisis de fallas de gases pueden proveer información sobre fallas incipientes en aceites de transformadores y gases presentes en la capa de nitrógeno de el transformador.

Debido a la temperatura algunos aceites de transformadores se descomponen y generan gases combustibles, los cuales se mezclan con el nitrógeno en la capa superior del aceite.

Una pequeña muestra de nitrógeno puede ser obtenida del transformador para este propósito. Esta prueba se determina en una escala de porcentaje de gases de combustible.

Pruebas De Inspeccion Infrarroja

Hay diferentes dispositivos disponibles usados en pistolas infrarrojas para revisar puntos calientes en conexiones y otras partes energizadas de un sistema de potencia.

Hay varias rutinas practicas en mantenimiento en inspección para determinar puntos calientes en uniones, terminales o líneas sobrecargadas. Desde luego el costo de esos dispositivos varían en un amplio rango y pueden ser económicos si estos equipos son rentados al hacer inspecciones de rutina en equipos de sistemas eléctricos de potencia.

CAPITULO 2

Pruebas De Corriente Directa Para Equipos Electricos

2.1 Introducción

En este capitulo con la información de estas pruebas se indica si el mantenimiento es correctivo o reemplazo del equipo instalado, se asegura si el equipo recién instalado puede ser energizado con seguridad y la carta de deterioro gradual del equipo.

Los métodos de prueba de CD que se cubrirán son transformadores, líquidos aislantes, cables, interruptores, motores y generadores; siendo estos niveles y métodos de prueba de voltaje en su mayor parte de acuerdo con los estándares industriales para los tipos de equipo.

Los valores de voltaje de CD es recomendado para manufactura del equipo sea consultado para pruebas especificas y de niveles de voltaje cuando la información para un equipo no pueda ser obtenida, esto es sugerido para evitar daños al sistema del material aislante.

2.2 Transformadores

La prueba de CD de transformadores (ver apéndice) implica pruebas de aislamiento de estado sólido expuesto al viento y líquidos aislantes usados en transformadores.

La prueba de aislamiento sólido y expuesto al ambiente completa otras pruebas de transformadores.

Las pruebas de CD son consideradas no destructivas o igual como si al tiempo ellas pudieran causar deterioro ambiental, esto puede ser un resultado de un deterioro que la prueba fue supuesta y detectada. Si esta la sido detectada, esto podrá ocurrir a un tiempo determinado.

La prueba de conductividad de CD para transformadores de aislamiento se dan en el orden de prioridades.

Mantenimiento De Resistencia De Aislamiento

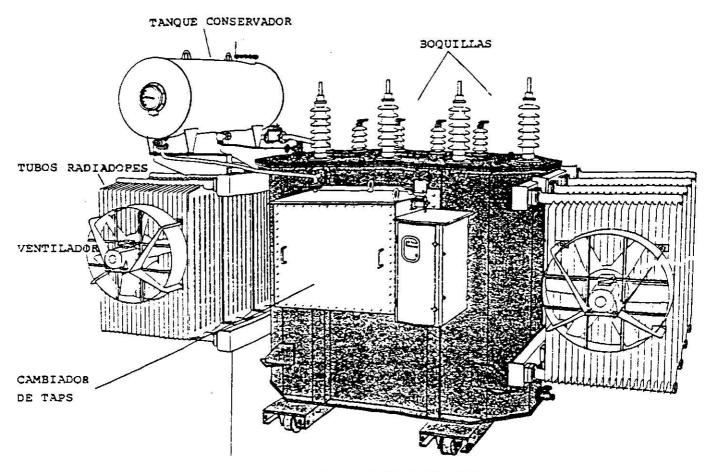
Esta prueba se da por encima de un voltaje para determinar si estos, son resistentes bajo el suelo o camino o medio ambiente.

Los valores de mantenimiento de la prueba son afectados por la temperatura, humedad, voltaje de prueba y tamaño del transformador. Esta prueba puede conducir antes y después de reparación o mantenimiento de operación.

Los datos de prueba pueden ser recordados para comparaciones futuras. Los valores de prueba pueden ser normalizados a 20 °C para propósitos de comparaciones.

Los factores de conversión son presentados en la tabla 2.1.

La regla del pulgar es utilizada para valores aceptables hasta 1 megaohm / 1,000 volts de aplicación en la prueba de voltaje.

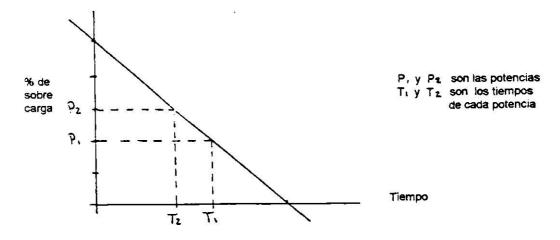

La muestra de valores de resistencia de buen aislamiento en el sistema son presentados en la tabla 2.2

Temperatura	Transformador	
°C	En aceite	Tipo seco
0	0.25	0.40
5	0.36	0.45
10	0350	0.50
15	0.75	0.75
20	1.00	1.00
25	1.40	1.30
30	1.98	1.60
35	2.80	2.05
40	3.95	2.50
45	5.60	3.25
50	7.85	4.00
55	11.20	5.20
60	15.85	6.40
65	22.40	8.70
70	31.75	10.00
75	44.70	13.00
80	63.50	16.00

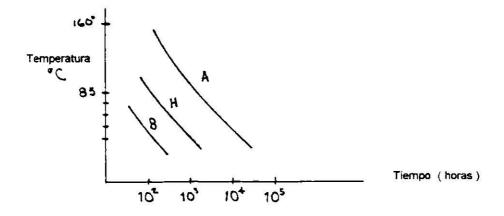
Tabla 2.1 Factores de conversion de resistencia de aislamiento a 20°C

BOBINAS DE	L	BOI	BINA A TIE Mai	RRA	
TRANSFORMADOR VOLTAJE (KV)	₹ 20 °C	30 °C	40 °C	50 °C	60 °C
Menores de 6.6	400	200	100	50	25
6.6 a 19	800	400	200	100	50
22 a 45	1000	500	250	125	65
66 y mayores	1200	600	300	100	75

Tabla 2.2 Valores tipicos de resistencia de aislamiento para transformadores de distribucion y potencia.



TRANSFORMADOR DE POTENCIA


La capacidad de sobrecarga de un transformador, es función de su capacidad de disipación de calor, o sea que en cualquier situación de operación, un transformador se puede sobrecargar sobre su capacidad nominal por un cierto periodo de tiempo. Por ejemplo, para transformadores de distribución sumergidos en aceite, la norma ANSI C57.96, da los siguientes valores:

Valores	Numero de veces de la corriente nominal del transformador	
2 seg.	25.00	
10 seg.	11.30	
30 seg.	6.70	
60 seg.	4.75	
5 min.	3.00	
30 min.	2.00	
	, , , , , , , , , , , , , , , , , , ,	

En general la curva de operación de un transformador con sobrecarga tiene la siguiente forma:

Esta curva corresponde a la curva de vida de los aislamientos:

Los tiempos y valores de sobrecarga se expresan para periodos de operación de 24 horas y son aplicables 1 vez por día.

Para los transformadores de potencia se puede aplicar un criterio similar, dado que el comportamiento de la vida de los aislamientos con respecto a la temperatura es el mismo; solo que en algunos casos, se trata de determinar cual es la capacidad de calor en Kilocalorías / min.

El enfriamiento base para transformadores de potencia es el tipo OA para el cual esta definida una capacidad de disipación de calor dependiente del área dada por el tanque y los tubos radiadores.

En los transformadores de potencia, por cada periodo de 24 horas, se considera admisible una sobrecarga (sin producir daño al equipo) de un 50 % sobre su potencia nominal por periodo de 1 hora. (Max. 24 horas). Sobrecargas superiores son admisibles por menos tiempo o inferiores por menos tiempo. Por ejemplo, el 25 % de sobrecarga en dos periodos de 4 horas es aceptable.

OA Enfriamiento tipo base 100 Mva Con picos de 1 hora. Se puede obtener 150 Mva + 25 % <u>FA</u>

Niveles de aislamiento en transformadores y autotransformadores

Dependiendo de la clase de aislamiento del transformador en sus devanados de alto y bajo voltaje se especifican los niveles básicos de aislamiento al impulso por rayo y por maniobra de interrupciones (este ultimo para tensiones de 400 Kv.).

Los valores básicos de aislamiento en los transformadores de potencia, se toman dependiendo del criterio de coordinación de aislamiento y en función de las características de los apartarrayos seleccionados, se pueden tener los siguientes casos con relación a los aislamientos internos y externos y sus características de aislamiento:

- El nivel de aislamiento interno es <u>mayor</u> que el nivel de aislamiento externo.
- . El nivel de aislamiento interno es igual al nivel de aislamiento externo.
- El nivel de aislamiento interno es menor que el nivel de aislamiento externo.

El punto de partida del análisis, es el aspecto económico y se considera la confiabilidad al margen de protección del apartarrayos. Las decisiones adaptadas son dos:

- Niveles de aislamiento interno y externo iguales, lo que significa por ejemplo que de acuerdo a normas para un transformador de 230 / 115 Kv.

	Devanados	Boquillas	
En 230 Kv.	1050 Kv.	1050 Kv.	
En 115 Kv.	550 Kv.	550 Kv.	

◆ Apartarrayos de 80 % de protección instalado tan cerca como sea posible del transformador. Para el criterio del aislamiento exterior mayor que el nivel de aislamiento interno, se tiene por ejemplo:

Devanado de:	Nivel básico externo	Nivel básico interno	
230 Kv.	1050 Kv.	900 Kv.	
115 Kv.	550 Kv.	450 Kv.	

◆ Apartarrayos con mayor margen de protección que cuando los niveles de aislamiento interno y externos son iguales.

Cambiadores de derivación

Los voltajes encontrados representan una regulación fina, con respecto a la tensión nominal, desde luego, permite regular el voltaje en las redes eléctricas a que se conectan, dependiendo de los valores de carga, pero también cumplen con la función de contribuir al control de reactivos en la red, ya que para cada voltaje obtenido en un tap (ver apéndice), la excitación requerida por el transformador es diferente y consecuentemente el consumo de reactivos.

La instalación de los mismos se puede hacer en el devanado de alto o en el devanado de bajo voltaje. La decisión en que devanado se deben instalar, obedece a varios factores que se deben analizar y son los siguientes

- El nivel de tensión
- Magnitud de la corriente
- La exactitud en la regulación (numero de pasos)
- El tamaño del transformador
- La forma de realización (sin carga o con carga)

Un Tap instalado en el lado de <u>bajo voltaje</u>, tiene las siguientes ventajas y desventajas.

Ventajas

- 1.- Mejor regulación de voltaje, ya que, al estar instalado en el lado de carga, se puede tener una mejor sensibilidad.
- 2.- Menor nivel de aislamiento, lo que reduce las distancias dieléctricas internas entre electrodos.

Desventajas

1.- Manejo de corrientes elevadas, lo que da una mayor robustez en las partes vivas del cambiador.

- 2.- Ocupa mas espacio proporcionalmente a los espacios disponibles en los devanados.
- 3.- Generalmente cuesta mas en baja tensión, sobre todo si es con carga.

El uso de Taps en alta tensión tiene las siguientes ventajas y desventajas:

Ventajas

- 1.- A pesar de requerir mayor nivel de aislamiento, es decir, mayores distancias dieléctricas, por manejar corrientes menores, es menos robusto y proporcionalmente al nivel de voltaje ocupa menor espacio.
- 2.- Se introducen menos transitorios de tensión


Desventajas

- 1.- Cuando se usan cambiadores de derivación sin carga, el numero de taps esta limitado, no solo por los problemas de regulación, mas bien por razones constructivas.
- 2.- Generalmente la regulación de voltaje es mas fina en el lado de carga de un transformador que en el lado de línea.

Con relación al uso de cambiadores de derivación con carga y sin carga se pueden hacer los siguientes comentarios:

Cambiadores sin carga.

- 1.- Se requiere que el transformador este completamente desenergizado para poder hacer la maniobra del cambio de Tap.
- 2.- El numero de pasos generalmente es restringido, siendo costumbre usar 2 ó 3 pasos de 2.5 % del voltaje nominal hacia arriba y hacia abajo, por lo mismo no se puede tener una regulación fina.

3.- El costo de estos cambiadores es bajo, en el peor de los casos no llega a ser el 3 % del costo del transformador.

Cambiadores con carga.

- 1.- Permiten una regulación de voltaje fina, ya que se pueden tener además del voltaje nominal 20 y hasta 32 pasos de regulación en el lado de alta tensión.
- 2.- La regulación de voltaje se puede hacer con carga y en forma automática.
- 3.- El costo representa entre el 30 y el 40 % del costo del transformador.
- 4.- Requiere de un circuito de control que introducen un costo adicional a la instalación.
- 5.- Para redes eléctricas con grandes variaciones de voltaje entre las condiciones de máxima y mínima demanda permiten una regulación de voltaje eficiente, ya que se pueden dejar para operación continua.
- 6.- Requiere de mas mantenimiento comparativamente con los cambiadores sin carga.

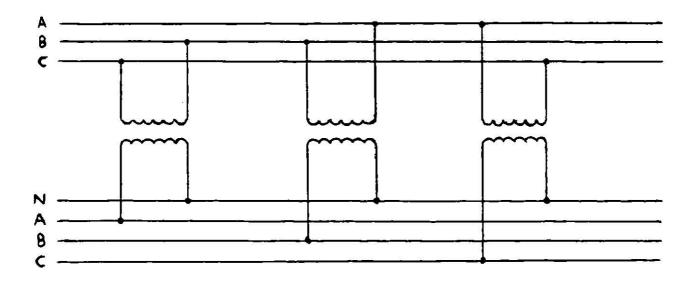
Las tendencias es a usar cambiadores de derivación con carga en redes eléctricas de alta tensión, es decir, en niveles de 230 Kv. y 400 Kv. por razones de un mejor control de reactivos y voltaje en el sistema, a pesar de que como se ha indicado anteriormente su costo representa un alto porcentaje del costo del transformador.

Este tipo de cambiador de derivaciones se encuentra instalado normalmente en forma exterior al transformador de potencia, ya sea junto al tanque o separado y dependiendo del diseño del fabricante puede ocupar mayor o menor espacio en la subestacion, dentro del llamado modulo de transformación.

Conexiones de transformadores

La ASA (American Standars Asociation) elaboro un sistema para marcar las terminales de los transformadores, por lo que se llego a que las terminales del lado de alto voltaje se marcan H1, H2 y H3 y las del bajo voltaje se marcan X1, X2 y X3. La terminal H1 esta siempre situado del lado izquierdo, cuando el transformador se ve del lado de bajo voltaje.

Entre las conexiones que podemos encontrar se encuentran las siguientes:


1.- Conexión delta - delta

Esta se utiliza comúnmente en lugares donde existen tensiones relativamente bajas: como en sistemas de distribución que se utilizan para alimentar cargas trifasicas a 3 hilos.

2.- Conexión delta - estrella

Esta conexión se emplea en aquellos sistemas de transmisión en que es necesario elevar voltajes de generación, en sistemas de distribución conveniente por que se pueden tener 2 voltajes diferentes (entre fase y neutro).

Esta conexión es la mas utilizada por lo cual las pruebas que se presentan en este trabajo son de este tipo de conexión

3.- Conexión estrella - estrella

Esta conexión se emplea en tensiones muy elevadas, ya que se disminuye la cantidad de aislamiento.

4.- Conexión estrella - delta

Esta se utiliza en los sistemas de transmisión de las subestaciones receptoras cuya función reducir voltajes. es empleada en algunas ocasiones para distribución rural a 20 Kv.

5.- Conexión delta abierta - delta abierta

Esta se ser una conexión de emergencia en transformadores trifasicos, ya que si en un transformador se quema o sufre una avería cualquier de sus

fases, se puede seguir alimentado carga trifasica operando el transformador a dos fases, solo que su capacidad disminuye a un 5.8 % aprox. Estos transformadores se emplean es sistemas de baja capacidad y usualmente operan como autotransformadores

Los procedimientos de prueba son los siguientes:

- No desconecte la conexión a tierra en el transformador del tanque y núcleo. Asegúrese que el tanque y el núcleo del transformador estén aterrizados.
- Desconecte todo el alto voltaje, bajo voltaje y conexión a neutro, apartarrayos, sistemas de ventilación, contador o algún sistema de control de bajo voltaje.
- Antes de iniciar la prueba soltar juntas todas las conexiones de alto voltaje, asegurándose que los colados sean limpios de todo metal y partes a tierra. También suelte juntos todos los bajos voltajes y conexiones a neutro, asegurándose que los colados sean limpios de todo metal y partes a tierra.
- Use un megohmetro con una escala mínima de 20,000 Megaohms.
- Mantenimiento de resistencias son entonces puestas entre cada una de las bobinas y tierra. La bobina debe ser medida teniendo la tierra removida en orden a medición de resistencia de aislamiento.
- El megohmetro puede tomar lecturas si es mantenido por un periodo de un minuto. Hace las siguientes lecturas para transformadores de arrollamientos:

Arrollamiento de alto voltaje a bobina de bajo voltaje y a tierra.

Bobina de alto voltaje a tierra.

Bobina de bajo voltaje a bobina de alto voltaje y a tierra.

Bobina de bajo voltaje a tierra.

Bobina de alto voltaje a bobina de bajo voltaje.

Las conexiones para estas pruebas son presentadas en las fugas 2.1 (a) hasta (e) y 2.2 (a) hasta (e).

- El megohmetro puede leer o grabar a lo largo de la prueba de temperatura (°C). La lectura puede ser correcta a 20°C para los factores de corrección presentados en la tabla 2.1. Si los valores de prueba de campo correctos son un medio o mas de lecturas de aislamiento de fabrica a 1,000 megaohms o cualquier menor, el transformador es considerado para la prueba de alta potencia.

- Para transformadores de tres arrollamientos, la prueba podrá ser hecha como sigue:

Alta a baja, terciario y a tierra (H-LTG) Terciario a alta, baja y tierra (T-HLG) Baja a alta, terciario y a tierra (L-HTG) Alta, baja y terciario a tierra (HT-G) Alta, baja y terciario a tierra (HT-LG) Baja y terciario a alta y tierra (LT-HG) Alta y baja a terciario y tierra (HL-TG)

- No se puede hacer la prueba del megohmetro del arrollamiento de transformador sin el liquido del transformador porque el valor de resistencia de aislamiento en aire puede ser menor que el liquido. Tampoco podrá ser la resistencia de aislamiento del transformador cuando este bajo vacío por la posibilidad de una descarga a tierra.

En la figura 2.2 las conexiones de prueba expuestas en (a), (c) y (e) son mas utilizadas. Las conexiones de prueba en la figura 2.2 (b) y (d) son prácticamente iguales a las lecturas de conexiones de prueba (c) y (e).

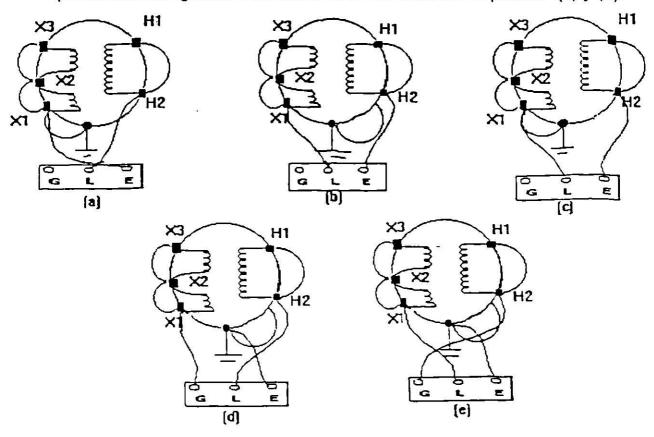
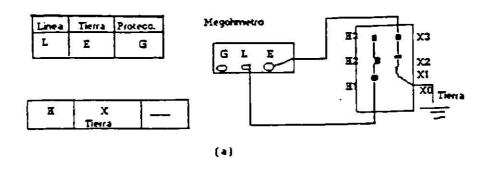
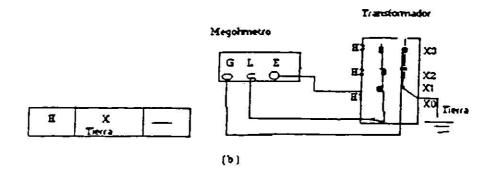




Fig. 2.1 Prueba de conexiones para aislamiento resistivo de transformadores de una sola fase.

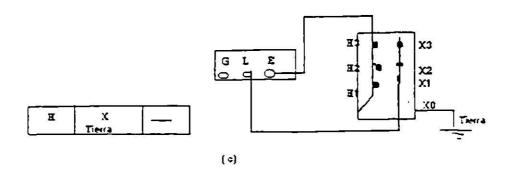
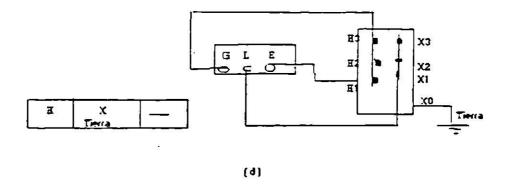



Fig. 2.2 Conexiones de prueba para resistencia de aislamiento para transformadores trifasicos. (a) Conexion de bobina de alta a bobina baja a tierra; (b) Conexion para bobina de alta a tierra y bobina de alta protegida; (c) Conexion de bobina de baja a bobina de alta a tierra; (d) Conexion de bobina de baja a tierra y bobina de alta y protegida; (e) Conexion de bobina de alta a bobina de baja.

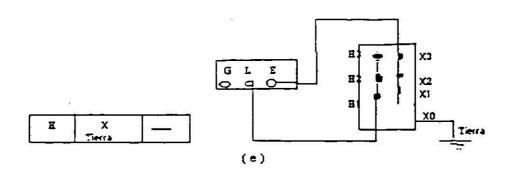


Fig. 2.2 Conexiones de prueba para resistencia de aislamiento para transformadores trifasicos. (a) Conexion de bobina de alta a bobina baja a tierra; (b) Conexion para bobina de alta a tierra y bobina de alta protegida; (c) Conexion de bobina de baja a tierra y bobina de alta y protegida; (e) Conexion de bobina de alta a bobina de baja. (Continuacion)

Prueba de absorción dieléctrica

Esta prueba es una extensión de la prueba de medición de resistencia de aislamiento para transformadores expuestos al ambiente. La prueba consiste en aplicar voltaje por 10 minutos y tomar lecturas de medición de resistencia a intervalos de 1 minuto.

Los valores de resistencia medidos durante esta prueba son graficados en papel logarítmico con coordenadas de resistencia contra tiempo.

La inclinación de la curva para un buen sistema de aislamiento es una línea recta incrementándose con respecto al tiempo, mientras que un pobre sistema de aislamiento tiene una curva de caída con respecto al tiempo. Estas son dos pruebas especiales bajo la prueba de absorción dieléctrica.

- Prueba para índice de polarización

La razón de resistencia de bobinas para valores de 10 minutos hasta 1 minuto es definida como el índice de polarización (PI). El PI proporciona información sobre la humedad y deterioro del aislamiento de las bobinas. Los valores del PI pueden variar desde arriba de 2 hasta por debajo de 1.

Un valor aceptable debe de ser menor de 1 y mayor de 1, valores entre 2 y 1 indican condición mínima aceptable y valores inferiores a 1 indican una condición no aceptable.

- Prueba de razón de absorción dieléctrica

La razón de resistencia de aislamiento en bobinas para valores desde 6 segundos hasta 30 segundos, esta definida como la razón de absorción dieléctrica (DAR).

Esta prueba proporciona información similar a la prueba PI excepto que la duración de la prueba es mas corta.

Las conexiones y procedimientos de prueba para conductores son iguales para mantenimiento de resistencia de aislamiento de las bobinas del transformadores.

Prueba de alto potencial en CD (Hi-pot)

La prueba de alto potencial en CD es aplicada en alto porcentaje de voltaje para evaluar la condición del aislamiento de las bobinas del transformador. La prueba de alto voltaje en CD no es recomendada en transformadores de potencia por encima de 34.5 Kv.; en su lugar la prueba de alto potencial en c.a. debe ser usada.

Generalmente, por rutina el mantenimiento del transformador, esta prueba no es empleada por la posibilidad del daño al aislante de la bobina

De cualquier modo, esta prueba es hecha para aceptación y reparar los transformadores.

En caso que la prueba de Hi-pot sea dirigida para un mantenimiento de rutina los valores de la prueba no deben de exceder del 65 % de los valores de prueba de fabricación, el cual es igual a 1.6 veces el valor del tiempo de c.a. para pruebas periódicas.

La prueba de Hi-pot de CD puede ser aplicada como una medición de la prueba de voltaje donde las lecturas de corriente de salida son tomadas por cada medición.

Si la corriente de salida es excesiva es notificada, el alto voltaje puede ser atrasado antes de dañar la pieza. Por esta razón, la prueba de Hi-pot en CD es considerada una prueba no destructiva.

Algunas compañías llevan a cabo la prueba de Hi-pot de c.a. para índice de voltaje por 3 minutos para pruebas periódicas en lugar del 65 % de la prueba de voltaje de fabrica. Los valores de la prueba de Hi-pot para voltajes de CD son mostradas en la tabla 2.3.

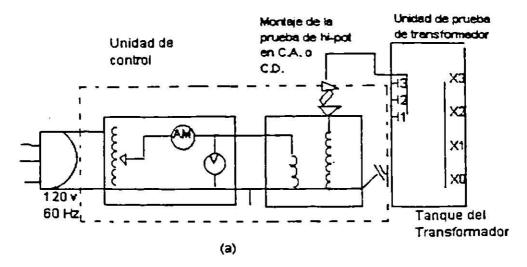

Bobina del transformador Razon de voltaje (KV)	Factor de prueba Voltaje de C.A. (KV)	Mantenimiento de rutina Voltaje de C.D. (KV)
1.2	10	10.40
2.4	15	15.60
4.8	19	19.76
8.7	26	27.04
15.0	34	35.36
18.0	40	41.60
25.0	50	52.00
34.5	70	72.80

Tabla 2.3 Valores de la prueba dielectrica para mantenimiento de rutina del liquido de los transformadores.

El procedimiento se ve en la figura 2.3 (a) y (b) para la conexión de esta prueba.

- El transformador debe tener aprobada la prueba de resistencia de aislamiento antes de iniciar esta prueba.
- El transformador debe ser seguro de la carcasa, núcleo y tierra.
- Desconectar todo el alto voltaje, bajo voltaje y conexiones a neutro, sistema de control de bajo voltaje, sistema de ventilación y conecte los contadores a las bobinas y núcleo del transformador.
- Cortocircuite con cables uniendo todas las conexiones de alto voltaje a el mismo potencial con respecto a tierra. También cortocircuite con cables el bajo voltaje y el conectado a tierra.

- Conecte la prueba de alto potencial realizándola entre alto voltaje y tierra. Gradualmente aumente el voltaje por 1 minuto, después decremente gradualmente el voltaje hasta cero.
- Quite el bajo voltaje a los cables a tierra y conecte la prueba de alta potencia realizándola entre las bobinas de bajo voltaje y tierra. Gradualmente aumente el voltaje por 1 minuto, después decremente gradualmente el voltaje hasta cero.
- Si el procedimiento de las dos pruebas no causa daños o fallas el transformador es considerado satisfactorio y puede ser energizado.
- Desconecte todos los cables y vuelva a conectar todas las conexiones del primario y secundario y otros equipos del sistema que este pueda tener desconectados.

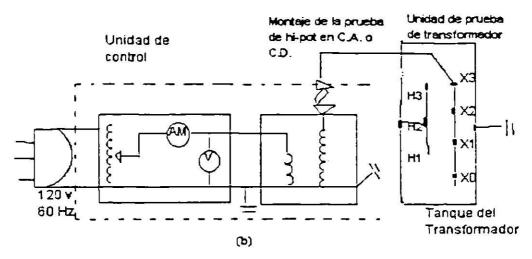


Fig. 2.3 Conexion de la prueba de alto voltaje del transformador (hi-pot) a: Conexion de la prueba hi-pot en las bobinas de alta. (b) Conexion de la prueba de hi-pot en las bobinas de baja.

Precauciones y consideraciones al ejecutar la prueba de Hi-pot

El liquido en el transformador de los dos sistemas de aislamiento están en serie, esto es, aislamiento sólido con aceite o fluido sintético. Cuando a la prueba de Hi-pot de c.a. o c.d. se aplica voltaje, la caída de voltaje es distribuida como sigue:

Voltaje	Papel celulosa aislamiento	Aceite	
C.A.	. 25 %	75 %	
C.D	75 %	25 %	

Cuando utilice corriente directa en el liquido del transformador, el aislamiento sólido puede ser sobrecargado.

Este aislamiento puede ser debilitado cerca al neutro, puede permanecer en servicio debido a la baja tensión bajo condiciones de operación. De cualquier modo, cuando el voltaje esta sujeto a la prueba de Hi-pot, este puede caer y requeriri reparación inmediata. El aislamiento debilitado puede ser detectado por la medición de bajos voltajes.

Si una prueba de Hi-pot es llevada a cabo por un mantenimiento de rutina, hay que considerar :

- 1.- Simular una falla que pueda ocurrir.
- 2.- Tener un repuesto o pieza a la mano.
- 3.- Tener personal disponible para desempeñar el trabajo.

2.3 Cables y accesorios

Las pruebas de cables por la carta de deterioro gradual por los años, hace aceptables las pruebas de la instalación, para verificación de empalmes y uniones, y para probar reparaciones especiales.

El mantenimiento prueba el criterio a ejecutar sobre los cables que están a prueba de voltaje para el 60 % de la prueba final de voltaje de fabricación.

Las pruebas de voltaje de CD en cables, son medidas la resistencia de aislamiento y la prueba de alta potencia en CD (prueba de Hi-pot en CD). La prueba de Hi-pot en CD puede ser hecha como caída de corriente contra prueba de voltaje y caída de corriente contra prueba de tiempo. Estas son propiedades del comportamiento de la primera prueba de medición para resistencia de aislamiento, y si los datos obtenidos son bien vistos, entonces se procede con la prueba de sobrepotencial.

- Prueba de medición de la resistencia de aislamiento

La resistencia de aislamiento es medida por un instrumento consistente de un generador de voltaje directo, y un ohmetro de alto rengo, este da lecturas de aislamiento en ohms y megaohms; este es un método no destructivo para determinar la condición del aislamiento del cable para comprobar la contaminación debido a humedad, suciedad o carbonización.

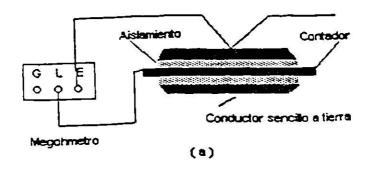
El método de medición de resistencia de aislamiento no da la lectura de resistencia dieléctrica de aislamiento no da la lectura de resistencia dieléctrica de aislamiento del cable o fragilidad en el cable, siendo los siguientes voltajes usados para indicar cables.

Rango de voltaje del cable

Voltaje del Megohmetro

abajo de 300 Volts 300 a 600 Volts 2.4 a 5 Kv. arriba de 5Kv 500 Volts 500 a 1 Kv. 2.5 a 5 Kv. arriba de 5 Kv.

El siguiente es el procedimiento general cuando se utiliza un megohmetro (Megger) para la prueba de medición de resistencia.


- Desconecte el cable a ser probado por otros equipos y circuitos para garantizar que no esta energizado.
- Descargue toda la capacitancia (ver apéndice) almacenada en el cable por tierra antes de la prueba, además después de terminal la prueba.
- Conecte la terminal de línea del aparato al conductor a prueba.
- Aterriza los otros conductores juntos en la vaina y a tierra. Conecte este a la terminal de tierra del aparato de la prueba.
- Igualmente tome otros valores de resistencia de aislamiento entre un conductor y otros conductores conectados, un conductor a tierra y sobre manera.

Las conexiones son presentadas en la figura 2.4 (a) hasta (d).

- La terminal de protección del megohmetro puede ser usada para eliminar los factores de perdidas de superficie a través de aislamiento expuesto en la parte final del cable, o ambos extremos del cable o perdidas por tierra.

Las mediciones de resistencia de aislamiento debe ser realizada a intervalos regulares y registrada para propósitos de comparación. Guardado en la memoria para comparaciones; las lecturas deben ser correctas a una baja temperatura, tal como 20 °C.

Un continuo descenso en una indicación de aislamiento deteriorado aunque los valores medidos de resistencia son superiores a los limites mínimos aceptados.

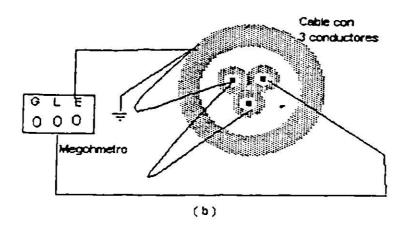



Fig. 2.4 Conexiones de la prueba de cable para medicion de la resistencia de aislamiento: (a) Conexio para la prueba de un conductor sencillo y un conductor a tierra. (b) Conexion para un cable de tres conductores, un conductor a el otro conductor y el envolvente a tierra. (c) Conecion para un cable de tres conductores, un conductor a la vaina y a tierra y dos conductores protegidos. (d) Conexion para un cable de tres, un conductor a todos los otros conductores sin perdidas por tierra.

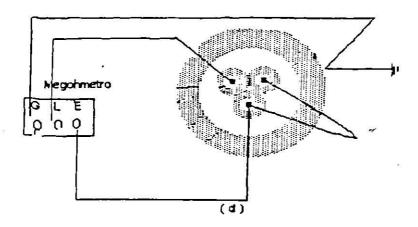


Fig. 2.4 Conexiones de la prueba de cable para medicion de la resistencia de aislamiento: (a) Conexio para la prueba de un conductor sencillo y un conductor a tierra. (b) Conexion para un cable de tres conductores, un conductor a el otro conductor y el envolvente a tierra. (c) Conecion para un cable de tres conductores, un conductor a la vaina y a tierra y dos conductores protegidos. (d) Conexion para un cable de tres, un conductor à todos los otros conductores sin perdidas por tierra. (continuacion)

- Prueba de sobrepotencial en CD

Esta prueba es para la aprobación y mantenimiento de cable. Ello indica la condición relativa del aislamiento a voltajes mayores o cercanos a los niveles de operación.

Esta prueba es usada para la identificación de debilidades en el aislamiento del cable y además para una avería o falla incipiente aunque no se recomienda. Por lo tanto, la falla incipiente de averías probables debe ser anticipado antes, y durante la prueba de Hi-pot.

Si el cable falla esto es indicado por los cambios en la fuga de corriente, y si anteriormente el aislamiento es dañado la prueba puede ser detenida.

Los valores de voltaje de prueba para CD en la prueba de Hi-pot están basados sobre la prueba de voltaje final de fabrica, el cual esta determinado por el tipo y espesor de aislamiento, el tamaño del conductor, la construcción del cable, y aplicaciones en los estándares industriales.

Los valores de la prueba de CD correspondientes a un factor de CA de prueba apara los voltajes de CA para cada sistema de aislamiento.

Esta razón se distingue como K la cual cuando es multiplicada por la prueba de aceptación con un factor del 80 % y manteniendo el factor del 60 % produciendo los factores de conversión para obtener los voltajes de prueba de CD para las pruebas de Hi-pot, siendo estos factores de conversión para prueba de voltajes los mostrados en la tabla 2.4.

Como una regla general, para la existencia de cables el mayor valor para mantenimiento no debe exceder del 60 % del voltaje de prueba final de fabricación, y el valor mínimo de prueba no debe ser menor que el de CD equivalente del voltaje de operación.

En caso que el cable no pueda ser desconectado de todo el equipo conectado, el voltaje de prueba debe ser reducido a el nivel de voltaje de menor valor del equipo conectado.

La prueba de Hi-pot puede ser conducida como un paso de la prueba de voltaje como sigue.

	Factor de conversion		
		Aceptacion de C.D. Voltaje de prueba	Mantenimiento de C.D. Voltaje (0.6 x k)
Tipos de aislantes	K	$(0.8 \times k)$	
Papel impregnado cubierto de plomo	2.4	1.92	1.44
Cuagulo de varniz	2.0	1.60	1.20
Resistencia de hule compuesto de goma	3.0	2.40	1.80
Polietileno	3.0	2.40	1.80
Cloruro de polivinilo	2.2	1.76	1.32
Compuesto de goma	2.2	1.76	1.32

Tabla 2.4 Factores de conversion para la prueba de hi-pot en c.d.

Voltaje contra prueba de caída de corriente

Aquí el voltaje es elevado en iguales pasos y el tiempo es puesto entre cada paso para la caída de corriente para llegar a ser estable; siendo la corriente alta como el voltaje aplicado debido a la capacitancia de la corriente de carga, caída de corriente en la superficie, y corriente de descarga parcial.

Como instantes del paso, estas corrientes transitorias llegan a ser mínimas con el estado estable de la corriente restante, que es la actual caída de corriente y una pequeña cantidad de absorción de corriente.

En cada paso de voltaje, la caída de corriente registrada es tomada antes del procedimiento al siguiente paso, usualmente, es recomendado por lo menos en ocho pasos iguales de voltaje y 1 a 4 minutos entre pasos.

La caída de corriente contra voltaje son trazados como una curva. Tan larga como esta trazada la curva es lineal para cada caso, el sistema de aislamiento esta en buena condición, pero si la caída de corriente empieza a aumentar debe ser notificado en el mostrado en la figura 2.5 punto A. Si la prueba es seguida mas allá de esta prueba de voltaje, la caída de corriente se incrementa rápido y de inmediato cae puede suceder en el aislamiento del cable. A menos que la caída sea deseada la prueba debe ser detenida tan pronto como sucede el incremento de la inclinación y sea notificado en la curva de voltaje de voltaje contra la caída de corriente.

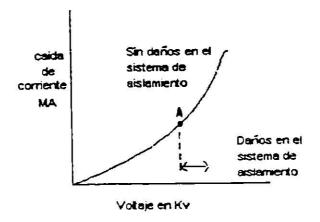


Fig. 2.5 Paso de voltaje alto-potencial prueba de corriente.

Caída de corriente contra tiempo de prueba

Cuando el voltaje de prueba final de caída de corriente contra prueba de voltaje es alcanzado, puede ser dejado encendido 5 minutos, y la caída de corriente contra tiempo puede ser trazada para intervalos regulares de tiempo como la caída de corriente durante estos pasos para un alto valor inicial hasta un valor en estado estable.

Una buena curva como la figura 2.6 para cables debe indicar un decremento en la caída de corriente con respecto a tiempo o un valor en estado estable sin algún incremento de corriente durante la prueba.

Fig. 2.6 Caida de corriente contra tiempo

Prueba de sobrepotencial

La prueba de Hi-pot es como un funciona, o no funciona en la prueba de sobrepotencial.

El voltaje es aplicado gradualmente para suministrar un estado de caída de corriente hasta el valor especificado, usualmente, 1 a 1.5 minutos es suficiente para alcanzar el voltaje final de prueba y ya llegado al voltaje final es mantenido por 5 minutos, y si el aumento en la corriente por la falla de corto circuito, la prueba estará bien; aunque esta prueba no proporciona suficiente información como de resistencia requerida.

Este tipo de prueba es realizada después de la instalación y reparación, donde solo un cable resiste la verificación de fuerza sin un daño estaría certificado.

Prueba de sobrepotencial de CD (conexiones y procedimientos)

La prueba de conexiones para esta prueba son iguales a los que muestran en la figura 2.4 (a) y para cables de tres conductores son iguales a los que muestran en la figura 2.4 (b) y (c). Los procedimientos de prueba son los siguientes:

- El cable puede ser probado si esta desenergizado, abierto en ambos extremos si es posible, y aterrizado a descarga, ninguna carga electrostática en el cable. Interruptores, transformadores de potencia,

alto voltaje en la posición de apagado (off) con el interruptor del control de voltaje colocado en la posición de cero antes de iniciar la prueba.

- Conecte el aparato asegurándose de conectar a una buena tierra el Hipot de CD (nunca opere el aparato sin esta conexión) y que las conexiones estén apretadas.
- Conecte la línea de retorno para otros conductores que no estén bajo prueba a tierra y a la terminal de toma de tierra o a la protección del aparato. El interruptor de aterrizado del Hi-pot debe colocar en un rango adecuado, siendo alrededor 100 Volts de aislante requeridos en la línea de retorno. Conecte la protección y vaina a tierra y a la terminal de tierra del aparato. La terminal de tierra esta provista por derivación de corriente debido a la corona alrededor micrometrica de manera que al corona de corriente no es incluida en la lectura de prueba.
- Conecte un extremo de la salida o línea del cable a la fase deseada del cable bajo prueba, donde la corona de corrientes puede ser supuesta debido a la aplicación de alto voltaje se recomienda que las conexiones sean roscadas, tapadas con bolsas de plástico o usar un aro de corona o protector de corona y el extremo del cable de salida es conectado a la salida o montaje de línea del aparato de prueba.
- El cable usado para conectar el aparato Hi-pot al cable bajo prueba, que es, la línea o cable de salida, debe ser corto y directo y sostenido a la línea del tramo de manera que no toque el suelo o aterriza materiales o superficies.

En caso de extensión de cables son usados con la salida o línea hasta alcanzar el cable bajo prueba, de preferencia usar cables cubiertos para este objeto. Los cables de extensión cubiertos y el cable deben ser corridos desde el empalme cubierto y el cable del Hi-pot debe ser conectado con un empalme cubierto, el cual debe ser corrido desde el empalme para evitar fugas posteriores.

En caso de que el cable de extensión no sea cubierto, debe ser precavido de colocar para mantener el alambre no cubierto lejos del aterrizado así como de superficies.

- Cuando el cable cubierto es probado, lo recomendado es arreglar la tapa posterior alrededor de 2.54 mm para cada 10 Kv. La cubierta en el aparato, el extremo del cable es conectado a tierra y la cubierta en el otro extremo del cable puede ser encintado y dejado pendiente sin alguna conexión hecha a este.
- El aparato de prueba debe ser conectado dentro de 115 Kv., 60 Hz de salida. Es importante que la CD que proporciona el voltaje tenga una

buena regulación en la línea, porque el voltaje de CD de salida del aparato depende de la línea de CD de voltaje de entrada.

El rango de voltaje de prueba en Kv. debe ser seleccionado antes de iniciar la prueba.

La potencia ahora puede ser cambiado a encendido (ON) y la prueba empieza uno como paso de voltaje o como prueba en marcha no en marcha.

- Después de que la prueba es concluida, cambie el interruptor de alto voltaje del aparato a la posición de apagado (OFF). Deje el cable probado descargando a través del circuito interno del aparato o la tierra externa aplicada al cable por medio de la varilla caliente o guantes. No toque el cable hasta que este completamente descargado.
- Conecte una tierra al cable que fue probado y déjelo conectado por lo menos el doble del tiempo de prueba o hasta que el cable sea conectado dentro del sistema

CAPITULO 3

Pruebas De Corriente Alterna Para Equipos Electricos

3.1 Introducción

Estas pruebas son usadas en campo para mantenimiento o para aceptar equipos eléctricos, siendo estas pruebas para lo que son transformadores, líquidos aislantes y cables; siendo las pruebas mas usadas la de alto potencial y la de factor de potencia.

La prueba de alto potencial se hace con voltajes superiores al voltaje nominal de operación siendo pruebas de corta duración y la prueba del factor de potencia es sobre el aislamiento del sistema y mide el coseno del ángulo entre la corriente de la carga y el voltaje aplicado.

3.2 Transformadores

Las pruebas a los transformadores se pueden hacer con un voltaje de CA o CD aunque se prefiere la prueba con CA porque se pueden simular los esfuerzos internos a que se somete un transformador durante condiciones normales de operación.

Las siguientes son las pruebas que se hacen a un transformador.

- Prueba de alto potencial con CA (Hi-pot).
- Prueba del factor de potencia de aislamiento.
- Relación de vueltas del transformador (TTR).
- Prueba de polaridad.
- Prueba de potencial inducido.
- Prueba de excitación.

Prueba de alto potencial con CA (Hi-pot)

Esta prueba se hace para evaluar la condición de los devanados del transformador, y se hace para todos los voltajes, especialmente para los superiores a 34.5 Kv.

En mantenimiento, el voltaje de prueba no debe exceder del 65 % ya que se pueden dañar los aislamientos de los devanados; y en campo se hace con un voltaje de prueba del 75 % del valor con que se hizo la prueba en fabrica.

Los valores de la prueba para diferentes relaciones de voltaje en transformadores se ve en la tabla 3.1.

Relacion de	Voltaje aplicado	Voltaje aplicado	Voltaje aplicado
voltaje (KV)	Prueba de fabrica	En campo (KV)	(KV) en mtto. de
a. a. a.		75%	rutina 65%
1.20	10	7.50	6.50
2.40	45	11.20	9.75
4.80	19	14.25	12.35
8.70	26	19.50	16.90
15.00	39	25.50	22.10
18.00	40	30.00	26.00
25.00	50 .	37.50	32.50
34.00	70	52.50	45.50
46.00	95	71.25	61.75
69.00	140	105.00	91.00

Tabla 3.1 Prueba de alto potencial de c.a. para aceptacion y en mantenimiento de rutina en transformadores autoenfriados en aceite aislante.

Prueba de factor de potencia del aislamiento

Esta prueba se hace en transformadores de alto voltaje y mide la perdida de potencia debido a las corrientes de fuga a través del aislamiento.

El factor de potencia puede se representa como la relación de watts (W) dividido con los volt-amperes; y la ecuación se escribe de la forma siguiente:

$$f.p. = W/E \cdot I = E \cdot I \cdot cos /E \cdot I$$

donde :

E = Voltaje de fase

I = Corriente total de fase

= Angulo de fase entre E e I

W = Watts

La corriente total de fase (I) es la resultante de las corrientes resistiva (Ir) y capacitiva (Ic), pero cuando el transformador es energizado con el secundario abierto (sin carga), la corriente resistiva es muy pequeña que es limitada por las perdidas dieléctricas.

Esta es una condición de cuando el factor de potencia es muy bajo y la mayor parte de la corriente es corriente capacitiva; así entonces se puede representar el factor de potencia como la relación de la corriente resistiva y la corriente capacitiva.

La figura 3.1 muestra una forma típica simple de un transformador de 2 devanados y pruebas standard que le son aplicadas y los valores aceptados en la prueba de factor de potencia para transformadores se ven en la tabla 3.2.

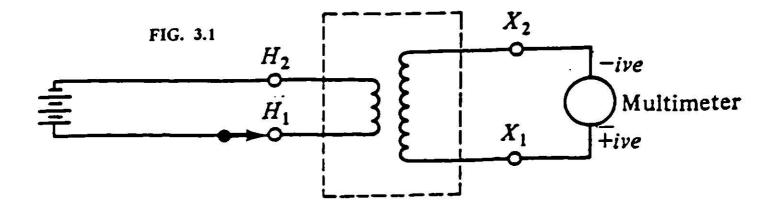


Fig. 3.1

% Del Factor de Potencia		or de Potencia
Bueno	Limite	Investigar
0.5 o menos	0.5 a 1.0	Arriba de 1.0
0.5 o menos	0.5 a 1.0	Arriba de 1.0
0.5 o menos	0.5 a 1.0	Arriba de 1.0
	0.5 o menos 0.5 o menos	Bueno Limite 0.5 o menos 0.5 a 1.0 0.5 o menos 0.5 a 1.0

Tabla 3.2 Valores de factores de potencia para transformadores

Prueba de relación de vueltas del transformador (TTR)

En la prueba se aplican 8 Volts de CA al devanado de bajo voltaje del transformador bajo prueba y el transformador de referencia en el equipo TTR, además de que están conectados a traves de un instrumento detector. Después que la polaridad ha sido establecida a 8 Volts, cuando el aparato detector indica cero, la lectura que se lee, indica la relación de vueltas del transformador bajo prueba.

La prueba de relación de vueltas (TTR) proporciona la siguiente información:

- Determina la relación de las vueltas y la polaridad de los transformadores monofasicos y trifasicos.
- Confirma la relación de transformación de los datos de placa del transformador.
- Determina la relación de vueltas y polaridad (pero no la relación de voltaje) de transformadores que no tienen datos de placa. Esta prueba no incluye la posición de le tap de derivaciones del transformador.
- Identifica perturbaciones en los devanados del transformador, por ejemplo si estos devanados están abiertos o en corto circuito. Los resultados de esta prueba, deberán estar dentro de un 0.5 % de los datos de plaça.

Prueba de polaridad

La prueba de polaridad puede hacerse con un TTR en transformadores de potencia, distribución y potencial. Sin embargo para transformadores de corriente el TTR no es usado; en lugar se aplica una CD a través de una batería y un multimetro y su conexión se ve en la figura 3.1. Esta prueba con una batería de CD se puede usar en transformadores de potencia y distribución, pero el TTR es preferible.

El voltaje de CD de la batería que es usado es de 7.5 volts y el multimetro tiene un rango de voltaje de 3 volts.

Prueba de potencial inducido

Esta es una prueba que se hace con niveles de voltaje mas altos que los voltajes normales de operación. Bajo esta prueba el aislamiento entre devanados y entre fases es sometido a un esfuerzo de un 65 % por encima de la prueba a que es sometida en fabrica a una frecuencia arriba de 60 ciclos, por lo general de 200 a 300 ciclos. La frecuencia con que se hace esta prueba es de 5 años.

Como la prueba de potencial inducido sobre éxitos el transformador, la frecuencia del potencial aplicado deberá ser lo suficiente alta para asegurarnos que la corriente de excitación del transformador excede cerca de un 30 % de esta misma corriente cuando esta a plena carga, por lo general la frecuencia es de 120 ciclos.

Cuando se aplican frecuencias arriba de 120 ciclos la prueba es mas severa y por esta razón la duración de esta debe ser reducida tal como se muestra en la tabla 3.3.

Frecuencia (Hz)	Duracion (tiempo) (en segundos)	
120 o menos	60	
180	40	
240	30	
300	20	
400	18	

Tabla 3.3 Duracion de la prueba de potencial inducido a diferentes frecuencias

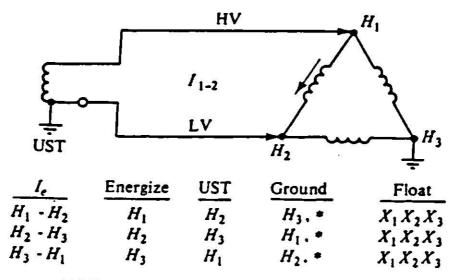
El voltaje para empezar esta prueba deberá ser de la cuarta parte o menos del voltaje nominal e irse aumentado hasta alcanzarlo en no mas de 15 segundos. Después de mantener la prueba el tiempo mostrado en la tabla 3.2, se reduce el voltaje en un tiempo no mayor a los 5 segundos, a una cuarta parte del voltaje nominal o menos y en circuito abierto.

Cuando esta prueba se hace a transformadores trifasicos, se puede desarrollar energizando una fase y el voltaje se plica entre líneas con la fase que se esta probando a tierra. Los neutros del devanado pueden o no ser aterrizados durante la prueba

Cuando la prueba de voltaje inducido sobre un devanado, da como resultado un voltaje entre terminales de otro devanado y que exceda la frecuencia del voltaje aplicado, entonces los devanados pueden ser separados y aterrizados.

Prueba de corriente de excitación

La prueba de corriente de excitación (ver figura 3.2) cuando es usada en mantenimientos preventivos rutinarios para aceptar transformadores, provee un medio de detección si tiene corto circuito en sus devanados, problemas en su núcleo, falsos contactos interiores. etc.


La corriente de excitación (o corriente en vacío de el transformador) en un transformador es la corriente en el primario del mismo cuando es aplicado un voltaje en este lado y el secundario se mantiene en circuito abierto.

Esta prueba se realiza de la siguiente manera :

En la figura 3.2 (a) se representa la fase H 1-2 energizada de una conexión trifasica en delta. Tres medidas son hechas de rutina (H 1-2, H 2-3 y H 3-1) a voltajes abajo del nominal, no excediendo de 2.5 Kv. ó 10 Kv. dependiendo de la relación que tenga el equipo de prueba. El devanado de bajo voltaje no es mostrado en la figura, esta aislado de la

fuente de voltaje o carga durante la prueba. Si la conexión esta en estrella, el neutro esta aterrizado.

La figura 3.2 (b) ilustra la misma prueba con una fase energizada, estando un transformador trifasicos conectado en estrella.

*If X is wye - connected, X_0 is grounded

Fig. 3.2 (a)

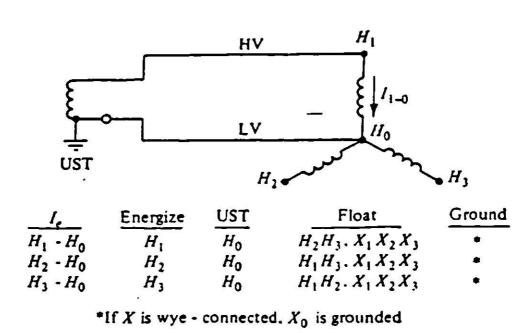


Fig. 3.2 (b)

3.3 Pruebas de líquidos aislantes

Los líquidos aislantes tales como aceites, silicon, etc., son usados en transformadores, interruptores, capacitores, debido a que estos líquidos aislantes se deterioran durante su uso, es necesario monitorearlos y hacerles pruebas para determinar sus propiedades dieléctricas.

Este punto describe las pruebas de voltaje alterno y de factor de potencia para determinar las condiciones de estos líquidos y prevenir fallas.

Prueba dieléctrica en líquidos (Cup Tests)

Esta prueba de sobre voltaje alterno se aplica a los líquidos aislantes para determinar su punto de ruptura. Los valores típicos de ruptura son mostrados en la tabla 3.4.

Tipos de liquidos	Rupturas dielectrica en (KV) Satisfactorio Regenerar	Se necesita
Aceite	23	Menor de 23
Askerel	26	Menor de 25
Silicone	26	Menor de 26
Wecosol	26	Menor de 26

Tabla 3.4 Valores dielectricos para liquidos aislantes en transformadores.

La prueba dieléctrica consiste en tomar una muestra del liquido aislante del transformador en un pequeño o tasa (cup) y aplicarle voltaje entre los electrodos sumergidos en dicho aceite.

La prueba es repetida por lo menos 5 veces para determinar el promedio de ruptura en Kv.

En líquidos como Askarel, aceite, es utilizado un recipiente (cup) que tiene en su interior los electrodos separados 2.5 mm = 0.1 pulgadas. Esta prueba es descrita paso por paso en seguida.

Prueba dieléctrica ASTM D-877

Generalmente los equipos con que se va a efectuar una prueba de rigidez dieléctrica son portátiles.

Las pruebas dieléctricas cuya ruptura en Kv. estén en el orden de 40 kv., son aceptables.

Las instrucciones y procedimientos son los siguientes:

- a) .- Los electrodos y la copa deberán limpiarse con papel de seda o gamuza que estén limpios y secos. El espacio entre electrodos es una medida standard de 0.1 pulgadas.
- b) .- Los electrodos y la copa deberán estar libres de gasolina o solventes utilizados en su limpieza y secado.
- c) .- Después de haber cumplido con los incisos (a) y (b), la copa es llevada con un liquido aislante que se va a probar y una vez que este completamente estático (sin burbujas), se aplica voltaje a razón de 3 kv. / seg. hasta que sucede la ruptura.
- d) .- Al comenzar cada prueba, los electrodos deben de ser examinados para cerciorarse de que estén libres de impurezas, acumulación de carbón, separación de electrodos, etc.
- e) .- Si en una prueba, la ruptura salió por abajo de los valores establecidos para que el aceite sea aceptado, los electrodos y la copa deberán ser limpiados y preparados antes de hacer una segunda prueba.
- f) .- La rigidez dieléctrica se ve alterada por impurezas y para obtener resultados satisfactorios, el aceite debe de ser filtrado varias veces hasta obtener puntos de ruptura de acuerdo con los valores mínimos establecidos.
- g).- La temperatura que debe de haber al hacer una prueba no debe de ser menor de 20 °C (68 °F).
- h) .- El voltaje aplicado comenzara de cero y se incrementara a razón de 3 kv. / seg. hasta obtener el punto de ruptura.

Procedimiento para el muestreo de líquidos aislantes

Los recipientes de vidrio son recomendados, para las muestras de aceite a las que se le van hacer las pruebas de rigidez dieléctrica debido a que fácilmente pueden inspeccionarse y cerciorarse de que están completamente limpios.

Muestreo de aceite de transformadores

Las instrucciones generales para un muestreo de aceite de transformadores son las siguientes:

1.- Para las pruebas de rigidez dieléctrica, acidez y tensión interfacial, con una muestra en un recipiente cuyo volumen sea menor a los 2 litros es suficiente.

- 2.- Las muestras deberán ser tomadas en días secos, y con poca humedad.
- 3.- Las muestras no deberán de ser tomadas en días lluviosos que tienen por una humedad atmosférica arriba del 70 %.
- 4.- Las muestras hay que protegerlas del viento y del polvo.
- 5.- Si las muestras son tomadas de válvulas, hay que limpiarlas para que estén libres de polvo y otros contaminantes.

Prueba del factor de potencia

El factor de potencia de un liquido aislante es el valor que se obtiene del coseno del ángulo de desfasamiento entre el voltaje aplicado y la corriente resultante. El factor de potencia indica la perdida de capacidad dieléctrica del liquido aislante y que aumenta al incrementarse la temperatura. La prueba del factor de potencia es ampliamente usada en pruebas de aceptación y mantenimientos preventivos en líquidos aislantes.

Esta prueba es hecha con la norma ASTM D-924

Un aceite aislante en buen estado, no debe exceder de 0.05 % a 20 °C. Un factor de potencia alto en aceites o líquidos aislantes es indicio de deterioro y/o contaminación con sedimentos, carbón, humedad, barniz etc.,. Un factor de potencia en aceite usado, que sea mayor que el 0.5 %, deberá ser analizado en el laboratorio para determinar su origen.

En aceites aislantes como askarel con un factor de potencia alto es considerado mayor a 2.0 %.

Un aceite nuevo se considera con un factor de potencia de 0.05 % o menos a una temperatura de 20 °C.

El carbón o asfalto en el aceite causa decoloración. El carbón no necesariamente causa factor de potencia alto a menos de que presente humedad.

Las siguientes sugerencias sirven de guía para evaluar una prueba del factor de potencia:

Un aceite que tenga un factor de potencia cuyo valor se encuentre entre 0.5 % y 2 % a 20 °C se considera satisfactorio.

Un aceite que tenga un factor de potencia cuyo valor sea superior al 2 % a 20 °C deberá ser regenerado.

APENDICE

Apartarrayos .- Es un dispositivo que nos permite proteger las instalaciones contra sobretensiones de origen atmosférico, el cual debe ser conectado un extremo a la línea y el otro extremo a tierra necesitándose vencer una resistencia para aterrizarse.

Apartarrayos tipo autovalvular .- Este consiste de varias capas de explosores conectados en serie por medio de resistencias variables cuya función es dar una operación mas sensible y precisa. Se emplea en los sistemas que opera a grandes tensiones.

Apartarrayos tipo resistencia variable .- Este funda su principio de operación, es decir, con dos explosores, y se conecta en serie a una resistencia variable. Se emplea en tensiones medianas y en sistemas de distribución.

Capacitancia.- Es la propiedad de un circuito que nos dice que el circuito se opone a cualquier cambio en el voltaje.

Corriente de absorción .- Esta corriente es tan alta como el voltaje de prueba que se aplica y decrece a medida que el tiempo de aplicación de voltaje aumenta.

Corriente de carga capacitiva .- Esta es tan alta como el voltaje que se aplica, es una función del tiempo, esto es que la corriente de carga inicial y por lo tanto no debe evaluarse en el tiempo que el voltaje es aplicado. Las lecturas de esta prueba no deben ser tomadas hasta que la corriente haya descendido hasta un valor bajo.

Corriente de fuga .- Esta es la corriente que es usada para evaluar las condiciones del aislamiento que esta sometida a prueba deberá permitir que la corriente volumétrica se estabilice antes de tomar las lecturas de la misma.

Corriente total .- Es el promedio de todas las corrientes de fugas.

Cuchillas desconectadoras .- Es un elemento que sirve para desconectar físicamente un circuito eléctrico, por lo general se operan sin carga, pero con algunos aditamentos se puede con carga, hasta ciertos limites.

Descargas indirectas.- Son sobretensiones que se almacenan sobre las líneas cargas electrostáticas que al ocurrir la descarga atmosférica se parte en dos y viajan en ambos sentidos de la línea a la velocidad de la luz y dañan el equipo.

Interruptor .- Es un dispositivo cuya función es interrumpir y restablecer la continuidad de un circuito eléctrico. Si la operación se efectúa sin carga (corriente), el interruptor se llama desconectador o cuchilla desconectadora, si en cambio si la apertura es con carga (corriente nominal) o con corriente de corto circuito (en caso de alguna perturbación), el interruptor se le llama disyuntor o interruptor de potencia.

Pararrayos .- Su objetivo es ofrecer una protección contra los rayos, descargando las pequeñas cargas eléctricas tan pronto como se acumulan. Los apartarrayos acaban en una punta porque los objetos agudos sueltan las cargas mas de prisa que los de cualquier otra forma, estos están conectados directamente a tierra.

Relevador. - Se puede definir como un dispositivo eléctrico que se localiza entre el circuito principal y el interruptor de tal manera que cualquier condición anormal en el circuito hace operar al revelador.

Tap .- La función de un Tap o cambiador de derivación en los transformadores es permitir la disponibilidad de distintos valores arriba y abajo de la tensión nominal.

Transformador .- Es aquel que puede transferir energía de un circuito a otro por medios electromagnéticos, transformando el voltaje y la corriente sin necesidad de que estén conectados.

BIBLIOGRAFIA

- 1.- Fundamentos de Electricidad Electrónica Slurzberg y Osterheld McGraw Hill
- 2.- Análisis de Sistemas Eléctricos de Potencia William D. Stevenson McGraw Hill
- 3.- El ABC de las Instalaciones Eléctricas Industriales. Gilberto Enríquez Harper.
- 4.- Electrical Equipament Testing and Mainteinance.

 Gill.

 Editorial Prentice Hall.
- 5.- Elementos de Centrales Eléctricas II Gilberto Enríquez Harper Limusa

