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and resuspended in two 50-mL Falcon® tubes with 35 mL of MMII each. An inoculum of
2 mL of concentrated biomass was added to experimental bioassays to reach 880 mg/L
VSS, which was a concentration similar to that grown in the 20-L biomass acclimation
batch reactor. This procedure was made for each of the three replicates. Bioassays were
performed using 50 mg/L as the initial MTBE concentration and 50 mg/L as the initial con-
centration of each BTE-oX component to evaluate substrate removal capabilities of UG-
acclimated biomass. Controls and three sets of samples were evaluated. Controls had only
SMM. Set 1 contained SMM and 880 mg/L. VSS of microbial inoculum. Set 2 contained
SMM, 18.5% sterilized soil (SS) and 880 mg/L. VSS of microbial inoculum. Set 3 contained
SMM, 18.5% SS, 880 mg/L VSS of microbial inoculum and 25 mg/L. TNP-10. MTBE and
BTE-oX were monitored for 36 hours every 6 hours. Substrate biodegradation kinetics
were conducted using 40 mL. Wheaton borosilicate glass EPA vials with Teflon™ fluoro-
carbon resin-lined top screw caps of GPI thread finish (Wheaton Science Products,
Miliville, NJ), with a maximum working volume of 22 mL, leaving a headspace available
for respiration. Three replicates were run to evaluate substrate biodegradation kinetics.

Sterilization of samples and isolation of acclimated bacteria

5-g soil samples wrapped in aluminum foil were autoclaved in a 21 L Presto autoclave
(Industrias Steele, Mexico) following three sterilization cycles. Soil samples were consid-
ered sterile at a maximum of 5 CFU/mL in nondiluted samples. Other samples and controls
were autoclaved following one sterilization cycle. Standard Methods 9215 A and 9215 B
(Standard Methods, 1998) were followed for sample preparation and for estimating the
number of heterotrophic bacteria. UG-acclimated bacteria were grown in UG agar plates
and incubated at 28—30°C for 72 hours.

Sample shaking, sonication and gas chromatography

Samples and controls used for biotransformation studies were shaken using a Lab-line
oscillating incubator shaker (Barnstead International, Dubuque, IA) model Orbit. Uniform
shaking was maintained at 200 rpm at 30°C. Samples were tested for sonication following
the USEPA method 3550, with some modifications, to release potential BTE-0X and
MTBE trapped in cell membrane. MTBE and BTE-oX were analyzed by a Varian 3400
GC/FID chromatograph. GC/FID determinations followed standard procedures (USEPA,
1995) with some modifications. A Petrochol™ (Supelco, Bellefonte, PA) 100 m x 0.25 mm
ID % 0.5 pm film DH fused silica GC capillary column was used. The initial oven tempera-
ture was set up at 60°C and held for 30 minutes, after which the first temperature rate varied
10°C/min from 60°C up to 90°C, at which point the temperature was held for 20 minutes. A
second temperature rate followed and varied 30°C/min from 90°C up to 150°C, at which
point the temperature was held for 2 minutes. The injector was set up on a split/splitless
mode (1:20) and its temperature was set at 250°C. The detector temperature was set at
300°C. 5-mL samples were purged with nitrogen at 25°C for 10 minutes and concentrated
prior to injection.

Kinetic models evaluation

For the three sample sets, the overall benzene and o-xylene removal rate constants K were
obtained by the first-order one-phase model (Acuna-Askar ez al., 2000):

Model I S, =S, exp(—K? 1)

where: §,= Substrate concentration at time ¢, (mg/L)
8§, = Substrate concentration at time zero, (mg/L)
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K = overall first order constant, K=k Xy
X,, = VSS, (mg/L)

k = specific rate constant h—!(mg/L) lyss
f=time (h™1)

The overall removal rate constants K were obtained from the slope by plotting In §, versus r.
For the three sample sets, the overall toluene and ethylbenzene removal rate constants X
were obtained by the first-order two-phase model (Hu et al., 2004):

Model I §, =38, exp(~K 0 +5, exp(—K,£) 2)

where: S, =Substrate concentration at time ¢, (mg/L)
5, = First phase substrate concentration at time zero, (mg/L)
5, = Second phase substrate concentration at time zero, {mg/L)
K, =First phase kinetic rate constant, {h~%)
K, = Second phase kinetic rate constant, (h™1)

For the three sample sets, the overall MTBE removal rate constants K were obtained by the
zero-order model:

Model Il §,=— K¢+ S, (3)

Terms are defined as for model I, The overall removal rate constants X were obtained from
the siope by plotting §, versus z.

Results and discussion
Effect of bioaugmentation, sterile soll (S5) and surfactant on BTE-oX and MTBE
MTBE showed a zero-order removal rate during the time frame evaluation of 36 hours. The
presence of soil on MTBE biodegradation had a slight increase on the slope of the curve and
the addition of surfactant did not have a significant effect on MTBE biodegradation {Figure
1). All BTE-0X chemicals biodegraded in the presence of bicaugmented bacteria at
880mg/L VSS. As shown in Figure 2, benzene was removed faster than o-xylene, and these
two substrates were removed slower than toluene and ethylbenzene. No significant differ-
ence was seen between removal rates of toluene and ethylbenzene.

As indicated in Figure 3, soil had a negative impact on the biodegradation rates of all
BTE-0X chemicals, primarily on benzene and o-xylene removal rates. The significant
reduction of BTE-oX biodegradation rates by soil can be explained by a decrement of sub-
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Figure 1 MTBE biodegradation kinetics with 200 mg/L total BTEoX inthe presence of 880 mg/L VSS



4.00
200

0.00 \3‘.6\9 40

-2.00

n St

< Benzene
o Toluene
A Ethylbenzenc
<400 {5 o-Xylene

-6.00 - Time (h)
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Figure 3 BTEoX biodegradation kinetics with 50 mg/L MTBE, 880 mg/L V35S and 16.5% S35

strate solubility in water, possibly due to the hydrophobic attraction between soil and sub-
strates. As can be seen from comparing Figures 1 and 3, the negative effect of soil on BTE-
0X removal rates was higher than the effect of soil on MTBE removal rate, which can be
explained by the higher octanol-water partition coeffcients of BTE-oX {Sangster, 1989).
As can be seen from comparing Figures 3 and 4, the addition of TNP-10 clearly showed a
trend to restore BTE-0X availability in water. Benzene, ethylbenzene and o-Xylene
removal rates were restored around 50% by the addition of TNP-10 to the slurry samples.
Toluene removal rate, however, had a significant negative impact by the addition of

TNP-10.
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Figura 4 BTEoX bicdegradation kinetics with 50 mg/L MTBE, 880 mg/L V5S, 18.5% 385 and 25 mg/L of
TNP10
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Benzene and o-xylene followed a first-order one-phase removal rate model, whereas
toluene and ethylbenzene followed a first-order two-phase removal rate kinetics under the
same experimental conditions in the three sample sets evaluated (Table 1). Kinetic models
for mixed BTEX and MTBE, all together, are limited in the literature. Reliable fit of data
consistently showed that toluene and ethylbenzene had a biphasic removal rate with a
strong slope change at 12 hours. First phase kinetic rate constants were significantly higher
than the corresponding second phase kinetic rate constants, suggesting that toluene and
ethylbenzene removal rates may have been influenced by some type of substrate interaction
{Chang et al., 2001). Benzene removal rate constants in all experimental bipassays were
consistently higher than o-xylene removal rate constanis.

MTBE followed a zero-order removal rate model in the three samples evaluated (Table
2). The presence of other easily assimilated carbon sources such as BTE-oX may have lim-
ited MTBE biodegradation. The presence of soil, however, had a positive effect on MTBE
removal rate of three-fold. TNP-10 showed a slight increase on MTBE removal rate.

As indicated in Table 3, MTBE biodegradation was 15.6% and increased te 25.1% with
the addition of soil and had a slight further increase to 30.1% when surfactant was added to

Table 1 Kinetic model reaction rate constants vs. experimantal bioassay samples

Banzana Toluana Ethythanzans o-Xylena
Set 1 Samples*
Overall K rate K K, i, K, K, K
ih M 0.1568 0.2088 0.0808 0.2217 0.0926 0.0673
n {0.985) {0.999) {0.099) (0.986)
Specific k rate k k, ko ks ko k
[ {mg/L)"] 1.78:x10% 237x10% 0.918x10* 252x 10 1.05x10* 0.764x 1074
{r) (0.985) (0.999) (0.999) (0.988)
Set 2 Samples**
Overall K rata K K, K, K K, K
h] 0.0889 Q.1807 0.013 0.1808 0.1043 0.0228
() {0.978) {0.899) {0.999) {0.985)
Specific k rate k k, ky k, ky k
[ {mg/Ly "] 1.01x10% 2.05x 10 0,147 x 10 2.05x10~* 1.19x10% 0.259x% 1074
G (0.878 {0.899) {0.899) {0.985)
Set 3 Samples***
Overali K'rate K K, K, ; s, .1
k1] ©0.1239 D0.1519 0.0397 0.3333 0.0652 0.0386
(" {0.983) {0.999) (0.999) {0.986)
Specific k rate k k, k, &, ks, k
W' {rngil)" 1) 140107 1.7%10™% 04513104 3.70x10% 0.74x10* 0.438x 104
{( (0.983) {0.909) (0.699) {0.986)

r=correlation cosfficient ** SMM + 18.5% S5 + 880 mg/L VSS
* SMM +880 mg/L VS5*** SMM + 18.5% 55 + B80 mg/L V85 + 25 mg/L TNP-10

Table 2 MTBE kinstic model reaction rate constants vs. experimental bicassay samples

Set 1 Samploes* Sat 2 Ssmples** Set 3 Samplas™
Owverall K rate [mgL=1 h~"] K K K
0.1362 0.3684 G.4501
o {0.994) (0.989) (0.991)
Specific & rate [mgL~" i~ (mg/L)~ gl k ke K
1.55x 10~4 4.18% 1074 511% 104
" (0.994) (0.989) (0.991)
r=correlation coefficiert ** SMM + 18.5% SS + 880 mg/L VSS

* SMM + 880 mg/L V35 ** SMM + 18.5% S5 + 880 mg/L VSS + 256 mg/L. TNP-10



Table 3 Bicdegradation percentage vs. experimental bioassay samples

Benzens (%) Toluenes (¥) Ethylbenzene (%) o-Xylana (‘%) MTBE (%)

SMM + 880 mg/L V5S 99.3 99.5 899.7 - 80.1 15.6
SMM + 880 mg/L VS5 + 1B.5% SS 95.4 97.6 99.7 B5.9 251
SMM +B80 mg/L VSS + 1B.5% 58 98.6 99.4 99.7 75.9 30.1

+ 25 mg/L TNP-10

the mixture. The low bicdegradation of MTBE was not unexpected because previcus work
(Acuna-Askar et al ., 2000; Stringfellow and Oh, 2002; Pruden e af., 2003; Hu et al., 2004)
has shown that different conditions are required to achieve MTBE biodegradation. Among
the BTE-0X, o-xylene biodegradation was significantly affected by the addition of soil
with a 50% reduction in removal performance. The addition of TNP-10, however, helped
increase o-xylene percentage removal by 35%, suggesting that the addition of nonionic sur-
factant at a concentration lower than the CMC was able to enhance the interaction of sub-
strate with the microbial population. This is interesting because previous research had
indicated that micellization would restrain hydrocarbon availability (Grimberg et al.,
1996).

Conclusion

Benzene and o-xylene biodegradation was well described by a first-order one-phase kinetic
model, whereas toluene and ethylbenzene biodegradation followed a first-order two-phase
kinetic model in all samples. MTBE followed a zero-order removal kinetic model in all
samples. Soil significantly slowed down the biodegradation rate of all BTE-0X com-
pounds, having the highest negative effect on o-xylene biodegradation. The presence of
soil enhanced MTBE removal rate. The addition of TNP-10 to aqueous samples containing
soil showed an increase in removal rates in all samples evaluated. Benzene biodegradation
rates were higher than o-xylene biodegradation rates in all samples. Toluene and ethylben-
zene removal rates were higher than benzene removal rates in all samples. No significant
differences werc found between toluene and ethylbenzene biodegradation rates, except
when Tergitol NP-10 was added and, therefore, enhancing the ethylbenzene biodegrada-
tion rate. MTBE showed the lowest biodegradation rate among the substrates evaluated.
Substrate percent removals ranged from 95.4-99.7% for benzene, toluene and ethylben-
zene. O-xylene and MTBE percent removals ranged from 55.9-90.1% and 15.6-30.1%,
respectively.
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Abstract The biodegradation kinetics of BTE-oX and MTBE, mixed all together, in the presence of
bioaugmented bacterial populations as high as 880 mg/L VSS was evaluated. The effect of sail in aqueous
samples and the effect of Tergitol NP-10 on substrate biodegradation rates were also evaluated.
Biodegradation kinetics was evaluated for 36 hours, every 6 hours, Benzene and o-xylene bicdegradation
followed a first-order one-phase kinetic madsl, whereas toluene and ethylbenzene biodegradation was well
described by a first-order two-phase kinetic model in all samples. MTBE followed a zero-order removal
kinetic model in all samples. The presence of soil in aqueous samples retarded BTE-oX removal rates, with
the highest negative effect on o-xylene, The presence of soil enhanced MTBE removal rate. The addition of
Tergitol NP-10 1o aquecus samples containing soil had a positive effect on substrate removal rate in all
samples. Substrate percent removals ranged from 85.4-99.7% for benzene, tocluens and ethylbenzene.
O-xylene and MTBE percent removals ranged from 55.9-80.1% and 15.6-30.1%, respectively.
Keywords Bioaugmentation; bicdegradation; bioremediation; BTEX; MTBE; Tergitol NP-10

Introduction .

Benzene, toluene, ethylbenzene and mixed xylenes (BTEX) along with methyl tertiary-
butyl ether (MTBE) are volatile organic compounds (VOCs) commonly found in petrole-
um-contaminated sites. Underground storage tanks (USTs), production sites, transfer
facilities and accidental spills are often reported as an important source of soil and eventu-
ally groundwater contamination by BTEX and MTBE (USEPA, 2000}. Itis also known that
a prevalent cause of MTBE groundwater contamination occurs through MTBE concentra-
tions in storm water runoff due to atmospheric emission fallout (Squillace et al., 1996).
BTEX are included in the current United States Environmental Protection Agency
(USEPA) drinking water standards list under the National Primary Drinking Water
Regulations (NPDWRs). The maximum drinking water levels for BTEX are 0.005, 1.0,
0.7, and 10 mg/L, respectively (USEPA, 2001). Additionally, the North Carolina
Department of Environment and Natural Rescurces (NCDENR) has set the risk based
maximum soil contaminant concentrations (MSCC) for a number of hydrocarbons includ-
ing BTEX (NCDENR, 2002). The maximum contaminant levels (MCLs) for BTEX in
drinking water in Mexico are 0.01, 0.3, 0.7 and 0.5 mg/L, respectively (DOF, 2000). Also,
in Mexico, emerging environmental regulations for BTX-contaminated soil have set maxi-
mum contaminant levels (MCLs) (DOF, 2002). In the United States, the MTBE drinking
water health advisory level for taste and odor has been set at 2040 pug/L. by the EPA
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(USEPA, 1997). Some studies have shown that among the mixed xylenes (o-, m- and p-
xylenes), o-xylene appears to be most recalcitrant (Stewart and Kamarthi, 1997). In addi-
tion, it has been reported that revertant strains grown on o-xylene are able to metabolize
meta and para isomers (Di Lecce et al., 1997) and that the use of nonionic surfactants offer
a potential alternative to enhance substrate apparent solubility (Volkering et al., 1995) and
dissolution rate (Grimberg et al., 1996). New developments in environmental regulations
and site cleanup demand the formulation of new and more evolved remediation technolo-
gies to treat contaminated sites, including groundwater bodies.

This study was aimed to evaluate the biodegradation kinetics of BTE-0X, all together, in
the presence of MTBE by the addition of bioaugmented bacterial populations previously
acclimated to unleaded gasoline. The effects of soil and the addition of nonionic surfactant
Tergitol NP-10 on BTE-0X and MTBE biodegradation kinetics were also evaluated.

Materials and method

Cheamicals and culture conditions

Chemicals, including BTE-0oX, MTBE and Tergitol NP-10 (TNP-10, anonionic surfactant)
were purchased from Sigma-Aldrich (Mexico) and were above 98% purity. Unleaded gaso-
line (UG) Premium was purchased from a local gas station. Mineral medium I (MMI) was
prepared in deionized water and maintained in the seed biomass acclimation bioreactor
according to the following concentration (in mg/L) (Acuna-Askar et al., 2003): KH,PO,,
17; K,HPO,, 44; Na,HPO,- 2H,0, 67, MgSO,-7H,0, 23; NH,Cl, 3.4; (NH,),S0,, 40,
FeCl,-6H,0, 1. Mineral medium II (MMII) was prepared to resuspend the bacterial cells
after centrifugation and had the following composition (in g/L): Na,HPO,,, 6; KH,PO,, 3
NaClL 1; NH,CI 1, MgSO4-7 H,00.5; CaClz, 0.011; FeCl;-6H,0, 0.001. Substrate mineral
medium (SMM) was prepared for the experimental bioassays to evaluate biodegradation
kinetics and consisted of MMII, 50 mg/L of each BTE-0X component and 50 mg/L. MTBE.
The pH of MMII and SMM was 7.0-7.5.

Critical micelle concentration

The critical micelle concentration (CMC) was chosen as the concentration range of TNP-
10 where a sudden variation in the relation between both culture medium density and cul-
ture surface tension occurred. The amount of TNP-10 added to experimental bioassays was
slightly below the CMC based on prior studies (Acuna-Askar et ai., 2003).

Biomass acclimation batch reactor

The biomass was grown using a 20 L glass bottle, with 8 L as the working volume, aerated
at an inlet flowrate of 50 mL/s and keeping dissolved oxygen at 8.2-8.7 mg/L. Single daily
manual additions of 200 mg/L UG as the only source of carbon were made to the bioreactor
for 6 months. Culture medium (MMI) was reconstituted once a week throughout the feed-
ing time. Acclimation conditions also included room temperature (17-23°C in Winter and
24 to 32°C in Spring) and pH 7.0-7.5. Enough 1 N NaOH was added daily to keep the
pH within range. The conditions described here allowed microbial growth to reach
800900 mg/L wvolatile suspended solids (VSS). VSS determination followed Standard
Method 2540 E (Standard Methods, 1998).

Bioaugmentation and experlmental bioassays

A total volume of 560 mL of the mixed liquor was taken from the 20-L biomass acclimation
batch reactor using 14 Falcon® tubes (BD No. 352098) filled up to 40 mL each. The accli-
mated biomass was centrifuged in a Beckman centrifuge (Beckman Instruments, Inc., Palo
Alto, CA), model J2MI at 6,000 rpm at 25°C for 5 minutes. The biomass was concentrated



and resuspended in two 50-mL Falcon® tubes with 35 mL of MMII each. An inoculum of
2 mL of concentrated biomass was added to experimental bioassays to reach 880 mg/L
V¥SS, which was a concentration similar to that grown in the 20-L biomass acclimation
batch reactor. This procedure was made for each of the three replicates. Bioassays were
performed using 50 mg/L as the initial MTBE concentration and 50 mg/L as the initial con-
centration of each BTE-oX component to evaluate substrate removal capabilities of UG-
acclimated biomass. Controls and three sets of samples were evaluated. Controls had only
SMM. Set 1 contained SMM and 880 mg/L VSS of microbial inoculum. Set 2 contained
SMM, 18.5% sterilized soil (88) and 880 mg/L VSS of microbial inoculum. Set 3 contained
SMM, 18.5% S5, 880 mg/L. VSS of microbial inoculum and 25 mg/L TNP-10. MTBE and
BTE-0X were monitored for 36 hours every 6 hours. Substrate biedegradation kinetics
were conducted using 40 mL Wheaton borosilicate glass EPA vials with Teflon™ fluoro-
carbon resin-lined top screw caps of GPI thread finish (Wheaton Science Products,
Millville, NJ), with a maximum working volume of 22 mL, leaving a headspace available
for respiration. Three replicates were run to evaluate substrate biodegradation kinetics.

Sterilization of samples and isolation of acclimated bacteria

5-g soil samples wrapped in aluminum foil were autoclaved in a 21 L Presto autoclave
(Industrias Steele, Mexico) following three sterilization cycles. Soil samples were consid-
ered sterile at a maximum of 5 CFU/mL in nondiluted samples. Other samples and controls
were autoclaved following one sterilization cycle. Standard Methods 9215 A and 9215 B
(Standard Merhods, 1998) were followed for sample preparation and for estimating the
number of heterotrophic bacteria. UG-acclimated bacteria were grown in UG agar plates
and incubated at 28—-30°C for 72 hours.

Sample shaking, sonication and gas chromatography

Samples and controls used for biotransformation studies were shaken using a Lab-line
oscillating incubator shaker (Barnstead International, Dubuque, IA) model Orbit. Uniform
shaking was maintained at 200 rpm at 30°C. Samples were tested for sonication following
the USEPA method 3550, with some modifications, to release potential BTE-0X and
MTBE trapped in cell membrane, MTBE and BTE-oX were analyzed by a Varian 3400
GC/FID chromatograph. GC/FID determinations followed standard procedures (USEPA,
1995) with some modifications. A Petrochol™ (Supelco, Bellefonte, PA) 100 m x0.25 mm
ID x 0.5 um film DH fused silica GC capillary column was used. The initial oven tempera-
ture was set up at 60°C and held for 30 minutes, after which the first temperature rate varied
10°C/min from 60°C up to 90°C, at which point the temperature was held for 20 minutes. A
second temperature rate followed and varied 30°C/min from 90°C up to 150°C, at which
point the temperature was held for 2 minutes. The injector was set up on a split/splitless
mode (1:20) and its temperature was set at 250°C. The detector temperature was set at
300°C. 5-mL samples were purged with nitrogen at 25°C for 10 minutes and concentrated
prior to injection.

Kinetic models evaluation
For the three sample sets, the overall benzene and o-xylene removal rate constants K were
obtained by the first-order one-phase model (Acuna-Askar et al., 2000):

ModelI §, =S, exp(-K1) (1)

where: §, =Substrate concentration at time 1, (mg/L)
§, = Substrate concentration at time zero, (mg/L)
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K = overall first order constant, K =k Xy,
Xy, =VSS, (mg/L)

k = specific rate constant h='(mg/L) ' y 44
t=time (h")

The overall removal rate constants X were obtained from the slope by plotting In §, versus ¢.
For the three sample sets, the overall toluene and ethylbenzene removal rate constants K
were obtained by the first-order two-phase model (Hu et al., 2004):

Model Il §, =5, exp(=K1) + 5, exp(-K,1) (2)

where: §, = Substrate concentration at time ¢, (mg/L)
$, = First phase substrate concentration at time zero, (mg/L)
§, = Second phase substrate concentration at time zero, (mg/L)
K| = First phase kinetic rate constant, (h™')
K, = Second phase kinetic rate constant, (h~1)

For the three sample sets, the overall MTBE removal rate constants K were obtained by the
zero-order model:

Model Il §,=—Ki+S, (3)

Terms are defined as for model I, The overall removal rate constants K were obtained from
the slope by plotting S, versus ¢.

Results and discussion
Effect of bioaugmentation, sterile soll (SS) and surfactant on BTE-0X and MTBE
MTBE showed a zero-order removal rate during the time frame evaluation of 36 hours. The
presence of soil on MTBE biodegradation had a slight increase on the slope of the curve and
the addition of surfactant did not have a significant effect on MTBE biodegradation (Figure
1). All BTE-oX chemicals biodegraded in the presence of bioaugmented bacteria at
&80 mg/L VS8. As shown in Figure 2, benzene was removed faster than o-xylene, and these
two substrates were removed slower than toluene and ethylbenzene. No significant differ-
ence was scen between removal rates of toluene and ethylbenzene.

As indicated in Figure 3, soil had a negative impact on the biodegradation rates of all
BTE-oX chemicals, primarily on benzene and o-xylene removal rates. The significant
reduction of BTE-0X biodegradation rates by soil can be explained by a decrement of sub-

50.0 8
% 40.0 1
& ]
= 300 1 o 880 mgl VSS
[4a]
E 200 { O 880 mg/L VSS and 18.5% SS
" oo | 2880 mgLVSS, 18.5% SS and 25 myL
‘ TNP10
0.0 : . ~ .
0 10 20 30 40

Time (h)
Figure 1 MTBE biodegradation kinetics with 200 mg/L total BTEoX in the presence of 880 mg/L VSS
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Figure 2 BTEoX biodegradation kinetics with 50 mg/L MTBE in the presence of 880 mg/L V55
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Figure 3 BTEoX bicdegradation kinetics with 50 mg/L MTBE, 880 mg/L V5SS and 18.5% S$§

strate solubility in water, possibly due to the hydrophobic attraction between soil and sub-
strates. As can be seen from comparing Figures 1 and 3, the negative effect of soil on BTE-
oX removal rates was higher than the effect of soil on MTBE removal rate, which can be
explained by the higher octanol-water partition coeffcients of BTE-0X (Sangster, 1989).
As can be seen from comparing Figures 3 and 4, the addition of TNP-10 clearly showed a
trend to restore BTE-oX availability in water. Benzene, ethylbenzene and o-xylene
removal rates were restored around 50% by the addition of TNP-10 to the slurry samples.
Toluene removal rate, however, had a significant negative impact by the addition of

TNP-10.
5.00

3.00 1 o
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Figure 4 BTEoX biodegradation kinetics with 50 mg/L MTBE, 830 mg/L VS5, 18.5% SS and 25 mg/L of
TNP1O
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Benzene and o-xylene followed a first-order one-phase removal rate model, whereas
toluene and ethylbenzene followed a first-order two-phase removal rate kinetics under the
same experimental conditions in the three sample sets evaluated (Table 1). Kinetic models
for mixed BTEX and MTBE, all together, are limited in the literature. Reliable fit of data
consistently showed that toluene and ethylbenzene had a biphasic removal rate with a
strong slope change at 12 hours. First phase kinetic rate constants were significantly higher
than the corresponding second phase kinetic rate constants, suggesting that toluene and
ethylbenzene removal rates may have been influenced by some type of substrate interaction
(Chang et al., 2001). Benzene removal rate constants in all experimental bioassays were
consistently higher than o-xylene removal rate constants.

MTBE followed a zero-order removal rate model in the three samples evaluated (Table
2). The presence of other easily assimilated carbon sources such as BTE-0X may have lim-
ited MTBE biodegradation. The presence of soil, however, had a positive effect on MTBE
removal rate of three-fold. TNP-10 showed a slight increase on MTBE removal rate.

As indicated in Table 3, MTBE bicdegradation was 15.6% and increased to 25.1% with
the addition of soil and had a slight further increase to 30.1% when surfactant was added to

Table 1 Kinetic model reaction rate constants vs. experimental bioassay samples

Banzens Toluene Ethylbanzens o-Xylane
Set 1 Samples*
Overall Krate K K, K, K, K, K
[h-1 0.1568 0.2088 0.0808 0.2217 0.0926 0.0673
(N (0.985) (0.899) (0.999) {0.986)
Spacific krate k kK, &y k, ky k
[ (mg/LY"] 1.78x 104 23710 0.918x10% 2.52%10% 1.05x 1074 0.764 x 10
(N {0.985) (0.999) (0.999) (0.986)
Set 2 Samples**
Overall Krate K K, Ky K, K, K
[h-1] 0.0889 0.1807 0.013 0.1808 0.1043 0.0228
) (0.978) (0.999) (0.999) {0.985)
Specific krate k k, k, ky ko k
[h' (mg/L)~'] 1.01x10 205x10% 0.147x 104 2.06x 10 1.19x 10~ 0.259 <10
n (0.978 (0.999) (0.998) {0.985)
Set 3 Samples™*
Overall Krate K K, K, K, K, K
h-1 0.1239 0.1519 0.0397 0.3333 0.0652 0.0386
(n (0.983) (0.999) (0.999) {0.988)
Specific krate k k, k, K k, k
(= {mg/L)-}] 1.40x 104 1.7x10 0.451x10% 3.790x10 0.74x 104 0.438 %102
2] (0.983) (0.999) (0.999) (0.9086)

r = correlation coefficient ** SMM + 18.5% SS + 880 mg/L VSS
* SMM + 880 mg/L V8S*** SMM + 18.5% SS + 880 mg/L VSS + 26 mg/L TNP-10

Table 2 MTBE kinstic model reaction rate constants vs, experimental bioassay samples

Set 1 Samples® Seot 2 Samplas” Set 3 Samples™
Overall Krate [mgL-1 h-1] K K K
0.1362 0.3684 0.4501
n (0.994) (0.989) {0.991)
Specific k rate [mgL~" h~'(mg/L) "5 k k k
1.66x 10~ 4.1Bx10™* 5.11%10™
N (0.994) (0.989) (0.991)
r = correlation coefficient * SMM +18.56% SS + 880 mg/L V5SS

* SMM + 880 mg/L VSS “* SMM +18.5% SS + 880 mg/L VSS +25 mg/L TNP-10



Table 3 Bicdegradation percentage vs. experimental bioassay samples

B (%) Tol (%) Ethylbenzene (%) o-Xylene (%) MTBE (%)
SMM + B8O mg/L VSS 89.3 995 99.7 201 15.6
SMM +BBO mg/L VS8 +18.5% SS 95.4 97.8 99.7 55.9 25.1
SMM + 880 mg/L VS5 + 18.5% SS 98.6 89.4 99.7 759 30.1

+ 25 mg/L TNP-10

the mixture. The low biodegradation of MTBE was not unexpected because previous work
(Acuna-Askar er al., 2000; Stringfellow and Oh, 2002; Pruden et al., 2003; Hu et ai., 2004)
has shown that different conditions are required to achieve MTBE biodegradation. Among
the BTE-0X, o-xylene biodegradation was significantly affected by the addition of soil
with a 50% reduction in removal performance. The addition of TNP-10, however, helped
increase 0-xylene percentage removal by 35%, suggesting that the addition of nonionic sur-
factant at a concentration lower than the CMC was able to enhance the interaction of sub-
strate with the microbial population. This is interesting because previous research had
indicated that micellization would restrain hydrocarbon availability (Grimberg et al.,
1996).

Conclusion

Benzene and o-xylene biodegradation was well described by a first-order one-phase kinetic
model, whereas toluene and ethylbenzene biodegradation followed a first-order two-phase
kinetic model in all samples. MTBE followed a zero-order removal kinetic model in all
samples, Soil significantly slowed down the biodegradation rate of all BTE-0X com-
pounds, having the highest negative effect on o-xylene biodegradation. The presence of
soil enhanced MTBE removal rate. The addition of TNP-10 to aqueous samples containing
soil showed an increase in removal rates in all samples evaluated. Benzene biodegradation
rates were higher than o-xylene biodegradation rates in all samples. Toluene and ethylben-
zene removal rates were higher than benzene removal rates in all samples. No significant
differences were found between toluene and ethylbenzene biodegradation rates, except
when Tergitol NP-10 was added and, therefore, enhancing the ethylbenzene biodegrada-
tion rate. MTBE showed the lowest biodegradation rate among the substrates evaluated.
Substrate percent removals tanged from 95.4-99.7% for benzene, toluene and ethylben-
zene. O-xylene and MTBE percent removals ranged from 55.9-90.1% and 15.6-30.1%,
respectively.
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Foreword

It is my great pleasure to welcome you to the 4th International Water Association Specialized Con-
ference on Assessment and Control of Hazardous Substances in Water (ECOHAZARD 2003). QOur
event, from the 14" to the 17™ of September 2003, in Aachen, Germany, follows the conferences
organised in Otsu, Shiga, Japan and Copenhagen, Denmark. The Specialist Group on Assessment
and Control of Hazardous Substances in Water (ACHSW), the International Water Association, tne
[nstitute for Water- and Waste Management (ISA) and Aachen University (RWTH) are the organis-
ers of the ECOHAZARD 2003 Conference.

With this book the organisers will'provide an overview of the conference themes covering the main
issues of hazardous substances in water: endocrine-disrupting compounds, pharmaceuticals, persis-
tent polar pollutants, industrial wastewater, re-use of wastewater, chemical analytical and toxicity
testing methods and applications, analysis and fate of hazardous substances in treatment systems
and the environment, natural attenuation in soil, contaminated sediments, risk assessment, and river
basin monitoring programmes. The present publication testifies to the essential role of interdiscipli-
nary communication in solving today's environmental tasks.

In the name of the organisers I would like to thank the authors of oral and poster presentations for
preparing their papers so timely that we can make these proceedings available to the participants
before the start of ECOHAZARD 2003. In addition, I wouid like to thank all the co-workers in-
volved in the organisation of ECOHAZARD 2003 and the edition of this conference publication.

Aachen, September 2003

(e (S

Prof. Dr. Horst Fr. Schréder
Chairman of the Organising Committee
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Abstract The biodegradation kinetics of BTE-0X and MTBE, mixed all together, in the presence of bioaugmented
bacterial populations as high as 880 mg/L. VSS was evaluated. The effect cf soil in aqueous samples and the effect of
Tergitol NP-10 on substrate biodegradation rates were also evaluated. Biodegradation kinetics was evaluated for 36
hours, every 6 hours. Benzene and o-xylene biodegradation followed a first-order one-phase kinetic model, whereas
toluene and ethylbenzene biodegradation was well described by a first-order two-phase kinetic model in all samples.
MTBE followed a zero-order removal kinetic model in all samples. The presence of soil in aqueous samples retarded
BTE-0X removal rates, with the highest negative effect on o-xylene. The presence of soil enhanced MTBE removal
rate. The addition of Tergitol NP-10 to aqueous samples containing soil, had a positive effect on substrate removal rate
in all samples. Substrate percent removals ranged 95.4-99.7% for benzene, toluene and ethylbenzene. O-xylene and
MTBE percent removals ranged 55.9-90.1% and 15.6-30.1%, respectively.

Keywords Bioaugmentation; biodegradation; bioremediation; BTEX; MTBE; Tergitol NP-10

Introduction

Benzene, toluene, ethylbenzene and mixed xylenes (BTEX) along with methyl tertiary-butyl ether
{(MTBE) are volatile organic compounds {(VOCs) commonly found in petroleum contaminated sites
(USEPA, 2002). Underground storage tanks (UST's), production sites, transfer facilities and
accidental spills are often reported as an important source of soil and eventually groundwater
contamination by BTEX and MTBE (USEPA, 2000). It is also known that a prevalent cause of
MTBE groundwater contamination occurs through MTBE concentrations in storm water runoff due
to atmospheric emission fallout (Squillace er al., 1996). BTEX are included in the current United
States Environmental Protection Agency (USEPA) dnnking water standards list under the National
Primary Drinking Water Regulations (NPDWRs). The maximum drinking water levels for BTEX
are 0.005, 1.0, 0.7, and 10 mg/L, respectively (USEPA, 2001). Additionally; the North Carolina
Department of Environment and Natural Resources (NCDENR) has set the risk based maximum
soil contaminant concentrations (MSCC) for a number of hydrocarbons including BTEX. The
MSCC are divided in three categories: the residential soil cleanup levels; the industrial/commercial
soil cleanup levels and the soil-to-water maximum contaminant concentration (NCDENR, 2002).
The maximum contaminant levels (MCLs) for BTEX in drinking water in Mcxico are 0.01, 0.3, 0.7
and 0.5 mg/L, respectively (DOF, 2000). Emerging environmental regulations for BTX
contaminated soil in Mexico, have set the maximum contaminant levels (MCLs) as 20.00, 40.00
and 40.00 mg/Kg, respectively, for agricultural, residential and commercial settings, and 50.00,
100.00 and 100.00 mg/Kg (as total xylenes), respectively, for industnal use (DOF, 2002). The
MTBE drinking water health advisory level for taste and odor has been sct at 20-40 ug/L by the
EPA (USEPA, 1997).

Some studies have shown that among the mixed xylenes (o-, m- and p-xylenes), o-xylene appears to
be most recalcitrant (Stewart and Kamarthi, 1997). In addition, it has been reported that revertant
strains grown on o-xylene are able to mctabolize meta and para isomers (Di Lecce et al,, 1997),
The physical-chemical properties of BTEX allow them to partially adsorb on to the soil particles
before they reach the groundwater, therefore, the use of nonionic surfactants offer a potential
alternative to enhance substrate apparent solubility (Volkening et al., 1995) and dissolution rate
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(Grimberg e al., 1996). New developments in environmental regulations and site cleanup demand
the formulation of new and more evolved remediation technologies to treat contaminated s'tes,
including groundwater bodies, _

This study was aimed to evaluate the biodegradation kinetics of BTE-0X, zll together, in the
presence of MTBE by the addition of bioaugmented bacterial populations previously acclimated to
unleaded gasoline. The effects of soil and the addition of nonionic surfactant Tergitol NP-10 on
BTE-oX and M'TBE biodegradation kinetics were also evaluated.

Methods

Chemicals. Benzene, toluene, ethylbenzene, mixed xylenes, o-, m-, p-xylene, methyl tertiary butyl
ether (MTBE) and Tergitol NP-10 (nonionic surfactant) were purchased from Sigma-Aldrich
(Mexico) and were above 98% purity. Unleaded gasoline (UG) Premium was purchased from a gas
station. Nutrient agar (Difco Laboratories, Detroit, MI) and bacteriological agar (BIOXON, Becton-
Dickinson, Mexico) were purchased from Casa Rocas Fisher Scientific (Mexico).

Culture conditions. Mineral medium I (MMI) was prepared in deionized water and maintained in
the seed biomass acclimation bioreactor according to the following concentration (in mg/L) (Acuna-
Askar et al., 2002): KH,POs, 17; KHPO,, 44; NayHPOy 2H,0, 67; MgSQ0Q,4 7TH,0, 23; NH4CL, 3.4;
(NHy):S0Oy4, 40; FeCl3-6H;0, 1. Mineral medium II (MMII) was prepared to resuspend the bacterial
cells after centrifugation and had the following composition (in g/L): Na;HPQO4, 6; KH;PQ,, 3;
NaCl, 1; NH4CI 1, MgS0,-7 H;0 0.5; CaCly, 0.011; FeCl3-6H;0, 0.001. Substrate mineral medium
(SMM) was prepared for the experimental bicassays to evaluate biodegradation kinetics and
consisted of MMII, 50 mg/L of each BTE-0X component and 50 mg/l. MTBE. The pH of MMII
and SMM was 7.0-7.5.

Critical micelle concentration. The concentration range of nonijonic surfactant (Tergitol NP-10)
where a sudden variation in the relation between both culture medium density and culture surface
tension occurred was chosen as the critical micelle concentration (CMC). The amount of Tergitol
NP-10 added to experimental bioassays was slightly below the CMC based on prior studies (Acuna-
Askar et al., 2002).

Biomass acclimation batch reactor. The biomass was grown using a 20-L glass bottle, with 8 L as
the working volume, acrated at an inlet flowrate of 50 mL/s and keeping dissolved oxygen at 8.2-
8.7 mg/L. Single daily manual additions of 200 mg/L. UG as the oniy source of carbon were made to
the bioreactor for 6 months, Culture medium (MMI) was reconstituted once a week throughout the
feeding time. Acclimation conditions also included room temperature (17-23°C in Winter and 24 to
32°C in Spring) and pH 7.0-7.5. 1 N NaOH was added daily to keep the pH within range. The
conditions described here allowed microbial growth to reach 800-900 mg/L volatile suspended
solids (VSS). VSS determination followed Standard Method 2540 E (Standard Methods, 1998).

Bioaugmentation. A total volume of 560 mL of the mixed liquor was taken from the 20-L biomass
acclimation batch reactor using 14 Falcon® tubes (BD No. 352098) filled up to 40 mL each. The
acclimated biomass was centrifuged in a Beckman centrifuge (Beckman Instruments, Inc., Palo
Alto, CA), model J2MI at 6,000 rpm at 25°C for S minutes. The biomass was concentrated and
resuspended in two Falcon® tubes with 35 mL of MMII each. An inoculum of 2 mL of concentrated
biomass was added to experimental btoassays to reach 880 mg/L VSS, which was a concentration
similar to the grown in the 20-L biomass acclimation batch reactor. This procedure was made for
each of the three replicates.

Experimental bioassays. Bioassays were performed using 50 mg/L as the initial MTBE
concentration and SO mg/L as the initial concentration of each BTE-0X component 1o evaluate
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substrate removal capabilities of UG-acclimated biomass. Controls and three sets of samples were
gvaluated. Controls had only SMM. Set 1 contained SMM ard 880 mg/L VSS of microbial
inoculum. Set 2 contained SMM, 18.5% sterilized soil (SS) and 880 mg/L VSS of microbial
inoculum. Set 3 contained SMM, 18.5% SS, 880 mg/L VSS of microbial inoculum and 25 mg/L
Tergitol NP-10 (TNP-10). MTBE and BTE-o0X were monitored for 36 hours every 6 hours.
Substrate biodegradation kinetics were conducted using 40-mL Wheaton borosilicate glass EPA
vials with Teflon™ fluorocarbon resin-lined top screw caps of GPI thread finish (Wheaton Science
Products, Millville, NJ), with a maximum working volume of 22 mL, leaving a headspace available
for respiration. Three replicates were run to evaluate substrate biodegradation kinetics.

Sample and control sterilization. 5-g soil samples wrapped in aluminum foil were autoclaved in a
21-L Presto autoclave (Industrias Steele, Mexico) following three sterilization cycles. Soil samples
were considered sterile at a maximum of 5 CFU/mL in nondiluted samples. Other samples and
controls were autoclaved following one sterilization cycle. Standard Mcthods 9215 A and 9215 B
(Standard Methods, 1998) were followed for sample preparation and {or estimating the number of
heterotrophic bacteria.

Isolation of acclimated bacteria. UG-acclimated bacteria were grown in UG agar plates and
incubated in a gravity flow Isotemp incubator (Fisher Scientific, USA), model 537D at 28-30°C for
72 hours. Acid production in UG agar plates was identified by change of cotor from blue to green,
and in some cases from blue to yellow using bromothymol blue as indicator. For identification
purposes, bacteria isolates were grown in nutrient agar plates,

Mechanical shakers and sonication. Samples and controls used for biotransformation studies were
shaken using a Lab-line oscillating incubator shaker (Bamstead International, Dubuque, 1A) model
Orbit. Uniform shaking was maintained at 200 rpm at 30°C. Samples were tested for sonication
following the USEPA method 3550, with some modifications, to release potential BTE-0X and
MTBE trapped in cell membrane

Gas chromatography and sample concentrator. MTBE and BTE-oX were analyzed by a Vanan
3400 GC/FID chromatograph. GC/FID determinations followed standard procedures (USEPA
1995) with some modifications. A Petrochol™ (Supeico, Bellefonte, PA) 100m x 0.25mm ID x
0.5um film DH fused silica GC capillary column was used. The initial oven temperature was set up
at 60°C and held for 30 minutes, after which the first temperature rate varied 10°C/min from 60°C
up to 90°C, point at which temperature was held for 20 minutes. A second temperalure rate
followed and varied 30°C/min from 90°C up to 150°C, point at which temperature was held for 2
minutes. The injector was set up on a split/sphtless mode (1:20) and its temperature was set at
250°C. The detector temperature was set at 300°C. 5 mL samples were purged with nitrogen at 25°C
for 10 minutes and concentrated prior to injection.

Kinetic models evaluation
First-order one-phase model. For the three sample sets, the overall benzene and o-xylene removal
rate constants K were obtained by the following equation (Acuna-Askar et al,, 2000):
Model1 S, =Sg exp(-Kt) (1D
where: S, = Substrate concentration at time t, (mg/L)

So = Substrate concentration at time zero, (mg/L)

K = overall first order constant, K=k Xy

Xv=VSS, (mg/L)

k = specific rate constant h (mg/L) 'vss
t=time (h")
The overall removal rate constants K were obtained from the slope by plotting In S, versus t.
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First-order two-phase model. For the three sample sets, the overall toluene and ethylbenzene
removal rate constants K were obtained by the foliowing equation (Hu et af., 2002):
Model [T S, =S, exp(-K;t) + Sz exp(-K;t) (2)
where: S, = Substrate concentration at time t, (mg/L)
S, = First phase substrate concentration at time zero, (mg/L)
S; = Second phase substrate concentration at time zero, (mg/L)
K, = First phase kiretic rate constant, (h™")
K = Second phase kinetic rate constant, (h™')
The overall removal rate constants K were obtained from the method of residuals (Hu er a/., 2002).

Zero-order model. For the three sample sets, the overall MTBE removal rate constants K were
obtained by the following equation:
Model [I §;=-Kt+ 5 3)
terms are defined as for model !
The overall removal rate constants K were obtained from the slope by plotiing S; versus t.

Results and Discussion
Effect of bicaugmentation, sterile soil (SS) and surfactant on BTE-0X and MTBE.

MTBE showed a zero-order removal rate during the time frame evaluation of 36 hours. The
presence of soil on MTBE biodegradation had a slight increase on the slope of the curve and the
addition of surfactant did not have a significant effect on MTBE biodegradation (Fig. 1). All BTE-
oX chemicals biodegraded in the presence of biougmented bacteria at 880 mg/L VSS. As shown in
Figure 2, benzene was removed faster than o-xylene, and these two substrates werz removed slower
than toluene and ethylbenzene. No significant difference was seen between removal rates of toluene
and ethylbenzene.
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the presence of 880 mg/l. VSS.

As indicated in Figure 3, soil had a negative impact on the biodegradation rates of all BTE-oX
chemicals, but primarily on benzene and o-xylene removal rates. The significant reduction of BTE-
oX biodegradation rates by soil can be explained by a decrement of substrate solubility in water,
possibly due to the hydrophobic attraction between soil and substrates. As can be seen from
comparing Figures 1 and 3, the negative effect of soil on BTE-0X removal rates was higher than the
effect of soil on MTBE removal rate, which can be explained oy the higher octanol-water partition
coeffcients of BTE-0X (Sangster, 1989). As can be seen from comparing Figures 3 and 4, the
addition of Tergitol NP-10 clearly showed a trend to restore BTE-oX availability in water. Benzene,
ethylbenzene and o-xylene removal rates were restored around 50% by the addition of Tergitol NP-
10 to the slurry samples. Toluene removal rate, however, had a significant negative impact by the
addition of Tergitol NP-10.
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Benzene and o-xylene followed z first-order one-phase removal rale model, whereas toluene and
ethylbenzene followed a first-order two-phase removal rate kinetics under the same experimental

conditions in the three sample sets evaluated (Table 1).

Kinetic models for mixed BTEX and

MTBE, all together, are limited in the literature. Reliable fit of data consistently showed that
toluene and ethylbenzene had a biphasic removal rate with a strong slope change at 12 hours. First
phase kinetic rate constants were significantly higher than the corresponding second phase kinetic
rate constants, suggesting that toluene and ethylbenzene removal rates may have been influenced by
some type of substrate interaction (Chang et al., 2001). Benzene removal rate constants were
consistently higher in all experimental bioassays than o-xylene removal rate constants.

Table 1 Kinetic model reaction rate constants vs. experimental bioassay samples

Benzene Toluene Ethylbenzene o-Xylene
Set 1 Samples*
QOverall K rate K K, K, K, K, K
(h'] 0.1568 0.2088 £.0808 0.2217 0.0926 0.0673
{r) (0.985) (0.999) (0.999) (0.986)
Specific k rate k k, k; k, ka k
(h'(mg/L)'] 1,78 x 107 237% 10% 0918x10*  2.52x10* 1.05x 10" 0.764 x 107
(r) (0.985) (0.999) (0.999) (0.936)
Set 2 Samples**
Overall K rate K K, K, K, K, K
(v 0.0889 0.1807 0.013 0.1808  0.1043 0.0228
(r) (0.978) (0.999) (0.999) (0.985)
Specific k rate k k, k, k, ky k
(h'(mg/L)"] 101 x10% 2.05x 10* 0.147 x 10* 2.05%x10% 119x 10" 0.259 x 10
(r) (0.978) {0.999) (0.999) (0.985)
Set 3 Samples***
Overall K rate K K4 K, | K, K
(h] 0.1239 0.1519 0.0397 0.3333 0.0652 0.0386
(r) (0.983) (0.999) (0.999) (0.986)
Specific k rate k ky k,y k, k; k
[h(mg/L)")  1.40x10* 1L.7x10* 0.451x10° 3.79 x 10* 0.74 x 10 0.438 x 10
(1) (0.983) (0.999) (0.999) (0.986)

¢t = correlation coefficient
* SMM + 880 mp/L VS8

L SMM + 18.5% SS + 880 mg/L. VSS
ey SMM + 18.5% SS + 880 mg/L VSS + 25 mg/L TNP-10
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MTBE followed a zero-order removal rate model in the three samples evaluated (Table 2). The
presence of other easily assimilated carbon sources such as BTE-0X may have limited the MTBE
biodegradation. The presence of soil, however, had a positive effect on MTBE removal rate by
three-fold. Tergitol NP-10 showed a slight increase on MTBE removal rate.

Table 2 MTBE kinetic model reaction rate constants vs. experimental bioassay samples

Set 1 Samples* Set 2 Samples** Set 3 Samples***

Overall X rate {mgL” K K K

W) 0.1362 U.3684 0.4501

(1 (0.994) (0.989) (0.991)

Specifickrate  [mgl k k k
‘b (mg/L) 'vss) 1.55x 10 4.18 x 107 5.11 x10*

n (0.994) (0.989) (0.991)
r = correlation coefficient *+ SMM + 18.5% SS + 880 mg/L VSS
* SMM + 880 mg/L. VSS *#*+* SMM + 18.5% SS + 880 mg/L VSS + 25 mg/L. TNP-10

As indicated in Table 3, MTBE biodegradation was 15.6% and increased to 25.1% with the addition
of soil and had a slight further increase to 30.1% when surfactant was added to the mixture. The

low biodegradation of MTBE was not unexpected because previous work (Acuna-Askar ef al.,
2000; Hu ez al., 2002; Stringfellow and Oh, 2002; Pruden et al., 2003) has shown that different
conditions are required to achieve MTBE biodegradation. Among the BTE-oX, o-xylene
biodegradation was significantly affected by the addition of soil with a 50% reduction in removal
performance. The addition of Tergitol NP-10, however, helped increase o-xylene percent removal
by 35%, suggesting that the addition of nonionic surfactant at a concentration lower than the CMC
was able to enhance the interaction of substrate with the microbial population. This 1s interesting
because previous research had indicated that micellization would restrain hydrocarbon availability
(Grimberg et al., 1996). Benzene, toluene and ethylbenzene percent removals ranged 95.4-99.7%.
Although, the overall removal rate constants of these three substrates were negatively impacted by
soil, the overall percent remaovals did not change significantly at the end of 36 hours.

Table 3 Biodegradation percentage vs. experimental bioassay samples
Benzene (%)  Toluene (%) Ethylbenzene (%) o-X¥ylene (%) MTBE (%)

SMM + 880 mg/L VSS 99.3 99.5 99.7 90.1 15.6
SMM + 880 mg/L VSS +
P 95.4 97.6 99.7 55.9 25.1

SMM + 880 mg/L VSS +

18.5% SS + 25 /L TNP-10 98.6 99.4 99.7 75.9 30.1

Conclusion

Benzene and o-xylene biodegradation was well described by a first-order one-phase kinetic model,
whereas toluene and ethylbenzene biodegradation followed a first-order two-phase kinetic model in
all samples. MTBE followed a zero-order removal kinetic model in all samples. Soil significantly
slowed down the biodegradation rate of all BTE-0X compounds, having the highest negative effect
on o-xylene biodegradation. The presence of soil enhanced MTBE removal rate. The addition of
Tergitol NP-10 to agueous samples containing soil, showed a increase on removal rates in all
samples evaluated. Benzene biodegradation rates were higher than o-xylene biodegradation rates in
all samples, Toluene and ethylbenzene removal rates were higher than benzene removal rates in all
samples. No significant differences were found between toluene and ethylbenzene biodegradation
rates, except when Tergitol NP-10 was added and, therefore, enhancing ethylbenzene
biodegradation rate. MTBE showed the lowest biodegradation rate among the substrates evaluated.
Substrate percent removals ranged 95.4-99.7% for benzene, toluene and ethylbenzene. O-xylene
and MTBE percent removals ranged 55.9-90.1% and 15.6-30.1%, respectively.
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INTRODUCTION

The IWA World Water Congress has received unprecedented interest from authors wishing to share their
knowledge and experiences on an international platform.

A total of 1,900 paper outlines were submitted via the Associations new web-based paper submission
platform. Unfortunately, this volume of papers could not be accommodated in the Congress programme
and, following a review process, approxXimately 900 authors were requested to submit manuscripts. A

further review will be undertaken on a selection of papers following the Congress, and these papers will
be published in one of IWA Publishing’s journals.

The abstract book for Congress is-an integral part of the programme and allows delegates to locate
summaries of all platform and poster presentations as submitted by the author. Used in conjunction with
the programme bookiet, this book should enable you to benefit fully from the weehnical programme and
also be a useful resource beyond the 2004 Congress.

M. Ali Fassi Fihri Jerry Gilbert

President. 4™ [WA World Water Congress Chair, IWA International Programme Committee
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Effect of soil and a nonionic surfactant on BTE-
oX and MTBE biodegradation kinetics

Author Dr. Karim Acuna-Askar, Mexico

Presenting Author Dr. Karim Acuna-Askar, Mexico

Corresponding Author Dr. Karim Acuna-Askar, Mexico

The biodegradation kinetics of BTE-0X and MTBE,
mixed all together, in the presence of 905 mg/L VSS
of BTEX-acclimated biomass was evaluated. Effects
of soil and Tergitol NP-10 in aqueous samples on
substrate biodegradation rates were also evaluated.
Biodegradation kinetics was evaluated for 36 hours, *
gvery 6 hours. MTBE biodegradation followed a first-
order one-phase kinetic model in all samples,
whereas benzene, toluene and ethylbenzene
biodegradation followed a first-order two-phase
kinetic model in all samples. O-xylene biodegradation
followed a first-order two-phase kinetic model in the
presence of biomass only. Interestingly, o-xylene
biodegradation was able to switch to a first-order
one-phase kinetic model when either soil or soil and
Tergitol NP-10 were added. The presence of soil in
aqueous samples retarded benzene, toluene and
etylbenzene removal rates. O-xylene and MTBE
removal rates were enhanced by soil. The addition of
Tergitol NP-10 to aqueous samples containing soil
had a positive effect on substrate removal rate in all
samples. Substrate percent removals ranged 77-
99.8% for benzene, toluene and ethylbenzene. O-
xylene and MTBE percent removals ranged 50.1-
65.3% and 9.9-43.0%, respectively.

PaperlD 116148 ‘

Role of hydrophilic organic matter on developing
toxicity in decay process of activated sludge

Author Hiroki Nerita, Japan

Prasenting Author Hiroki Narita, Japan

Cormesponding Author Hiroki Narila, Japan

tis known that the toxicity of effluent is more
intensive than that of influent in the activated sludge
process. In this study, we applied biocassay using
cultured human cell lines to decay process of
activated sludge in order to evaluate the toxicity of
organic matter generated and/or released from
activated sludge bacteria. We also applied this
bioassay to hydrophilic fraction of samples, The
bioassay results showed that (1) the variation in the
dose-response relationship obtained from assay with
original samples was observed during decay; (2) on
the other hand, the response curves of only
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hydrophilic fraction at each time show the same
relationship between TOC and viability of MCF7
cells; (3) this trend was confirmed by plotting the time
course of EC30. These results implied that (1) the
hydrophilic organic matter controlled for developing
toxicity during decay process of activated sludge; and
(2) the character of hydrophilic organic matter is not
changed during the experimental period.

PaperlD 116378 * T : .

Removal of PhACs in Nitrifying-Denitrifying
Plants

Author Sonia Suarez, Spain

Presenting Author Sonia Suarez, Spain

Corrasponding Author Sonia Suarez, Spain

The behaviour of 9 pharmaceutically active
compounds (PhACs) of different diagnostic groups is
studied during a nitrifying-denitrifying process in an
activated sludge system. The compounds selected
cover a wide range of frequently used substances
such as anti-epileptics (carbamazepine),
tranquillisers (diazepam), anti-depressants
(fluoxetiné and citalopram), anti-inflammatories
(ibuprofen, naproxen and diclofenac) and estrogens
(estradiol and ethinylestradiol). The main objective of
this research is to investigate the effect of acclimation
of biomass on the removal rates of these
compounds, either by maintaining a high sludge
retention time or at long-term operation. The removal
rates achieved for nitrogen and carbon in the
experimental unit exceed 90% and were not affected
by the addition of PhACs. Carbamazepine, diazepam
and diclofenac were only removed to a small extent.
On the other hand, higher removal rates have been
observed for naproxen and ibuprofen (68% and
82%), respectively.

PaperlD 116150 i : i
Cometabolic Transformation of cis-1,2-

Dichlororethylene andcis-1,2-Dichloroethylene
Epoxides by a Butane-Grown Mixed Culture

Author Assistant Profes Young Kim, Korea

Prosenting Author  Assistant Profes Young Kim, Korea

Corresponding Author Assistant Profes Young Kim, Korea

Aerobic cometabolism of cis-1,2-dichloroethylene (c-
DCE) by a butane-grown mixed culture was
evaluated in batch kinetic tests. The transformation of
c-DCE resulted in the coincident generation of c-DCE
epoxide. Chloride release studies showed ~75%
oxidative dechlorination of c-DCE. Mass
spectrometry confirmed the presence of a compound
with mass-to-charge-fragment ratios of 112, 83, 48,
and 35. Tiese values are in agreement with the
spectra of chemically synthesized c-DCE epoxide.
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Effect of Soil and a Nonionic Surfactant on BTE-0X and
MTBE Biodegradation Kinetics
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Abstract The biodegradation kinetics of BTE-oX and MTBE, mixed all together, in the
presence of 905 mg/L VSS of BTEX-acclimated biomass was evaluated. Effects of soil and
Tergitol NP-10 in aqueous samples on substrate biodegradation rates were also evaluated.
Biodegradation kinetics was evaluated for 36 hours, every 6 hours. MTBE biodegradation
followed a first-order one-phase kinetic model in all samples, whereas benzene, toluene and
ethylbenzene biodegradation followed a first-order two-phase kinetic model in all samples.
O-xylene biodegradation followed a first-order two-phase kinetic model in the presence of
biomass only. Interestingly, o-xylene biodegradation was able to switch to a first-order one-
phase kinetic model when either soil or s¢il and Tergitol NP-10 were added. The presence of
soil in aquecus samples retarded benzene, toluene and ethylbenzene removal rates. O-
xylene and MTBE removal rates were enhanced by soil. The addition of Tergitol NP-10 to
aqueous samples containing soil had a positive effect on substrate removal rate in all
samples. Substrate percent removals ranged 77-99.8% for benzene, ftoluene and
ethylbenzene. O-xylene and MTBE percent removals ranged 50.1-65.3% and 9.9-43.0%,
respectively.

Keywords biodegradation; BTEX; MTBE

Introduction

Benzene, toluene, ethylbenzene and mixed xylenes (BTEX) along with methy! tertiary-butyl
ether (MTBE) are among the unleaded gasoline ¢compounds of major environmental concern
usvally found in petroleum-contaminated sites. Discharges from chemical factories and
petroleum refineries, leaching from gasoline storage tanks, improper waste management
practices and accidental spills are common sources of soil and groundwater contamination by
BTEX and MTBE (USEPA, 2000). Global concern on soil and groundwater cleanup has led
to the establishment of enforceable or recommended maximum contaminant levels of BTEX
and MTBE. In the United States, BTEX are included in the National Primary Drinking Water
Regulations (USEPA, 2001), and some states have set maximum soil contaminant
concentrations for a mumber of hydrocarbons including BTEX (NCDENR, 2002). The
European Union has included benzene in the List of Priority Substances in the Field of Water
Policy and Amending Directive (QJEC, 2001). In Japan, benzene is included in the
Environmental Quality Standards lists for groundwater and soil pollution (JME, 1997). In
Mexico, BTEX are included in drinking water regulations (DOF, 2000) and benzene, toluene
and xylenes are also regulated in soil (DOF, 2002).
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Recent research has shown that among xylene isomers, o-xylene appears to be the most
recalcitrant (Stewart and Kamarthi, 1997). Additionally, mete and para isomers can be
metabolized by revertant strains grown on o-xylene (Di Lecce ef al., 1997). The migration of
the BTEX contaminant plume through the soil is a function of the structural properties of
BTEX which allow the molecules to partially adsotb on to the soil particles before they reach
the groundwater, therefore, the use of nonionic surfactants offer a potential alternative to
enhance hydrocarbon bioavailability (Volkering et a/., 1995) and dissolution rate (Grimberg
et al., 1996). Hydrocarbon polluted site cleanup efforts require the development of new and
more efficient technologies to treat contaminated sites.

This study was aimed to evaluate the biodegradation kinetics of BTE-0X, all together, in
the presence of MTBE by the addition of bioaugmented bacterial populations previously
acclimated to BTEX. The effects of soil and the addition of nonionic surfactant Tergitol NP-
10 on BTE-0X and MTRBE biodegradation kinetics were also evaluated,

Methods

Experimental design

Chemicals and culture conditions. Benzene, toluene, ethylbenzene, mixed xylenes,
o-xylene, methyl tertiary butyl ether (MTBE) and Tergitol NP-10 {TNP-10, a nonionic
surfactant) were purchased from Sigma-Aldrich {Mexico) and were above 98% purity.
Nutrient agar (Difco Laboratories, Detroit, MI) and bacteriological agar (BIOXON, Becton-
Dickinson, Mexico) were purchased from Fisher Scientific (Mexico). Mineral medium [
{(MMI) was prepared in deionized water and maintained in the seed biomass acclimation
bioreactor according to the following concentration (in mg/L) (Acuna-Askar et a/., 2003a}:
KH,PO,, 17, K;HPQ,, 44; Na,HPO, 2H,0, 67; MgS0O,-7H,0, 23; NH,Cl, 3.4; (NH,),SO,,
40; FeCly6H,0, 1. Mineral medium IT (MMII) was prepared to resuspend the bacterial cells
after centrifugation and had the following composition (in g/L). Na;HPO,, 6; KH,PO,, 3;
NaCl, 1; NH,Cl 1, MgS0,-7 H,O 0.5; CaCl,, 0.011; FeCl;-6H,0, 0.001. Substrate mineral
medium (SMM) was prepared for the experimental bioassays to evaluate biodegradation
kinetics and consisted of MMII, 50 mg/L of each BTE-0X component and 50 mg/L MTBE.
The pH of MMII and SMM was 7.0-7.5.

Biomass acclimation batch reactor. The biomass was grown using a 20-L glass bottle, with
8 L as the working volume, aerated at an inlet flowrate of 50 mL/s and keeping dissolved
oxygen at 8.2-8.7 mg/L. Single daily manual additions of 200 mg/L eéach BTEX chemical as
the only source of carbon were made to the bioreactor for 6 months, Culture medium (MMI)
was reconstituted once a week throughout the feeding time. Acclimation conditions also
included room temperature (17-23°C in Winter and 24 to 32°C in Spring) and pH 7.0-7.5.
Enough 1 N NaOH was added daily to keep the pH within range. The conditions described
here allowed microbial growth to reach 850-950 mg/L volatile suspended solids {(VSS). VSS
determination followed Standard Method 2540 E (Standard Methods, 1998).

Bioaugmentation and experimental bioassays. A total volume of 560 mL of the mixed liquor
was taken from the 20-L biomass acclimation batch reactor using 14 Falcon® tubes (BD No.
352098) filled up to 40 mL each. The acclimated biomass was centrifuged in a Beckman
centrifuge (Beckman Instruments, Inc., Palo Alte, CA), model J2MI at 6,000 rpm at 25°C for
5 minutes. The biomass was concentrated and resuspended in two 50-mL Falcon® tubes with
35 mL of MMII each. An inoculum of 2 mL of concentrated biomass was added to
experimental bioassays to reach 905 mg/L VSS, which was a concentration similar to the
grown in the 20-L biomass acclimation batch reactor. This procedure was made for each of
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the three replicates. Bioassays were performed wsing 50 mg/L. as the initial MTBE
concentration and 50 mg/L as the initial concentration of each BTE-0X component to
evaluate substrate removal capabilitics of BTEX-acclimated biomass. Controls and three sets
of samples were evaluated. Controls had only SMM. Set 1 contained SMM and 905 mg/L
VSS of microbial inoculum. Set 2 contained SMM, 18.5% sterilized seil (SS) and 905 mg/L
¥SS of microbial inoculum. Set 3 contained SMM, 18.5% SS, 905 mg/L VSS of microbial
inoculum and 25 mg/l. TNP-10. The amount of TNP-10 added to experimental bioassays
was slightly below the critical micelle concentration (CMC) based on prior studies (Acuna-
Askar er al,, 2003a). MTBE and BTE-0X were monitored for 36 hours every 6 hours.
Substrate biodegradation kinetics were conducted using 40-mL. Wheaton borosilicate glass
EPA vials with Teflon™ fluorocarbon resin-lined top screw caps of GPI thread finish
(Wheaton Science Products, Millville, NJ), with a maximum working volume of 22 mlL,
leaving a headspace volume available for respiration. Three replicates were run to evaluate
substrate biodegradation kinetics.

Sample and control sterilization. 5-g soil samples wrapped in alvminum foil were autoclaved
in a 21-L Presto autoclave (Industrias Steele, Mexico) following three sterilization cycles.
Soil samples were considered sterile at a maximum of 3 CFU/mL in nondiluted samples.
Soil-free samples and controls were autoclaved following one sterilization cycle. Standard
Methods 9215 A and 9215 B (Standard Methods, 1998) were followed for sample
preparation and for estimating the number of heterotrophic bacteria.

Sample shaking, sonication and analysis. Samples and controls used for biotransformation
studies were shaken using a New Brunswick oscillating incubator shaker (Fisher-Scientific,
Pittsburg, PA) model R76. Uniform shaking was maintained at 200 rpm at 30°C. Samples
were tested for sonication following the USEPA method 3550, with some modifications, to
release potential BTE-0X and MTBE trapped in cell membrane. MTBE and BTE-0X were
analyzed by a Varian 3400 GC/FID chromatograph. GC/FID determinations followed
standard procedures (USEPA 1995) with some modifications. A Petrochol™ (Supelco,
Bellefonte, PA) 100m x 0.25mm ID x 0.5um film DH fused silica GC capillary ¢olumn was
used. The initial oven temperature was set up at 60°C and held for 30 minutes, after which
the first temperature rate varied 10°C/min from 60°C up to 90°C, point at which temperature
was held for 20 minutes. A second temperature rate followed and varied 30°C/min from 90°C
up to 150°C, point at which temperature was held for 2 minutes. The injector was set up ona
split/splitless mode (1:20) and its temperature was set at 250°C. The detector temperature
was set at 300°C. 5-mL samples were purged with nitropen at 25°C for 10 minutes and
concentrated prior to injection.

Kinetic models evaluation

First-order one-phase model. For the three sample sets, the overall o-xylene and MTBE
removal rate constants K were obtained by the following equation (Acuna-Askar et al.,
2000):

Model I 8,=Spexp(-Kt) Where: S;= Substrate concentration at tirne t, (mg/L)

S = Substrate concentration at time zero, (mg/L);

K = overall first order constant, K =k Xv; Xv =VSS, (mg/L)

k = specific rate constant, h™' (mg/L)'vss; t=time, (h)

The overall removal rate constants K were obtained from the slope by plotting In §, versust.
First-order two-phase model. For the three sample sets, the overall benzene, toluene and
ethylbenzene removal rate constants K were obtained by the following equation (Hu et al.,
2004): Model I1 S, =5, exp(-K,t) + 8, exp(-Kat)
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Where: S, = Substrate concentration at time t, (mg/L); S, = First phase concentration at
time zero, (mg/L); S; = Second phase concentration at time zero, (mg/L); K, = First phase
kinetic rate constant, (h™'); K, = Second phase kinetic rate constant, (h™)

The overall removal rate constants K were obtained from the method of residuals.

Results and Discussion

Effect of bioaugmentation, sterile soil {§S) and surfactant on BTE-0X and
MTBE.

All BTE-0X and MTBE chemicals followed a first-order removal rate in the presence of 905
mg/L. V58S of BTEX-acclimated biomass during the time frame evaluation of 36 hours. As
shown in Figure 1, toluene biodegraded slightly faster than ethylbenzene and these two
substrates were removed faster than benzene, o-xylene and MTBE. Recent studies have
shown that unleaded-gasoline acclimated biomass under experimental conditions similar to
the present study, removed toluene and ethylbenzene faster than benzene, o-xylene and
MTBE (Acuna-Askar et al., 2003b). Prior research has shown that the biotransformation of
BTEX mixtures, in the absence of MTBE, followed the order of ethylbenzene, toluene,
benzene and xylenes (Deeb and Alvarez-Cohen, 1999). In addition, inhibitory effects of
ethylbenzene and xylenes on MTBE biodegradation have been reported (Deeb et al., 2001).

x« MIBE Time (h)
T (h)

Figure 1 BTEoX biodegradation kinetics with Figure 2 BTEoX biodegradation kinetics with
50 mg/L MTBE in the presence of 905 mg/L VSS. 50 mg/L MTBE, 905 mg/L V&S and 18.5% S8S.

600

400

£.00 -

Time (h)

Figure 3 BTEoX biodegradation kinetics with 50 mg/L MTBE,
905 mg/L VSS, 18.5% S5 and 25 mg/L of TNP-10.
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As shown in Figure 2, soil had a negative impact on the bicdegradation rates of benzene,
toluene and ethylbenzene. As can be seen from comparing Figures 1 and 2, the addition of
soil to the substrate mixture slightly increased o-xylene and MTBE removal rates.

Differences of the effect of soil on all these substrates may be due to the major role that
sorption-desorption kinetics plays in the bioavailability properties of chemicals (Braida et al.,
2002) as well as the effect of electron-accepting conditions on subsirate response variability
(Ruiz-Aguilar ez al., 2002). As can be seen from comparing Figures 2 and 3, the addition of
TNP-10 enhanced overall BTE-0X and MTBE removal rates.

Table 1 Two-phase kinetic model reaction rate constants vs. experimental bioassay samples

P00Z “/8 12 JENSY-BUNOY )

Benzene Toluene Ethylbenzene
Set 1 Samples
Overall K rate Ka Kz K Kz K, Ka
Y 0.0109 0.2059 0.0080 0.2647 0.0135 0.1898
(r) (0.899) {0.999) (0.999)
Specific k rate ks k2 ki kz Ki ke
(' (ma/L)™ 1.20x10°  2.28x10*  6.63x10°% 2.92x10™ 1.49x10°  2.10x10*
(r) (0.999) (0.999) (0.999)
Set 2 Samples™
Qverall K rate K K2 K, Kz K Kz
"] 0.0080 0.0739 0.0145 0.1888 0.0138 0.1657
(r) (0.599) (0.999) (0.999)
Specific k rate ks k2 K kz K k2
th*(ma/L)] B.8ax10®  8.17x10°  1.60x10° 2.09x10™* 1.52x10°  1.83xi0™
(r) (0.899) (0.999) (0.999)
Set 3 Samples™*
Overall K rate K, K2 K1 K2 Ky K;
' 0.0072 0.1816 0.0104 0.2526 0.0348 0.209
(r) (0.959) (0.999) (0.999)
Specific k rate s kz L k2 Ky k2
[h{maLy ] 7.96x10%  201x10*  1.15x10% 2.79x10™ 3.85x10°  2.31x10™
{r) (0.999) (0.999) {0.999)

r = comrelation coefficient
*SMM + 905 mg/L VSS

** SMM + 18.5% S8 + 905 mg/L VSS§
w* SMM + 18.5% S8 + 905 mg/L VSS + 25 mgL. TNP-10

Benzene, toluene and ethylbenzene followed a first-order two-phase removal rate kinetic
medel in the three sample sets evaluated (Table 1). Kinetic models for mixtures of BTEX
and MTBE, all together, are limited in the literature. Reliable fit of data consistently showed
that benzene, toluene and ethylbenzene had a biphasic removal rate with a strong slope
change at 12 hours. The first phase kinetic rate constants of benzene, toluene and
ethylbenzene were significantly lower than the corresponding second phase kinetic rate
constants, suggesting that benzene, toluene and ethylbenzene removal rates may have been
influenced by some type of substrate interaction (Chang et al., 2001; Deeb et al., 2001). The
second phase kinetic rate constants of benzene, toluene and ethylbenzene were reduced by
64%, 28% and 13% respectively, when soil was added to the BTEX-acclimated biomass.
The addition of TNP-10 to Set-2 samples enhanced benzeme, toluene and ethylbenzene
second phase kinetic rate constants by 145%, 34% and 26%, respectively. Overall o-xylene
and MTBE kinetic rate constants were enhanced by the addition of soil by 22% and 75%,
respectively. Also, the addition of TNP-10 to Set-2 samples enhanced o-xylene and MTBE
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kinetic rate constants by 17% and 80%, respectively (Table 2). A comparison of the overall
kinetic rate constants of Set-2 samples reporied in this study with those aerobic k rates of
BTEX-MTBE mixtures in aquifer materials reported earlier (Ruiz-Aguilar et al., 2002),
shows that benzene and o-xylene k rates were 1.7 and 2.7 times higher, respectively, in the
prior study. The overall toluene kinetic rate constant in the present study, however, was
nearly 6.5 times higher than that reported by these authors in those mixtures. Surprisingly,
the overall ethylbenzene kinetic rate constants were similar in the two studies.

Table 2 Kinetic model reaction rate constants vs. experimental bioassay samples

o-Xylene MTBE
Set 1 Samples *
Qverall K rate K4 Kz K
M 0.0095 0.0178 0.0028
(r) (0.999) (0.978)
Specific k rate Kq kz k
[htmg/Ly™"] 1.05x10°% 1.97x10°% 3.00x10°
(r) (0.599) {0.978)
Set 2 Samples**
Overall K rate [ K
h 0.0218 0.0048
(r) {0.977) (0.972)
Specific k rate k k
b (mg/L)"] 2.41x10* 5.41x10°
(r) (0.977) (0.978)
Set 3 Samples***
Overall K rate K K
h 0.0256 0.0088
{r) (0.966) (0.981)
Specific k rate k k
[h'(mg/L)™ 2.83x10° 9,72x10®
(r) (0.966) - {0.981)
r = correlation coefficient ** SMM + 18.5% SS + 905 mg/L VSS
*SMM + 905 mg/L V5S =* SMM + 18.5% SS + 905 mg/L VSS + 25 mg/L TNP-10

Table 3 Biodegradation percentage vs. experimental bioassay gamples

Benzene Toluene  Ethylbenzene o-Xylene MTBE

(%) (%) (%) (%) _ (%)
SMM + 905 mg/L VSS 99.0 99.8 99,2 50.1 g9
SMM + 905 mg/L VSS + 18.5% 58 77.0 87.9 88.3 54.8 16.1
SMIM-+ 205 Mpl. VES+ 18.5%:88 oo q 99.7 997 65.3 430

+ 25 mg/L TNP10

As indicated in Table 3, benzene, toluene and ethylbenzene had percent removals above
99% in the presence of biomass only. When seil was present, however, benzene percent
removal was reduced by 28%. Soil did not significantly affect the percent removal of either
toluene or ethylbenzene. The addition of TNP-10 helped increased benzene percent removal
by 25%. TNP-10 did not have any significant effect on either toluene or ethylbenzene
percent removalis. O-xylene percent removal was 50.1% and had a slight increase to 54.8%
with the addition of soil and a significant further increase to 65.3% when TNP-10 was added
to the mixture. MTBE showed the lowest percent removal among all substrates evaluated,
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however, the addition of soil enhanced MTBE removal by 62%. Interestingly, the addition
of TNP-10 to soil-containing samples enhanced MTBE percent removal by nearly three-fold.
The low biodegradation performance of the biomass on MTBE was presumably due to the
presence of other easily assimilated carbon sources such as toluene, ethylbenzene and
benzene. Also, prior studies have shown that different conditions are needed to significantly
achieve MTBE biodegradation (Acuma-Askar et al., 2000; Stringfellow and Oh, 2002;
Pruden er al., 2003; Hu er al., 2004), The significant increase of benzene, o-xylene and
MTBE percent removals by the addition of TNP-10 might suggest that the addition of
nonionic surfactant at a concentration lower than the CMC was able to enhance substrate
interaction with the microbial population. This finding is relevant because earlier research
has indicated that hydrocarbon availability can be constrained by micellization (Grimberg et
al., 1996).

Conclusions

Bengzene, toluene and ethylbenzene biodegradation followed a first-order two-phase kinetic
model in all samples, whercas MTBE biodegradation was well described by a first-order
one-phase kinetic model. O-xylene biodegradation followed a first-order two-phase kinetic
model in the presence of biomass only. The addition of soil or soil and TNP-10 to the
biomass allowed o-xylene biodegradation to switch to a first-order one-phase kinetic model.
The addition of soil reduced benzene, toluene and ethylbenzene removal rates and enhanced
o-xylene and MTBE removal rates. The addition of TNP-10 to aqueous samples containing
soil allowed BTE-0X and MTBE removal rates to increase in all samples. Benzene
biodegradation rates were slower than the comresponding toluene and ethylbenzene
biodegradation rates in nearly all samples. O-xylene biodegraded slower than benzene and
MTBE showed lower bicdegradation rates than the corresponding BTE-0X removal rates.
Substrate percent removals ranged 77-99.8% for benzene, toiuene and ethylbenzene.
O-xylene and MTBE percent removals ranged 50.1-65.3% and 9.9-43.0%, respectively.
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survey, destruction pilot studies at OCWD, and
formation/reformation pathways and control options.

Because of its soluble characteristics, NDMA cannot
be absorbed by activated carbon and is not removed
from water using air stripping. However, UV
photolysis and advanced oxidation (UV/peroxide) of
NDMA has been successful. UV destruction pilot
tests at OCWD, conducted using flow through low-
and medium-pressure UV systems as well as natural
sunlight indicated that UV photolysis is effective in
destruction of NDMA. Hydrogen peroxide addition
improved NDMA removal efficiencies and reduced

reformation potential after chlorination with free
chlorine.

Sunlight exposure was very effective and reduced
NDMA levels from 500 ppt to <1ppt in three hours. As
a result, CCWD converted some existing structures
to plug-flow shallow basins for sunlight
exposure/NDMA destruction. The NDMA destruction
efficiency of these basins is discussed in this paper.
Additionally, OCWD added advanced oxidation
processes for NDMA destruction at Water Factory
21, at water wells, and at the proposed Ground
Water Replenishment System. Testing was also
conducted to study reformation potential of UV
exposed samples after chlorination (free chlorine and
chloramine) at various holding times. The results of
this testing for various water quality matrices is also
discussed in this paper.

NDMA removal/fformation potential by conventional
treatment processes was also evaluated. This
evaluation indicates that cellules acetate and thin film
composite RO membranes remove <10% and >50%
NDMA, respectively, but hydrogen peroxide or pure
oxygen treatment alone does not remove NDMA,
appreciably. The information presented here benefits
many other agencies facing similar water quality
concerns.
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About the Examination of lon Exchanger Beads
Through Optical and Electronic Microscopy

Author
Pragenting Author
Corresponding Author,

Dr. Federico Mijangos, Spain
Dr. Federico Mijangos, Spain

Kinetic of simultaneous load of cobalt and copper
onto an iminodiacetic-type resin is here investigated.
Analysing a semireacted bead under the microscope,
two different coloured layers surrounding the central
core have been observed. Metal concentration
profiles inside the particles at ditferent reaction times
were measured by the Scanning Electron
Microscopy-Energy Dispersive X-Ray (SEM- EDX)
technique, which allows one to obtain a linescan
along diametrical positions.

Copper diffuses following a monotonous increasing
path to the resin, and when the reaction is finished,

51

metzal uptake achieves the equilibrium value which is
the maximum load. Using experimental result one
can conclude by comparing the load rates for both
metals, that at the beginning of the reaction they
diffuse in parallel but finally copper is displacing

cobalt from the central core, so the process is merely

and copper/cobalt ion exchange reaction.

The swelling/shrinking behaviour of a commercial
chelating resin as a consequence of the icn
exchange reaction is reported in this paper.
Measurements of the volume variation were carried
out for every step of an operational cycle, metal load,
elution and regeneration of the ion exchanger, using
an optical cell and an image treatment.

On the other hand, using the X-ray microprobe it has
been concluded that the coloured layers observed
under the optical microscope, do not show constant
metal concentration in a radial direction, as it could
be assumed. On the contrary, irregular concentration
profiles are appreciated, largely affected by species
in solution and even for trace metal introduced in the
reaction vessel with the reactives.
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The Role of a Nonionic Surfactant on

Biodegradation Efficiency Kinetic Models of BTE-
oX and MTBE

Auwthor
Presenting Author
Corresponding Author ,

Dr. Karim Acuna-Askar, Mexico

The kiodegradation efficiency kinetic models of BTE-
oX and MTBE mixtures in the presence of soil and
Tergitol NP-10 (TNP-10) by unleaded gasoline
acclimated biomass were evaluated. MTBE and BTE-
oX concentrations were monitored for 36 hours every
6 hours. MTBE biodegradation efficiency showed a
zero-order rate in all samples. Benzene
biodegradaticn efficiency showed a first-order two-
phase reaction rate in the absence of surfactant.
Interestingly, however, with the addition of TNP-1Q,
benzene biodegradation efficiency switched to a first-
order one-phase kinetic rate model. Toluene and
ethylbenzene biodegradation efficiencies showed a
first-order two-phase kinetic rate model in all
samples. O-xylene biodegradation efficiency followed
a first-order one-phase kinetic rate model in all
samples. The addition of TNP-10 significantly
increased the biodegradation efficiency percent
removals of those recalcitrant substrates such as o-
xylene and MTBE by 40% and 35.5%, respectively.
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ABSTRACT

The biodegradation efficiency of BTE-0X and MTBE, all together, in the presence of 18.5% soil with and without 25
mg/L Tergitol NP-10 (TNP-10) by 880 mg/L VSS unleaded gasoline acclimated biomass was evaluated. MTBE and
BTE-oX concentrations were evaluated for 36 hours every 6 hours. MTBE biodegradation efficiency showed a zero-
order rate in all samples. Although, the addition of surfactant enhanced MTBE biodegradation efficiency rate by
22.6%, MTBE efficiency percent removal was not above 28.4%. Benzene biodegradation efficiency showed a first-
order two-phase reaction rate in the absence of surfactant. Interestingly, however, with the addition of TNP-10,
benzene biodegradation efficiency switched to a first-order one-phase kinetic rate model. Toluene and ethylbenzene
biodegradation efficiencies showed a first-order two-phase kinetic rate model in all samples. The addition of TNP-10
had a major selective impact with a significant increase on toluene and ethylbenzene biodegradation efficiency second
phase kinetic rate constants. This selective enhancement showed a trend for toluene to reduce differences between the
distribution and elimination phase kinetic rate constants. O-xylene biodegradation efficiency followed a first-order
one-phase kinetic rate model in all samples. The addition of TNP-10 significantly increased the biodegradation
efficiency percent removals of those recalcitrant substrates such as o-xylene and MTBE by 40% and 35.5%,
respectively. The addition of TNP-10, however, did not have a significant effect on the biodegradation efficiency
percent removals of those easily assimilated substrates such as benzene, toluene and ethylbenzene.

Keywords
Bioaugmentation; biodegradation; bioremediation; BTEX; MTBE; Tergitol NP-10

INTRODUCTION

The major chemicals of enviromental concern from unleaded gasoline are methyl tertiary-butyl ether (MTBE) and
benzene, toluene, ethylbenzene and total xylenes (BTEX) due to their carcinogenic potential and other toxicity and
their impact on property value (Hartley et al.,1999; Acuna-Askar, et al., 2000; Chang, et al.,2001; Wilson, et al,,
2001). Underground storage tanks (UST's), production sites, transfer facilities and accidental spills are often reported
as an important source of soil and eventually groundwater contamination by BTEX and MTBE (USEPA, 2000).
BTEX are included in the current United States Environmental Protection Agency (USEPA) drinking water standards
list under the National Primary Drinking Water Regulations (NPDWRs). The maximum drinking water levels for
BTEX are 0.005, 1.0, 0.7, and 10 mg/L, respectively (USEPA, 2001). Additionally, the North Carolina Department of
Environment and Natural Resources (NCDENR) has set the risk based maximum soil contaminant concentrations
(MSCCQC) for a number of hydrocarbons including BTEX. The MSCC are divided in three categories: the residential
soil cleanup levels; the industrial/commercial soil cleanup levels and the soil-to-water maximum contaminant
concentration (NCDENR, 2002). The maximum contaminant levels (MCLs) for BTEX in drinking water in Mexico
are 0.01, 0.3, 0.7 and 0.5 mg/L, respectively (DOF, 2000). Emerging environmental regulations for benzene, toluene
and total xylene contaminated soil in Mexico, have set the maximum contaminant levels (MCLs) as 20.0, 40.0 and



40.0 mg/Kg, respectively, for agricultural, residential and commercial settings, and 50.0, 100.0 and 100.0 mg/Kg,
respectively, for industrial use (DOF, 2002). The MTBE drinking water health advisory level for taste and odor has
been set at 20-40 ug/L by the EPA (USEPA, 1997).

METHODS -

Chemicals. Benzene, toluene, ethylbenzene, mixed xylenes, o-, m-, p-xylene, methyl tertiary butyl ether (MTBE) and
Tergitol NP-10¢ (nonicnic surfactant) were purchased from Sigma-Aldrich (Mexico) and were above 98% purity.
Unleaded gasoline (UG) Premium was purchased from a gas station. Nutrient agar (Difco Laboratories, Detroit, MI)
and bactericlogical agar (BIOXON, Becton-Dickinson, Mexico) were purchased from Casa Rocas Fisher Scientific
(Mexico).

Culture conditions. Mineral medium I (MMI) was prepared in deionized water and maintained in the seed biomass
acclimation bioreactor according to the following concentration {in mg/L) (Acuna-Askar ef al., 2002): KH,PO,, 17;
K,HPOQ,, 44; Na,HPO,- 2H,0, 67, MgS0,7TH,0, 23; NH,Cl, 3.4; (NH,),S0,, 40; FeCl;-6H,0, 1. Mineral medium I1
(MMII) was prepared to resuspend the bacterial cells after centrifugation and had the following composition (in g/L):
Na;HPO,, 6; KH,PO,, 3; NaCl, 1; NH,Cl 1, MgS0,7 H,O 0.5; CaCl,, 0.011; FeCly-6H,0, 0.001. Substrate mineral
medium (SMM) was prepared for the experimental bioassays to evaluate biodegradation kinetics and consisted of
MMII, 50 mg/L of each BTE-0X cormponent, 50 mg/L. MTBE and 18.5% sterilized soil (SS). The pH of MMII and
SMM was 7.0-7.5.

Critical micelle concentration. The concentration range of nonionic surfactant (Tergitol NP-10) where a sudden
variation in the relation between both culture medium density and culture surface tension occurred was chosen as the
critical micelle concentration (CMC). The amount of Tergitol NP-10 added to experimental bioassays was slightly
below the CMC based on prior studies (Acuna-Askar et al., 2002).

Biomass acclimation batch reactor. The biomass was grown using a 20-L glass bottle, with 8 L as the working
volume, aerated at an inlet flowrate of 50 mL/s and keeping dissolved oxygen at 8.2-8.7 mg/L. Single daily manual
additions of 200 mg/L UG as the only source of carbon were made to the bioreactor for 6 months. Culture medium
(MMI) was reconstituted once a week throughout the feeding time. Acclimation conditions also included room
temperature (17-23°C in Winter and 24 to 32°C in Spring) and pH 7.0-7.5. 1 N NaOH was added daily to keep the pH
within range. The conditions described here allowed microbial growth to reach 800-900 mg/l. volatile suspended
solids (VSS). VS8 determination followed Standard Method 2540 E (Standard Methods, 1998).

Bicaugmentation. A total volume of 560 mL of the mixed liquor was taken from the 20-L biomass acclimation batch
reactor using 14 Falcon® tubes (BD No. 352098) filled up to 40 mL each. The acclimated biomass was centrifuged in
a Beckman centrifuge (Beckman Instruments, Inc., Palo Alto, CA), model J2MI at 6,000 rpm at 25°C for 5 minutes.
The biomass was concentrated and resuspended in two Falcon® tubes with 35 mL of MMII each. An inoculum of 2
mL of concentrated biomass was added to experimental bipassays to reach 880 mg/L VSS, which was a concentration
similar to the grown in the 20-L biomass acclimation batch reactor. This procedure was made for each of the three
replicates.

Experimental bioassays. Bioassays were performed using 50 mg/L as the initial MTBE concentration and 50 mg/L as
the initial concentration of each BTE-0X component to evaluate subsirate removal capabilities of UG-acclimated
biomass. Two controls and two sets of samples were evaluated. First controls had only SMM. Second controls had
SMM and 25 mg/L Tergitol NP10 (TNP-10). Set 1 contained SMM and 880 mg/L VSS of microbial inoculum. Set 2
contained SMM, 880 mg/L VSS of microbial inoculum and 25 mg/L. TNP-10. MTBE and BTE-oX were monitored
for 36 hours every 6 hours. Substrate biodegradation kinetics were conducted using 40-mlL. Wheaton borosilicate
glass EPA vials with Teflon™ fluorocarbon resin-lined top screw caps of GPI thread finish (Wheaton Science
Products, Millville, NJ), with a maximum working volume of 22 mL, leaving a headspace available for respiration.
Three replicates were run to evaluate substrate biodegradation kinetics.

Sample and control sterilization. 5-g soil samples wrapped in aluminum foil were autoclaved in a 21-L Presto
autoclave (Industrias Steele, Mexico) following three sterilization cycles. Soil samples were considered sterile at a
maximum of 5 CFU/mL in nondiluted samples. Other samples and controls were autoclaved following one
sterilization cycle. Standard Methods 9215 A and 9215 B (Standard Methods, 1998) were followed for sample
preparation and for estimating the number of heterotrophic bacteria.



Isolation of acclimated bacteria. UG-acclimated bacteria were grown in UG agar plates and incubated in a gravity
flow Isotemp incubator (Fisher Scientific, USA), mode!l 537D at 28-30°C for 72 hours. Acid production in UG agar
plates was identified by change of color from blue to green, and in some cases from blue to yellow using
bromothymol blue as indicator. Foridentification purposes, bacteria isolates were grown in nutrient agar plates.

Mechanical shakers and sonication. Samples and controls used for biotransformation studies were shaken using a
Lab-line oscillating incubator shaker (Barnstead International, Dubuque, IA) model Orbit. Uniform shaking was
maintained at 200 rpm at 30°C. Samples were tested for sonication following the USEPA method 3550, with some
modifications, to release potential BTE-0X and MTBE trapped in cell membrane

Gas chromatography and sample concentrator. MTBE and BTE-oX were analyzed by a Varian 3400 GC/FID
chromatograph. GC/FID determinations followed standard procedures (USEPA 1995) with some medifications. A
Petrochol™ (Supelca, Bellefonte, PA) 100m x 0.25mm ID x 0.5pm film DH fused silica GC capillary column was
used. The initial oven temperature was set up at 60°C and held for 30 minutes, after which the first temperature rate
varied 10°C/min from 60°C up to 90°C, point at which temperature was held for 20 minutes. A second temperature
rate followed and varied 30°C/min from 90°C up to 150°C, point at which temperature was held for 2 minutes, The
injector was set up on a split/splitless mode (1:20) and its termperature was set at 250°C. The detector temperature was
set at 300°C. 5 mL samples were purged with nitrogen at 25°C for 10 minutes and concentrated prior to injection.

Kinetic models evaluation
First-order one-phase model. Model 1 (Acuna-Askar et al., 2000) was used to evaluate the overall removal rate
constants K for benzene in set 2 samples and for o-xylene in sets 1 and 2 samples.
Modell S, =5; exp(-Kt) (1)
where: S, = Substrate concentration at time t, (mg/L)

Sp = Substrate concentration at time zero, (mg/L)

K = overall first order constant, K =k Xy

Xy = VSS, (mg/L)

k = specific rate constant h™'(mg/L) 'vss

t= time (h)
The overall removal rate constants K were obtained from the slope by plotting In §; versus t.

First-order two-phase model. Model Il (Hu ef al., 2002} was used to evaluate the overall removal rate constants K for
benzene in set 1 samples and for toluene and ethylbenzene in sets 1 and 2 samples.
Model Il  S5,=S; exp(-K,;t) + S, exp(-Kat) (2)
where; S, = Substrate concentration at time t, (mg/L)
8, = First phase substrate concentration at time zero, (mg/L)
S, = Second phase substrate concentration at time zero, (mg/L)
K, = First phase kinetic rate constant, (k')
K, = Second phase kinctic rate constant, (h™)
The overall removal rate constants K were obtained from the method of residuals.

Zero-order model. Model III was used to evaluate the overall removal rate constants K for MTBE in sets | and 2
samples,
Model I S,=- Kt + S, (3)
terms are defined as for model I
The overall removal rate constants K were obtained from the slope by plotting S, versus t.
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Table 1. Kinetic model reaction rate constants vs. experimental bioassay samples

Benzene Toluene Ethylbenzene o-Xylene
Set 1 Samples*
Overall K rate K, K; K, K, K, Ki K
[br] 0.0085 0.1514 0.1143 0.0362 0.2105 0.0123 0.0498
® (0.985) (0.999) {0.989) (0.983)
Specific k rate k, k; k, k» K, k; k
[hr'(mg/L) 'vss] 9.66x 10% 172 x10* 1.13x 10 0.411x 10° 2.39x 10* 0.14x10* 0.566 x 10™
(r) (0.999) (0.999) (0.999) (0.985)
Set 2 Samples**
Overall K rate K K; K; K; K; K
[hr'] 0.1063 0.1181 0.0798 0.3206 0.0639 0.0291
(1) (0.989) (0.993) {(0.993) (0.990)
Specific k rate k k, k, k, k> k
[hr '(mg/L) 'vss] 1.20 x 10° 1.34x 10* 0.907x 10* 3.64x10* 0.726x10*  0.331x 10*
3] (0.989) (0.999) (0.999) (0.990)

1 = correlation coefficient
*SMM + 880 mg/L VSS {control 1 as SMM)
** SMM + 880 mg/L VSS + 25 mg/L TNP-10 (control 2 as SMM + 25 mg/L TNP-10)

Table 2. MTBE kinetic model reaction rate constants vs. experimental bioassay samples

Set 1 Samples* Set 2 Samples**
Qverall K rate K X
(mgL'hr'] 0.3175 0.3895
(r) (0.983) ) (0.975)
Specific k rate k k
[mgL 'hr(mg/L) " vss] 3.61 x 10 4.53x 10"
(r) (0.983) (0.975)

r = correlation coefficient
* SMM + 880 mg/L VSS (control 1 as SMM)
** SMM + 880 mg/L VSS + 25 mg/L TNP-10 (control 2 as SMM + 25 mg/L TNP-10)

Table 3. Biodegradation efficiency percentage vs. experimental bioassay samples

Benzene (%)  Toluene (%) Ethylbenzene (%) o-Xylene(%) MTBE (%)

SMM + 880 mg/L VSS* 95.6 96.9 95.0 46.1
SMM + 880 mg/L VSS +
25 mg/L TNP10** 97.3 99.3 997 64.6

209
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* Control 1 as SMM
** Control 2 as SMM + 25 mg/L TNP10

CONCLUSION
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ANTECEDENTES

Una preocupacién importante en ¢l campo de la cbntaminacién ambiental, la constituye la
presencia en el ambiente de compuestos quimicos que presentan cfectos adversos a la salud, entre los
cuales se encuentran algunos de los componentes de la gasolina, particularmente los BTEX (benceno,
tolueno, etilbenceno y los isomeros del xileno) (Dean, 1978) y el EMTB (éter metil terbutilico)
(Hartley er al., 1999).

Los BTEX estan entre los compuestos de la gasolina mis solubles en agua, encontrandose gue
liegan a constituir cerca del 90% de la fraccién soluble de la gasolina en agua y son superados
solamente por el EMTB que es afiadido intencionalmente a la gasolina para utilizarlo como aditivo y
mejorar su combustién y reemplazar otras sustancias tbxicas como el plomo (Chang et.al, 2001). En
conjunto los BTEX pueden llegar a representar hasta ¢l 15% en peso de la gasolina sin plomo (ATSDR,
2002).

El EMTB es un compuesto sintético muy soluble en agua y no es adsorbido por el suelo, por lo

que llega directamente hasta Jos mantos fredticos, que son utilizados como fuentes de suministro de
agua potable (Squillace er al., 1996).
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Se¢ ha demostrado que la via usual de contaminacion de los suelos por estas suslancias la
constituyen las fugas en los tanques de produccion y almacenamienio sublerrianeos, derrames

accidentales y/o practicas de disposicion mmadecuadas (Eweis, 1999).

Todos estos contaminantes han sido catalogados como altamente peligrosos debido a los graves
cfeclos que pueden provocar en la salud humana, incluso, ¢l benceno bha sido catalogado como’
cancerigeno por la Agencia de Proleccidon Ambiental de los Estados Unidos de América (L’SEP:‘\)
(ASTDR, 2002).

La biorremediacion consiste en la utilizacion de méiodos biolégicos para transformar o
inmovilizar contaminuntes que se encuentren en el suelo y/o en ¢l agua (Kilroy y Gray, 1993). Las
lecnologias de biorremcediacién generalmente utilizan consorcios microbianos. debido a que aportan
interacciones positivas, donde una o varias cspecies salen beneficiadas de los procesos metabolicos de
oiras. Dentro dc las venlajas que se han encontrado, han sido la capacidad de mineralizar los

compuesios contaminantes y ¢l de mejorar cl tiempo de degradacion. entre otros (Eweis, 1999).

Se ha reportado la biodegradacién de EMTB en reactores de lote en un intervalo de 67-7345 en
muestras acuosas {(Acuna-Askar. 1998) v con un incrcmento en la cficiencia de biodcgradaciém del
70% al 99% en condiciones de flujo continuo vertical (Acuna-Askar et al., 2000; Hu e al., 2002). Por
otrz parte, s¢ ha demostrado que los BTEX se biodegradan en reactores de lote al 99%, en muestras
acuosas en condiciones de bioestimulacion y bioaumentacion (Acuna-Askar er of., 2002), pero que
lambién se biodegradan en suspensioner-.#de suelo (Alfaro, 2002). en los cuales es imprescindibie
realizar ¢l balance d¢ masas en la fase lfquido-vapor,. involucrando, para ello, la ley de Henry {Acuna-
Askar er al., 2003a). Recientes hallazgos muestran que durante la biodegradacion de los BTEX
pudicran existir mecanismos concertados. en los que destacan patrones de induccion-inhibicion,

probabjemente estimuiados por cometabolismo {Acuna-Askar e af., 2003b).

Los BTEX v ¢l EMTB van acompanados en la pluma contaminanic tanto en los manios
freaticos como en los suelos expuestos a derrames, por lo que es imporiante realizar el estudio
detallado para generar la tecnologia que permita la biodegradacién de estos compuesios ¢n conjunto

para la biorremediacion de sitios comaminados'—(Acuna-Askar et al., 2003c).
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OBJETIVO

El objetivo de esta investigacion es el de determinar la biodegradabilidad de los BTE-0X (se
utilizé solamente orto-xileno debido a su alta recalcitrancia comparada-con los otros isémeros de
xilenos) en presencia de EM'TB, por un consorcio microbiano mixto aclimatado solamer - a BTEX.

METODOLOGIA

Preparacion de biomasa.

Se concentrd la biomasa proveniente del reactor de aclimatizacién en tubos Falcon™ a una
velocidad de centrifugacion de 6000 rpm por 3 minutos y se lavé para eliminar los residuos y sustratos
presentes, hasta obtener una concentracién de 8,000 mg/L

Preparacién de muestra de suaelo,
Se tamiz6 el suelo a través de un tamiz de malia nimero 8 y se pesé un gramo del mismo y se
esterilizd en 3 ciclos a 15 psi por 15 minutos cada uno.

Bioensayos experimentales.

Sc llevaron & cabo 2 bioensayos simultineamente, uno para control y el otro para la
determinacién de la biodegradacién de los BTE-0X, todos ellos en 10 viales cada uno de 40 mL,
avalados por la USEPA para la determinacién de compuestos organicos volétiles (COV), en los cuales
s¢ colocaron 20 mL de medio de cultivo con 50 mg/L, cada uno de los BTE-oX y 50 mg/L de EMTB,
con la singular diferencia que en el bioensayo para la determinacion de la biodegradacion, se le afiadid
un gramo de suclo estéril y 2 mL de biomasa concentrada. Los viales se colocaron en una incubadora
de movimiento oscilatorio a 200 revoluciones por minuto {rpm) y a 30°C. Las muestras se retiraron en
intervalos de 8 horas y se analizaron ¢n un cromatégrafo de gases.
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RZISULTADOS Y DISCUSIONES

Los resultados obtenidos indican que los custro BTEo-X se degradan al 99% por el consorcio
microbiano, sin embargo ¢l EMTB no se consume por el consorcio, confirmando asi su alta
recaicitrancia en reactores de lote (Figs. 1-5).
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Las grificas obtenidas nos indican que el primer compuesto en ser biodegradado es el
etilbenceno a las 32 horas, confirmando lo reportado por Acuna-Askar et al., (2002); en cambio, €l
benceno y el orto-xileno presentaron mayor recalcitrancia entre los BTE-0X al ser degradados 16 horas
después. Sin embargo, la biodegradacién del benceno present6 inhibicién por la mayor asimilacién de
los arométicos sustituidos (Acuna-Askar er al., 2003b).

La Figura 2 muestra que el tolueno inicia primero la biodegradacién, la cual se desacelera por la
presencia del etilfbenceno (Figura 3), lo cual sugiere, que en las primeras horas de la biodegradacién, el
etilbeniceno funciona como un inhibidor de la biodegradacion del orto-xileno y el benceno, asi como
del tolueno mismo,

Al ser consumidos los compuestos de mayor asimilacidn, como son €l etilbenceno y tolueno, el
consorcio tiende a consumir ripidamente los de menor asimiiacién, como son &l benceno y orto-xilena.
Esto se comprueba al observar 1a meseta de la biodegradacién del orto-xileno entre cero y 40 horas
(Figura 4); tiempo durante el cual la concentracién del benceno se mantiene en estado estacionario
(Figura 1). Es relevante mencionar la mayor proiongacion que presenta la mescta del ortoxileno en
relacion 8 la del benceno; destacando, sin embargo, que esta meseta muestra una ligera biodegradacion
al observarse una ligera inclinacién en Ia curva de biodegradacién, lo cual no sucede con el benceno,
La presencia del EMTB en los bioensayos realizados en Ia preseate investigacion sugicre que su alta
recalcitrancia podria haber beneficiado Ia biodegradacién de los BTE-0X en un menor tiempo,
considerando previos estudios comparativos sin la presencia de EMTB (Acuna-Askar et al., 2003¢).

CONCLUSIONES

Con los resultados arrojados de los experimentos se concluye que el orden de biodegradabilidad
de los BTEo-X, en presencia de EMTB, por el consorcio, es el siguiente: Etilbenceno > Tolueno >
o-Xileno > Benceno. Esto demucstra la altta estabilidad quimica del anillo aromético del benceno en el
metabolismo de los microorganismos y de ¢émo se ve influenciada esta eszzbilidad por la presencia de
grupos sustituyentes.

Podemos concluir que cl consorcie microbiano mixto aclimatado a BTEX es capaz de
biodegradar 50 ppm de estos contaminantes, sin embargo, na logra su adaptacién para metabolizar el

EMTB en condiciones de lote.

180



RECOMENDACIONES

Con el fin de lograr la biodegradacién del EMTB en presencia de los BTEX se deben iniciar
bioensayos que permitan inducir la produccién de enzimas requeridas para estimular la ruptura de
enlaces carbono-carbono o carbono-oxigeno presentes en el EMTB.

RESUMEN

Se presentan los resultados obtenidos de una cinética de biodegradacién de una mezcla BTE-0X
y EMTB por un consorcio microbiano aclimatado a 300 ppm de Benceno, 300 ppm de Tolueno, 300
ppm de Etilbenceno y 300 ppm de Xilenos. Se encontrd que el consorcio no es capaz de biodegradar el
EMTB, sin embargo logra degradar completamente 50 ppm de cada BTE-0X en un méximo de 48
horag. El orden de biodegradabilidad que se encontrd fue el siguiente: Etilbenceno > Tolueno > o-

Xileno > Benceno.

REFERENCIAS

Acuna-Askar, K. (1998). Biodegradation of methyl tert-butyl ether (MTBE) with emphasis on the
bioremediation of contaminated sites. Sc.D. dissertation. Tulane University, New Orleans, LA.

Acuna-Askar, K., Englande, A1, Jr., Hu, C. and Jin, G. (2000). Methyl tertiary-butyl ether (MTBE)
biodegradation in batch and continuous upflow fixed-biofilm reactors. Wat. Sci. Tech. 42(5-6), 153
161.

Acuna-Askar, K., Englande, AJ., Jr., Ramirez-Medrano, -A., Coronado-Guardiola, J.E. y Chavez-
Gomez, B. (2002). Evaluation of Biomass Production in Unleaded Gasoline and BTEX-fed Baich
Reactors. Environmental Biotechnology. Massey University Press. Palmerston North, Nueva Zelanda,
pp. 291-297.

Acuna-Askar, K., Englande, A. ). Jr., Alfaro-Rodriguez, JF., Rodriguez-Fuentes, H. De Lira
Reyes, G, Mamolejo, J.G., Chavez-Gomez, B. y Nevarez-Moorillon, G.V. (2003a). Evaluation of
. BTEX biodegradation in liquid and vapor phase in soil slurries. Proceedings of the 8™ Intemational
FZK/TNO Conference on Contaminated Soil (CONSOIL 2003). Gante, Bélgica, 12-16 de mayo, pp.
2284-2290. (Aceptado para su publicacién, FZK/TNO).

Acuna-Askar, K., G. Moeller-Chavez, H. Rodriguez-Fuentes, G.De Lira-Reyes, J. A. Vidales-
Contreras, J. G. Marmolejo and B. Chavez-Gomez. (2003b). BTE-oX biodegradation by biomass
acclimated under two different BTEX concentrations. International Water Association, Speecialised
Conference on Environmental Biotechnology, Kuala Lumpur, Malasia, 7-8 de agosto (aceptado para
su publicacién en la Conferencia Especializada, en prensa).

151



Pagina 1 de 1

From Sm9uZyl1BIEtpbQ== <always@gist.ac.kr> 4
Date Monday, May 9, 2005 1:01 am
To kaskar@fm.uanl.mx
Subject QWNZXBOYWS5jZSBMZXR0ZXIgZm9yIFdSUIMyMDA1
Date: 2005.5.9
'\Paper #:6-10
Paper title: The effect of a nonionic surfactant on the biodegradation efficiency of BTE-0X and MTBE
Corresponding author; K. Acuna-Askar

>~ Z 7 °Z

Dear : K. Acuna-Askar

We are happy to announce that your abstract submitted to I'WA Specialty Conference of ;°Wastewater Reclamation & Reuse for
.\Sustainability (WRRS2005); has been accepted for an Poster presentation by the International Scientific Committee and Conference Chair.
')You are kindly requested to register at the web (http://wrrs2005.0rg) until June 30, 2005; otherwise, your presentation(s) (oral and poster) will
ibe cancelled.

UYou are also asked to submit full manuscripts at the web until June 30, 2005. The full manuscript submitted for both oral and poster
y)resentations will be published in conference proceeding. All manuscripts (oral and poster) will be reviewed after conference by the
international scientific committee for publication in the journal of Water Science and Technology, and Desalination.

Further information on registration and manuscripts submission, and many others, please access to our website. We are looking forward to

seeing you all in Jeju,

Best regards

Prof. In S. Kim
‘Jonference Chair

Dr. Jaeweon Cho (Secretariat), contact at jwcho{@gist.ac.kr or Tel. +82-62-970-2443
@ aterReuse Technology Center (WRTC)

Department of Environmental Science and Engineering.
'Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong, Buk-gu, Gwangju 500-712, Korea
'Phnne) +82-62-970-3382 , (Fax) +82-62-970-3384

alttp://mail.uarﬂ.mx/frame.html 10/05/2005



The effect of a nonionic surfactant on the biodegradation efficiency
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ABSTRACT

The bicdegradation efficiency of BTE-oX and MTBE, all together, in the presence of 18.5% soil with and without 25 mg/L
Tergitol NP-10 (TNP-10) by 880 mg/L VSS unleaded gasoline acclimated biomass was evaluated. Substrate
biodegradation efficiency was defined as the pure effect of the biomass versus two types of controls. Type 1 controls
consisted of dissolved substrates and sterifized soil. Type 2 controls consisted of dissolved substrates, sterilized soil and
TNP-10. MTBE and BTE-oX concentrations were evaluated for 36 hours every 6 hours. MTBE biodegradation efficiency
showed a zero-order rate in all samples. Although, the addition of surfactant enhanced MTBE biodegradation efficiency
rate by 22.6%, MTBE efficiency percent removal was not above 28.4%. Benzene biodegradation efficiency showed a
first-order two-phase reaction rate in the absence of surfactant. Interestingly, however, with the addition of TNP-10,
benzene biodegradation efficiency switched to a first-order one-phase kinetic rate model. Toluene and ethylbenzene
biodegradation efficiencies showed a first-order two-phase kinetic rate model in all samples. The addition of TNP-10 had
a major selective impact with a significant increase on toluene and ethylbenzene biodegradation efficiency second phase
kinetic rate constants. This selective enhancement showed a trend for toluene to reduce differences between the
distribution and elimination phase kinetic rate constants. O-xylene biodegradation efficiency followed a first-order one-
phase kinetic rate model in all samples. The addition of TNP-10 significantly increased the biodegradation efficiency
percent removals of those recalcitrant substrates such as e-xylene and MTBE by 40% and 35.5%, respectively.
Keywords

Biodegradation;BTEX; MTBE; Tergitol NP-10

INTRODUCTION

The major chemicals of enviromental concern from unieaded gasoline are methyl tertiary-butyl ether (MTBE) and
benzene, toluene, ethylbenzene and total xylenes (BTEX) due to their carcinogenic potential and other toxicity and their
impact on property value (Hartley et ai.,1999; Acuna-Askar, et al., 2000; Chang, ef al.,2001; Wilson, et al., 2001).
Underground storage tanks (UST's), production sites, transfer facilities and accidental spills are often reported as an
important source of soil and eventually groundwater contamination by BTEX and MTBE (USEPA, 2000). BTEX are
included in the current United States Environmental Protection Agency (USEPA) drinking water standards list under
the National Primary Dﬁnking Water Repulations (NPDWRs). The maximum drinking water levels for BTEX are
0.005, 1.0, 0.7, and 10 mg/L, respectively (USEPA, 2001). Additionally, the North Carolina Department of
Environment and Natural Resources (NCDENR) has set the risk based maximum soil contaminant concentrations



{MSCC) for a number of hydrocarbons including BTEX. The MSCC are divided in three categories: the residential soil
cleanup levels; the industrial/commercial soil cleanup levels and the soil-to-water maximum contaminant concentration
(NCDENR, 2002). The maximum contaminant levels (MCLs) for BTEX in drinking water in Mexico are 0.01, 0.3, 0.7
and 0.5 mg/L, respectively (DOF, 2000). Environmental regulations for benzene, toluene, ethylbenzene and total
xylene contaminated soil in Mexico, have set the maximum contaminant levels (MCLs) as 6, 40, 10 and 40.0 mg/Kg,
respectively, for agricultural and residential settings, and 15, 100, 25 and 100.0 mg/Kg, respectively, for industrial use
(DCF, 2005). The MTBE drinking water health advisory level for taste and odor has been set at 20-40 ug/L. by the
EPA (USEPA, 1997).

METHODS

Chemicals.

Benzene, toluene, ethylbenzene, mixed xylenes, o-, m-, p-xylene, methyl tertiary butyl ether (MTBE) and Tergitol NP-
10 (nonionic surfactant) were purchased from Sigma-Aldrich (Mexico) and were above 98% purity. Unleaded gasoline
(UG) Premium was purchased from a gas station. Nutrient agar (Difco Laboratories, Detroit, MI) and bacteriological
agar (BIOXON, Becton-Dickinscn, Mexico) were purchased from Casa Rocas Fisher Scientific (Mexico).

Culture conditions.

Mineral medium I (MMI) was prepared in deionized water and maintained in the seed biomass acclimation bioreactor
according to the following concentration (in mg/L) (Acuna-Askar ef al., 2003): KH,;PO,, 17; K;HPQ,, 44; Na;HPO,
2H,0, 67, MgS0,7H,0, 23; NH,CI, 3.4; (NH,);S0,, 40; FeCl;-6H,Q, 1. Mineral medium IT (MMII) was prepared to
resuspend the bacterial cells after centrifugation and had the following composition (in g/L): Na;HPQ,, 6; KH,PO,, 3;
NaCl, 1; NH,CI 1, MgS0Q,-7 H;O 0.5; CaCl,, 0.011; FeCl;-6H,0, 0.00]. Substrate mineral medivm (SMM) was
prepared for the experimental bioassays to evaluate biodegradation kinetics and consisted of MMII, 50 mg/L of each
BTE-o0X component, 50 mg/l. MTBE and 18.5% sterilized soil (§8). The pH of MMII and SMM was 7.0-7.5.

Critical micelle concentration.

The concentration range of nonicnic surfactant (Tergitol NP-10) where a sudden variation in the relation between both
culture medium density and culture surface tension occurred was chosen as the critical micelle concentration (CMC).
The amount of Tergitol NP-10 added to experimental bioassays was slightly below the CMC based on prior studies
(Acuna-Askar ef al., 2003).

Biomass acclimation batch reactor.

The biomass was grown using a 20-L glass bottle, with 8 L as the working volume, aerated at an inlet flowrate of 50
mlL/s and keeping disscived oxygen at 8.2-8.7 mg/L.. Single daily manual additions of 200 mg/L. UG as the only source
of carbon were made to the bioreactor for 6 months. Culture medium (MMI) was reconstituted once a week throughout
the feeding time. Acclimation conditions also included room temperature (17-23°C in Winter and 24 to 32°C in Spring)
and pH 7.0-7.5. 1 N NaOH was added daily to keep the pH within range. The conditions described here allowed
microbial growth to reach 800-900 mg/L. volatile suspended solids (VS$8). VSS determination followed Standard
Method 2540 E (Standard Methods, 1998).

Bioaugmentation.

A total volume of 560 mL of the mixed liquor was taken from the 20-L. biomass acclimation batch reactor using 14
Falcon® tubes (BD No. 352098) filled up to 40 mL each. The acclimated biomass was centrifuged in a Beckman
centrifuge (Beckman Instruments, Inc., Palo Alto, CA), model J2MI at 6,000 rpm at 25°C for 5 minutes. The biomass
was concentrated and resuspended in two Falcon® tubes with 35 mL of MMII each. An inoculum of 2 mL of
concentrated biomass was added to experimental bioassays to reach 880 mg/L VSS, which was a concentration similar
to the grown in the 20-L biomass acclimation batch reactor. This procedure was made for each of the three replicates,



Experimental bioassays.

Bioassays were performed using 50 mg/L as the initial MTBE concentration and 50 mg/L as the initial concentration of
each BTE-0X component to evaluate substrate removal capabilities of UG-acclimated biomass. Two controls and two
sets of samples were evaluated. First controls had only SMM. Second controls had SMM and 25 mg/L Tergitol NP10
(TNP-10). Set 1 contained SMM and 880 mg/L VSS of microbial inoculum. Set 2 contained SMM, 880 mg/l. VSS of
microbial inoculum and 25 mg/L. TNP-10. MTBE and BTE-0X were monitored for 36 hours every 6 hours. Substrate
biodegradation kinetics were conducted using 40-mL Wheaton borosilicate glass EPA vials with Teflon™ fluorocarbon
resin-lined top screw caps of GPI thread finish (Wheaton Science Products, Millville, NJ), with a maximum working
volume of 22 mlL, leaving a headspace available for respiration. Three replicates were run to evaluate substrate
biodegradation kinetics.

Sample and control sterilization.

5-g soil samples wrapped in aluminum foil were autoclaved in a 21-L Presto autoclave (Industrias Steele, Mexico)
following three sterilization cycles. Soil samples were considered sterile at a maxitmum of 5 CFU/mL in nondiluted
samples. Other samples and controls were autoclaved following one sterilization cycle. Standard Methods 9215 A and
9215 B (Standard Methods, 1998) were followed for sample preparation and for estimating the number of heterotrophic
bacteria.

Isolation of acclimated bacteria.

UG-acclimated bacteria were grown in UG agar plates and incubated in a gravity flow Isotemp incubator (Fisher
Scientific, USA), model 537D at 28-30°C for 72 hours. Acid production in UG agar plates was identified by change of
color from blue to green, and in some cases from blue to yellow using bromothymol blue as indicator. For
identification purposes, bacteria isolates were grown in nutrient agar plates.

Mechanical shakers and sonication.

Samples and controls used for biotransformation studies were shaken using a Lab-line oscillating incubator shaker
{Barnstead International, Dubuque, IA) model QOrbit. Uniform shaking was maintained at 200 rpm at 30°C. Samples
were tested for sonication following the USEPA method 3550, with some modifications, to release potential BTE-0X
and MTBE trapped in cell membrane

Gas chromatography and sample concentrator.

MTBE and BTE-0X were analyzed by a Varian 3400 GC/FID chromatograph. GC/FID determinations followed
standard procedures (USEPA 1995) with some modifications. A Petrochol™ (Supelco, Bellefonte, PA) 100m x
0.25mm ID x 0.5um film DH fused silica GC capillary column was used. The initial oven temperature was set up at
60°C and held for 30 minutes, after which the first temperature rate varied 10°C/min from 60°C up to 90°C, point at
which temperature was held for 20 minutes. A second temperature rate followed and varied 30°C/min from 90°C up to
150°C, point at which temperature was held for 2 minutes. The injector was set up on a split/splitless mode (1:20) and
its temperature was set at 250°C. The detector temperature was set at 300°C. 5 mL samples were purged with nitrogen
at 25°C for 10 minutes and concentrated prior to injection.

Kinetic models evaluation
First-order one-phase model. Model 1 {Acuna-Askar et al., 2000) was used to evaluate the overall removal rate
constants K for benzene in set 2 samples and for o-xylene in sets 1 and 2 samples.
Modell  §,=S; exp(-Kt) (1)
where: 8, = Substrate concentration at time t, (mg/L.)
Sy = Substrate concentration at time zero, (mg/L.)



K = overall first order constant, K=k Xy
Xy = VSS, (mg/L)
k= specific rate constant h™'(mg/L) " vss
t= time (h)
The overall removal rate constants K were obtained from the slepe by plotting In S, versus t.

First-order two-phase model. Model 1I (Hu et al., 2004) was used to evaluate the overall removal rate constants K for
benzene in set 1 samples and for toluene and ethylbenzene in sets 1 and 2 samples.
Model [T 8§, =8, exp(-K,t) + S; exp(-K;t) )]
where: 8, = Substrate concentration at time t, {mg/L)
8, = First phase substrate concentration at time zero, {(mg/L)
8, = Second phase substrate concentration at time zero, (mg/L)
K, = First phase kinetic rate constant, (h™')
K, = Second phase kinetic rate constant, (h™)
The overall removal rate constants K were obtained from the method of residuals.

Zero-order model  Model II1 was used to evaluate the overall removal rate constants K for MTBE in sets 1 and 2
samples.
Model I §;=- Kt + 8 (3)
terms are defined as for model 1
The overall removal rate constants K were obtained from the slope by plotting S, versus t.

RESULTS AND DISCUSSION

MTBE biodegradation efficiency showed a zero-order rate in all samples (Figure 1), whereas benzene biodegradation
efficiency showed a first-order two-phase reaction rate in the absence of surfactant. Interestingly, however, with the
addition of TNP-10, benzene biodegradation efficiency switched to a first-order one-phase kinetic rate model
(Figure 2). Research reports on the switch of substrate kinetics models under the effect of nonionic surfactants are
limited in the literature. Substrate bioavailability may not only be handled as a function of the CMC, but it may also be
related to changes in substrate kinetic rates. Precise determinations of changes in chemical kinetic rates under the
effect of nonionic surfactants may improve prediction on biomass capability to efficiently biodegrade the substrates of
interest.
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Figure 1 MTBE biodegradation efficency kinetics with 200 mg/L
total BTEoX in the presence of 18.5% 38
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Figure 2 Benzene biodegradation efficiency kinetics with 200 mg/L total BTEoX and 50 mg/L

MTBE in the presence of 18.5% 8S

Toluene and ethylbenzene biodegradation efficiencies showed first-order two-phase kinetic rate models in all samples
(Figures 3 and 4), which could have been due to the higher assimilative capacity of the biomass for theses substrates as
compared to the assimilative capacity to biodegrade MTBE (Acuna-Askar ef al,, 2004). The addition of TNP-~10 had a
major selective impact with a significant increase on toluene and ethylbenzene biodegradation efficiencies, particularly

on the second phase kinetic rate constants (Table 1).
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O-xylene biodegradation efficiency followed a first-order one-phase kinetic rate model in all samples (Figure 5). The
addition of TNP-10 significantly increased the biodegradation efficiency percent removals of those recalcitrant

substrates such as o-xylene and MTBE by 40% and 35.5%, respectively (Table 3).
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Figure 5 O-Xylene biodegradation efficiency kinetics with 200 mg/L total
BTEoX and 50 mg/L. MTBE in the presence of 18.5% S5

Table 1. Kinetic model reaction rate constants vs. experimental bioassay samples

Benzene Toluene Ethylbenzene o-Xylene
Set 1 Samples*
Overall K rate K, K: K, K, K; K> K
[hr'] 0.0085 0.1514 10.1143 0.0362 02105  0.0123 0.0498
0} (0.985) (0.999) (0.989) {0.983)
Specific k rate k, k, X ks k, k» k
(he'(mg/L)'vss] 966x10° 1.72x10% 1.13x10° 0.411 x 10™ 239x 10% 0.14x10%  0.566x 10™
) (0.999) (0.999) (0.999) (0.985)
Set 2 Samples** .
Overall K rate K K, K,; K, K, K
[hr') 0.1063 0.1181 0.0798 03206  0.0639 0.0291
) (0.989) (0.993) (0.993) (0.990)
Specific k rate k k, ka2 k, ks k
[hr (mg/LY" vss) 1.20 x 107 1.34x 10® 0.907 x 10 3.64x 10° 0.726 x 10° 0331 x 10*
) (0.989) (0.999) (0.999) (0.990)

r = correlation coefficient

*SMM + 880 mg/L VSS (control 1 as SMM)
#* SMM + 880 mg/L VSS + 25 mg/L. TNP-10 {control 2 as SMM + 25 mg/1. TNP-10)



MTBE biodegradation efficiency kinetic rate was higher in those samples containing TNP-10 as compared to those in
the absence of TNP-10, suggesting that MTBE bioavailability was enhanced by TNP-10 (Table 2).

Table 2. MTBE kinetic model reaction rate constants vs. experimental bioassay samples

Set 1 Samples* Set 2 Samples**
Overall K rate K K
[mgL"hr) 0.3175 0.3895
® (0.983) (0.975)
Specific k rate k k
[mgL'hr'(mg/L) ' vss] 3.61x10™ 4.53 x 10™
(r) (0.983) (0.975)

r = correlation coefficient
* SMM + 880 mg/L. VS8 (control 1 as SMM)
** SMM + 880 mg/L. VSS + 25 mg/L. TNP-10 {control 2 as SMM + 25 mg/L. TNP-10)

A point where the addition of surfactant may no longer have a significant effect on substrate bicavailability would be
expected, since breakdown mechanisms depend on chemical structure, among other factors. MTBE recalcitrance to
biodegradation is a clear example of the molecular hindrance even though its solubility in water is higher than that of
BTEX. Owverall, the addition of TNP-10 increased the biodegradation efficiency percent of all chemicals and
demonstrated that limitations other than those related to substrate-micelle interactions may influence chemical
breakdown (Table 3). In addition, the results of this study suggest that changes in substrate biodegradation kinetic rates
under the effects of surfactants should be monitored to improve multi-substrate biodegradation efficiency prediction,
especially for scale-up applications.

Table 3. Biodegradation efficiency percentage vs. experimental bioassay samples
Benzene (%)  Toluene (%) Ethylbenzene (%) o0-Xylene (%) MTBE (%)

SMM + 880 mg/L VSS8* 95.6 96.9 95.0 46.1 20.9

SMM + 880 mg/L VSS +
25 mg/L TNP10**

¥ (Control 1 as SMM
** Control 2 as SMM + 25 mg/L TNP1Q

97.3 99.3 99.7 64.6 284

Comparison and discussion of the results presented in this research with others previously published either in batch or
continuous cultures by an ample variety of authors is ongoing and will complete the present work.
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Abstract

Introduction

The major chemicals of environmental concern from unleaded gasoline are methyl tertiary-butyl
ether (MTBE) and benzene, toluene, ethylbenzene and total xylenes (BTEX) due to their
carcinogenic potential and other toxicity and their impact on property value (Hartley et al.,1999;
Acuna-Askar et al., 2000; Chang et al., 2001; Wilson et al., 2001). Underground storage tanks
(UST's), production sites, transfer facilities and accidental spills are often reported as an important
source of soil and eventually groundwater contamination by BTEX and MTBE (USEPA, 2000). ltis
also known that a prevalent cause of MTBE groundwater contamination occurs through MTBE
concentrations in storm water runoff due to atmospheric emission fallout (Squillace et al., 1996).
BTEX and MTBE are included in the current United States Environmental Protection Agency
(USEPA) drinking water standards and health advisories under the National Primary Drinking
Water Regulations (NPDWRs) (USEPA, 2004). The maximum drinking water levels for BTEX are
0.005, 1.0, 0.7, and 10 mg/L, respectively (USEPA, 2004). The maximum contaminant levels
(MCLs) for BTEX in drinking water in Mexico are 0.01, 0.3, 0.7 and 0.5 mg/L, respectively (DOF,




2000). The MTBE drinking water health advisory levels for taste and odor have been set at 40 and
20 ug/L by the EPA (USEPA, 2004). To date, no MTBE drinking water health advisory level has
been set in Mexico.

Although BTEX can be adsorbed on to scil due to hydrophobic properties, MTBE is more
hydraphilic {Sangster, 1989). The soluble fraction of BTEX, however, ¢an infiltrate through the sail
and reach groundwater bodies, where further liquid and vapor phase equilibrium occurs in the
subsoil-groundwater compartment. It is important to understand the fate of BTEX and MTBE as
the contaminant plume approaches the subsoil-groundwater compartment so that the risk of
environmental impact can be assessed and appropriate bioremediation actions can be undertaken.
Physical chemical parameters including BTEX octanol-water partition coefficients applicable to
chemical solubility and substrate bioavailability need to be considered for site bioremediation
strategies. It has been reported that nonionic surfactants offer a potential alternative to enhance
substrate apparent solubitity (Volkering ef al., 1995) and dissolution rate (Grimberg ef af., 1596).
New developments in environmental regulations and site cleanup demand the formulation of new
and more evolved remediation technologies to treat contaminated sites, including soil-groundwater
compartments. This study was aimed to evaluate the solubility of BTEOX and MTBE in soil slurries
in the presence of a nonionic surfactant, Tergitol NP-10, which could be used as a substrate
bioavailability enhancer.

Materials and methods

Chemicals

Chemicals, including BTE-oX, MTBE and Tergitol NP-10 (TNP-10, a nonionic surfactant) were
purchased from Sigma-Aldrich (Mexico) and were above 98% purity. Mineral medium | (MMI) was
prepared for controls and for soil slurry samples and had the following compaosition (in g/L) (Acuna-
Askar ef al.,, 2003): Na,HPQ,, 6; KH,PQ,, 3; NaCl, 1; NH,CI 1, MgSQ,7 H,O 0.5; CaCli,, 0.011;
FeCl;-6H20, 0.001. Substrate mineral medium (SMM) was prepared for the experimental assays to
evaluate the effect of TNP-10 on BTEX and MTBE solubility and consisted of MMI, 50 mg/L of
each BTE-oX component and 50 mg/L MTBE. The pH of MMI and SMM was acidified with H;PO,
down to 2.5-3.0.

Critical micelle concentration

The critical micelle concentration (CMC) was chosen as the concentration range of TNP-10 where
a sudden variation in the relation between both culture medium density and cuiture surface tension
occurred, The amount of TNP-10 added to experimental assays was 25 mg/L based on prior
studies (Acuna-Askar et al., 2003).

Experimental assays

Controls and two sets of samples were evaluated. Controls had only SMM. Set 1 contained SMM
and 18.5% sterilized soil ($S). Set 2 contained SMM, 18.5% SS and 25 mg/L TNP-10. MTBE and
BTE-oX were monitered for 36 hours every 6 hours. Experimental assays were conducted using
40-mL Wheaton borosilicate glass EPA vials with Teflon™ fluorocarbon resin-lined top screw caps
of GPI thread finish (Wheaton Science Products, Millville, NJ), with a maximum working volume of
22 mL. Experiments were run three times separately.

Sample sterilization

5-g soil samples wrapped in aluminum foil were autoclaved in a 21-L Presto autoclave (Industrias
Steele, Mexico) following three sterilization cycles. Soil samples were considered sterile at a
maximum of 5 CFU/mL in nondiluted samples (Standard Methods, 1998). Controls were
autoclaved following one sterilization cycle.

Sample shaking and gas chromatography

Samples and controls were shaken using a Lab-line oscillating incubator shaker (Bamstead
International, Dubuque, 1A) model Orbit. Uniform shaking was maintained at 200 rpm at 30°C.
MTBE and BTE-oX were analyzed by a Varian 3400 GC/FID chromatograph. GC/FID
determinations followed standard procedures (USEPA, 1995) with some modifications. A
Petrochol™ (Supelco, Bellefonte, PA) 100m x 0.25mm ID x 0.5 m fim DH fused silica GC



capillary column was used. The initial oven temperature was set up at 60°C and held for 30
minutes, after which the first temperature rate varied 10°C/min from 60°C up to 90°C, point at
which temperature was held for 20 minutes. A second temperature rate followed and varied
30°C/min from 90°C up to 150°C, point at which temperature was held for 2 minutes. The injector
was set up on a split/splitless mode (1:20) and its temperature was set at 250°C. The detector

temperature was set at 300°C. 5-mL samples were purged with nitrogen at 25°C for 10 minutes
and concentrated prior to injection,

Results and discussions
The addition of soil decreased the solubility of all chemicals, and this effect is more noticeable after

18 hours, with approximately 50% of BTE-0X concentration being partitioned onto soil. Among all

chemicals, MTBE showed highest solubility, as it would be according to its physical chemical
properties (Figure1).

In Figure 2, it can be seen that BTE-oX showed higher concentration in the aqueous phase when
TNP-10 was added to the slurries, suggesting that chemical soil-to-water ratio was reduced by the
addition of the nonionic surfactant. When surfactant-free slurries were compared against slurries
containing surfactant to cbtain the corresponding chemical concentration ratio, it was clearly seen
that the solubility of BTE-oX and MTBE significantly increased (Figure 3).

Discussions on results will be extended as more results are obtained during the course of this
research, befare final submittal of the full manuscript.
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Figure 3 Resultant chemical solubility increase by the addition
of TNP-10 to soil slurries,

Conclusions

The addition of the nonionic surfactant Tergitol NP-10 significantly increased the solubility of all
chemicals, with BTEoX being the more favored as compared to MTBE.

More conclusions from this work will be drawn as more results will be obtained and further
discussed during the course of this research before final submittal of the full manuscript.
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Abstract The biodegradation kinetics of BTE-oX and MTBE, mixed all together, in the presence of
bicaugmented bacterial populations as high as 880 mg/L. VSS was evaluated. The effect of soil in aqueous
samples and the effect of Tergitol NP-10 on substrate biodegradation rates were also evaluated.
Biodegradation kinetics was evaluated for 36 hours, every 6 hours. Benzene and o-xylene biodegradation
followed a first-order one-phase kinetic model, whereas toluene and ethylbenzene biodegradation was well
described by a first-order two-phase kinetic model in all samples. MTBE followed a zero-order removal
kinetic model in all samples. The presence of soil in aqueous samples retarded BTE-oX removal rates, with
the highest negative effect on o-xylene. The presence of soil enhanced MTBE removal rate. The addition of
Tergitol NP-10 to aqueocus samples containing soil had a positive effect on substrate removal rate in all
sampies. Substrate percent removals ranged from 95.4-99.7 % for benzene, toluene and ethylbenzene.
O-xylene and MTBE percent removals ranged from 55.8—-90.1% and 15.6-30.1%, respectively.
Keywords Bioaugmentation; biodegradation; bioremediation; BTEX; MTBE; Tergitol NP-10

introduction

Benzene, toluene, ethylbenzene and mixed xylenes (BTEX) along with methyl tertiary-
butyl ether (MTBE) are volatile organic compounds (VOCs) commonly found in petrole-
um-contaminated sites. Underground storage tanks (USTs), production sites, transfer
facilities and accidental spills are often reported as an important source of soil and eventu-
ally groundwater contamination by BTEX and MTBE (USEPA, 2000). Itis also known that
a prevalent cause of MTBE groundwater contamination occurs through MTBE concentra-
tions in storm water runoff due to atmospheric emission fallout (Squillace et ai., 1996).
BTEX are included in the current United States Environmental Protection Agency
(USEPA) drinking water standards list under the National Primary Drinking Water
Regulations (NPDWRs). The maximum drinking water levels for BTEX are 0.005, 1.0,
0.7, and 10 mg/L, respectively (USEPA, 2001). Additionally, the North Carolina
Department of Environment and Natural Resources (NCDENR) has set the risk based
maximum soil contaminant concentrations (MSCC) for a number of hydrocarbons includ-
ing BTEX (NCDENR, 2002). The maximum contaminant levels (MCLs) for BTEX in
drinking water in Mexico are 0.01, 0.3, 0.7 and 0.5 mg/L, respectively (DOF, 2000). Also,
in Mexico, emerging environmental regulations for BT X-contaminated soil have set maxi-
mum contaminant levels (MCLs) (DOF, 2002). In the United States, the MTBE drinking
water health advisory level for taste and odor has been set at 2040 pug/L. by the EPA
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(USEPA, 1997). Some studies have shown that among the mixed xylenes {o-, m- and p-
xvlenes), o-xvlene appears to be most recalcitrant (Stewart and Kamarthi, 1997). In addi-
tion, it has been reported that revertant strains grown on o-xylene are able to metabolize
meta and para isomers (Di Lecce ef al., 1997) and that the use of nonionic surfactanis offer
a patenitial alternative to enhance substrate apparent solubility {Volkering et al., 1995} and
disselution rate (Grimberg ef al., 1996). New developments in environmental regulations
and site cleanup demand the formulation of new and more evolved remediation technolo-
gies to treat contaminated sites, including groundwater bodies,

This study was aimed to evaluate the biodegradation kinetics of BTE-oX, all together, in
the presence of MTBE by the addition of hioaugmented bacterial populations previously
acclimated to unleaded gasoline. The effects of soil and the addition of nonionic surfactant
Tergitel NP-10 on BTE-0X and MTBE biodegradation kinetics were also evaluated.

Materials and method

Chemicals and culture conditions

Chemicals, including BTE-oX, MTBE and Tergitol NP-10 (TNP- 10, a nonionic surfactant)
were purchased from Sigma-Aldrich (Mexico) and were above 98% purity. Unleaded gaso-
line (UG) Premium was purchased from a local gas station. Mineral medium I (MMI) was
prepared in deionized water and maintained in the seed biomass acclimarion bioreactor
according to the following concentration (in mg/L.) (Acuna-Askar er al., 2003): KH,PO,,
17; K,HPO,, 44; Na,HPO,- 2H,0, 67; Mg50,-7H,0. 23; NH,1, 3.4; (NH,),50,, 40;
FeCl;-6H,0, 1. Mineral medium II (MMII) was prepared to resuspend the bacterial cells
after centrifugation and had the following composition (in g/L): Na,HPO,, 6; KH,PO,, 3;
NaCl, 1; NH,C11, MgS50,-7 H,0 0.5; CaCl,, 0.011; FeCl,-6H,0, 0.001. Substrate mineral
medium (SMM) was prepared for the experimental bioassays to evaluate biodegradation
kinetics and consisted of MMII, 50 mg/L of each BTE-0X component and 50 mg/L. MTBE.
The pH of MMII and SMM was 7.0-7.5.

Critical micelle concentration

The critical micelle concentration (CMC) was chosen as the concentration range of TNP-
10 where a sudden variation in the relation between both culture medium density and cul-
ture surface tension occurred. The amount of TNP-10 added to experimental bioassays was
slightly below the CMC based eon prior studies (Acuna-Askar et al., 2003),

Blomass acclimation batch reactar

The biomass was grown using a 20 L. glass bottle, with 8 L as the working volumne, acrated
at an inlet flowrate of 50 mL/s and keeping dissclved oxygen at 8.2-8.7 mg/L.. Single daily
manual additions of 200 mg/L. UG as the only source of carbon were made to the bioreactor
for 6 months. Culture medium (MMI) was reconstituted once a week throughout the feed-
ing time. Acclimation conditions also included room temperature (17-23°C in Winter and
24 to 32°C in Spring) and pH 7.0-7.5. Enough 1 N NaOH was added daily to keep the
pH within range. The ceonditions described here allowed microbial growth to reach
800—900 mg/L volatile suspended solids (VSS). VSS determination followed Standard
Method 2540 E (Srandard Merhods, 1998).

Biocavgmentation and experimental bloassays

A total volume of 560 mL of the mixed liquor was taken from the 20-L biomass acclimation
batch reacter using 14 Falcon® tubes (BD No. 352098) filled up to 40 mL each. The accli-
mated biomass was centrifuged in a Beckman centrifuge (Beckman Instruments, Inc., Palo
Alto, CA), model J2MI at 6,000 rpm at 25°C for 5 minutes. The biomass was concentrated
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